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Problem

• The complexity and importance of coordination models in
service-oriented applications necessarily lead to a higher
relevance of testing issues for connectors during
development of systems.

• Aim of testing: to show conformance or non-conformance
of the final software system with some requirements or
specifications.

• The behavior of connectors generally describes the
manifold interactions among components / services rather
than simple input-output behavior.

• we can use not simply sequences of input and output, but
relations on different input / output sequences as test
cases for connectors.
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An Example

• For connectors, faults are caused by possible errors during
the development process, such as wrongly used channels,
missing or redundant subcircuits, or circuits with wrongly
constructed topology, etc.

The intended connector:
A

B

C

The faulty connector:
A

B

C

• In the faulty connector, the topology is changed and the
sequence of values that appear through C consist of zero
or more repetitions of the pairs of values written to B and
A, in a different order, comparing with the intended one.
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What and How?

• The idea: to automatically generate a test case that can
detect such errors and exclude faulty implementations of
connectors.

• The specification and implementation of connectors are
given by pairs of pre- and post-condition.

• Every connector is given by a pair of predicates P ` Q
where

• the assumption P is what the designer can rely on when the
communicating operation is initiated by inputs to the
connectors, and

• the commitment Q must be true for the outputs when the
communicating operation terminates.

• Test cases will detect certain faults in connectors by using
refinement calculus.
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Timed Data Sequences

• For an arbitrary connector R, the relevant observations
come in pairs, with one observation on the source nodes of
R, and one observation on the sink nodes of R. For every
node N, the corresponding observation on N is given by a
timed data sequence.

• Let TS = {a ∈ R∗+ | ∀0 ≤ n < |a|.a(n) < a(n + 1)} and
DS = D∗ be the set of time sequences and data
sequences, the set of timed data sequences is defined by
TDS ⊆ DS × TS that contains pairs 〈α,a〉 consisting of
α ∈ DS and a ∈ TS with |α| = |a|.

• Timed data sequences can be alternatively and
equivalently defined as (a subset of) (D × R+)∗ because of
the existence of isomorphism

〈α,a〉 7→ (〈α(0),a(0)〉, 〈α(1),a(1)〉, 〈α(2),a(2)〉, · · · )
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Design

• For connectors, a design P ` Q has the following meaning:

P ` Q =df (ok ∧ P ⇒ ok ′ ∧Q)

where ok and ok ′ are two variables being used to analyze
explicitly the phenomena of communication initialization
and termination.

• The variable ok stands for a successful initialization and
the start of a communication. When ok is false, the
communication has not started, so no observation can be
made.

• The variable ok ′ denotes the observation that the
communication has terminated. The communication is
divergent when ok ′ is false.
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Connectors as Designs

• To specify input and output explicitly, for a connector R, we
use inR and outR for the lists of timed data sequences on
the input ends and output ends of R respectively.

• Every connector R can be represented as

R(in : inR; out : outR)

P(inR) ` Q(inR,outR)

• P(inR) is the precondition that should be satisfied by inputs
inR on the source nodes of R, and

• Q(inR,outR) is the postcondition that should be satisfied by
outputs outR on the sink nodes of R.

• A predicate D is used to denote well-defined timed data
sequence types. In other words, we define the behavior
only for valid sequences expressed via a predicate D.
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Some Examples
• Synchronous channel −−−→:

con : Sync(in : (〈α,a〉); out : (〈β,b〉))
P : D〈α,a〉
Q : D〈β,b〉 ∧ β = α ∧ b = a

• FIFO1 channel −@A→:

con : FIFO1(in : (〈α,a〉); out : (〈β,b〉))
P : D〈α,a〉
Q : D〈β,b〉 ∧ β = α∧

a < b ∧ (tail(bR))R < tail(a)

• Synchronous drain→−−←:

con : SyncDrain(in : (〈α,a〉, 〈β,b〉); out : ( ))

P : D〈α,a〉 ∧ D〈β,b〉 ∧ a = b
Q : true
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Connector Composition

• Three Composition Patterns:

B
C

B

C

A C
R
1

R
2

B

A

R
1

R
2

A

(2)(1) (3)

R
1

R
2

• We use

Ri(in : inRi ; out : outRi )

Pi(inRi ) ` Qi(inRi ,outRi )

where i = 1,2 to denote the two connectors being
composed.
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Flow-through Composition

• For R1 and R2, suppose one sink node of R1 and one
source node of R2 are joined together into a mixed node B.
Such mixed nodes are hidden (encapsulated) by using
existential quantification.

