Towards quasi-final coalgebraic semantics

Luís Monteiro

Universidade Nova de Lisboa

CIC 2009

Braga, 7-8 May, 2009

L. Monteiro (U.N. Lisboa)

Quasi-final coalgebras

CIC 2009 1 / 16

Motivating example

Coalgebraic semantics of Prolog

- Horn clause logic as a programming language in non-deterministic.
- The Prolog machine, however, behaves deterministically, generating in sequence answers to a query by taking advantage of the orderings of clauses and goals.
- A simple model for this machine is a coalgebra of type

$$\psi: S \to \underbrace{S + (A \times S) + \{*\}}_{F(S)}.$$

• What are the behaviours of this coalgebra?

不同 トイモトイモ

Motivating example

Coalgebraic semantics of Prolog

- Horn clause logic as a programming language in non-deterministic.
- The Prolog machine, however, behaves deterministically, generating in sequence answers to a query by taking advantage of the orderings of clauses and goals.
- A simple model for this machine is a coalgebra of type

$$\psi: S \to \underbrace{S + (A \times S) + \{*\}}_{F(S)}.$$

• What are the behaviours of this coalgebra?

Motivating example

Coalgebraic semantics of Prolog

- Horn clause logic as a programming language in non-deterministic.
- The Prolog machine, however, behaves deterministically, generating in sequence answers to a query by taking advantage of the orderings of clauses and goals.
- A simple model for this machine is a coalgebra of type

$$\psi: S \to \underbrace{S + (A \times S) + \{*\}}_{F(S)}$$

What are the behaviours of this coalgebra?

The Prolog example

Behaviours by finality

$$\psi: S \to S + (A \times S) + \{*\}$$

The final *F*-coalgebra $\langle X, \xi \rangle$ is formed by the infinite and finite streams over

$\mathbb{N}\times \textbf{\textit{A}}$

ending in 0 or ∞ (0 $\neq \infty$):

$$X = (\mathbb{N} \times A)^* \times \{0, \infty\} + (\mathbb{N} \times A)^{\omega}$$
$$\xi((0, a).\sigma) = (a, \sigma)$$
$$\xi((n + 1, a).\sigma) = (n, a).\sigma$$
$$\xi(0) = *$$
$$\xi(\infty) = \infty$$

L. Monteiro (U.N. Lisboa)

The Prolog example

Behaviours by finality

$$\psi: S \to S + (A \times S) + \{*\}$$

The final *F*-coalgebra $\langle X, \xi \rangle$ is formed by the infinite and finite streams over

$\mathbb{N}\times \textbf{\textit{A}}$

ending in 0 or ∞ (0 $\neq \infty$):

$$X = (\mathbb{N} \times A)^* \times \{0, \infty\} + (\mathbb{N} \times A)^{\omega}$$
$$\xi((0, a).\sigma) = (a, \sigma)$$
$$\xi((n + 1, a).\sigma) = (n, a).\sigma$$
$$\xi(0) = *$$
$$\xi(\infty) = \infty$$

L. Monteiro (U.N. Lisboa)

< ロ > < 同 > < 回 > < 回 >

The Prolog example

Abstracting away the number of internal steps

$$\psi: \mathcal{S} \rightarrow \mathcal{S} + (\mathcal{A} \times \mathcal{S}) + \{*\}$$

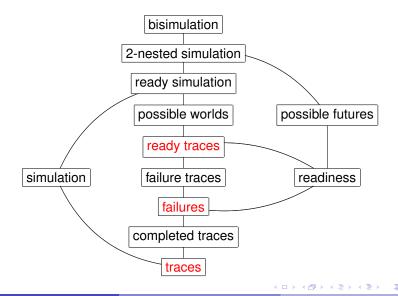
We obtain $\langle Z, \zeta \rangle$ as follows:

$$Z = A^* \times \{0, \infty\} + A^{\omega}$$
$$\zeta(a.\sigma) = (a, \sigma)$$
$$\zeta(0) = *$$
$$\zeta(\infty) = \infty$$

 $\langle Z, \zeta \rangle$ is a quasi-final *F*-coalgebra (definition below).

