
Revisiting Invariants

Lúıs Barbosa1 J.N. Oliveira1 Alexandra Silva2

1DI - CCTC, Univ. Minho, Braga
2CWI, Amsterdam

IFIP WG1.3
March, 23 - 24, 2007

Braga, Portugal

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Motivation

Previous work on software components

as persistent (state-based) and interacting entities

leads to the development of coalgebraic models as generalised
(= parametrized by a strong monad) Mealy machines [Bar00]

and calculi to compose components and reason
compositionally about them [BO02,BO03].

... but somehow neglected the ubiquity of “business rules” in
systems design.

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Motivation

Previous work on software components

as persistent (state-based) and interacting entities

leads to the development of coalgebraic models as generalised
(= parametrized by a strong monad) Mealy machines [Bar00]

and calculi to compose components and reason
compositionally about them [BO02,BO03].

... but somehow neglected the ubiquity of “business rules” in
systems design.
Clearly, most “business rules” are invariants. But

how can we calculate with invariants, in a generic way?

and preserve them along the component assembly process?

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Invariants

Definition (by Bart Jacobs)

An invariant for a coalgebra c : X → F (X) is a predicate P ⊆ X
which is “closed under c”:

x ∈ P ⇒ c(x) ∈ Pred(F)(P)

for all x ∈ X .

Question

Is such a definition amenable to formal calculation?
(formal ≡ in a let-the-symbols-do-the-work style)

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Modelling vs Calculating

The use of formal modelling methods often raises a kind of

Notation conflict

between

descriptiveness — ie., adequacy to describe domain-specific
objects and properties and build suitable models, and

compactness — as required by algebraic reasoning and
solution calculation.

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Modelling vs Calculating

The use of formal modelling methods often raises a kind of

Notation conflict

between

descriptiveness — ie., adequacy to describe domain-specific
objects and properties and build suitable models, and

compactness — as required by algebraic reasoning and
solution calculation.

More demanding problems entails the need for a temporary change
of the working “mathematical space”, e.g.

Laplace transform

From the time-space to the s-space:
f (t) is transformed into (L f)s =

∫ ∞

0 e−st f (t)dt

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Quoting Kreyszig’s book, p.242

“(...) The Laplace transformation is a method for solving differential

equations (...) [which] consists of three main steps:

1st step. The given “hard” problem is transformed into a
“simple” equation (subsidiary equation).

2nd step. The subsidiary equation is solved by purely

algebraic manipulations.
3rd step. The solution of the subsidiary equation is

transformed back to obtain the solution of the
given problem.

In this way the Laplace transformation reduces the problem of solving a

differential equation to an algebraic problem”.

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

An “s-space equivalent” for logical quantification

The pointfree (PF) transform

φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : b R a : b S a〉 R ⊆ S
〈∀ a : : a R a〉 id ⊆ R

〈∀ x : x R b : x S a〉 b(R \ S)a
〈∀ c : b R c : a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a

What are R , S , ⊥, ...?

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

A transform for logic and set-theory

An old idea

PF(sets, predicates) = pointfree binary relations

Calculus of binary relations

1860 - introduced by De Morgan, embryonic

1870 - Peirce finds interesting equational laws

1941 - Tarski’s school

1980’s - coreflexive models of sets (Freyd and Scedrov,
Eindhoven MPC group and others)

Unifying approach

Everything is a (binary) relation

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Binary Relations

Arrow notation

Arrow B A
Roo denotes a binary relation to B (target) from A

(source).

Identity of composition

id such that R · id = id · R = R

Converse

Converse of R — R◦ such that a(R◦)b iff b R a.

Ordering

“R ⊆ S — the “R is at most S” — the obvious R ⊆ S ordering.

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Binary Relations

Pointwise meaning

b R a means that pair 〈b, a〉 is in R , eg.

