
Pointfree Alloy: the other side of the moon

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

CIC’09
May 2009

Braga, Portugal

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Model driven engineering

• MEDEA project — High Assurance MDE using Alloy

• MDE is a clumsy area of work, full of approaches, acronyms,
notations.

• UML has taken the lead in unifying such notations, but it is
too informal to be accepted as a reference approach.

• Model-oriented formal methods (VDM, Z) solve this
informality problem at a high-cost: people find it hard to
understand models written in maths (cf. maths illiteracy if not
mathphobic behaviour).

• Alloy [4] offers a good compromise — it is formal in a
light-weight manner.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Inspiration

• BBI project [5]: Alloy re-engineering of a well-tested, very
well written non-trivial prototype in Haskell of a real-estate
trading system similar to the stocks market (65 pages in lhs
format) unveiled 4 bugs (2 invariant violations + 2 weak
pre-conditions)

• Alloy and Haskell complementary to each other

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Alloy

What Alloy offers

• A unified approach to modeling based on the notion of a
relation — “everything is a relation” in Alloy.

• A minimal syntax (centered upon relational composition) with
an object-oriented flavour which captures much of what
otherwise would demand for UML+OCL.

• A pointfree subset.

• A model-checker for model assertions (counter-examples
within scope).

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Alloy

What Alloy does not offer

• Complete calculus for deduction (proof theory)

• Strong type checking

• Dynamic semantics modeling features

Opportunities

• Enrich the standard Alloy modus operandi with relational
algebra calculational proofs

• Connect the tool to a theorem prover, eg. Prover9 as
suggested in [3]

• Design an Alloy-centric tool-chain for high assurance
model-oriented design

Thus the MEDEA project (submitted).

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Relational composition

• The swiss army knife of Alloy

• It subsumes function application and “field selection”

• Encourages a navigational (point-free) style based on pattern
x .(R.S).

• Example:

Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
me.parent.parent = {(P4)}
Person.parent = {(P2),(P3),(P4)}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

When “everything is a relation”

• Sets are relations of arity 1, eg.
Person = {(P1), (P2), (P3), (P4)}

• Scalars are relations with size 1, eg. me = {(P1)}
• Relations are first order, but there are multi-ary relations.

• However, Alloy relations are not n-ary in the usual sense:
instead of thinking of R ∈ 2A×B×C as a set of triples (there is
no such thing as tupling in Alloy), think of R in terms of
currying:

R ∈ (B → C)A

(More about this later.)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Kleene algebra flavour

Basic operators:

. composition
+ union
^ transitive closure
* transitive-reflexive closure

(There is no explicit recursion is Alloy.) Other relational operators:

~ converse
++ override
& intersection
- difference
-> cartesian product
<: domain restriction
:> range restriction

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Relational thinking

• As a rule, thinking in terms of poinfree relations (this includes
functions, of course) pays the effort: the concepts and the
reasoning become simpler.

• This includes relational data structuring, which is far more
interesting than what can be found in SQL and relational
databases.

Example — list processing

• Lists are traditionally viewed as recursive (linear) data
structures.

• There are no lists in Alloy — they have to be modeled by
simple relations (vulg. partial functions) between indices and
elements.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Lists as relations in Alloy

sig List {
map : Nat -> lone Data

}

sig Nat {
succ: one Nat

}

one sig One in Nat {}

Multiplicities: lone (one or less), one (exaclty one)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Relational data structuring

Some correspondences:

list l relation L

sorted monotonic
no-duplicates injective
map f l f · L
zip l1 l2 〈L1, L2〉
[1, . . .] id

where

• id is the identity (equivalence) relation (also a function)

• the “fork” (also known as “split”) combinator 〈 , 〉 is such
that (x , y)〈L1, L2〉z means the same as xL1z ∧ yL2z

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Haskell versus Alloy

Pointwise Haskell:

findIndices :: (a -> Bool) -> [a] -> [Int]
findIndices p xs = [i | (x,i) <- zip xs [0..], p x]

Pointfree (PF):

findIndices p L 4 π2 · (Φp × id) · 〈L, id〉 (1)

where

• π2 is the right projection of a pair

• L× R = 〈L · π1,R · π2〉
• Φp ⊆ id is the coreflexive relation (partial identity) which

models predicate p (or a set)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Haskell versus Alloy

• What about Alloy? It has no pairs, therefore no forks
〈L,R〉. . .