The linear time – branching time spectrum [van Glabbeek 2001]

There is no final transition system. But are there quasi-final ones for these behaviours?



L. Monteiro (U.N. Lisboa)

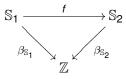
Finality revisited

Using natural transformations

An object \mathbb{Z} in a category **C** is final if there is a natural transformation

 $\beta: I \to \mathbb{Z}$

from the identity functor I to the constant functor $\mathbb Z$



such that $\beta_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Z}$ is the identity morphism:

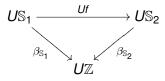
Quasi-final object

In a concrete category **C** with forgetful functor $U : \mathbf{C} \rightarrow \mathbf{Set}$

An object \mathbb{Z} in **C** is quasi-final if there is a natural transformation

 $\beta: U \to U\mathbb{Z}$

from the forgetful functor U to the constant functor $U\mathbb{Z}$



such that $\beta_{\mathbb{Z}} : U\mathbb{Z} \to U\mathbb{Z}$ is the identity function:

A (10) A (10) A (10)

Transition systems

... as coalgebras

- Fixing a set A ≠ Ø of actions, a (labelled) transition system (S, →) can be viewed as a coalgebra S = (S, ψ) with ψ : S → P(S)^A.
- We shall use the equivalent notations s → s' and s' ∈ ψ(s)(a) as convenient.
- A morphism $f : \mathbb{S} \to \mathbb{S}'$ in the coalgebraic setting means that:
 - $s \stackrel{a}{\rightarrow} t$ in \mathbb{S} implies $f(s) \stackrel{a}{\rightarrow} f(t)$ in \mathbb{S}' ;
 - $f(s) \stackrel{a}{\rightarrow} s'$ in S' implies $s \stackrel{a}{\rightarrow} t$ in S and f(t) = s' for some t.

There is no final transition system

A final $\mathbb{Z} = \langle Z, \zeta \rangle$ would have an isomorphism $\zeta : Z \cong \mathcal{P}(Z)^A$ [Lambek], which is impossible for cardinality reasons.

The transition system of traces is quasi-final

Let $\mathbb{S} = \langle \boldsymbol{S}, \psi \rangle$ be a transition system.

• Write $s \xrightarrow{x} t$ if $s \xrightarrow{a_1} \cdots \xrightarrow{a_n} t$ with $x = a_1 \cdots a_n$.

- The set of traces of *s* is $Tr_{\mathbb{S}}(s) = \{x \mid \exists t, s \xrightarrow{x} t\}.$
- $\varepsilon \in Tr_{\mathbb{S}}(s)$ and $Tr_{\mathbb{S}}(s)$ is prefix-closed.
- A trace language is a nonempty and prefix-closed $L \subseteq A^*$.
- The set \mathcal{T} of trace languages is turned into a transition system $\mathbb{T} = \langle \mathcal{T}, \zeta_{\mathbb{T}} \rangle$ by defining $\zeta_{\mathbb{T}} : \mathcal{T} \to \mathcal{P}(\mathcal{T})^{\mathcal{A}}$ for $a \in L$ by:

 $L \xrightarrow{a} \{x \mid ax \in L\}$

• For *L* in \mathcal{T} , $\mathcal{T}_{\mathbb{T}}(L) = L$, that is, $\mathcal{T}_{\mathbb{F}} = \operatorname{id}_{U\mathbb{T}}$.

• $Tr: U \to UT = T$ is a natural transformation, that is, $Tr_{\mathbb{S}}(f(s)) = Tr_{\mathbb{S}}(s)$ for any morphism f.

< 日 > < 同 > < 回 > < 回 > < □ > <

The transition system of traces is quasi-final

Let $\mathbb{S} = \langle \boldsymbol{S}, \psi \rangle$ be a transition system.

