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Context and Motivation

• The advent of on-chip parallelism poses many challenges to
current programming languages.

• Traditional approaches based on compiler + hand-coded
optimization are giving place to trendy generative techniques,
based on DSLs for high-level program transformation.

• In areas such as scientific computing, image/video processing,
the bulk of the work performed by so-called kernel functions.

• Examples of kernels are matrix-matrix multiplication (MMM),
the discrete Fourier transform (DFT), etc.

• Kernel optimization has become extraordinarily difficult due
to the complexity of current computing platforms.
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Teaching computers to write fast numerical code

In the SPIRAL Group (CMU), a DSL has been defined (OL) [1] to
specify kernels in a data-independent way.

• OL is derived from mathematics (thus declarative) and
describes the structure of a computation in an
implementation-independent form. Divide-and-conquer
algorithms are described as OL breakdown rules.

• By recursively applying these rules a space of algorithms for a
desired kernel can be generated.

Rationale behind SPIRAL:

• Target imperative code is too late for numeric processing
kernel optimization.

• Such optimization can be elegantly and efficiently performed
well above in the design chain once the maths themselves are
expressed in an index-free style.
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Synergy

• Parallel between the pointfree notation of OL and relational
algebra is obvious.

• Rich calculus of algebraic rules.

• Relational calculus is typed once relations are regarded as
arrows in the Rel allegory.

• What about the matrix calculus?
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Sample of OL (Operator language) [1]
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Comments

We believe a number of improvements can be performed
concerning

• the OL notation itself

• the layout of its calculus

• Its effectiveness for calculation/transformation purposes

By the way:

• Looking at linear algebra textbooks we see a diversity of
approaches, ways of defining/describing kernel algorithms.

• Textbooks often explain matrix operations by resorting to
for-loop notation.

• How “algebraic” is this?
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MMM as inspiration about what to do

From the Wikipedia:

Index-wise definition

Cij =
2∑

k=1

Aik × Bkj

Hiding indices i , j , k:

3 2
Aoo 3

Boo

A·B

ff Index-free

C = A · B
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Matrices are Arrows

Given

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn


m×n

m nAoo

B =

b11 . . . b1k
...

. . .
...

bu1 . . . bnk


n×k

n k
Boo

Define

m nAoo k
Boo

A·B

gg
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Category of matrices

As guessed above:

• Under MMM (A · B), matrices form a category whose
objects are matrix dimensions and whose morphisms

m nAoo , n k
Boo are the matrices themselves.

• Every identity n nidoo is the diagonal of size n, that is,
id(r , c) 4 r = c under the (0, 1) encoding of the Booleans:

idn =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


n×n

n n
idnoo
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Category of matrices
Looking closer:
• Such a category is Abelian — every homset forms an aditive

Abelian group (Ab-category) such that composition is bilinear
relative to +:

M · (N + L) = M · N + M · L (1)

(N + L) · K = N · K + L · K (2)

• It has biproducts, where a biproduct diagram

a
i1

// c
π1oo π2 //

b
i2

oo (3)

is such that

π1 · i1 = ida (4)

π2 · i2 = idb (5)

i1 · π1 + i2 · π2 = idc (6)
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Biproduct=product+coproduct

Theorem:
“ Two objects a and b in Ab-category A have a product in A iff
they have a biproduct in A. Specifically, given a biproduct
diagram, the object c with the projections π1 and π2 is a product
of a and b, while, dually, c with i1 and i2 is a coproduct.”
(MacLane [2], pg. 194)

“Deja vu”?

