A Kleene theorem for Polynomial coalgebras

Marcello Bonsangue ${ }^{1,2}$ Jan Rutten ${ }^{1,3}$ Alexandra Silva ${ }^{1}$

${ }^{1}$ Centrum voor Wiskunde en Informatica
${ }^{2}$ LIACS - Leiden University
${ }^{3}$ Vrije Universiteit Amsterdam

CIC'09

Motivation

Deterministic automata (DA)

- Widely used model in

Computer Science.

- Acceptors of languages

Regular expressions

- User-friendly alternative to DA notation.
- Many applications: pattern matching (grep), specification of circuits, ...

Motivation

Regular expressions

Deterministic automata (DA)

- Widely used model in

Computer Science.

- Acceptors of languages

- User-friendly alternative to DA notation.
- Many applications: pattern matching (grep), specification of circuits, ...

Kleene's Theorem

Let $A \subseteq \Sigma^{*}$. The following are equivalent.
(1) $A=L(\mathcal{A})$, for some finite automaton \mathcal{A}.
(2) $A=L(r)$, for some regular expression r.

Motivation

Motivation

$\leadsto ? ?$

Motivation

$\xrightarrow[\sim]{\sim}$?
Can we fill the ? in the diagram?

What do these things have in common?

What do these things have in common?

$$
\left(S, \delta: S \rightarrow 2 \times S^{A}\right)
$$

What do these things have in common?

$$
\left(S, \delta: S \rightarrow 2 \times S^{A}\right)
$$

$$
\left(S, \delta: S \rightarrow(B \times S)^{A}\right)
$$

What do these things have in common?

$$
\left(S, \delta: S \rightarrow 2 \times S^{A}\right)
$$

$$
\left(S, \delta: S \rightarrow(B \times S)^{A}\right)
$$

$(S, \delta: S \rightarrow(1+S) \times A \times(1+S))$

What do these things have in common?

$$
\left(S, \delta: S \rightarrow 2 \times S^{A}\right)
$$

$$
\left(S, \delta: S \rightarrow(B \times S)^{A}\right)
$$

$(S, \delta: S \rightarrow(1+S) \times A \times(1+S))$

What do these things have in common?

$$
\left(S, \delta: S \rightarrow 2 \times S^{A}\right)
$$

$$
\left(S, \delta: S \rightarrow(B \times S)^{A}\right)
$$

$(S, \delta: S \rightarrow(1+S) \times A \times(1+S))$
$(S, \delta: S \rightarrow G S)$

What do these things have in common?

$$
\left(S, \delta: S \rightarrow 2 \times S^{A}\right)
$$

$\left(S, \delta: S \rightarrow(B \times S)^{A}\right)$

$(S, \delta: S \rightarrow(1+S) \times A \times(1+S))$
$(S, \delta: S \rightarrow G S)$ G-coalgebras

Coalgebras

Polynomial coalgebras

- Generalizations of deterministic automata
- Polynomial coalgebras: set of states S and $t: S \rightarrow G S$

$$
G::=|d| B|G \times G| G+G \mid G^{A}
$$

Examples

Deterministic automata
Mealv machines

$A \times(1+l d)$
Binary trees

Coalgebras

Polynomial coalgebras

- Generalizations of deterministic automata
- Polynomial coalgebras: set of states S and $t: S \rightarrow G S$

$$
G::=I d|B| G \times G|G+G| G^{A}
$$

Examples

- $G=2 \times I d^{A}$
- $G=(B \times I d)^{A}$
- $G=(1+I d) \times A \times(1+I d)$
- ...

Deterministic automata
Mealy machines
Binary trees

In a nutshell - beyond deterministic automata

Deterministic automata $\rightsquigarrow G$-coalgebras
$Q \rightarrow 2 \times Q^{\Sigma}$
$Q \rightarrow G Q$
\Uparrow
\Uparrow
Regular Expressions \rightsquigarrow G-expressions
\Uparrow
Formal Languages \rightsquigarrow Final coalgebra
Our contributions are:

- A (syntactic) notion of G-expressions for polynomial coalgebras: each expression will denote an element of the final coalgebra.
- Equivalence between G-expressions and finite G-coalgebras (analogously to Kleene's theorem).

