On the design of a Galculator

Paulo Silva

Departamento de Informática Universidade do Minho Braga, Portugal

Third Joint Research Workshop on Coinduction, Interaction and Composition May 7 – 8, 2009 Braga

Outline

- Introduction
 - Motivation
 - Objectives
- Theoretical background
 - Indirect equality
 - Galois connections
 - Point-free transform
- Galculator
- Conclusion
 - Conclusion
 - Future work

Outline

- Introduction
 - Motivation
 - Objectives
- 2 Theoretical background
 - Indirect equality
 - Galois connections
 - Point-free transform
- Galculator
- Conclusion
 - Conclusion
 - Future work

Software correctness

Current approaches

- Software correctness is an ambitious challenge
- Logic based approaches benefit from the help of theorem provers
- Sometimes proofs are hindered by the theory
- It is not always easy to devise the correct strategy

Alternatives

- Sometimes algebraic approaches are possible
- Algebras "abstract" the underlying logic
- Proofs become more syntactic

Galois connections can play an important role

Whole division implementation

Haskell code

$$x \text{ 'div' } y \mid x < y = 0$$

 $\mid x \geqslant y = (x - y) \text{ 'div' } y + 1$

for non-negative x and positive y.

This is the code. Where is the specification?

Whole division specification

Implicit definition

$$c = x \div y \Leftrightarrow \langle \exists r : 0 \leqslant r < y : x = c \times y + r \rangle$$

Explicit definition

$$x \div y = \langle \bigvee z :: z \times y \leqslant x \rangle$$

Galois connection

$$z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \qquad (y > 0)$$

Whole division specification

Implicit definition

$$c = x \div y \Leftrightarrow \langle \exists r : 0 \leqslant r < y : x = c \times y + r \rangle$$

Explicit definition

$$x \div y = \langle \bigvee z :: z \times y \leqslant x \rangle$$

Galois connection

$$z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \qquad (y > 0)$$

Whole division specification

Implicit definition

$$c = x \div y \Leftrightarrow \langle \exists r : 0 \leqslant r < y : x = c \times y + r \rangle$$

Explicit definition

$$x \div y = \langle \bigvee z :: z \times y \leqslant x \rangle$$

Galois connection

$$z \times y \leqslant x \Leftrightarrow z \leqslant x \div y$$
 $(y > 0)$

Whole division

Specification vs. Implementation

- We can *verify* if the implementation meets the specification.
- We can calculate the implementation from the specification.

Another useful Galois connection

$$a-b=c \Leftrightarrow a=c+b$$

 $a-b < c \Leftrightarrow a < c+b$

Whole division

Specification vs. Implementation

- We can *verify* if the implementation meets the specification.
- We can calculate the implementation from the specification.

Another useful Galois connection

$$a-b=c \Leftrightarrow a=c+b$$

$$a-b \leqslant c \Leftrightarrow a \leqslant c+b$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant 0, y > 0 \}$$
$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \{ \text{ cancellation, thanks to } a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$(z-1) \times y \leqslant x-y$$

$$\Leftrightarrow \qquad \left\{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant y \right\}$$

$$z-1\leqslant (x-y)\div y$$

$$\Leftrightarrow \qquad \left\{ a-b\leqslant c \Leftrightarrow a\leqslant c+b \right\}$$

$$Z \leqslant (X - y) \div y + 1$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant 0, y > 0 \}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \{ \text{ cancellation, thanks to } a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \times y - y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ \text{ distributivity } \}$$

$$(z - 1) \times y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant y \}$$

$$z - 1 \leqslant (x - y) \div y$$

$$\Leftrightarrow \qquad \{ a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \leqslant (x - y) \div y + 1$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant 0, y > 0 \}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \{ \text{ cancellation, thanks to } a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \times y - y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ \text{ distributivity } \}$$

$$(z - 1) \times y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant y \}$$

$$z - 1 \leqslant (x - y) \div y$$

$$\Leftrightarrow \qquad \{ a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \leqslant (x - y) \div y + 1$$