- Write $s \xrightarrow{x} t$ if $s \xrightarrow{a_1} \cdots \xrightarrow{a_n} t$ with $x = a_1 \cdots a_n$.
- The set of traces of *s* is $Tr_{\mathbb{S}}(s) = \{x \mid \exists t, s \stackrel{x}{\rightarrow} t\}.$
- $\varepsilon \in Tr_{\mathbb{S}}(s)$ and $Tr_{\mathbb{S}}(s)$ is prefix-closed.
- A trace language is a nonempty and prefix-closed $L \subseteq A^*$.
- The set \mathcal{T} of trace languages is turned into a transition system $\mathbb{T} = \langle \mathcal{T}, \zeta_{\mathbb{T}} \rangle$ by defining $\zeta_{\mathbb{T}} : \mathcal{T} \to \mathcal{P}(\mathcal{T})^{\mathcal{A}}$ for $a \in L$ by:

$L \xrightarrow{a} \{x \mid ax \in L\}$

• For *L* in \mathcal{T} , $\mathcal{T}_{\mathbb{T}}(L) = L$, that is, $\mathcal{T}_{\mathbb{F}} = \operatorname{id}_{U\mathbb{T}}$.

• $Tr: U \to UT = T$ is a natural transformation, that is, $Tr_{\mathbb{S}}(f(s)) = Tr_{\mathbb{S}}(s)$ for any morphism f.

The transition system of traces is quasi-final

Let $\mathbb{S} = \langle \boldsymbol{S}, \psi \rangle$ be a transition system.

- Write $s \xrightarrow{x} t$ if $s \xrightarrow{a_1} \cdots \xrightarrow{a_n} t$ with $x = a_1 \cdots a_n$.
- The set of traces of *s* is $Tr_{\mathbb{S}}(s) = \{x \mid \exists t, s \stackrel{x}{\rightarrow} t\}.$
- $\varepsilon \in Tr_{\mathbb{S}}(s)$ and $Tr_{\mathbb{S}}(s)$ is prefix-closed.
- A trace language is a nonempty and prefix-closed $L \subseteq A^*$.
- The set \mathcal{T} of trace languages is turned into a transition system $\mathbb{T} = \langle \mathcal{T}, \zeta_{\mathbb{T}} \rangle$ by defining $\zeta_{\mathbb{T}} : \mathcal{T} \to \mathcal{P}(\mathcal{T})^{\mathcal{A}}$ for $a \in L$ by:

$L \xrightarrow{a} \{x \mid ax \in L\}$

• For *L* in \mathcal{T} , $\mathcal{T}_{\mathbb{T}}(L) = L$, that is, $\mathcal{T}_{\mathbb{F}} = \mathrm{id}_{U\mathbb{T}}$.

• $Tr: U \to UT = T$ is a natural transformation, that is, $Tr_{\mathbb{S}}(f(s)) = Tr_{\mathbb{S}}(s)$ for any morphism f.

The transition system of traces is quasi-final

Let $\mathbb{S} = \langle \boldsymbol{S}, \psi \rangle$ be a transition system.

- Write $s \xrightarrow{x} t$ if $s \xrightarrow{a_1} \cdots \xrightarrow{a_n} t$ with $x = a_1 \cdots a_n$.
- The set of traces of *s* is $Tr_{\mathbb{S}}(s) = \{x \mid \exists t, s \stackrel{x}{\rightarrow} t\}.$
- $\varepsilon \in Tr_{\mathbb{S}}(s)$ and $Tr_{\mathbb{S}}(s)$ is prefix-closed.
- A trace language is a nonempty and prefix-closed $L \subseteq A^*$.

 $L \xrightarrow{a} \{x \mid ax \in L\}$

• For *L* in \mathcal{T} , $Tr_{\mathbb{T}}(L) = L$, that is, $Tr_{\mathbb{F}} = id_{U\mathbb{T}}$.

• $Tr: U \to UT = T$ is a natural transformation, that is, $Tr_{\mathbb{S}}(f(s)) = Tr_{\mathbb{S}}(s)$ for any morphism f.

The transition system of traces is quasi-final

Let $\mathbb{S} = \langle \boldsymbol{S}, \psi \rangle$ be a transition system.