In a nutshell - beyond deterministic automata

Deterministic automata $\rightsquigarrow \quad G$-coalgebras

$$
Q \rightarrow 2 \times Q^{\Sigma}
$$

$$
Q \rightarrow G Q
$$

\Uparrow	\Uparrow	
Regular Expressions	\rightsquigarrow	G-expressions
\Uparrow		\Uparrow
Formal Languages	\rightsquigarrow	Final coalgebra

Our contributions are:

- A (syntactic) notion of G-expressions for polynomial coalgebras: each expression will denote an element of the final coalgebra.
- Equivalence between G-expressions and finite G-coalgebras (analogously to Kleene's theorem).

G-expressions

$$
\begin{aligned}
& E::=\emptyset|\epsilon| E \cdot E|E+E| E^{*} \\
& E_{G}::=?
\end{aligned}
$$

G-expressions

$$
\begin{aligned}
& E \quad::=\emptyset|\epsilon| E \cdot E|E+E| E^{*} \\
& E_{G}::=?
\end{aligned}
$$

How do we define E_{G} ?

G-expressions

$$
\operatorname{Exp} \ni \varepsilon::=\emptyset|\varepsilon \oplus \varepsilon| \mu x . \gamma
$$

G-expressions

G-expressions

G-expressions

$$
\begin{array}{rlll}
\operatorname{Exp} \ni \varepsilon::=\emptyset \mid \varepsilon \oplus \varepsilon & \mid \mu x \cdot \gamma & \\
& \mid b & B \\
& |l\langle\varepsilon\rangle| r\langle\varepsilon\rangle & G_{1} \times G_{2} \\
& |I[\varepsilon]| r[\varepsilon] & G_{1}+G_{2}
\end{array}
$$

G-expressions

$$
\begin{array}{rlll}
\operatorname{Exp} \ni \varepsilon::=\emptyset \mid \varepsilon \oplus \varepsilon & \mid \mu x \cdot \gamma & \\
& \mid b & B \\
& |l\langle\varepsilon\rangle| r\langle\varepsilon\rangle & G_{1} \times G_{2} \\
& |I[\varepsilon]| r[\varepsilon] & G_{1}+G_{2} \\
& \mid a(\varepsilon) & G^{A}
\end{array}
$$

Examples

Deterministic automata expressions $-G=2 \times I d^{A}$

$$
\varepsilon \quad::=\underbrace{\emptyset|\varepsilon \bigoplus \varepsilon| \mu X \cdot \gamma \mid}_{G}
$$

Examples

Deterministic automata expressions - $G=2 \times I d^{A}$

$$
\varepsilon::=\underbrace{\emptyset|\varepsilon \oplus \varepsilon| \mu x . \gamma}_{G} \mid /\langle \rangle \underbrace{\mid r\langle \rangle}_{\times}
$$

Examples

Deterministic automata expressions $-G=2 \times I d^{A}$

$$
\varepsilon::=\underbrace{\emptyset|\varepsilon \oplus \varepsilon| \mu x . \gamma}_{G}|I\langle\underbrace{1}_{2}\rangle| I\langle\underbrace{0}_{2}\rangle \mid r\langle\underbrace{a(\varepsilon)}_{l d^{A}}\rangle
$$

Examples

Deterministic automata expressions - $G=2 \times I d^{A}$

$$
\varepsilon::=\underbrace{\emptyset|\varepsilon \oplus \varepsilon| \mu x \cdot \gamma}_{G} \mid\langle\underbrace{\langle\underbrace{1}_{2}\rangle|I\langle\underbrace{0}_{2}\rangle| r\langle\underbrace{a(\varepsilon)}_{l d^{A}}\rangle}_{\times}
$$

