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Model driven engineering

• MEDEA project — High Assurance MDE using Alloy

• MDE is a clumsy area of work, full of approaches, acronyms,
notations.

• UML has taken the lead in unifying such notations, but it is
too informal to be accepted as a reference approach.

• Model-oriented formal methods (VDM, Z) solve this
informality problem at a high-cost: people find it hard to
understand models written in maths (cf. maths illiteracy if not
mathphobic behaviour).

• Alloy [4] offers a good compromise — it is formal in a
light-weight manner.
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Inspiration

• BBI project [5]: Alloy re-engineering of a well-tested, very
well written non-trivial prototype in Haskell of a real-estate
trading system similar to the stocks market (65 pages in lhs
format) unveiled 4 bugs (2 invariant violations + 2 weak
pre-conditions)

• Alloy and Haskell complementary to each other
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Alloy

What Alloy offers

• A unified approach to modeling based on the notion of a
relation — “everything is a relation” in Alloy.

• A minimal syntax (centered upon relational composition) with
an object-oriented flavour which captures much of what
otherwise would demand for UML+OCL.

• A pointfree subset.

• A model-checker for model assertions (counter-examples
within scope).
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Alloy

What Alloy does not offer

• Complete calculus for deduction (proof theory)

• Strong type checking

• Dynamic semantics modeling features

Opportunities

• Enrich the standard Alloy modus operandi with relational
algebra calculational proofs

• Connect the tool to a theorem prover, eg. Prover9 as
suggested in [3]

• Design an Alloy-centric tool-chain for high assurance
model-oriented design

Thus the MEDEA project (submitted).
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Relational composition

• The swiss army knife of Alloy

• It subsumes function application and “field selection”

• Encourages a navigational (point-free) style based on pattern
x .(R.S).

• Example:

Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
me.parent.parent = {(P4)}
Person.parent = {(P2),(P3),(P4)}
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When “everything is a relation”

• Sets are relations of arity 1, eg.
Person = {(P1), (P2), (P3), (P4)}

• Scalars are relations with size 1, eg. me = {(P1)}
• Relations are first order, but there are multi-ary relations.

• However, Alloy relations are not n-ary in the usual sense:
instead of thinking of R ∈ 2A×B×C as a set of triples (there is
no such thing as tupling in Alloy), think of R in terms of
currying:

R ∈ (B → C )A

(More about this later.)
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Kleene algebra flavour

Basic operators:

. composition
+ union
^ transitive closure
* transitive-reflexive closure

(There is no explicit recursion is Alloy.) Other relational operators:

~ converse
++ override
& intersection
- difference
-> cartesian product
<: domain restriction
:> range restriction
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Relational thinking

• As a rule, thinking in terms of poinfree relations (this includes
functions, of course) pays the effort: the concepts and the
reasoning become simpler.

• This includes relational data structuring, which is far more
interesting than what can be found in SQL and relational
databases.

Example — list processing

• Lists are traditionally viewed as recursive (linear) data
structures.

• There are no lists in Alloy — they have to be modeled by
simple relations (vulg. partial functions) between indices and
elements.
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Lists as relations in Alloy

sig List {
map : Nat -> lone Data

}

sig Nat {
succ: one Nat

}

one sig One in Nat {}

Multiplicities: lone (one or less), one (exaclty one)
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Relational data structuring

Some correspondences:

list l relation L

sorted monotonic
no-duplicates injective
map f l f · L
zip l1 l2 〈L1, L2〉
[1, . . .] id

where

• id is the identity (equivalence) relation (also a function)

• the “fork” (also known as “split”) combinator 〈 , 〉 is such
that (x , y)〈L1, L2〉z means the same as xL1z ∧ yL2z
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Haskell versus Alloy

Pointwise Haskell:

findIndices :: (a -> Bool) -> [a] -> [Int]
findIndices p xs = [ i | (x,i) <- zip xs [0..], p x ]

Pointfree (PF):

findIndices p L 4 π2 · (Φp × id) · 〈L, id〉 (1)

where

• π2 is the right projection of a pair

• L× R = 〈L · π1,R · π2〉
• Φp ⊆ id is the coreflexive relation (partial identity) which

models predicate p (or a set)
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Haskell versus Alloy

• What about Alloy? It has no pairs, therefore no forks
〈L,R〉. . .

