CIC 2009, Braga

Automata models of component connectors

Marcello Bonsangue

Dave Clarke Mohammad Izadi Alexandra Silva

Leiden Institute of Advanced Computer Science Research & Education

Component Connectors

- Component = Unit of computation
- Connector = Unit of interaction

Reo, some connectors

Reo, connector composition

Automata Models for Component Connectors

8 May 2009

Overview

Past [2002-2007]

Present [end 2008 - mid 2009]

Future [june 2009 -]

Slide 5

Automata Models for Component Connectors

8 May 2009

Timed Data Strings

- The mother of all Reo semantics
- Connectors are relations of streams of data flow and observation time at each port

Slide 6

Automata Models for Component Connectors

8 May 2009

TDS, some connectors

Sync $A \ge B^B$ $\Box A.\delta(0) = B.\delta(0)$ and $A.\tau(0) = B.\tau(0)$ $\Box A'$ Sync B'

Slide 7

Automata Models for Component Connectors

8 May 2009

Constraint Automata

Operational model to describe the behavior of Reo circuits

Slide 8

Automata Models for Component Connectors

8 May 2009

CA and TDS: where is the time?

CAs are acceptors of TDSs

- $\theta \in L(\mathcal{A},q)$ iff there exists $q \xrightarrow{N,g} q'$ such that
 - θ.ports(0) = N
 - θ .data(0) satisfies the data constraint g
 - $\theta' \in L(q')$

where θ .ports is the stream of sets of ports for which a data item is observed at same time.

Slide 9

CA acceptance

CA acceptance condition is implicitly fair
 (A or) B cannot occur eventually always

Slide 10

Automata Models for Component Connectors

8 May 2009

CA are fair, but not always ...

 There exists accepting TDS where A and B never occur together

Slide 11

Automata Models for Component Connectors

8 May 2009

Which TDS is accepted?

None, because

 $\Box A.\tau(1) > B.\tau(k)$, $\lim_{k \to \infty} B.\tau(k) = \infty$ and $A.\tau(k) < \infty$

Slide 12

Automata Models for Component Connectors

8 May 2009

Overview

Past [2002-2007]

Present [end 2008 - mid 2009]

Future [june 2009 -]

Slide 13

Automata Models for Component Connectors

8 May 2009

TDS vs streams of records

Forget time and use infinite sequences

Automata Models for Component Connectors

8 May 2009

Büchi automata

Extension of finite state automata

A Büchi automaton accepts an infinite sequence (stream) if there exists a run of the automaton which visits at least one of the final states infinitely often.

Slide 15

Büchi automata for Reo

If time in TDS is allowed to be ∞ then CA are essentially the same as BA with all states as final.

Slide 16

Automata Models for Component Connectors

8 May 2009

Fair connectors

Context dependencies

- The behaviour can change depending upon presence and absence of I/O requests
- CA cannot model absence of I/O requests, thus context dependencies are reduced to (fair?) choices
 - Lossy synch

Slide 18

8 May 2009

Guarded streams

- Stream of pairs <r,f> where
 - r is a valuation over the ports, i.e. the present and absent I/O requests

□ f is the set of firing ports

Slide 19

8 May 2009

Augmented Büchi Automata

States are labeled by preconditions that must hold before taking an outgoing transition

Composition

Similar to CA, but

Final states as for Buchi automata

States labeled by the conjunction of the component labels

Slide 21

Automata Models for Component Connectors

8 May 2009

Context propagation

Context propagation must be hard coded
 Synchronous channel

Slide 22

Automata Models for Component Connectors

8 May 2009

Model Checking

More expressive than data stream logic

On the fly model checking

Slide 23

Automata Models for Component Connectors

8 May 2009

Overview

Past [2002-2007]

Present [end 2008 - mid 2009]

Future [june 2009 -]

Slide 24

Automata Models for Component Connectors

8 May 2009

Reo automata

Transition system accepting guarded strings

such that

Slide 25

□ Observable = firing is not empty

□ Reactive = data flow only where requests are made

Uniform = removing unfired requests does not affect firing

Automata Models for Component Connectors

8 May 2009

Reo automata

Slide 26

Automata Models for Component Connectors

8 May 2009

Product

Composition of two disjoint automata making transitions firing in parallel

$p,q \xrightarrow{g \land g' > f \cup f'} p',q'$

and in interleaving when one is not able to fire

Here q[#] is the negation of all guards outgoing from q.

Slide 27

Automata Models for Component Connectors

8 May 2009

Synchronizing ports a and b

Sub-automaton keeping only transitions

$$g \{a,b\} > f \{a,b\}$$

where

both a and b are in firing set f (but are not alone)
neither a nor b are in firing set f

□ a or b are "present" in request g (self-pumping port)

Slide 28

8 May 2009

Slide 29

Automata Models for Component Connectors

8 May 2009

Properties

- Sync is identity (up to renaming)
- Product is associative and commutative
- Synchronization is commutative and distribute with product

Slide 30

8 May 2009

Final semantics

Deterministic Reo automata with final states are coalgebra

$$Q \rightarrow 2 \times (1+Q)^{At_{\Sigma} \times 2^{\Sigma}}$$

- Final coalgebra = non empty and prefix closed subsets of 2^{At}Σ^{x2^Σ}
- See tomorrow Alexandra's talk for specification language, synthesis, and equational logic.

Slide 31

Automata Models for Component Connectors

8 May 2009

Conclusions

- Constraint automata are fine but not with TDS semantics and not for context dependency.
- Buchi automata for Reo are good but somentimes not intuitive.
- Reo automata needs more investigation.

Slide 32

Automata Models for Component Connectors

8 May 2009

Shoot your questions ...

MOVIEWALLPAPERS.NET

8 May 2009