Mealy expressions - $G=(B \times I d)^{A}$

$$
\varepsilon::=\emptyset|\varepsilon \oplus \varepsilon| \mu x . \gamma|a \downarrow b| a(\varepsilon)
$$

Examples

Deterministic automata expressions $-G=2 \times I d^{A}$

$$
\varepsilon::=\underbrace{\emptyset|\varepsilon \oplus \varepsilon| \mu X . \gamma}_{G}|I\langle\underbrace{1}_{2}\rangle| I\langle\underbrace{0}_{2}\rangle \mid r\langle\underbrace{a(\varepsilon)}_{I d^{A}}\rangle
$$

Mealy expressions - $G=(B \times I d)^{A}$

$$
\varepsilon::=\emptyset|\varepsilon \oplus \varepsilon| \mu x \cdot \gamma|\underbrace{a \downarrow b}_{a(\langle\langle b\rangle)}| \underbrace{a(\varepsilon)}_{a(r\langle\varepsilon\rangle)}
$$

Examples

Deterministic automata expressions $-G=2 \times I d^{A}$

$$
\varepsilon::=\underbrace{\emptyset|\varepsilon \oplus \varepsilon| \mu x . \gamma}_{G} \mid\langle\langle\underbrace{\langle\underbrace{1}_{2}\rangle|I\langle\underbrace{0}_{2}\rangle| r\langle\underbrace{a(\varepsilon)}_{I d^{A}}\rangle}_{2}
$$

Mealy expressions - $G=(B \times I d)^{A}$

$$
\varepsilon::=\emptyset|\varepsilon \oplus \varepsilon| \mu X \cdot \gamma|\underbrace{a \downarrow b}_{a(l\langle b\rangle)}| \underbrace{a(\varepsilon)}_{a(r\langle\varepsilon\rangle)}
$$

Binary tree expressions $-G=(1+I d) \times A \times(1+I d)$

$$
\varepsilon::=\emptyset|\varepsilon \oplus \varepsilon| \mu X \cdot \gamma|\underbrace{I\langle r[\varepsilon]\rangle}_{I\langle\varepsilon\rangle}| \underbrace{I\langle I[*]\rangle}_{I \uparrow}|a| \underbrace{r\langle r[\varepsilon]\rangle}_{r\langle\varepsilon\rangle} \mid \underbrace{r\langle I[*]\rangle}_{r \uparrow}
$$

Kleene's theorem

The goal is:
G - expressions correspond to Finite G - coalgebras and vice-versa.
What does it mean correspond?

Final coalgebras exist for Kripke polynomial coalgebras.

Kleene's theorem

The goal is:
G - expressions correspond to Finite G - coalgebras and vice-versa. What does it mean correspond?

Final coalgebras exist for Kripke polynomial coalgebras.

$$
\begin{aligned}
& S--\stackrel{h}{-}->\Omega_{G}<-\stackrel{\mathbb{I} \cdot \mathbb{I}}{-}-\operatorname{Exp}_{G} \\
& \downarrow_{G S--\bar{G} h^{->}} \|_{\Omega_{G}}
\end{aligned}
$$

Kleene's theorem

The goal is:
G - expressions correspond to Finite G - coalgebras and vice-versa. What does it mean correspond?

Final coalgebras exist for Kripke polynomial coalgebras.

Kleene's theorem

The goal is:
G - expressions correspond to Finite G - coalgebras and vice-versa.
What does it mean correspond?

Final coalgebras exist for Kripke polynomial coalgebras.
$\begin{aligned} \text { correspond } & \equiv \text { mapped to the same element of the final coalgebra } \\ & \equiv \text { bisimilar }\end{aligned}$

A generalized Kleene theorem
 G-coalgebras $\Leftrightarrow G$-expressions

Theorem

(1) Let (S, g) be a G-coalgebra. If S is finite then there exists for any $s \in S$ a G-expression ε_{s} such that $\varepsilon_{s} \sim s$.
(2) For all G-expressions ε, there exists a finite G-coalgebra (S, g) such that $\exists_{s \in S} S \sim \varepsilon$.