- Write $s \xrightarrow{x} t$ if $s \xrightarrow{a_1} \cdots \xrightarrow{a_n} t$ with $x = a_1 \cdots a_n$.
- The set of traces of *s* is $Tr_{\mathbb{S}}(s) = \{x \mid \exists t, s \stackrel{x}{\rightarrow} t\}.$
- $\varepsilon \in Tr_{\mathbb{S}}(s)$ and $Tr_{\mathbb{S}}(s)$ is prefix-closed.
- A trace language is a nonempty and prefix-closed $L \subseteq A^*$.

 $L \xrightarrow{a} \{x \mid ax \in L\}$

• For *L* in \mathcal{T} , $Tr_{\mathbb{T}}(L) = L$, that is, $Tr_{\mathbb{F}} = \operatorname{id}_{U\mathbb{T}}$.

• $Tr: U \to UT = T$ is a natural transformation, that is, $Tr_{\mathbb{S}}(f(s)) = Tr_{\mathbb{S}}(s)$ for any morphism f.

Failures (I) [Brookes, Hoare, Roscoe 1984] Failure-sets

Again $\mathbb{S} = \langle \boldsymbol{S}, \psi \rangle$ is a transition system.

- $(x, X) \in A^* \times \mathcal{P}(A)$ is a failure of s if $s \xrightarrow{x} s'$ and $X \cap I(s') = \emptyset$ for some s', where $I(s) = \{a \in A \mid s \xrightarrow{a}\}$.
- The set of failures of *s* is written $Fl_{\mathbb{S}}(s)$.
- A failure-set is a set F ⊆ A* × P(A) satisfying the following conditions:
 - $(\varepsilon, \emptyset) \in F$.
 - $(\varepsilon, X) \in F$ implies $\forall a \in X, (a, \emptyset) \notin F$.
 - $(xy, X) \in F$ implies $(x, \emptyset) \in F$.
 - $(x, Y) \in F$ and $X \subseteq Y$ imply $(x, X) \in F$.
 - $(x, X) \in F$ and $(x, X \cup Y) \notin F$ imply $\exists a \in Y, (xa, \emptyset) \in F$.

Failures (I) [Brookes, Hoare, Roscoe 1984] Failure-sets

Again $\mathbb{S} = \langle \boldsymbol{S}, \psi \rangle$ is a transition system.

- $(x, X) \in A^* \times \mathcal{P}(A)$ is a failure of s if $s \xrightarrow{x} s'$ and $X \cap I(s') = \emptyset$ for some s', where $I(s) = \{a \in A \mid s \xrightarrow{a}\}$.
- The set of failures of *s* is written $FI_{\mathbb{S}}(s)$.
- A failure-set is a set F ⊆ A* × P(A) satisfying the following conditions:
 - $(\varepsilon, \emptyset) \in F$.
 - $(\varepsilon, X) \in F$ implies $\forall a \in X, (a, \emptyset) \notin F$.
 - $(xy, X) \in F$ implies $(x, \emptyset) \in F$.
 - $(x, Y) \in F$ and $X \subseteq Y$ imply $(x, X) \in F$.
 - ► $(x, X) \in F$ and $(x, X \cup Y) \notin F$ imply $\exists a \in Y, (xa, \emptyset) \in F$.

Failures (II)

The transition system of failures is quasi-final

- For a failure-set F let $C_F(x) = \{a \in A \mid (xa, \emptyset) \in F\}$.
- $(x, X) \in F$ is a primary failure if $X \subseteq C_F(x)$.
- If $(x, X) \in F$ is a primary failure define $F \xrightarrow{a, X} F'$ by:

$$\begin{array}{rcl} \mathsf{F}' &=& \{(\varepsilon, Y) \mid Y \subseteq X \cup (\mathsf{A} - \mathsf{C}_{\mathsf{F}}(\mathsf{a}))\} \\ & \cup \\ & \{(bx, Y) \mid (abx, Y) \in \mathsf{F}, b \notin X\}. \end{array}$$

• The set \mathcal{F} of failure-sets gives a transition system $\mathbb{F} = \langle \mathcal{F}, \zeta_{\mathbb{F}} \rangle$ with $\zeta_{\mathbb{F}} : \mathcal{F} \to \mathcal{P}(\mathcal{F})^{A}$ defined by:

$$F \xrightarrow{a} F'$$
 iff $F \xrightarrow{a,X} F'$ for some X.