1 ≤ 2

John IsFatherOf Mary

3 = (1+) 2

Reflexive and coreflexive relations

Reflexive relation: id ⊆ R

Coreflexive relation: R ⊆ id

Sets

Are represented by coreflexives, eg. set {0, 1} is ?>=<89:;0

?>=<89:;1

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Algebraic manipulation

Algebraic (“al-djabr”) rules, as Galois connections

f · R ⊆ S ≡ R ⊆ f ◦ · S

R · f ◦ ⊆ S ≡ R ⊆ S · f

T · R ⊆ S ≡ R ⊆ T \ S

or closure rules, eg. (for Φ coreflexive),

Φ · R ⊆ S ≡ Φ · R ⊆ Φ · S

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Invariants PF-transformed

Imploding the outermost ∀ in Jacobs definition:

〈∀ x : : x ∈ P⇒ c(x) ∈ Pred(F)(P)〉

≡ { sets as coreflexive relations }

〈∀ x : : x P x ⇒ (c x) Pred(F)(P) (c x)〉

≡ { PF-transform rule (f b)R(g a) ≡ b(f ◦ · R · g)a }

〈∀ x : : x P x ⇒ x(c◦ · Pred(F)(P) · c)x)〉

≡ { drop variables (PF-transform of inclusion) }

P ⊆ c◦ · Pred(F)(P) · c

≡ { introduce relator ; shunting rule }

c · P ⊆ (F P) · c

≡ { introduce Reynolds combinator }

c(F P ← P)c

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

About Reynolds arrow

Reynolds arrow combinator is a relation on functions

f (R ← S)g ≡ f · S ⊆ R · g cf. diagram B

f

��

A
Soo

g

��
⊆

C D
R

oo

useful in expressing properties of functions — namely
monotonicity

B A
foo is monotonic ≡ f (≤B ← ≤A)f

polymorphism (free theorem):

G A F A
foo is polymorphic ≡ 〈∀ R : : f (G R ← F R)f 〉

etc

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Invariants as coreflexive bisimulations

Re-working the calculation backwards, and considering two
coalgebras c and d and a relation R on their state spaces:

c(F R← R)d

≡ { Reynolds combinator }

c · R ⊆ (F R) · d

≡ { shunting rule; drop variables (PF-transform of inclusion) }

〈∀ x , y : : x R y ⇒ x(c◦ · F R · d)y)〉

≡ { PF-transform rule (f b)R(g a) ≡ b(f ◦ · R · g)a }

〈∀ x , y : : x R y ⇒ (c x) F R (d y)〉

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Invariants as coreflexive bisimulations

... arrive at:

Definition (by Bart Jacobs):

A bisimulation for coalgebras c : X → F (X) and d : Y → F (Y) is
a relation R ⊆ X × Y which is “closed under c and d”:

(x , y) ∈ R ⇒ (c(x), d(y)) ∈ Rel(F)(R)

for all x ∈ X and y ∈ Y .

Question

Having put both invariants and bisimulations in a common setting

— as Reynolds arrows —

how can our reasoning power be enriched?

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters?

Useful and manageable PF-properties

For example

id ← id = id (1)

(R ← S)◦ = R◦← S◦ (2)

R ← S ⊆ V ← U ⇐ R ⊆ V ∧ U ⊆ S (3)

(R← V) · (S ← U) ⊆ (R · S)← (V · U) (4)

recalled from Backhouse’s ”On a relation on functions” (1990)

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

Get monotony on the consequent side and thus,

S ← R ⊆ (S ∪ V)← R (5)

⊤← S = ⊤ (6)

anti-monotony on the antecedent one

R←⊥ = ⊤ (7)

and two distributive laws:

S ← (R1 ∪ R2) = (S ← R1) ∩ (S ← R2) (8)

(S1 ∩ S2)← R = (S1← R) ∩ (S2← R) (9)

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

Ex: id is a bisimulation

c(F id ← id)d

≡ { relator F preserves the identity }

c(id ← id)d

≡ { (1) }

c (id) d

≡ { id x = x }

c = d

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

Ex: the converse of a bisimulation is a bisimulation

c(F R ← R)d

≡ { converse }

d(F R ← R)◦c

≡ { (2) }

d((F R)◦← R◦)c

≡ { relator F }

d(F(R◦)← R◦)c

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

Ex: bisimulations are closed under union
Therefore,

(F R1← R1) ∩ (F R2← R2)

⊆ { (5) (twice) ; monotonicity of meet }

((F R1 ∪ F R2)← R1) ∩ ((F R1 ∪ F R2)← R2)

= { (8) }

(F R1 ∪ F R2)← (R1 ∪ R2)

= { relators }

F(R1 ∪ R2)← (R1 ∪ R2)