• If one sink node of R1 and one source node of R2 are
joined together into a mixed node B, 〈β1,b1〉 ∈ outR1 and
〈β2,b2〉 ∈ inR2 are the timed data sequences on B in R1
and R2 respectively, for two predicates P and Q,

P(〈β1,b1〉); Q(〈β2,b2〉) = ∃〈β,b〉.P(〈β,b〉) ∧Q(〈β,b〉)
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Flow-through Composition

• Let 〈β1,b1〉 ∈ outR1 and 〈β2,b2〉 ∈ inR2 be the timed data
sequences on the node B in R1 and R2, respectively. Then
the resulting connector is

R(in : (
⋃

i=1,2

inRi ) \ {〈β2,b2〉}; out : (
⋃

i=1,2

outRi ) \ {〈β1,b1〉})

P ` Q

where

P = P1 ∧ ¬(Q1(〈β1,b1〉);¬P2(〈β2,b2〉))
Q = Q1(〈β1,b1〉); Q2(〈β2,b2〉)
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Merging Sink Nodes

• In (2), Let 〈γi , ci〉 ∈ outRi , i = 1,2, be the timed data
sequences on the node C in R1 and R2, respectively. Then
the resulting connector is

R(in :
⋃

i=1,2

inRi ; out : (
⋃

i=1,2

(outRi \ {〈γi , ci〉})) ∪ {〈γ, c〉})

P ` Q

where

P =
∧

i=1,2

Pi(inRi )

Q : D〈γ, c〉 ∧ ∃〈γ1, c1〉, 〈γ2, c2〉.(
∧

i=1,2

Qi(inRi ,outRi ))∧

M(〈γ1, c1〉, 〈γ2, c2〉, 〈γ, c〉)
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Merging Sink Nodes

In the definition, the ternary relation M is defined as

M(〈γ1, c1〉, 〈γ2, c2〉, 〈γ, c〉)

=



〈γ, c〉 = 〈γ1, c1〉 if |〈γ2, c2〉| = 0
〈γ, c〉 = 〈γ2, c2〉 if |〈γ1, c1〉| = 0
c1(0) 6= c2(0)∧

γ(0) = γ1(0) ∧ c(0) = c1(0)∧
M(〈γ′1, c′1〉, 〈γ2, c2〉, 〈γ′, c′〉) if c1(0) < c2(0)

γ(0) = γ2(0) ∧ c(0) = c2(0)∧
M(〈γ1, c1〉, 〈γ′2, c′2〉, 〈γ′, c′〉) if c2(0) < c1(0)

otherwise
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Merging Source Nodes

• In (3), Let 〈αi ,ai〉 ∈ inRi i = 1,2, be the timed data
sequences on the node A in R1 and R2, respectively. Then
the resulting connector is

R(in : (
⋃

i=1,2

inRi \ {〈αi ,ai〉}) ∪ {〈α,a〉}; out :
⋃

i=1,2

outRi )

P ` Q

where

P =
∧

i=1,2

Pi(inRi )[〈α,a〉/〈αi ,ai〉]

Q =
∧

i=1,2

Qi(inRi ,outRi )[〈α,a〉/〈αi ,ai〉]

For a predicate P, if v is a variable in P, P[u/v ] is the
predicate obtained by replacing all occurrance of v in P by
u.
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Example

A

B

C

Order(in : (〈α,a〉, 〈β,b〉); out : 〈γ, c〉)
P ` Q
P = D〈α,a〉 ∧ D〈β,b〉 ∧ a = b
Q = D〈γ, c〉 ∧ ∃〈γ1, c1〉, 〈γ2, c2〉.D〈γ1, c1〉 ∧ D〈γ2, c2〉∧

γ1 = α ∧ a < c1 ∧ ((cR
1 )′)R < a′ ∧ γ2 = β ∧ c2 = b∧

M(〈γ1, c1〉, 〈γ2, c2〉, 〈γ, c〉)
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Example