• Don’t worry — Alloy is relational and we can play with the
relational calculus:

π2 · (Φp × id) · 〈L, id〉

= { ×-absorption }

π2 · 〈Φp · L, id〉

= { ×-cancelation }

δ (Φp · L)

where δ is the domain operator: δ R = R◦ · R ∩ id , for R◦ the
converse of R.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Haskell versus Alloy

Two ways of writing δ (Φp · L) in Alloy, one pointwise

fun findIndices[s:set Data,l:List]: set Nat {
{i: Nat | some x:s | x in i.(l.map)}

}

and the other pointfree,

fun findIndices[s:set Data,l:List]: set Nat {
dom[l.map :> s]

}

the latter corresponding to what we’ve calculated.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Beyond model-checking: proofs by calculation

Suppose the following property

(findIndices p) · r? = findIndices (p · r) (2)

is asserted in (pointwise) Alloy:

assert FT {
all l,l’:List, p: set Data, r: Data -> one Data |

l’.map = l.map.r =>
findIndices[p,l’] = findIndices[r.p,l]

}

NB: the following version of (2) explains the encoding above:

r? ⊆ (findIndices p)◦ · findIndices (p · r)

whereby, going pointwise, we get

l ′ = r? l ⇒ findIndices p l ′ = findIndices(p · r) l

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Beyond model-checking: proofs by calculation

• Suppose the Alloy model checker does not yield any
counter-examples for this property, for increasing bounds.

• How can we be sure of its validity?
• Free theorems — the given assertion is a corollary of the

free-theorem [6] of findIndices, thus there is nothing to prove
(model checking could altogether be avoided!)

• Wishing to prove the assertion anyway, one calculates:

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Trivial proof

(findIndices p) · r? = findIndices (p · r)

⇔ { list to relation transform }

δ (Φp · (r · L)) = δ (Φp·r · L)

⇔ { property Φf ·g = δ (Φf · g) }

δ (Φp · (r · L)) = δ (δ (Φp · r) · L)

⇔ { domain of composition }

δ (Φp · (r · L)) = δ ((Φp · r) · L)

⇔ { associativity }

True

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Realistic example — Verified FSystem (VFS)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

VFS in Alloy (simplified)

The system:

sig System {
fileStore: Path -> lone File,
table: FileHandle -> lone OpenFileInfo

}

Paths:

sig Path {
dirName: one Path

}

The root is a path:

one sig Root extends Path {
}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Alloy diagrams for FSystem

Simplified: Complete:

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Binary relation semantics

Meaning of signatures:

sig Path {
dirName: one Path

}

declares function Path
dirName// Path .

sig System {
fileStore: Path -> lone File,

}

declares simple relation System × Path
fileStore/ File .

(NB: a relation S is simple, or functional, wherever its image
S · S◦ is coreflexive. Using harpoon arrows ⇀ for singling these
out.)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Binary relation semantics

• Since

(A× B) ⇀ C ∼= (B ⇀ C)A

fileStore can be alternatively regarded as a function in
(Path ⇀ File)System, that is, for s : System,

Path
(fileStore s) / File

• Thus the “navigation-styled” notation of Alloy: p.(s.fileStore)
means the file accessible from path p in file system s.