• Don’t worry — Alloy is relational and we can play with the
relational calculus:

π2 · (Φp × id) · 〈L, id〉

= { ×-absorption }

π2 · 〈Φp · L, id〉

= { ×-cancelation }

δ (Φp · L)

where δ is the domain operator: δ R = R◦ · R ∩ id , for R◦ the
converse of R.
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Haskell versus Alloy

Two ways of writing δ (Φp · L) in Alloy, one pointwise

fun findIndices[s:set Data,l:List]: set Nat {
{i: Nat | some x:s | x in i.(l.map)}

}

and the other pointfree,

fun findIndices[s:set Data,l:List]: set Nat {
dom[l.map :> s]

}

the latter corresponding to what we’ve calculated.
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Beyond model-checking: proofs by calculation

Suppose the following property

(findIndices p) · r? = findIndices (p · r) (2)

is asserted in (pointwise) Alloy:

assert FT {
all l,l’:List, p: set Data, r: Data -> one Data |

l’.map = l.map.r =>
findIndices[p,l’] = findIndices[r.p,l]

}

NB: the following version of (2) explains the encoding above:

r? ⊆ (findIndices p)◦ · findIndices (p · r)

whereby, going pointwise, we get

l ′ = r? l ⇒ findIndices p l ′ = findIndices(p · r) l
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Beyond model-checking: proofs by calculation

• Suppose the Alloy model checker does not yield any
counter-examples for this property, for increasing bounds.

• How can we be sure of its validity?
• Free theorems — the given assertion is a corollary of the

free-theorem [6] of findIndices, thus there is nothing to prove
(model checking could altogether be avoided!)

• Wishing to prove the assertion anyway, one calculates:
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Trivial proof

(findIndices p) · r? = findIndices (p · r)

⇔ { list to relation transform }

δ (Φp · (r · L)) = δ (Φp·r · L)

⇔ { property Φf ·g = δ (Φf · g) }

δ (Φp · (r · L)) = δ (δ (Φp · r) · L)

⇔ { domain of composition }

δ (Φp · (r · L)) = δ ((Φp · r) · L)

⇔ { associativity }

True
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Realistic example — Verified FSystem (VFS)
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VFS in Alloy (simplified)

The system:

sig System {
fileStore: Path -> lone File,
table: FileHandle -> lone OpenFileInfo

}

Paths:

sig Path {
dirName: one Path

}

The root is a path:

one sig Root extends Path {
}



Context Alloy Haskell vs Alloy Binary relation semantics Constraints Rectangles Wrapping up Appendix

Alloy diagrams for FSystem

Simplified: Complete:
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Binary relation semantics

Meaning of signatures:

sig Path {
dirName: one Path

}

declares function Path
dirName// Path .

sig System {
fileStore: Path -> lone File,

}

declares simple relation System × Path
fileStore/ File .

(NB: a relation S is simple, or functional, wherever its image
S · S◦ is coreflexive. Using harpoon arrows ⇀ for singling these
out.)
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Binary relation semantics

• Since

(A× B) ⇀ C ∼= (B ⇀ C )A

fileStore can be alternatively regarded as a function in
(Path ⇀ File)System, that is, for s : System,

Path
(fileStore s) / File

• Thus the “navigation-styled” notation of Alloy: p.(s.fileStore)
means the file accessible from path p in file system s.

• Similarly, line table: FileHandle -> lone OpenFileInfo
in the model declares

FileHandle
(table s) / OpenFileInfo
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Multiplicities in Alloy + taxonomy

(courtesy of Alcino Cunha, Alloy expert at Minho)
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The same — mathematically

Topmost criteria:

binary relation

VVVVVVVVVVVVVVVVVV

KKKKKKKKKK

ssssssssss

iiiiiiiiiiiiiiiiii

injective entire simple surjective

Definitions:

Reflexive Coreflexive

kerR entire R injective R
img R surjective R simple R

kerR = R◦ · R
img R = R · R◦
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From Alloy to relational diagrams

We draw

OpenFileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File

Path

dirName

OO

where

• table s and fileStore s are simple relations

• the other arrows depict functions

(Diagram in the Rel allegory [1] to be completed soon.)
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Model constraints

Referential integrity:

Non-existing files cannot be opened:

pred ri[s: System]{
all h: FileHandle, o: h.(s.table) |

some (o.path).(s.fileStore)
}

Paths closure:

Mother directories exist and are indeed directories:

pred pc[s: System]{
all p: Path |

some p.(s.fileStore) =>
(some d: (p.dirName).(s.fileStore) |

d.fileType=Directory)
}
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2nd part of Alloy FSystem model

sig File {
attributes: one Attributes

}

sig Attributes{
fileType: one FileType

}

abstract sig FileType {}
one sig RegularFile extends FileType {}
one sig Directory extends FileType {}
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Updated binary relational diagram

OpenFileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File
attributes// Attributes

fileType
��

Path

dirName

OO

FileType

where

• table s, fileStore s are simple relations

• all the other arrows depict functions

Constraints: still missing
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Updating diagram with constraints

Complete diagram, where Directory is the “everywhere-Directory”
constant function:

OpenFileDescriptor

path

��

FileHandle
table so

>
��

⊆

Path
fileStore s

/ File
(fileStore s)◦oo attributes// Attributes

fileType

��

⊆

Path
fileStore s

/

dirfileStore same

OO

File
Directory

// FileType

Constraints:

• Top rectangle is the PF-transform of ri (referential integrity)

• Bottom rectangle is the PF-transform of pc (path closure)
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PF-constraints in symbols

Referential integrity:

ri(s) 4 path · (table s) ⊆ (fileStore s)◦ · > (3)

which is equivalent to

ri(s) 4 ρ (path · (table s)) ⊆ δ (fileStore s)

where ρ R = δ R◦. PF version (3) nicely encoded in Alloy

pred riPF[s: System]{
s.table.path in (FileHandle->File).~(s.fileStore)

}

thanks to its emphasis on composition.
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PF-constraints in symbols

Paths closure:

pc N 4 Directory · N ⊆ fileType · attributes · N · dirName (4)

recall lower part of diagram:

Path
N

/ File
attributes// Attributes

fileType

��

⊆

Path
N

/

dirName

OO

File
Directory

// FileType

Again thanks to emphasis on composition, this is easily encoded
in PF-Alloy:

pred pcPF[s: System]{
s.fileStore.(File->Directory) in

dirName.(s.fileStore).attributes.fileType
}
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PF-ESC by calculation

• Models with constraints put the burden on the designer to
ensure that operations type-check (read this in
extended-mode), that is, constraints are preserved across the
models operations.

• Typical approach in MDE: model-checking

• Automatic theorem proving also considered in safety-critical
systems

• However: convoluted pointwise formulæ often lead to failure.

How about doing these as “pen & paper” exercises?

• PF-formulæ are manageable, this is the difference.
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Example of PF-ESC by calculation

Consider the operation which removes file system objects, as
modeled in Alloy:

pred delete[s’,s: System, sp: set Path]{
s’.table = s.table
s’.fileStore = (univ-sp) <: s.fileStore

}

that is,

delete sp (M,N) 4 (M,N · Φ( 6∈sp)) (5)

where Φ( 6∈sp) is the coreflexive associated to the complement of sp.
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Intuitive steps

Intuitively, delete will
put at risk

• the ri constraint
once we decide
to delete file
system objects
which are open

• the pc
constraint once
we decide to
delete directories
with children.

(Model-checking in Alloy will easily spot these flaws, as checked
above by a counter-example for the latter situation.)
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Intuitive steps

We have to guess a pre-conditions for delete. However,

• How can we be sure that such (guessed) pre-condition is good
enough?

• The best way is to calculate the weakest pre-condition for
each constraint to be maintained.

• In doing this, mind the following properties of relational
algebra:

h · R ⊆ S ⇔ R ⊆ h◦ · S (6)

R · Φ = R ∩ > · Φ (7)

f · R ⊆ > · S ⇔ R ⊆ > · S (8)

For improved readability, we introduce abbreviations
ft := fileType · attributes and d := Directory , and calculate:
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Calculational steps

pc(delete S (M,N))

⇔ { (5) and (4) }

d · (N · Φ( 6∈S)) ⊆ ft · (N · Φ( 6∈S)) · dirName

⇔ { shunting (6) }

d · N · Φ( 6∈S) · dirName◦ ⊆ ft · N · Φ( 6∈S)

⇔ { (7) }

d · N · Φ( 6∈S) · dirName◦ ⊆ ft · N ∩ > · Φ( 6∈S)

⇔ { ∩-universal ; shunting }
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Ensuring paths closure

{
d · N · Φ( 6∈S) ⊆ ft · N · dirName
d · N · Φ( 6∈S) ⊆ > · Φ( 6∈S) · dirName

⇔ { > absorbs d (8) }
d · N · Φ( 6∈S) ⊆ ft · N · dirName︸ ︷︷ ︸

weaker than pc(N)
N · Φ( 6∈S) ⊆ > · Φ( 6∈S) · dirName︸ ︷︷ ︸

wp

Back to points, wp is:

〈∀ q : q ∈ dom N ∧ q 6∈ S : dirName q 6∈ S〉

⇔ { predicate logic }

〈∀ q : q ∈ dom N ∧ (dirName q) ∈ S : q ∈ S〉
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Ensuring paths closure

In words:

if parent directory of existing path q is marked for
deletion than so must be q.