CIC'09

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant 0, y > 0 \}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \{ \text{ cancellation, thanks to } a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \times y - y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ \text{ distributivity } \}$$

$$(z - 1) \times y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant y \}$$

$$z - 1 \leqslant (x - y) \div y$$

$$\Leftrightarrow \qquad \{ a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \leqslant (x - y) \div y + 1$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant 0, y > 0 \}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \{ \text{ cancellation, thanks to } a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \times y - y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ \text{ distributivity } \}$$

$$(z - 1) \times y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant y \}$$

$$z - 1 \leqslant (x - y) \div y$$

$$\Leftrightarrow \qquad \{ a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \leqslant (x - y) \div y + 1$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant 0, y > 0 \}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \{ \text{ cancellation, thanks to } a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \times y - y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ \text{ distributivity } \}$$

$$(z - 1) \times y \leqslant x - y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \text{ assuming } x \geqslant y \}$$

$$z - 1 \leqslant (x - y) \div y$$

$$\Leftrightarrow \qquad \{ a - b \leqslant c \Leftrightarrow a \leqslant c + b \}$$

$$z \leqslant (x - y) \div y + 1$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} z \times y \leqslant x \iff z \leqslant x \div y \end{array} \right\}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} \text{transitivity, since } x < y \end{array} \right\}$$

$$z \times y \leqslant x \wedge z \times y < y$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} \text{since } y \neq 0 \end{array} \right\}$$

$$z \times y \leqslant x \wedge z \leqslant 0$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} z \leqslant 0 \text{ entails } z \times y \leqslant x, \text{ since } 0 \end{array} \right\}$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \{ z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \{ \text{ transitivity, since } x < y \}$$

$$z \times y \leqslant x \land z \times y < y$$

$$\Leftrightarrow \qquad \{ \text{ since } y \neq 0 \}$$

$$z \times y \leqslant x \land z \leqslant 0$$

$$\Leftrightarrow \qquad \{ z \leqslant 0 \text{ entails } z \times y \leqslant x, \text{ since } 0 \leqslant x \}$$

$$z \leqslant 0$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} z \times y \leqslant x \iff z \leqslant x \div y \end{array} \right\}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} \text{transitivity, since } x < y \end{array} \right\}$$

$$z \times y \leqslant x \wedge z \times y < y$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} \text{since } y \neq 0 \end{array} \right\}$$

$$z \times y \leqslant x \wedge z \leqslant 0$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} z \leqslant 0 \text{ entails } z \times y \leqslant x, \text{ since } 0 \leqslant x \end{array} \right\}$$

$$z \leqslant 0$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} z \times y \leqslant x \Leftrightarrow z \leqslant x \div y \end{array} \right\}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} \text{transitivity, since } x < y \end{array} \right\}$$

$$z \times y \leqslant x \wedge z \times y < y$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} \text{since } y \neq 0 \end{array} \right\}$$

$$z \times y \leqslant x \wedge z \leqslant 0$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} z \leqslant 0 \text{ entails } z \times y \leqslant x, \text{ since } 0 \leqslant x \end{array} \right\}$$

$$z \leqslant x \div y$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} z \times y \leqslant x \iff z \leqslant x \div y \end{array} \right\}$$

$$z \times y \leqslant x$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} \text{transitivity, since } x < y \end{array} \right\}$$

$$z \times y \leqslant x \wedge z \times y < y$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} \text{since } y \neq 0 \end{array} \right\}$$

$$z \times y \leqslant x \wedge z \leqslant 0$$

$$\Leftrightarrow \qquad \left\{ \begin{array}{l} z \leqslant 0 \text{ entails } z \times y \leqslant x, \text{ since } 0 \leqslant x \end{array} \right\}$$

$$z \leqslant 0$$

Objectives

Galculator

 Build a proof assistant based on Galois connections, their algebra and associated tactics