• Similarly, line table: FileHandle -> lone OpenFileInfo
in the model declares

FileHandle
(table s) / OpenFileInfo

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Multiplicities in Alloy + taxonomy

(courtesy of Alcino Cunha, Alloy expert at Minho)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

The same — mathematically

Topmost criteria:

binary relation

VVVVVVVVVVVVVVVVVV

KKKKKKKKKK

ssssssssss

iiiiiiiiiiiiiiiiii

injective entire simple surjective

Definitions:

Reflexive Coreflexive

kerR entire R injective R
img R surjective R simple R

kerR = R◦ · R
img R = R · R◦

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

From Alloy to relational diagrams

We draw

OpenFileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File

Path

dirName

OO

where

• table s and fileStore s are simple relations

• the other arrows depict functions

(Diagram in the Rel allegory [1] to be completed soon.)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Model constraints

Referential integrity:

Non-existing files cannot be opened:

pred ri[s: System]{
all h: FileHandle, o: h.(s.table) |

some (o.path).(s.fileStore)
}

Paths closure:

Mother directories exist and are indeed directories:

pred pc[s: System]{
all p: Path |

some p.(s.fileStore) =>
(some d: (p.dirName).(s.fileStore) |

d.fileType=Directory)
}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

2nd part of Alloy FSystem model

sig File {
attributes: one Attributes

}

sig Attributes{
fileType: one FileType

}

abstract sig FileType {}
one sig RegularFile extends FileType {}
one sig Directory extends FileType {}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Updated binary relational diagram

OpenFileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File
attributes// Attributes

fileType
��

Path

dirName

OO

FileType

where

• table s, fileStore s are simple relations

• all the other arrows depict functions

Constraints: still missing

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Updating diagram with constraints

Complete diagram, where Directory is the “everywhere-Directory”
constant function:

OpenFileDescriptor

path

��

FileHandle
table so

>
��

⊆

Path
fileStore s

/ File
(fileStore s)◦oo attributes// Attributes

fileType

��

⊆

Path
fileStore s

/

dirfileStore same

OO

File
Directory

// FileType

Constraints:

• Top rectangle is the PF-transform of ri (referential integrity)

• Bottom rectangle is the PF-transform of pc (path closure)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

PF-constraints in symbols

Referential integrity:

ri(s) 4 path · (table s) ⊆ (fileStore s)◦ · > (3)

which is equivalent to

ri(s) 4 ρ (path · (table s)) ⊆ δ (fileStore s)

where ρ R = δ R◦. PF version (3) nicely encoded in Alloy

pred riPF[s: System]{
s.table.path in (FileHandle->File).~(s.fileStore)

}

thanks to its emphasis on composition.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

PF-constraints in symbols

Paths closure:

pc N 4 Directory · N ⊆ fileType · attributes · N · dirName (4)

recall lower part of diagram:

Path
N

/ File
attributes// Attributes

fileType

��

⊆

Path
N

/

dirName

OO

File
Directory

// FileType

Again thanks to emphasis on composition, this is easily encoded
in PF-Alloy:

pred pcPF[s: System]{
s.fileStore.(File->Directory) in

dirName.(s.fileStore).attributes.fileType
}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

PF-ESC by calculation

• Models with constraints put the burden on the designer to
ensure that operations type-check (read this in
extended-mode), that is, constraints are preserved across the
models operations.

• Typical approach in MDE: model-checking

• Automatic theorem proving also considered in safety-critical
systems

• However: convoluted pointwise formulæ often lead to failure.

How about doing these as “pen & paper” exercises?

• PF-formulæ are manageable, this is the difference.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Example of PF-ESC by calculation

Consider the operation which removes file system objects, as
modeled in Alloy:

pred delete[s’,s: System, sp: set Path]{
s’.table = s.table
s’.fileStore = (univ-sp) <: s.fileStore

}

that is,

delete sp (M,N) 4 (M,N · Φ(6∈sp)) (5)

where Φ(6∈sp) is the coreflexive associated to the complement of sp.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Intuitive steps

Intuitively, delete will
put at risk

• the ri constraint
once we decide
to delete file
system objects
which are open

• the pc
constraint once
we decide to
delete directories
with children.

(Model-checking in Alloy will easily spot these flaws, as checked
above by a counter-example for the latter situation.)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Intuitive steps

We have to guess a pre-conditions for delete. However,

• How can we be sure that such (guessed) pre-condition is good
enough?