• For F in \mathcal{F} , $Fl_{\mathbb{F}}(F) = F$, that is, $Fl_{\mathbb{F}} = id_{U\mathbb{F}}$.

• $FI: U \to U\mathbb{F} = \mathcal{F}$ is a natural transformation, that is, $FI_{\mathbb{S}}(f(s)) = FI_{\mathbb{S}}(s)$ for any morphism f.

Many more remain to be found...

- Let (Z, β) be a quasi-final object of a concrete category C. A function f : US₁ → US₂ is a β-map if β_{S₂} ∘ f = β_{S₁}.
 - Every morphism $f : \mathbb{S}_1 \to \mathbb{S}_2$ is a β -map.
 - The objects of **C** with β -maps as morphisms form a category **C** $\downarrow \beta$.
 - \mathbb{Z} is a final object of $\mathbf{C} \downarrow \beta$.
- Any object \mathbb{Z} with $U\mathbb{Z} = 1$ is quasi-final.
- If ⟨ℤ, β⟩ and ⟨W, γ⟩ are quasi-final objects and every β_S is a γ-map, then W^{β_W}→Z^{γ_Z}→W = id_W. So W is a sub-object of ℤ in C ↓ γ.
- In the same conditions, the behavioural equivalences $\mathbb{Z}_{S} = \text{Ker} (\beta_{S}) \text{ and } \mathbb{W}_{S} = \text{Ker} (\gamma_{S}) \text{ satisfy } \mathbb{Z}_{S} \subseteq \mathbb{W}_{S}.$
- Example: $Tr_{\mathbb{F}}(Fl_{\mathbb{S}}(s)) = Tr_{\mathbb{S}}(s)$, so $\stackrel{\mathbb{F}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{T}}{=}_{\mathbb{S}}$.

Many more remain to be found...

- Let (Z, β) be a quasi-final object of a concrete category C. A function f : US₁ → US₂ is a β-map if β_{S₂} ∘ f = β_{S₁}.
 - Every morphism $f : \mathbb{S}_1 \to \mathbb{S}_2$ is a β -map.
 - The objects of **C** with β -maps as morphisms form a category **C** $\downarrow \beta$.
 - \mathbb{Z} is a final object of $\mathbf{C} \downarrow \beta$.
- Any object \mathbb{Z} with $U\mathbb{Z} = 1$ is quasi-final.
- If ⟨ℤ, β⟩ and ⟨W, γ⟩ are quasi-final objects and every β_S is a γ-map, then W^{β_W}→Z^{γ_ℤ}→W = id_W. So W is a sub-object of ℤ in C ↓ γ.
- In the same conditions, the behavioural equivalences $\stackrel{\mathbb{Z}}{=}_{\mathbb{S}} = \text{Ker} (\beta_{\mathbb{S}}) \text{ and } \stackrel{\mathbb{W}}{=}_{\mathbb{S}} = \text{Ker} (\gamma_{\mathbb{S}}) \text{ satisfy } \stackrel{\mathbb{Z}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{W}}{=}_{\mathbb{S}}.$
- Example: $Tr_{\mathbb{F}}(Fl_{\mathbb{S}}(s)) = Tr_{\mathbb{S}}(s)$, so $\stackrel{\mathbb{F}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{T}}{=}_{\mathbb{S}}$.

Many more remain to be found...