Proof by example I

$$
\begin{aligned}
& x_{0}=0\left(x_{0}\right) \oplus 0 \downarrow 0 \oplus 1\left(x_{1}\right) \oplus 1 \downarrow 0 \\
& x_{1}=0\left(x_{0}\right) \oplus 0 \downarrow 1 \oplus 1\left(x_{1}\right) \oplus 1 \downarrow 1
\end{aligned}
$$

Solve the system and take the least solution:

$$
\begin{aligned}
& \varepsilon_{0}=\mu x_{0} \cdot 0\left(x_{0}\right) \oplus 0 \downarrow 0 \oplus 1\left(\varepsilon_{1}\right) \oplus 1 \downarrow 0 \\
& \varepsilon_{1}=\mu x_{1} \cdot 0\left(x_{0}\right) \oplus 0 \downarrow 1 \oplus 1\left(x_{1}\right) \oplus 1 \downarrow 1
\end{aligned}
$$

$$
\varepsilon_{0} \sim s_{0} \text { and } \varepsilon_{1} \sim s_{1}
$$

Proof by example I

$$
\begin{aligned}
& x_{0}=0\left(x_{0}\right) \oplus 0 \downarrow 0 \oplus 1\left(x_{1}\right) \oplus 1 \downarrow 0 \\
& x_{1}=0\left(x_{0}\right) \oplus 0 \downarrow 1 \oplus 1\left(x_{1}\right) \oplus 1 \downarrow 1
\end{aligned}
$$

Solve the system and take the least solution:

Proof by example I

$$
\begin{aligned}
& x_{0}=0\left(x_{0}\right) \oplus 0 \downarrow 0 \oplus 1\left(x_{1}\right) \oplus 1 \downarrow 0 \\
& x_{1}=0\left(x_{0}\right) \oplus 0 \downarrow 1 \oplus 1\left(x_{1}\right) \oplus 1 \downarrow 1
\end{aligned}
$$

Solve the system and take the least solution:

$$
\begin{gathered}
\varepsilon_{0}=\mu x_{0} .0\left(x_{0}\right) \oplus 0 \downarrow 0 \oplus 1\left(\varepsilon_{1}\right) \oplus 1 \downarrow 0 \\
\varepsilon_{1}=\mu x_{1} \cdot 0\left(x_{0}\right) \oplus 0 \downarrow 1 \oplus 1\left(x_{1}\right) \oplus 1 \downarrow 1 \\
\varepsilon_{0} \sim s_{0} \text { and } \varepsilon_{1} \sim s_{1}
\end{gathered}
$$

Proof by example II

Proof by example II

$$
\begin{gathered}
\varepsilon=\mu x . r\langle a(r\langle b(x)\rangle)\rangle \oplus I\langle 1\rangle \\
\varepsilon \xrightarrow{\lambda_{a}}\langle 1, r\langle b(\varepsilon)\rangle\rangle \xrightarrow{\lambda_{b}}\langle 1, \varepsilon\rangle
\end{gathered}
$$

Proof by example II

$$
\begin{aligned}
& \varepsilon=\mu x \cdot r\langle a(r\langle b(x)\rangle)\rangle \oplus I\langle 1\rangle
\end{aligned}
$$

Proof by example II

$$
\begin{aligned}
& \varepsilon=\mu x \cdot r\langle a(r\langle b(x)\rangle)\rangle \oplus I\langle 1\rangle
\end{aligned}
$$

Proof by example II

$$
\varepsilon=\mu x \cdot r\langle a(x \oplus x)\rangle
$$

Proof by example II

$$
\varepsilon=\mu x . r\langle a(x \oplus x)\rangle
$$

$\varepsilon \stackrel{\lambda}{\longmapsto}\langle 0, \varepsilon \oplus \varepsilon\rangle$