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

Ex: behavioural equivalence is a bisimulation

uRv ≡ [(c)]u = [(d)]v R is a bisimulation

c(F ([(c)]◦ · [(d)])← [(c)]◦ · [(d)])d

≡ { definition }

[(c)]◦ · [(d)] ⊆ c◦ · F ([(c)]◦ · [(d)]) · d

≡ { relators }

[(c)]◦ · [(d)] ⊆ c◦ · F [(c)]◦ · F [(d)] · d

≡ { converse }

[(c)]◦ · [(d)] ⊆ (F [(c)] · c)◦ · F [(d)] · d

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

Ex: behavioural equivalence is a bisimulation

[(c)]◦ · [(d)] ⊆ (F [(c)] · c)◦ · F [(d)] · d

≡ { universal property of coinductive extension }

[(c)]◦ · [(d)] ⊆ (ω · [(c)])◦ · ω · [(d)]

≡ { converse }

[(c)]◦ · [(d)] ⊆ [(c)]◦ · ω◦ · ω · [(d)]

≡ { Lambek (final coalgebra is an isomorphism) }

true

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

... too simple and obvious, even without Reynolds arrow in the
play. But, consider now the equivalence between Jacobs and
Aczel-Mendler’s definition of bisimulation

Definition (by Aczel & Mendler)

Given two coalgebras c : X → F (X) and d : Y → F (Y) an
F-bisimulation is a relation R ⊆ X × Y which can be extended to a
coalgebra ρ such that projections π1 and π2 lift to F-comorphisms, as
expressed by

Rπ1

xxppppp π2

''NNNNN

ρ

��
X

c

��

Y

d

��
FRF π1

xxpppp
F π2

''NN
NN

FX FY

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Jacobs ≡ Aczel & Mendler

c(FR ← R)d

≡ { tabulate R = π1 · π
◦

2 }

c(F(π1 · π
◦

2)← (π1 · π
◦

2))d

≡ { relator commutes with composition and converse }

c(((Fπ1) · (Fπ2)
◦)← (π1 · π

◦

2))d

≡ { fusion [CIC’06] law }

c((Fπ1← π1) · ((Fπ2)
◦← π◦

2))d

≡ { (2) }

c((Fπ1← π1) · (Fπ2← π2)
◦)d

≡ { go pointwise (composition) }

〈∃ a : : c(Fπ1← π1)a ∧ d(Fπ2← π2)a〉

cf. X

c

��

Y
Roo

d

��

Z
π1

ffMMMMM
π2

88qqqqq

a��
FZF π1

xxqqqq
F π2

&&MM
MM

FX FY
F R

oo

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

Meaning of 〈∃ a : : c(F π1← π1)a ∧ d(F π2← π2)a〉 :

there exists a coalgebra a whose carrier is the “graph” of
bisimulation R and which is such that projections π1 and
π2 lift to the corresponding coalgebra morphisms.

Comments:

One-slide-long proofs are easier to grasp — for a (longer)
bi-implication proof of the above see Backhouse &
Hoogendijk’s paper on dialgebras (1999)

Rule (r · s◦)← (f · g◦) = (r ← f) · (s← g)◦ does most of the
work — its proof is an example of generic, stepwise
PF-reasoning [CIC’06, paper to appear]

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

Ex: coalgebra morphisms entail bisimulation
Immediate, since inclusion of functions is equality:

c(F h← h)d ≡ c · h = (F h) · d (10)

However, in the Aczel & Mendler setting becomes:
Let h : d ←− c a coalgebra morphism and conjecture γ : F h←− h

γ = F (π2)
◦ · d · π2 (11)

Now prove the diagram commutes: i.e., both π1 and π2 are
coalgebra morphisms, i.e.,

F π1.γ = c · π1 F π2.γ = d · π2 (12)

Clearly, π2 is a coalgebra isomorphism. Then, prove that π1 is also
a colagebra morphism, i.e.,

c · π1 = F π1 · γ (13)

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

c · π1 = F π1 · γ

≡ { conjecture on γ; functors }

c · π1 = F (π1 · (π2)
◦) · d · π2

≡ { h = π1 · (π2)
◦ }

c · π1 = F h · d · π2

≡ { h morphism }

c · π1 = c · h · π2

≡ { π2 iso, h = π1 · (π2)
◦ }

c · π1 = c · π1

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Why Reynolds arrow matters

Now the converse direction: if h is a function st the diagram
commutes, h is a coalgebra morphism.