- Let (Z, β) be a quasi-final object of a concrete category C. A function f : US₁ → US₂ is a β-map if β_{S₂} ∘ f = β_{S₁}.
 - Every morphism $f : \mathbb{S}_1 \to \mathbb{S}_2$ is a β -map.
 - The objects of **C** with β -maps as morphisms form a category **C** $\downarrow \beta$.
 - \mathbb{Z} is a final object of $\mathbf{C} \downarrow \beta$.
- Any object \mathbb{Z} with $U\mathbb{Z} = 1$ is quasi-final.
- If ⟨ℤ, β⟩ and ⟨W, γ⟩ are quasi-final objects and every β_S is a γ-map, then W^{β_W}→Z^{γ_Z}→W = id_W. So W is a sub-object of ℤ in C ↓ γ.
- In the same conditions, the behavioural equivalences $\mathbb{Z}_{\mathbb{S}} = \text{Ker} (\beta_{\mathbb{S}}) \text{ and } \mathbb{W}_{\mathbb{S}} = \text{Ker} (\gamma_{\mathbb{S}}) \text{ satisfy } \mathbb{Z}_{\mathbb{S}} \subseteq \mathbb{W}_{\mathbb{S}}.$
- Example: $Tr_{\mathbb{F}}(Fl_{\mathbb{S}}(s)) = Tr_{\mathbb{S}}(s)$, so $\stackrel{\mathbb{F}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{T}}{=}_{\mathbb{S}}$.

Many more remain to be found...

- Let (Z, β) be a quasi-final object of a concrete category C. A function f: US₁ → US₂ is a β-map if β_{S₂} ∘ f = β_{S₁}.
 - Every morphism $f : \mathbb{S}_1 \to \mathbb{S}_2$ is a β -map.
 - The objects of **C** with β -maps as morphisms form a category **C** $\downarrow \beta$.
 - \mathbb{Z} is a final object of $\mathbf{C} \downarrow \beta$.
- Any object \mathbb{Z} with $U\mathbb{Z} = 1$ is quasi-final.
- If ⟨ℤ, β⟩ and ⟨W, γ⟩ are quasi-final objects and every β_S is a γ-map, then W^{β_W}→Z^{γ_Z}→W = id_W. So W is a sub-object of ℤ in C ↓ γ.
- In the same conditions, the behavioural equivalences $\stackrel{\mathbb{Z}}{=}_{\mathbb{S}} = \text{Ker} (\beta_{\mathbb{S}}) \text{ and } \stackrel{\mathbb{W}}{=}_{\mathbb{S}} = \text{Ker} (\gamma_{\mathbb{S}}) \text{ satisfy } \stackrel{\mathbb{Z}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{W}}{=}_{\mathbb{S}}.$
- Example: $Tr_{\mathbb{F}}(Fl_{\mathbb{S}}(s)) = Tr_{\mathbb{S}}(s)$, so $\stackrel{\mathbb{F}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{T}}{=}_{\mathbb{S}}$.

Many more remain to be found...

- Let (Z, β) be a quasi-final object of a concrete category C. A function f : US₁ → US₂ is a β-map if β_{S₂} ∘ f = β_{S₁}.
 - Every morphism $f : \mathbb{S}_1 \to \mathbb{S}_2$ is a β -map.
 - The objects of **C** with β -maps as morphisms form a category **C** $\downarrow \beta$.
 - \mathbb{Z} is a final object of $\mathbf{C} \downarrow \beta$.
- Any object \mathbb{Z} with $U\mathbb{Z} = 1$ is quasi-final.
- If ⟨ℤ, β⟩ and ⟨W, γ⟩ are quasi-final objects and every β_S is a γ-map, then W^{β_W}→Z^{γ_Z}→W = id_W. So W is a sub-object of ℤ in C ↓ γ.
- In the same conditions, the behavioural equivalences $\mathbb{Z}_{S} = \text{Ker} (\beta_{S}) \text{ and } \mathbb{W}_{S} = \text{Ker} (\gamma_{S}) \text{ satisfy } \mathbb{Z}_{S} \subseteq \mathbb{W}_{S}.$
- Example: $Tr_{\mathbb{F}}(Fl_{\mathbb{S}}(s)) = Tr_{\mathbb{S}}(s)$, so $\stackrel{\mathbb{F}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{T}}{=}_{\mathbb{S}}$.

Many more remain to be found...