Outline

- Introduction
 - Motivation
 - Objectives
- Theoretical background
 - Indirect equality
 - Galois connections
 - Point-free transform
- Galculator
- Conclusion
 - Conclusion
 - Future work

Indirect inequality

Definition (Indirect inequality)

$$a \sqsubseteq b \Leftrightarrow \langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \rangle$$

$$a \sqsubseteq b \Leftrightarrow \langle \forall x :: b \sqsubseteq x \Rightarrow a \sqsubseteq x \rangle$$

 $\langle \forall x :: x \sqsubset a \Leftrightarrow x \sqsubseteq b \rangle$

$$a = b$$

$$\Leftrightarrow \qquad \{ \text{ Anti-symmetry } \}$$

$$a \sqsubseteq b \land b \sqsubseteq a$$

$$\Leftrightarrow \qquad \{ \text{ Indirect inequality } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \rangle \land \langle \forall x :: x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$\Leftrightarrow \qquad \{ \text{ Rearranging quantifiers } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \land x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$a = b$$

$$\Leftrightarrow \qquad \{ \text{ Anti-symmetry } \}$$

$$a \sqsubseteq b \land b \sqsubseteq a$$

$$\Leftrightarrow \qquad \{ \text{ Indirect inequality } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \rangle \land \langle \forall x :: x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$\Leftrightarrow \qquad \{ \text{ Rearranging quantifiers } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \land x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$\Leftrightarrow \qquad \{ \text{ Mutual implication } \}$$

$$\langle \forall x :: x \sqsubseteq a \Leftrightarrow x \sqsubseteq b \rangle$$

$$a = b$$

$$\Leftrightarrow \qquad \{ \text{ Anti-symmetry } \}$$

$$a \sqsubseteq b \land b \sqsubseteq a$$

$$\Leftrightarrow \qquad \{ \text{ Indirect inequality } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \rangle \land \langle \forall x :: x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$\Leftrightarrow \qquad \{ \text{ Rearranging quantifiers } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \land x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$\Leftrightarrow \qquad \{ \text{ Mutual implication } \}$$

$$\langle \forall x :: x \sqsubseteq a \Leftrightarrow x \sqsubseteq b \rangle$$

$$a = b$$

$$\Leftrightarrow \qquad \{ \text{ Anti-symmetry } \}$$

$$a \sqsubseteq b \land b \sqsubseteq a$$

$$\Leftrightarrow \qquad \{ \text{ Indirect inequality } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \rangle \land \langle \forall x :: x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$\Leftrightarrow \qquad \{ \text{ Rearranging quantifiers } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \land x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$\Leftrightarrow \qquad \{ \text{ Mutual implication } \}$$

$$\langle \forall x :: x \sqsubseteq a \Leftrightarrow x \sqsubseteq b \rangle$$

$$a = b$$

$$\Leftrightarrow \qquad \{ \text{ Anti-symmetry } \}$$

$$a \sqsubseteq b \land b \sqsubseteq a$$

$$\Leftrightarrow \qquad \{ \text{ Indirect inequality } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \rangle \land \langle \forall x :: x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$\Leftrightarrow \qquad \{ \text{ Rearranging quantifiers } \}$$

$$\langle \forall x :: x \sqsubseteq a \Rightarrow x \sqsubseteq b \land x \sqsubseteq b \Rightarrow x \sqsubseteq a \rangle$$

$$\Leftrightarrow \qquad \{ \text{ Mutual implication } \}$$

$$\langle \forall x :: x \sqsubseteq a \Leftrightarrow x \sqsubseteq b \rangle$$

Indirect equality

Definition (Indirect equality)

$$a = b \Leftrightarrow \langle \forall x :: x \sqsubseteq a \Leftrightarrow x \sqsubseteq b \rangle$$

$$a = b \Leftrightarrow \langle \forall x :: a \sqsubseteq x \Leftrightarrow b \sqsubseteq x \rangle$$