• The best way is to calculate the weakest pre-condition for
each constraint to be maintained.

• In doing this, mind the following properties of relational
algebra:

h · R ⊆ S ⇔ R ⊆ h◦ · S (6)

R · Φ = R ∩ > · Φ (7)

f · R ⊆ > · S ⇔ R ⊆ > · S (8)

For improved readability, we introduce abbreviations
ft := fileType · attributes and d := Directory , and calculate:

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Calculational steps

pc(delete S (M,N))

⇔ { (5) and (4) }

d · (N · Φ(6∈S)) ⊆ ft · (N · Φ(6∈S)) · dirName

⇔ { shunting (6) }

d · N · Φ(6∈S) · dirName◦ ⊆ ft · N · Φ(6∈S)

⇔ { (7) }

d · N · Φ(6∈S) · dirName◦ ⊆ ft · N ∩ > · Φ(6∈S)

⇔ { ∩-universal ; shunting }

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Ensuring paths closure

{
d · N · Φ(6∈S) ⊆ ft · N · dirName
d · N · Φ(6∈S) ⊆ > · Φ(6∈S) · dirName

⇔ { > absorbs d (8) }
d · N · Φ(6∈S) ⊆ ft · N · dirName︸ ︷︷ ︸

weaker than pc(N)
N · Φ(6∈S) ⊆ > · Φ(6∈S) · dirName︸ ︷︷ ︸

wp

Back to points, wp is:

〈∀ q : q ∈ dom N ∧ q 6∈ S : dirName q 6∈ S〉

⇔ { predicate logic }

〈∀ q : q ∈ dom N ∧ (dirName q) ∈ S : q ∈ S〉

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Ensuring paths closure

In words:

if parent directory of existing path q is marked for
deletion than so must be q.

Translating calculated weakest precondition back to Alloy:

pred pre_delete[s: System, sp: set Path]{
all q: Path |

some q.(s.fileStore) &&
q.dirName in sp => q in sp

}

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Back to the diagram

PF-encoding of model constraints in terms of relational
composition has at least the following advantages:

• it makes calculations easier (rich algebra of R · S)

• it makes it possible to draw constraints as rectangles in
diagrams, recall

OpenFileDescriptor

path

��

FileHandle
Mo

>
��

⊆

Path
N

/ File
N◦oo attributes// Attributes

fileType

��

⊆
Path

N
/

dirName

OO

File
Directory

// FileType

• it enables the “navigation-styled” notation of Alloy

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Constraint bestiary

• Experience in formal modeling tells that designs are
repetitive in the sense that they instantiate (generic)
constraints whose ubiquitous nature calls for classification

• Such “constraint patterns” are rectangles, thus easy to draw
and recall

• In the next slides we browse a little “constraint bestiary”
capturing some typical samples.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Constraints are Rectangles

• All of shape

R · I ⊆ O · R

• Example: referential integrity in general, where N is the
offer and M is the demand :

ρ (∈F ·M) ⊆ δ N ⇔ F B

∈F

��

A
Mo

>
��

⊆

B
N

/ C
N◦oo

⇔ ∈F ·M ⊆ N◦ · >

M, N simple. ∈F is a membership relation.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Constraints are Rectangles

• Example: M, N domain-disjoint

M · N◦ ⊆ ⊥

• Example: simple M, N domain-coherent

M · N◦ ⊆ id

• Example: M domain-closed by R:

M · R◦ ⊆ > ·M

(path-closure constraint pc instance of this)

• Example: range of R in Φ

R ⊆ Φ · R

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Last but not least

• Rectangles enforce composition as main relational operator
(as in Alloy) which is the multiplicative operator in the
abstract notion of a computation captured by

Semirings (S ,+, ·, 0, 1) inhabited by computations
(eg. instructions, statements) where

• x · y captures sequencing
• x + y captures choice (alternation)
• 0 means death
• 1 means skip (do nothing)

• Theorem provers such as Prover9 are especially apt to deal
with this kind of structures [3].