- Let (Z, β) be a quasi-final object of a concrete category C. A function f : US₁ → US₂ is a β-map if β_{S₂} ∘ f = β_{S₁}.
 - Every morphism $f : \mathbb{S}_1 \to \mathbb{S}_2$ is a β -map.
 - The objects of **C** with β -maps as morphisms form a category **C** $\downarrow \beta$.
 - \mathbb{Z} is a final object of $\mathbf{C} \downarrow \beta$.
- Any object \mathbb{Z} with $U\mathbb{Z} = 1$ is quasi-final.
- If (Z, β) and (W, γ) are quasi-final objects and every β_S is a γ-map, then W^{β_W}→Z^{γ_Z}→W = id_W. So W is a sub-object of Z in C ↓ γ.
- In the same conditions, the behavioural equivalences $\mathbb{Z}_{S} = \text{Ker} (\beta_{S}) \text{ and } \mathbb{W}_{S} = \text{Ker} (\gamma_{S}) \text{ satisfy } \mathbb{Z}_{S} \subseteq \mathbb{W}_{S}.$
- Example: $Tr_{\mathbb{F}}(Fl_{\mathbb{S}}(s)) = Tr_{\mathbb{S}}(s)$, so $\stackrel{\mathbb{F}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{T}}{=}_{\mathbb{S}}$.

Many more remain to be found...

- Let (Z, β) be a quasi-final object of a concrete category C. A function f : US₁ → US₂ is a β-map if β_{S₂} ∘ f = β_{S₁}.
 - Every morphism $f : \mathbb{S}_1 \to \mathbb{S}_2$ is a β -map.
 - The objects of **C** with β -maps as morphisms form a category **C** $\downarrow \beta$.
 - \mathbb{Z} is a final object of $\mathbf{C} \downarrow \beta$.
- Any object \mathbb{Z} with $U\mathbb{Z} = 1$ is quasi-final.
- If ⟨ℤ, β⟩ and ⟨W, γ⟩ are quasi-final objects and every β_S is a γ-map, then W^{β_W}→Z^{γ_ℤ}→W = id_W. So W is a sub-object of ℤ in C ↓ γ.
- In the same conditions, the behavioural equivalences $\mathbb{Z}_{\mathbb{S}} = \text{Ker} (\beta_{\mathbb{S}}) \text{ and } \mathbb{W}_{\mathbb{S}} = \text{Ker} (\gamma_{\mathbb{S}}) \text{ satisfy } \mathbb{Z}_{\mathbb{S}} \subseteq \mathbb{W}_{\mathbb{S}}.$
- Example: $Tr_{\mathbb{F}}(Fl_{\mathbb{S}}(s)) = Tr_{\mathbb{S}}(s)$, so $\stackrel{\mathbb{F}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{T}}{=}_{\mathbb{S}}$.

Many more remain to be found...

- Let (Z, β) be a quasi-final object of a concrete category C. A function f : US₁ → US₂ is a β-map if β_{S₂} ∘ f = β_{S₁}.
 - Every morphism $f : \mathbb{S}_1 \to \mathbb{S}_2$ is a β -map.
 - The objects of **C** with β -maps as morphisms form a category **C** $\downarrow \beta$.
 - \mathbb{Z} is a final object of $\mathbf{C} \downarrow \beta$.
- Any object \mathbb{Z} with $U\mathbb{Z} = 1$ is quasi-final.
- If ⟨ℤ, β⟩ and ⟨W, γ⟩ are quasi-final objects and every β_S is a γ-map, then W^{β_W}→Z^{γ_ℤ}→W = id_W. So W is a sub-object of ℤ in C ↓ γ.
- In the same conditions, the behavioural equivalences $\mathbb{Z}_{\mathbb{S}} = \text{Ker} (\beta_{\mathbb{S}}) \text{ and } \mathbb{H}_{\mathbb{S}} = \text{Ker} (\gamma_{\mathbb{S}}) \text{ satisfy } \mathbb{H}_{\mathbb{S}} \subseteq \mathbb{H}_{\mathbb{S}}.$
- Example: $Tr_{\mathbb{F}}(Fl_{\mathbb{S}}(s)) = Tr_{\mathbb{S}}(s)$, so $\stackrel{\mathbb{F}}{=}_{\mathbb{S}} \subseteq \stackrel{\mathbb{T}}{=}_{\mathbb{S}}$.

An approach for defining quasi-final objects

A categorical formulation

Given:

- a concrete category C, U;
- an object Z of C.