Translating calculated weakest precondition back to Alloy:

pred pre_delete[s: System, sp: set Path]{
all q: Path |

some q.(s.fileStore) &&
q.dirName in sp => q in sp

}
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Back to the diagram

PF-encoding of model constraints in terms of relational
composition has at least the following advantages:

• it makes calculations easier (rich algebra of R · S)

• it makes it possible to draw constraints as rectangles in
diagrams, recall

OpenFileDescriptor

path

��

FileHandle
Mo

>
��

⊆

Path
N

/ File
N◦oo attributes// Attributes

fileType

��

⊆
Path

N
/

dirName

OO

File
Directory

// FileType

• it enables the “navigation-styled” notation of Alloy
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Constraint bestiary

• Experience in formal modeling tells that designs are
repetitive in the sense that they instantiate (generic)
constraints whose ubiquitous nature calls for classification

• Such “constraint patterns” are rectangles, thus easy to draw
and recall

• In the next slides we browse a little “constraint bestiary”
capturing some typical samples.
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Constraints are Rectangles

• All of shape

R · I ⊆ O · R

• Example: referential integrity in general, where N is the
offer and M is the demand :

ρ (∈F ·M) ⊆ δ N ⇔ F B

∈F

��

A
Mo

>
��

⊆

B
N

/ C
N◦oo

⇔ ∈F ·M ⊆ N◦ · >

M, N simple. ∈F is a membership relation.
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Constraints are Rectangles

• Example: M, N domain-disjoint

M · N◦ ⊆ ⊥

• Example: simple M, N domain-coherent

M · N◦ ⊆ id

• Example: M domain-closed by R:

M · R◦ ⊆ > ·M

(path-closure constraint pc instance of this)

• Example: range of R in Φ

R ⊆ Φ · R
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Last but not least

• Rectangles enforce composition as main relational operator
(as in Alloy) which is the multiplicative operator in the
abstract notion of a computation captured by

Semirings (S ,+, ·, 0, 1) inhabited by computations
(eg. instructions, statements) where

• x · y captures sequencing
• x + y captures choice (alternation)
• 0 means death
• 1 means skip (do nothing)

• Theorem provers such as Prover9 are especially apt to deal
with this kind of structures [3].

• Thus “rectangular” Alloy indeed offers the other side of the
moon — an effective connection to theorem proving
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What will keep us busy for a while

Current work:

• Defining a simple pointfree binary relational semantics for
Alloy, hopefully simpler than that of [2] (see appendix)

• (Future: base the conversion of pointwise to PF Alloy on such
semantics)

• Studying the translation to/from Haskell and, in particular,
how to port counterexamples to QuickCheck.

Near future:

• Connect Alloy to Prover9 and Mace4

• Start the design of an Alloy-centric tool-chain incorporating
new tools (the MEDEA project)
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Appendix — semantics of “dot join”

Meaning of R.S in Alloy:

[[R.S ]] = [[S ]] · [[R]] A
[[R]] // B

[[S]] // C

wherever both R, S are binary relations, or

[[s.S ]] = ρ ([[S ]] · [[s]])︸ ︷︷ ︸
sp S s

B
[[s]] // B

[[S]] // C
[[s.S]] // C

wherever s is a set (unary relation) and R is binary. (Read sp R s
as meaning the strongest post-condition ensured by R once
pre-conditioned by s.)
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Appendix — semantics of “dot join”

Since s .̃ r is equal to r .s (as postulated in the Alloy book [4]), that
is

[[S .s]] = [[s .̃ S ]]

holds, then

[[S .s]] = δ ([[s]] · [[S ]])︸ ︷︷ ︸
wp S s

(Read wp S s as meaning the weakest pre-condition required for S
to ensure s on its output.)

In case R is a function f and s is a scalar x , than [[x .f ]] simply
means function application f (x).
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Example — dot join associativity

Let us check under what conditions equality

(x .r).s = x .(r .s) (9)

holds in Alloy.

In case of binary relations we are done.

The case where x is unary (a set) follows in the next slide, where
uppercase letters denote binary relations.
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Example — dot join associativity

[[(x .R).S ]] = ρ ([[S ]] · [[(x .R)]])

⇔ { definition }

[[(x .R).S ]] = ρ ([[S ]] · ρ ([[R]] · [[x ]]))

⇔ { range of composition }

[[(x .R).S ]] = ρ ([[S ]] · ([[R]] · [[x ]]))

⇔ { standard binary relation associativity }

[[(x .R).S ]] = ρ (([[S ]] · [[R]]) · [[x ]])

⇔ { R and S are binary }

[[(x .R).S ]] = [[x .(R.S)]]
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Example — dot join associativity

Wherever only the middle component is unary, associativity

(R.x).S = R.(x .S)

holds under side condition ˜R.S = S .̃ R.

It never holds in case of multiary relations — the equality doesn’t
even type check!

The general rule, as in Alloy’s book [4]:

If two ways to parenthesize a join expression are both
well formed they will be equivalent.

What does “well formed” mean? Currently formally checking
informal statements such as this in the book.
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