Proof by example II

$$
\begin{gathered}
\varepsilon=\mu x \cdot r\langle a(x \oplus x)\rangle \\
\varepsilon \stackrel{\lambda}{\longmapsto}\langle 0, \varepsilon \oplus \varepsilon\rangle \stackrel{\wedge}{\longmapsto}\langle 0,(\varepsilon \oplus \varepsilon) \oplus(\varepsilon \oplus \varepsilon)\rangle \stackrel{\lambda}{\longmapsto}\langle 0,(\varepsilon \oplus \varepsilon) \oplus(\varepsilon \oplus \varepsilon) \oplus(\varepsilon \oplus \varepsilon)\rangle \ldots
\end{gathered}
$$

Proof by example II

$$
\begin{gathered}
\varepsilon=\mu x . r\langle a(x \oplus x)\rangle \\
\varepsilon \stackrel{\lambda}{\longmapsto}\langle 0, \varepsilon \oplus \varepsilon\rangle \stackrel{\lambda}{\longmapsto}\langle 0,(\varepsilon \oplus \varepsilon) \oplus(\varepsilon \oplus \varepsilon)\rangle \stackrel{\lambda}{\longmapsto}\langle 0,(\varepsilon \oplus \varepsilon) \oplus(\varepsilon \oplus \varepsilon) \oplus(\varepsilon \oplus \varepsilon)\rangle \ldots
\end{gathered}
$$

We need ACI!

Proof by example II

$$
\begin{gathered}
\varepsilon=\mu x . r\langle a(x \oplus x)\rangle \\
\varepsilon \stackrel{\lambda}{\longmapsto}\langle 0, \varepsilon \oplus \varepsilon\rangle \stackrel{\lambda}{\longmapsto}\langle 0,(\varepsilon \oplus \varepsilon) \oplus(\varepsilon \oplus \varepsilon)\rangle \stackrel{\lambda}{\longmapsto}\langle 0,(\varepsilon \oplus \varepsilon) \oplus(\varepsilon \oplus \varepsilon) \oplus(\varepsilon \oplus \varepsilon)\rangle \ldots
\end{gathered}
$$

We need ACI!

Conclusions and Future work

Conclusions

- Language of regular expressions for Kripke polynomial coalgebras
- Generalization of Kleene theorem and Kleene algebra

Conclusions and Future work

Conclusions

- Language of regular expressions for Kripke polynomial coalgebras
- Generalization of Kleene theorem and Kleene algebra

Future work

- Enlarge the class of functors treated: add \mathcal{P}, \mathcal{D}, etc
- Axiomatization of the language
- Automation: Circ - Coinductive prover

Axiomatization

$\left.\begin{array}{ll}\varepsilon_{1} \oplus \varepsilon_{2} & =\varepsilon_{2} \oplus \varepsilon_{1} \\ \varepsilon_{1} \oplus\left(\varepsilon_{2} \oplus \varepsilon_{3}\right) & =\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \oplus \varepsilon_{3} \\ \varepsilon_{1} \oplus \varepsilon_{1} & =\varepsilon_{1} \\ \varepsilon \oplus \emptyset & =\varepsilon\end{array}\right\} G$

Sound and complete w.r.t ~

Similar for $G_{1}+G_{2}$ and G^{A}

Axiomatization

Similar for $G_{1}+G_{2}$ and G^{A}

Axiomatization

$$
\begin{aligned}
& \left.\begin{array}{ll}
\varepsilon_{1} \oplus \varepsilon_{2} & =\varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus\left(\varepsilon_{2} \oplus \varepsilon_{3}\right) & =\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & =\varepsilon_{1} \\
\varepsilon \oplus \emptyset & =\varepsilon
\end{array}\right\} G \\
& \left.\begin{array}{ll}
\mu x \cdot \gamma & =\gamma[\mu x \cdot \gamma / x] \\
\gamma[\varepsilon / x] \leq \varepsilon & \Rightarrow \mu X \cdot \gamma \leq \varepsilon
\end{array}\right\} F P \\
& \left.\begin{array}{ll}
\emptyset & =\perp_{B} \\
b_{1} \oplus b_{2} & =b_{1} \vee b_{2}
\end{array}\right\} B
\end{aligned}
$$