Find:

- a subcategory D having Z as final object with behaviour

 γ : Id_D → Z in D;
- a functor $T : \mathbf{C} \to \mathbf{C}$ with image in \mathbf{D}
- and a natural transformation η : U → UT such that η_S : US → UTS is a morphism for every S in D.

Then:

 $\langle \mathbb{Z}, \beta
angle$ is a quasi-final object where $eta_{\mathbb{S}} = U\mathbb{S} \stackrel{\eta_{\mathbb{S}}}{\longrightarrow} UT\mathbb{S} \stackrel{\gamma_{T\mathbb{S}}}{\longrightarrow} U\mathbb{Z}.$

An approach for defining quasi-final objects

A categorical formulation

Given:

- a concrete category C, U;
- an object Z of C.

Find:

- a subcategory D having Z as final object with behaviour
 γ : Id_D → Z in D;
- a functor $T : \mathbf{C} \to \mathbf{C}$ with image in \mathbf{D}
- and a natural transformation η : U → UT such that η_S : US → UTS is a morphism for every S in D.

Then:

 $\langle \mathbb{Z}, \beta
angle$ is a quasi-final object where $eta_{\mathbb{S}} = U\mathbb{S} \stackrel{\eta_{\mathbb{S}}}{\longrightarrow} UT\mathbb{S} \stackrel{\gamma_{T\mathbb{S}}}{\longrightarrow} U\mathbb{Z}.$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

An approach for defining quasi-final objects

A categorical formulation

Given:

- a concrete category C, U;
- an object Z of C.

Find:

- a subcategory D having Z as final object with behaviour
 γ : Id_D → Z in D;
- a functor $T : \mathbf{C} \to \mathbf{C}$ with image in \mathbf{D}
- and a natural transformation η : U → UT such that η_S : US → UTS is a morphism for every S in D.

Then:

 $\langle \mathbb{Z}, \beta \rangle$ is a quasi-final object where $\beta_{\mathbb{S}} = U\mathbb{S} \xrightarrow{\eta_{\mathbb{S}}} UT\mathbb{S} \xrightarrow{\gamma_{T\mathbb{S}}} U\mathbb{Z}$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Application to previous examples (I)

Prolog example and traces

Prolog example

Take **D** to be the category of the $\langle S, \psi \rangle$ with:

- $\psi: S \rightarrow S + (A \times S) + \{*\}$ such that $\psi(s) \in S$ implies $\psi(s) = s$;
- *T* applies a system (S, ψ) to the system (S, φ) where φ is equal to ψ except that φ(s) = s if ψ diverges on s;
- $\eta_{\langle S,\psi\rangle}$ is the identity function.

Traces

Here **D** is the category of deterministic transition systems, *T* is the familiar (non-empty) powerset construction and $\eta_{\mathbb{S}}(s) = \{s\}$.

イロト イポト イヨト イヨト 二日

Application to previous examples (II) Failures

Failures

D is the full subcategory of ts's such that:

•
$$s \stackrel{a}{\rightarrow} t_1$$
 and $s \stackrel{a}{\rightarrow} t_2$ and $I(t_1) = I(t_2)$ imply $t_1 = t_2$;

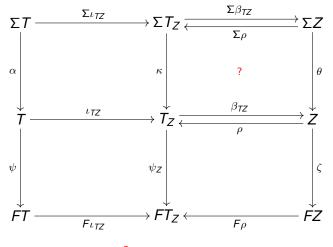
•
$$s \stackrel{a}{\rightarrow} t$$
 and $I(t) \subseteq J \subseteq C_s(a)$ imply $s \stackrel{a}{\rightarrow} t'$ and $I(t') = J$ for some t' ;

•
$$s \xrightarrow{a} s_i \xrightarrow{b} t_i$$
 (*i* = 1, 2) imply $s_i \xrightarrow{b} t_{3-i}$ (*i* = 1, 2).

(*T* and η omitted.)

Future work: Quasi-final semantics

Following [Rutten Turi 94] [Turi Plotkin 97]



 $\iota_{Z} \stackrel{?}{=} \beta_{TZ} \circ \iota_{TZ} = \beta_{T}$