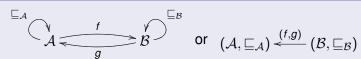
Galois connections

Definition (Galois connection)

Given two preordered sets (A, \sqsubseteq_A) and (B, \sqsubseteq_B) and two functions $\mathcal{B} \overset{f}{\longleftarrow} \mathcal{A}$ and $\mathcal{A} \overset{g}{\longleftarrow} \mathcal{B}$, the pair (f,g) is a Galois connection if and only if, for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$:

$$f a \sqsubseteq_{\mathcal{B}} b \Leftrightarrow a \sqsubseteq_{\mathcal{A}} g b$$

Graphical notation



Properties

Property	Description
$f \ a \sqsubseteq_B b \Leftrightarrow a \sqsubseteq_A g \ b$	"Shunting rule"
$a \sqsubseteq_{\mathcal{A}} a' \Rightarrow f \ a \sqsubseteq_{\mathcal{B}} f \ a'$	Monotonicity (LA)
$b \sqsubseteq_{\mathcal{B}} b' \Rightarrow g \ b \sqsubseteq_{\mathcal{A}} g \ b'$	Monotonicity (UA)
$a \sqsubseteq_{\mathcal{A}} g (f a)$	Lower cancellation
$f(g b) \sqsubseteq_{B} b$	Upper cancellation
$f\left(g\left(f\;a\right)\right)=f\;a$	Semi-inverse
$g\left(f\left(g\:b ight) ight)=g\:b$	Semi-inverse
$g(b\sqcap_B b')=gb\sqcap_A gb'$	Distributivity (UA over meet)
$f(a \sqcup_{\mathcal{A}} a') = f a \sqcup_{\mathcal{B}} f a'$	Distributivity (LA over join)
$g op_{B} = op_{\mathcal{A}}$	Top-preservation (UA)
$f \perp_{\mathcal{A}} = \perp_{\mathcal{B}}$	Bottom-preservation (LA)

Galois connections — Algebra

Identity connection

$$(\mathcal{A},\sqsubseteq_{\mathcal{A}})\stackrel{(id,id)}{\longleftarrow}(\mathcal{A},\sqsubseteq_{\mathcal{A}})$$

Composition

$$\text{if } (\mathcal{A},\sqsubseteq) \overset{(f,g)}{\longleftarrow} (\mathcal{B},\preceq) \text{ and } (\mathcal{B},\preceq) \overset{(h,k)}{\longleftarrow} (\mathcal{C},\leqslant) \text{ then } (\mathcal{A},\sqsubseteq) \overset{(h\circ f,g\circ k)}{\longleftarrow} (\mathcal{C},\leqslant)$$

Composition is *associative* and the identity is its *unit*. Galois connections form a category.

Galois connections — Algebra

Converse

$$\mathsf{if}\; (\mathcal{A},\sqsubseteq) \overset{(f,g)}{\longleftarrow} (\mathcal{B},\preceq) \; \mathsf{then}\; (\mathcal{B},\succeq) \overset{(g,f)}{\longleftarrow} (\mathcal{A},\sqsupseteq)$$

Relator

For every relator \mathcal{F}

$$\text{if } (\mathcal{A},\sqsubseteq) \overset{(f,g)}{\longleftarrow} (\mathcal{B},\preceq) \text{ then } (\mathcal{F}\mathcal{A},\mathcal{F}\sqsubseteq) \overset{(\mathcal{F}f,\mathcal{F}g)}{\longleftarrow} (\mathcal{F}\mathcal{B},\mathcal{F}\preceq)$$

Logic vs. algebra

Logic	Algebra
Propositional logic	Boolean algebra
Intuitionistic propositional logic	Heyting algebra
Predicate logic	??