Yes, in relation algebra, for π1 = i◦1 and π2 = i◦2 :

[R ,S ]=(R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

C
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Deja vu

In fact, within relations

i◦1 · i1 = id

i◦2 · i2 = id

meaning that ik=1,2 are injections (kernels both reflexive and
coreflexive) and

i1 · i◦1 ∪ i2 · i◦2 = id

meaning that they are jointly surjective (images together are
reflexive and coreflexive).
In linear algebra, however, biproducts are far many and more
interesting! Let us see why.
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The Puzzle

The biproduct definition is declarative, in order to build upon this
concept, we need to re-interpret its axioms constructively. To do
so is to solve the following equation system:

π1 · i1 = ida

π2 · i2 = idb

i1 · π1 + i2 · π2 = idc

“In other words, the equations [above] contain the
familiar calculus of matrices.” Mac Lane
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The “standard” biproduct

In this biproduct, coproduct is column-wise join
[

A B
]

and

product is row-wise join

〈
A

B

〉
. As in relation algebra, π1 = i◦1

and π2 = i◦2 , where M◦ is the transpose of M, and:[
A B

]
= A · π1 + B · π2 (7)〈

A

B

〉
=

[
A◦ B◦

]◦
(8)

Thus 〈
A

B

〉
= i1 · A + i2 · B (9)
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Diagram

k

A

zzvvvvvvvvvvvvvvvvvvvvvvvvv

B

$$HHHHHHHHHHHHHHHHHHHHHHHHH

〈
A

B

〉
��

m
i1 //

C

$$HHHHHHHHHHHHHHHHHHHHHHHHH m + n

h
C D

i

��

n
i2oo

D

{{vvvvvvvvvvvvvvvvvvvvvvvvv

j
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Universal properties

Product:

X =

〈
A

B

〉
≡

{
π1 · X = A
π2 · X = B

(10)

Coproduct:

X =
[

A B
]
≡

{
X · i1 = A
X · i2 = B

(11)

Both:

X =

(
A C

B D

)
≡


π1 · X · i1 = A
π1 · X · i2 = C
π2 · X · i1 = B
π2 · X · i2 = D

(12)
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Elementary matrix AOP

Reflection 〈
π1

π2

〉
= id (13)[

i1 i2
]

= id (14)

Fusion 〈
A

B

〉
· C =

〈
A · C
B · C

〉
(15)

C ·
[

A B
]

=
[

C · A C · B
]

(16)
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Abide laws

Not only the exchange law〈 [
A B

][
C D

] 〉 =

[ 〈
A
C

〉 〈
B
D

〉 ]
=

(
A B
C D

)
(17)

but also 〈
A
B

〉
+

〈
C
D

〉
=

〈
A + C
B + D

〉
(18)

[
A B

]
+
[

C D
]

=
[

A + C B + D
]

(19)

Parentheses
[ ]

and
〈 〉

will be saved wherever unnecessary.
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Putting things to work
Elementary divide and conquer matrix multiplication:[

R S
]
·
〈

U

V

〉
= R · U + S · V (20)

Calculation: [
R S

]
·
〈

U

V

〉
= { (9) }[

R S
]
· (i1 · U + i2 · V )

= { bilinearity (1) }[
R S

]
· i1 · U +

[
R S

]
· i2 · V

= { +-cancellation }

R · U + S · V
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Putting things to work

Blockwise MMM:(
R S

U V

)
·
(

A B

C D

)
=

(
RA + SC RB + SD

UA + VC UB + VD

)
(21)

Calculation: [ 〈
R

U

〉 〈
S

V

〉 ]
·
〈 [

A B
][

C D
] 〉

= { divide and conquer (20) }

R

U
·
[

A B
]

+
S

V
·
[

C D
]
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Putting things to work

= { fusion-× }〈
R ·
[

A B
]

U ·
[

A B
] 〉+

〈
S ·
[

C D
]

V ·
[

C D
] 〉

= { fusion-+ }〈 [
R · A R · B

][
U · A U · B

] 〉+

〈 [
S · C S · D

][
V · C V · D

] 〉
= { abide-× }〈 [

R · A R · B
]

+
[

S · C S · D
][

U · A U · B
]

+
[

V · C V · D
] 〉

= { abide-+ }
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Putting things to work