c · h = F h · d

≡ { h = π1 · (π2)
◦, functors }

c · π1 · (π2)
◦ = F π1 · F (π2)

◦ · d

≡ { hyp: (12) }

F π1.γ · (π2)
◦ = F π1 · F (π2)

◦ · d

≡ { γ definition and π2 is iso }

F π1.γ = F π1 · γ

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Invariants

Invariants are coreflexive bisimulations

c(F Φ← Φ)c

Get for free:

id (everywhere true predicate) is largest invariant

⊥ (everywhere false) is the least one

Invariants are closed by disjunction (ie. union), ...

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Modalities

Invariants bring about modalities:

c(F Φ← Φ)c ≡ c · Φ ⊆ F Φ · c

≡ { shunting rule }

Φ ⊆ c◦ · (F Φ) · c
︸ ︷︷ ︸

©cΦ

since we define the “next time X holds” modal operator as

©cX
def
= c◦ · (F X) · c

Φ invariant ≡ Φ ⊆ ©Φ

c(F Φ← Φ)c ≡ c · Φ ⊆ F Φ · c

≡ Φ ⊆ c◦ · F Φ · c

≡ Φ ⊆ ©Φ

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Modalities

In PF-refactoring of database theory [Oli06] has derived Galois
connection

πg ,f R ⊆ S ≡ R ⊆ g◦ · S · f (14)

in order to get (for free) properties of lower adjoint πg ,f .

Interesting enough, an instance of such a connection

πc Φ ⊆ Ψ ≡ Φ ⊆ ©c Ψ (15)

(within coreflexives) can be re-used to obtain (again for free)
properties — now — of the upper adjoint ©c :

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Modalities

As as upper adjoint in a Galois connection,

©c is monotonic — thus simple proofs such as

Φ is an invariant

≡ { PF-definition of invariant }

Φ ⊆ ©cΦ

⇒ { monotonicity }

©cΦ ⊆ ©c(©cΦ)

≡ { PF-definition of invariant }

©cΦ is an invariant

©c distributes over conjunction, that is PF-equality

©c(Φ ·Ψ) = (©cΦ) · (©cΨ)

holds, etc

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Modalities

Further modal operators, for instance �Ψ — henceforth Ψ —
usually defined as the largest invariant at most Ψ:

�Ψ = 〈
⋃

Φ : : Φ ⊆ Ψ ∩©cΦ〉

which shrinks to a greatest (post)fix-point

�Ψ = 〈ν Φ : : Ψ · ©cΦ〉

where meet (of coreflexives) is replaced by composition, as this
paves the way to agile reasoning

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Modalities

Ex: �Φ = Φ ≡ Φ inv

(cf, [Jacobs,06] Lemma 4.2.6, pg 109)

�Φ ⊆ Φ is obvious from the definition, but

Φ inv

≡ { just proved }

Φ ⊆ ©Φ

≡ { Φ· monotonic; composition of coreflexives is involutive }

Φ ⊆ Φ · ©Φ

⇒ { greatest fixed point induction: x ≤ fx ⇒ x ≤ νf }

Φ ⊆ �Φ

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Modalities

Φ ⊆ �Φ

⇒ { �Φ ⊆ f (�Φ) for fx = Φ · dx and gfp induction: νf ≤ f νf }

Φ ⊆ Φ · e(�Φ)

≡ { shunting of coreflexives }

Φ ⊆ e(�Φ)

⇒ { monotony; �Φ ⊆ Φ }

Φ ⊆ eΦ

≡ { definition }

Φ inv

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Modalities

Ex: �Φ ⊆ ��Φ

�Φ ⊆ ��Φ

≡ { definition }

�Φ ⊆ (νX :: �Φ · ©X)

⇐ { gfp induction }

�Φ ⊆ �Φ · ©(�Φ)

≡ { �Φ ·Φ = �Φ because ∩ is composition and �Φ ⊆ Φ }

�Φ ⊆ �Φ · Φ · ©(�Φ)

≡ { shunting of coreflexives and νf ≤ f νf }

�Φ ⊆ Φ · ©(�Φ) ≡ true

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Recall: Components as coalgebras

A (generic) component p with input interface I and
output interface O

p : O ←− I

I
��
p

��
O

is a pair

〈up ∈ Up, ap : B(Up × O)I ←− Up〉

where

point up is the ‘initial’ or ‘seed’ state.

