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Motivation

Deterministic automata (DA)
Widely used model in
Computer Science.
Acceptors of languages

Regular expressions
User-friendly alternative to DA
notation.
Many applications: pattern
matching (grep), specification
of circuits, . . .

Kleene’s Theorem
Let A ⊆ Σ∗. The following are equivalent.

1 A = L(A), for some finite automaton A.
2 A = L(r), for some regular expression r .
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Motivation

Can we fill the ? in the diagram?
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What do these things have in common?

(S, δ : S → 2× SA)

(S, δ : S → (B × S)A)

(S, δ : S → (1 + S)× A× (1 + S))
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Coalgebras

Polynomial coalgebras
Generalizations of deterministic automata
Polynomial coalgebras: set of states S and t : S → GS

G:: = Id | B | G ×G | G + G | GA

Examples

G = 2× IdA Deterministic automata
G = (B × Id)A Mealy machines
G = (1 + Id)× A× (1 + Id) Binary trees
. . .
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In a nutshell — beyond deterministic automata

Deterministic automata  G-coalgebras
Q → 2×QΣ Q → GQ

m m

Regular Expressions  G-expressions

m m

Formal Languages  Final coalgebra

Our contributions are:

A (syntactic) notion of G-expressions for polynomial coalgebras: each
expression will denote an element of the final coalgebra.

Equivalence between G-expressions and finite G-coalgebras
(analogously to Kleene’s theorem).
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G-expressions

E :: = ∅ | ε | E · E | E + E | E∗

EG :: = ?

How do we define EG?

Untyped 
expressions

G-typed 
expressions

Type system 
parametrized with G
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G-expressions

Exp 3 ε :: = ∅ | ε⊕ ε | µx .γ
| b B
| l〈ε〉 | r〈ε〉 G1 ×G2
| l[ε] | r [ε] G1 + G2
| a(ε) GA
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Examples

Deterministic automata expressions – G = 2× IdA

ε :: = ∅ | ε⊕ ε | µx .γ︸ ︷︷ ︸
G

|

l〈

1︸︷︷︸
2

〉

| l〈

0︸︷︷︸
2

〉

| r〈

a(ε)︸︷︷︸
IdA

〉

︸ ︷︷ ︸
×

Mealy expressions – G = (B × Id)A

ε :: = ∅ | ε⊕ ε | µx .γ | |

Binary tree expressions – G = (1 + Id)× A× (1 + Id)

ε :: = ∅ | ε⊕ ε | µx .γ | | | a | |
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Kleene’s theorem

The goal is:

G− expressions correspond to Finite G− coalgebras and vice-versa.
What does it mean correspond?

Final coalgebras exist for Kripke polynomial coalgebras.
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S
h //_____

α

��

ΩG

ωG

��

ExpG
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correspond ≡ mapped to the same element of the final coalgebra
≡ bisimilar
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A generalized Kleene theorem
G-coalgebras⇔ G-expressions

Theorem
1 Let (S,g) be a G-coalgebra. If S is finite then there exists for any

s ∈ S a G-expression εs such that εs ∼ s.
2 For all G-expressions ε, there exists a finite G-coalgebra (S,g)

such that ∃s∈S s ∼ ε.
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Proof by example I

s0 s1

1|0

0|0

0|1

1|1

x0 = 0(x0)⊕ 0↓0⊕ 1(x1)⊕ 1↓0
x1 = 0(x0)⊕ 0↓1⊕ 1(x1)⊕ 1↓1

Solve the system and take the least solution:

ε0 = µx0.0(x0)⊕ 0↓0⊕ 1(ε1)⊕ 1↓0
ε1 = µx1.0(x0)⊕ 0↓1⊕ 1(x1)⊕ 1↓1

ε0 ∼ s0 and ε1 ∼ s1
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Proof by example II

ε x ∈GExp

ε3

ε1
ε2

....