Relation algebras

- Extension of Boolean algebras
- Original work of De Morgan, Peirce and Schröder
- Further developed by Tarski in his attempt to formalize set theory without variables
- Amenable for syntactic manipulation
- Only one inference rule is needed: substitution of equals by equals

Equational reasoning

Relation algebras

- Extension of Boolean algebras
- Original work of De Morgan, Peirce and Schröder
- Further developed by Tarski in his attempt to formalize set theory without variables
- Amenable for syntactic manipulation
- Only one inference rule is needed: substitution of equals by equals

Equational reasoning

Fork algebras

Limitation of relation algebras

Relations algebras can express first-order predicates with at most three variables

Fork algebras

- Extend relation algebras with a pairing operator
- Equivalent in expressive and deductive power to first-order logic

Fork algebras

Limitation of relation algebras

Relations algebras can express first-order predicates with at most three variables

Fork algebras

- Extend relation algebras with a pairing operator
- Equivalent in expressive and deductive power to first-order logic

Point-free transform summary

Pointwise	Pointfree
¬(bRa)	b(¬R)a
bRa ∧ bSa	b(<i>R</i> ∩ <i>S</i>)a
bSa ∨ bSa	b(R ∪ S)a
True	b⊤a
False	b⊥ a
b = a	b <mark>id</mark> a
aRb	b R °a
$\langle \exists \ c \ :: \ bRc \wedge cSa \rangle$	b(R∘S)a
$\langle \forall \ x \ :: \ xRb \Rightarrow xSa \rangle$	<i>b</i> (<i>R</i> \ <i>S</i>) <i>a</i>
$\langle \forall x :: aRx \Rightarrow bSx \rangle$	b(S/R)a
bRa ∧ cSa	$(b,c)\langle R,S\rangle a$
bRa ∧ dSc	$(b,d)(\mathbf{R}\times\mathbf{S})(a,c)$
$\langle \forall a, b :: bRa \Rightarrow bSa \rangle$	$R\subseteq \mathcal{S}$
$\langle \forall a, b :: bRa \Leftrightarrow bSa \rangle$	R = S

Point-free definitions

Definition (Galois connection)

$$f^{\circ} \circ \sqsubseteq_{\mathcal{B}} = \sqsubseteq_{\mathcal{A}} \circ g$$

Definition (Indirect equality)

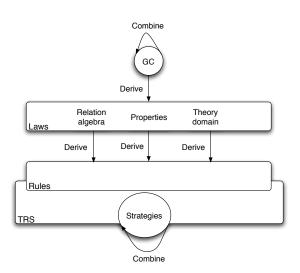
$$f = g \Leftrightarrow \preceq \circ f = \preceq \circ g$$

$$f = q \Leftrightarrow f^{\circ} \circ \prec = q^{\circ} \circ \prec$$

Outline

- Introduction
 - Motivation
 - Objectives
- Theoretical background
 - Indirect equality
 - Galois connections
 - Point-free transform
- Galculator
- Conclusion
 - Conclusion
 - Future work

Design Principles



Outline

- Introduction
 - Motivation
 - Objectives
- Theoretical background
 - Indirect equality
 - Galois connections
 - Point-free transform
- Galculator
- Conclusion
 - Conclusion
 - Future work

Conclusion

- Proof assistant prototype based on Galois connections
- Innovative approach
 - Combination of Galois connections and point-free calculus
- Non-trivial example of the application of distinctive features of functional languages
 - Generalized algebraic data types
 - Existential data types
 - Combinatorial approaches (parsing, rewriting)
 - Support for embedded domain specific languages
 - Computations as monads
 - Higher-order functions
 - New: Polymorphic type representation with unification
 -

Future work

- Automated proofs
- Free-theorems
- Integration with host theorem provers (e.g., Coq)

Download

Source code and documentation available from

www.di.uminho.pt/research/galculator

Contact

Questions to paufil@di.uminho.pt