B is an arbitrary strong monad.

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Recall: Components as coalgebras

The semantics of p is the behaviour produced by starting at initial state
up and unfolding over coalgebra ap :

[[p]] = [(ap)]up B(ν × O)I ν
ωoo

B(Up × O)I

B([(ap)]×O)I

OO

Up
ap

oo

[(ap)]

OO

That is, an action will not simply produce an output and a continuation
state, but a B -structure of such pairs.

Monad B’s unit (η) and multiplication (µ) provide, respectively, a

value embedding and a ‘flatten’ operation to unravel nested behavioural

annotations.

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Invariants as types

Each (elementary) component is an aggregation of methods
over a shared state space, typically restricted by an (often
complex) invariant,

whose underlying mathematical space can be organised as a
category whose

objects are coreflexives (representing invariants)
arrows

f : Ψ←− Φ ≡ f (Ψ←Φ)f ≡ f ·Φ ⊆ Ψ · f

Current work: on the structure of this category [paper in
preparation]

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Combinators preserve invariants

Ex: Pipeline p ; q :
I

��

J

��
p

��

; q

��
J O

ap;q : B(Up × Uq × O)←− Up × Uq × I

ap;q = Up × Uq × I
∼=

−−−−→ Up × I × Uq

ap×id
−−−−→ B(Up × K)× Uq

τr−−−−→ B(Up × K × Uq)
∼=

−−−−→ B(Up × (Uq × K))

B(id×aq)
−−−−−→ B(Up × B(Uq × O))

Bτl−−−−→ BB(Up × (Uq × O))
∼=

−−−−→ BB(Up × Uq × O)
µ

−−−−→ B(Up × Uq × O)

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Combinators preserve invariants

Invariants are preserved ≡ the following is a well-typed arrow:

ap;q = Φp × Φq × I
∼=

−−−−→ Φp × I × Φq

ap×id
−−−−→ B(Φp × K)× Φq

τr−−−−→ B(Φp × K × Φq)
∼=

−−−−→ B(Φp × (Φq × K))

B(id×aq)
−−−−−→ B(Φp × B(Uq × O))

Bτl−−−−→ BB(Φp × (Φq × O))
∼=

−−−−→ BB(Φp × Φq × O)
µ

−−−−→ B(Φp × Φq × O)

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Combinators preserve invariants

which is an immediate consequence of the (generic) way in which
combinators are defined:

natural transformations are trivial: each polymorphic construction α
verifies α(S ← R)α for all R , S .

functorial arrows:

F f (FΦ← FΨ)F f

≡ { Reynolds combinator }

F f · FΨ ⊆ FΦ · F f

≡ { functors }

F (f · Φ) ⊆ F (Ψ · f)

⇐ { monotonicity }

f (Φ←Ψ)f

component actions which, by hypothesis, preserve their own
invariants

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Summary

Such conceptual tools are applicable at different design levels:

micro: synthesising component invariants from the individual
methods over complex data strucutures
(cf, Necco & Oliveira & Visser, Extended Static Checking by
Rewriting Pointfree Relations, 2007
and Oliveira, Reinvigorating pen-and-paper proofs in VDM:
the pointfree approach, 2006)

macro: invariant preservation in the component calculus.

architectural: global (non structural) ”bussiness rules” over
components’ aggregations

Motivation The PF Transform Invariants Revisited Bisimulations as Reynolds arrows Modalities Components vs Invariants

Summary

Rôle of PF-patterns: clear-cut expression of complex logic
structures once expressed in less symbols

Stress the syntactic aspect of formal reasoning, a kind of
”let-the-symbols-do-the-work” style of calculation, often
neglected by too much emphasis on domain-specific, semantic
concerns.

Rôle of PF-patterns: much easier to spot synergies among
different theories

In particular, a synergy between a relational construct, traditionally
employed in explaining and reasoning about parametric
polymorphism, and the coalgebraic approach to bisimulations and
invariants emerged.

	Motivation
	The PF Transform
	Invariants Revisited
	Bisimulations as Reynolds arrows
	Modalities
	Components vs Invariants