A

B

C

D

E

F

G

EXRouter(in : (〈α,a〉); out : (〈β,b〉, 〈γ, c〉))
P ` Q
P = D〈α,a〉
Q = D〈β,b〉 ∧ D〈γ, c〉 ∧ L(〈α,a〉, 〈β,b〉) ∧ L(〈α,a〉, 〈γ, c〉)∧
M(〈β,b〉, 〈γ, c〉, 〈α,a〉)

where

L(〈α,a〉, 〈β,b〉) ≡ 〈β,b〉 = ( )∨(
a(0) ≤ b(0) ∧

{
α(0) = β(0) ∧ L(〈α′,a′〉, 〈β′,b′〉) if a(0) = b(0)

L(〈α′,a′〉, 〈β,b〉) if a(0) < b(0)

)
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Refinement

• Implication of predicates establishes a refinement order
over connectors. Thus, more concrete implementations
imply more abstract specifications. For two connectors

Ri(in : inRi ; out : outRi )

Pi(inRi ) ` Qi(inRi ,outRi )

where i = 1,2, if inR1 = inR2 and outR1 = outR2 , then

R1 v R2 =df (P1 ⇒ P2) ∧ (P1 ∧Q2 ⇒ Q1)

• In other words, preconditions on inputs of connectors are
weakened under refinement, and postconditions on
outputs of connectors are strengthened.
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Faulty Connectors

Definition
Given an intended connector specification

R(in : inR; out : outR)

P(inR) ` Q(inR,outR)

and a connector implementation

R′(in : inR; out : outR)

P ′(inR) ` Q′(inR,outR)

with the same input and output nodes as in R, which may
contain an error. R′ is called a faulty connector if and only if
R v/ R′.
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Test Cases

• For connectors, we consider test cases as specifications
that define the expected list of timed data sequences on
the output nodes for a given list of timed data sequences
on the input nodes.

Definition (deterministic test case)
For a connector R(in : inR; out : outR), let i be the input vector
and o be the output vector, both lists of timed data sequences
with the same lengths as inR and outR respectively. A
deterministic test case for R is defined as

td(inR,outR) = inR = i ` outR = o
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Test Cases

• Sometimes the behavior of a connector can be
non-deterministic. In this case, we can generalize the
notion of test case as follows:

Definition (test case)
For a connector R(in : inR; out : outR), let i be the input vector
and O be a possibly infinite set containing the expected output
vector(s). Both i and any o ∈ O are lists of timed data
sequences with the same lengths as inR and outR respectively.
A test case for R is defined as

t(inR,outR) = inR = i ` outR ∈ O
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Test Cases, Specifications and Implementations

• Test cases, as well as connector specifications and
implementations, can be specified by designs.

• An implementation that is correct with respect to its
specification should refine its test cases.

• Test cases are abstractions of an implementation if and
only if the implementation passes the test cases.

• Taking specifications into consideration, test cases should
also be abstractions of a specification if they are properly
derived from the specification.
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Correctness of Test Cases

Definition
For a connector specification S, its implementation R and a test
case t , which satisfy

t v S v R

• t is called a correct test case with respect to S.
• R passes the test case t and conforms to the specification

S.
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Fault-Adequate Test Cases

Definition
Let t(inR,outR) be a test case (which can be either
deterministic or non-deterministic), R an expected connector,
and R′ its faulty implementation. Then t is a fault-adequate test
case if and only if

t v R ∧ t v/ R′

A fault-adequate test case detects a fault in R′. Alternatively we
can say that the test case distinguishes R and R′. All test cases
that detect a certain fault form a fault-adequate equivalence
class.
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Test Case Generation

• A test case for finding errors in a faulty connector has to,
• first, be a correct test case of the intended connector;
• second, it must not be an abstraction of the faulty

connector.
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Test Case Generation Algorithm

Algorithm
Consider an intended connector

R(in : inR; out : outR)

P(inR) ` Q(inR,outR)

and its faulty implementation

R′(in : inR; out : outR)

P ′(inR) ` Q′(inR,outR)

as inputs. A test case t is generated by the following steps:
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Test Case Generation Algorithm

1. A test case t is searched by
1. find a pair 〈̂i , ô〉 as a solution of

P (̂i) ∧Q′(̂i , ô) ∧ ¬Q(̂i , ô)

2. if it exists, then the test case t(i ,O) is generated by finding
the maximal set O of output vectors, such that for all o ∈ O,
i = î ∧ P(i) ∧Q(i ,o) is satisfied.