〈 [
R · A + S · C R · B + S · D

][
U · A + V · C U · B + V · D

] 〉
= { exchange law (17) }(

RA + SC RB + SD

UA + VC UB + VD

)
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(Categorial) sum = product
Definitions:

A⊕ B =
[

i1 · A i2 · B
]

(22)

A� B =

〈
A · π1

B · π2

〉
(23)

Fact:

A⊕ B = A� B (24)

Calculation:

A⊕ B =
[

i1 · A i2 · B
]

=

(
A 0

0 B

)
= i1 · A · π1 + i2 · B · π2

=

〈
A · π1

B · π2

〉
= A� B
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(Bi)functors

That A⊕ B (=A� B) is a (bi)functor is immediate from the
universal properties. A number of standard properties arise:

id ⊕ id = id (25)

(A⊕ B) · (C ⊕ D) = (A · C ⊕ B · D) (26)[
A B

]
· (C ⊕ D) =

[
A · C B · D

]
(27)

(A� B) · C

D
=

A · C
B · D (28)
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Polymorphic matrices

Matrices i1, i2, π1, π2 are polymorphic, as exhibited by “free
theorems”:

A · i1 = i1 · (A⊕ B) (29)

A · π1 = π1 · (A� B) (30)

and so on. But there are more examples of matrix polymorphism:
id itself is polymorphic, cf. “free theorem”:

A · id = id · A = A (31)
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Polymorphic matrices

Matrix id is a special case of a diagonal matrix: given scalar a, we
define

an =


a 0 · · · 0
0 a · · · 0
...

...
. . .

...
0 0 · · · a


n×n

n n
anoo

Clearly, id = 1. Also note that a can be defined blockwise, since
a = a⊕ a, for n > 1 and arbitrary choice of block sizes.
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Polymorphic matrices

(Pointfree) scalar product: define

aA = a · A (32)

“Free theorem”:

A · a = a · A (= aA) (33)
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Flipping

flip X = swap · X (34)

where

swap 1 = 1

swap (n + m) =

(
0 swap m

swap n 0

)

Fact:

swap (n + m) · swap (m + n) = id (35)

Thus:

flip(flip X ) = X
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Gaussian elimination
Motivation:

ge

(
x y

z k

)
=

(
x y

z − 1
x zx k − 1

x zy

)
Generalization:

ge

(
x M

N Q

)
=

[
x M

0 ge(Q − N
x ·M)

]
ge x = x

Types:

1

1

x
@@��������

N ��???????? m

M
__????????

Q~~~~~~~~~~

n

= 1

x

�� N
))RRRRRRRRRRRRRRRRRR 1 + m m

M

uullllllllllllllllll

Q

��
1 1 + n n
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Another solution

Step of gaussian elimination?

π′
1 ·
[

a11 a12

a21 a22

]
=

[
a11 a12

]
π′

2 ·
[

a11 a12

a21 a22

]
=

[
αa11 + a21 αa12 + a22

]
Building Elementary Matrices?〈

π′1
π′2

〉
=

〈 [
1 0

][
α 1

] 〉 =

[
1 0
α 1

]
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Tensor/Kroneker product

[
a11 a12

a21 a22

]
⊗
[

b11 b12

b21 b22

]
=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22



x ⊗ A = xA

C

D
⊗ A =

C ⊗ A

D ⊗ A[
C D

]
⊗ A = C ⊗ A D ⊗ A
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Striding

Kronecker notation:

A =

a11 a12

a21 a22

a31 a32

 A =



a11

a21

a31

a12

a22

a32


A kind of exponential?

Universal Law

K = A ≡ A = ap · (K ⊗ id)
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Indeed

J. Magnus book (1999)

vec abT = b ⊗ a
vec A = (AT ⊗ Im)× vec Im
vec A = (In ⊗ A)× vec In
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Comments?

Why Abstract Nonsense

“A category can be seen as a structure that formalizes
a mathematician’s description of a type of structure”

Barr’s et al

Could We Pay Back Mathematics?
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