• Thus “rectangular” Alloy indeed offers the other side of the
moon — an effective connection to theorem proving

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

What will keep us busy for a while

Current work:

• Defining a simple pointfree binary relational semantics for
Alloy, hopefully simpler than that of [2] (see appendix)

• (Future: base the conversion of pointwise to PF Alloy on such
semantics)

• Studying the translation to/from Haskell and, in particular,
how to port counterexamples to QuickCheck.

Near future:

• Connect Alloy to Prover9 and Mace4

• Start the design of an Alloy-centric tool-chain incorporating
new tools (the MEDEA project)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Appendix — semantics of “dot join”

Meaning of R.S in Alloy:

[[R.S]] = [[S]] · [[R]] A
[[R]] // B

[[S]] // C

wherever both R, S are binary relations, or

[[s.S]] = ρ ([[S]] · [[s]])︸ ︷︷ ︸
sp S s

B
[[s]] // B

[[S]] // C
[[s.S]] // C

wherever s is a set (unary relation) and R is binary. (Read sp R s
as meaning the strongest post-condition ensured by R once
pre-conditioned by s.)

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Appendix — semantics of “dot join”

Since s .̃ r is equal to r .s (as postulated in the Alloy book [4]), that
is

[[S .s]] = [[s .̃ S]]

holds, then

[[S .s]] = δ ([[s]] · [[S]])︸ ︷︷ ︸
wp S s

(Read wp S s as meaning the weakest pre-condition required for S
to ensure s on its output.)

In case R is a function f and s is a scalar x , than [[x .f]] simply
means function application f (x).

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Example — dot join associativity

Let us check under what conditions equality

(x .r).s = x .(r .s) (9)

holds in Alloy.

In case of binary relations we are done.

The case where x is unary (a set) follows in the next slide, where
uppercase letters denote binary relations.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Example — dot join associativity

[[(x .R).S]] = ρ ([[S]] · [[(x .R)]])

⇔ { definition }

[[(x .R).S]] = ρ ([[S]] · ρ ([[R]] · [[x]]))

⇔ { range of composition }

[[(x .R).S]] = ρ ([[S]] · ([[R]] · [[x]]))

⇔ { standard binary relation associativity }

[[(x .R).S]] = ρ (([[S]] · [[R]]) · [[x]])

⇔ { R and S are binary }

[[(x .R).S]] = [[x .(R.S)]]

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Example — dot join associativity

Wherever only the middle component is unary, associativity

(R.x).S = R.(x .S)

holds under side condition ˜R.S = S .̃ R.

It never holds in case of multiary relations — the equality doesn’t
even type check!

The general rule, as in Alloy’s book [4]:

If two ways to parenthesize a join expression are both
well formed they will be equivalent.

What does “well formed” mean? Currently formally checking
informal statements such as this in the book.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

P.J. Freyd and A. Ščedrov.
Categories, Allegories, volume 39 of Mathematical Library.
North-Holland, 1990.

Marcelo F. Frias, Carlos G. Lopez Pombo, Gabriel A. Baum,
Nazareno M. Aguirre, and Thomas S.E. Maibaum.
Reasoning about static and dynamic properties in alloy: A
purely relational approach.
ACM Trans. Softw. Eng. Methodol., 14(4):478–526, 2005.

Peter Höfner and Georg Struth.
On automating the calculus of relations.
In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, IJCAR, volume 5195 of Lecture Notes in Computer
Science, pages 50–66. Springer, 2008.

D. Jackson.
Software abstractions: logic, language, and analysis.
The MIT Press, Cambridge Mass., 2006.
ISBN 0-262-10114-9.

Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Joost Visser.
Real estate exchange.
Technical report, DI/UM , Braga, Jan 2007.
PortoDigital – SEC-11. Confidential.

P.L. Wadler.
Theorems for free!
In 4th International Symposium on Functional Programming
Languages and Computer Architecture, pages 347–359,
London, Sep. 1989. ACM.

	Context
	Alloy
	Haskell vs Alloy
	Binary relation semantics
	Constraints
	Rectangles
	Wrapping up
	Appendix