Repeat for new states

Apply (almost) λ 

Collect states

Alexandra Silva (CWI) A Kleene theorem for Polynomial coalgebras CIC’09 14 / 19



Proof by example II

ε = µx .r〈a(r〈b(x)〉)〉 ⊕ l〈1〉

ε
λa // 〈1, r〈b(ε)〉〉 λb // 〈1, ε〉

µx .r〈a(r〈b(x)〉)⊕ l〈1〉 r〈b(ε)〉

∅

a

b

b

a
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Proof by example II

ε = µx .r〈a(x ⊕ x)〉

ε
λ7−→ 〈0, ε⊕ε〉 λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)〉 λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)⊕(ε⊕ε)〉 . . .

We need ACI!

µx .r〈a(x ⊕ x)〉 a

Alexandra Silva (CWI) A Kleene theorem for Polynomial coalgebras CIC’09 16 / 19



Proof by example II

ε = µx .r〈a(x ⊕ x)〉

ε
λ7−→ 〈0, ε⊕ε〉

λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)〉 λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)⊕(ε⊕ε)〉 . . .

We need ACI!

µx .r〈a(x ⊕ x)〉 a

Alexandra Silva (CWI) A Kleene theorem for Polynomial coalgebras CIC’09 16 / 19



Proof by example II

ε = µx .r〈a(x ⊕ x)〉

ε
λ7−→ 〈0, ε⊕ε〉 λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)〉 λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)⊕(ε⊕ε)〉 . . .

We need ACI!

µx .r〈a(x ⊕ x)〉 a

Alexandra Silva (CWI) A Kleene theorem for Polynomial coalgebras CIC’09 16 / 19



Proof by example II

ε = µx .r〈a(x ⊕ x)〉

ε
λ7−→ 〈0, ε⊕ε〉 λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)〉 λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)⊕(ε⊕ε)〉 . . .

We need ACI!

µx .r〈a(x ⊕ x)〉 a

Alexandra Silva (CWI) A Kleene theorem for Polynomial coalgebras CIC’09 16 / 19



Proof by example II

ε = µx .r〈a(x ⊕ x)〉

ε
λ7−→ 〈0, ε⊕ε〉 λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)〉 λ7−→ 〈0, (ε⊕ε)⊕(ε⊕ε)⊕(ε⊕ε)〉 . . .

We need ACI!

µx .r〈a(x ⊕ x)〉 a

Alexandra Silva (CWI) A Kleene theorem for Polynomial coalgebras CIC’09 16 / 19



Conclusions and Future work

Conclusions
Language of regular expressions for Kripke polynomial coalgebras
Generalization of Kleene theorem and Kleene algebra

Future work
Enlarge the class of functors treated: add P, D, etc
Axiomatization of the language
Automation: Circ — Coinductive prover
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Axiomatization
ε1 ⊕ ε2 = ε2 ⊕ ε1
ε1 ⊕ (ε2 ⊕ ε3) = (ε1 ⊕ ε2)⊕ ε3
ε1 ⊕ ε1 = ε1
ε⊕ ∅ = ε

G

µx .γ = γ[µx .γ/x ]
γ[ε/x ] ≤ ε ⇒ µx .γ ≤ ε

}
FP

∅ = ⊥B
b1 ⊕ b2 = b1 ∨ b2

}
B

l(∅) = ∅
l(ε1)⊕ l(ε2) = l(ε1 ⊕ ε2)
r(∅) = ∅
r(ε1)⊕ r(ε2) = r(ε1 ⊕ ε2)

G1 ×G2

Similar for G1 + G2 and GA

Sound and complete w.r.t ∼
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Sound and complete w.r.t ∼
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Axiomatization – example

LTS expressions – G = 1 + (PId)A

ε :: = ∅ | ε⊕ ε | µx .γ |
√︸︷︷︸
l[∗]

| δ︸︷︷︸
r [∅]

| a.ε︸︷︷︸
r [a({ε})]

ε1 ⊕ ε2 = ε2 ⊕ ε1
ε1 ⊕ (ε2 ⊕ ε3) = (ε1 ⊕ ε2)⊕ ε3
ε1 ⊕ ε1 = ε1
ε⊕ ∅ = ε
ε⊕ δ = ε

µx .γ = γ[µx .γ/x ]
γ[ε/x ] ≤ ε ⇒ µx .γ ≤ ε

No rule
a.(ε1 ⊕ ε2) = a.ε1 ⊕ a.ε2
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