2. If the previous step does not succeed, then look for a test
case t(i ,O) with O the maximal set of output vectors, such
that for all o ∈ O, ¬P ′(i) ∧ P(i) ∧Q(i ,o) is satisfied.



Introduction Connectors as Designs Fault-based Test Case Generation Conclusion

Correctness

Theorem (Correctness)
Given an intended connector

R(in : inR; out : outR)

P(inR) ` Q(inR,outR)

its faulty implementation

R′(in : inR; out : outR)

P ′(inR) ` Q′(inR,outR)

and a test case t(i ,O) generated by the algorithm,

t(i ,O) v R
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Correctness

Proof: The proof is divided into two cases, corresponding to
steps 1 and 2 of the algorithm, respectively.

1. Since O is the maximal set such that for all o ∈ O,
P(i) ∧Q(i ,o) is satisfied, we have

t(i ,O) v R
≡{ Definition of refinement and non-deterministic test cases }

(inR = i ⇒ P(inR)) ∧ (Q(inR,outR) ∧ inR = i ⇒ outR ∈ O)

≡{O is the maximal set such that P(i) ∧Q(i ,o) is satisfied
for all o ∈ O}
true ∧ true
≡true
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Correctness

2. Since O is the maximal set of output vectors o each of
which satisfies ¬P ′(i) ∧ P(i) ∧Q(i ,o), it follows that
P(i) ∧Q(i ,o) is also satisfied for all o ∈ O and O is still
maximal. By the same style of reasoning as in the first
case, we can derive that

t(i ,O) v R ≡ true
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Fault Coverage

Theorem (Fault Coverage)
Given an intended connector

R(in : inR; out : outR)

P(inR) ` Q(inR,outR)

its faulty implementation

R′(in : inR; out : outR)

P ′(inR) ` Q′(inR,outR)

and a test case t(i ,O) generated by the algorithm,

t(i ,O) v/ R′
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Fault Coverage
Proof: This proof is also divided into the two cases of the
algorithm.

1. When O is the maximal set such that for all o ∈ O,
i = î ∧P(i)∧Q(i ,o) is satisfied. The test case is generated
only if there exists (̂i , ô), such that P (̂i) ∧Q′(̂i , ô) ∧ ¬Q(̂i , ô)

is satisfied. Thus we have i = î , ô /∈ O and

t(i ,O) v/ R′

≡{Definition of refinement and non-deterministic test cases}
¬(inR = i ⇒ P ′(inR)) ∨ ¬(inR = i ∧Q′(inR,outR)⇒ outR ∈ O)

≡(inR = i ∧ ¬P ′(inR))∨
∃inR,outR.(inR = i ∧Q′(inR,outR) ∧ outR /∈ O)

≡{let inR = î ,outR = ô}
(inR = i ∧ ¬P ′(inR)) ∨ true
≡true
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Fault Coverage

2. If O is the maximal set of output vectors o each of which
satisfies ¬P ′(i) ∧ P(i) ∧Q(i ,o), then

t(i ,O) v/ R′

≡{Definition of refinement and non-deterministic test cases}
¬(inR = i ⇒ P ′(inR))∨
¬(inR = i ∧Q′(inR,outR)⇒ outR ∈ O)

≡∃inR.(inR = i ∧ ¬P ′(inR))∨
¬(inR = i ∧Q′(inR,outR)⇒ outR ∈ O)

≡{let inR = i}
true ∨ ¬(inR = i ∧Q′(inR,outR)⇒ outR ∈ O)

≡true
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Example

The intended connector:

A

B

C

The faulty connector:

A

B

C

• Generated test case: ((〈α,a〉, 〈β,b〉), 〈γ, c〉)
• 〈α,a〉 and 〈β,b〉 are two timed data sequences with length

1, while 〈γ, c〉 with length 2, and the constraint α 6= β
should be satisfied.
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Conclusion

• A semantic model of Reo connectors, which makes it
possible to specify both finite and infinite behavior.

• Faults are modeled on the same level as the specification
and implementation of connectors by using the notion of
design.

• Test cases are generated based on a general theory of
refinement for pre- and post-condition specifications, and
has been instantiated in a prototype developed in Maude.

• more complex case studies,
• testing data selection based on constraint solving and its

integration into the generated symbolic test cases, and
• specification-based testing of black-box connectors.
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Thank you!
Questions?
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