Similar for $G_{1}+G_{2}$ and G^{A}

Axiomatization

$$
\begin{array}{ll}
\varepsilon_{1} \oplus \varepsilon_{2} & =\varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus\left(\varepsilon_{2} \oplus \varepsilon_{3}\right) & =\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & =\varepsilon_{1} \\
\varepsilon \oplus \emptyset & =\varepsilon \\
\left.\begin{array}{ll}
\mu x \cdot \gamma & = \\
\left.\begin{array}{ll}
& \gamma[\mu x \cdot \gamma / x] \\
\gamma[\varepsilon / x] \leq \varepsilon & \Rightarrow \\
& \mu x \cdot \gamma \leq \varepsilon
\end{array}\right\} G \\
\emptyset & \perp_{B} \\
\emptyset \\
b_{1} \oplus b_{2}= & b_{1} \vee b_{2}
\end{array}\right\} B \\
\left.\begin{array}{ll}
I(\emptyset) & =\emptyset \\
I\left(\varepsilon_{1}\right) \oplus I\left(\varepsilon_{2}\right) & =I\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \\
r(\emptyset) & =\emptyset \\
r\left(\varepsilon_{1}\right) \oplus r\left(\varepsilon_{2}\right) & =r\left(\varepsilon_{1} \oplus \varepsilon_{2}\right)
\end{array}\right\} G_{1} \times G_{2}
\end{array}
$$

Axiomatization

$$
\begin{aligned}
& \left.\begin{array}{ll}
\varepsilon_{1} \oplus \varepsilon_{2} & =\varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus\left(\varepsilon_{2} \oplus \varepsilon_{3}\right) & =\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & =\varepsilon_{1} \\
\varepsilon \oplus \emptyset & =\varepsilon
\end{array}\right\} G \\
& \left.\begin{array}{ll}
\mu x \cdot \gamma & =\gamma[\mu x \cdot \gamma / x] \\
\gamma[\varepsilon / x] \leq \varepsilon & \Rightarrow \mu X \cdot \gamma \leq \varepsilon
\end{array}\right\} F P \\
& \left.\begin{array}{lll}
\emptyset & = & \perp_{B} \\
b_{1} \oplus b_{2} & = & b_{1} \vee b_{2}
\end{array}\right\} B \\
& \left.\begin{array}{ll}
I(\emptyset) & =\emptyset \\
I\left(\varepsilon_{1}\right) \oplus I\left(\varepsilon_{2}\right) & =I\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \\
r(\emptyset) & =\emptyset \\
r\left(\varepsilon_{1}\right) \oplus r\left(\varepsilon_{2}\right) & =r\left(\varepsilon_{1} \oplus \varepsilon_{2}\right)
\end{array}\right\} G_{1} \times G_{2}
\end{aligned}
$$

Similar for $G_{1}+G_{2}$ and G^{A}

Axiomatization

$$
\begin{array}{ll}
\left.\begin{array}{ll}
\varepsilon_{1} \oplus \varepsilon_{2} & =\varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus\left(\varepsilon_{2} \oplus \varepsilon_{3}\right) & =\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & =\varepsilon_{1} \\
\varepsilon \oplus \emptyset & =\varepsilon
\end{array}\right\} G \\
\left.\begin{array}{ll}
\mu x \cdot \gamma & =\gamma[\mu x \cdot \gamma / x] \\
\gamma[\varepsilon / x] \leq \varepsilon & \Rightarrow \\
\left.\begin{array}{ll}
& \mu x \cdot \gamma \leq \varepsilon
\end{array}\right\} F P \\
& =\perp_{B} \\
\emptyset & \\
b_{1} \oplus b_{2}= & b_{1} \vee b_{2}
\end{array}\right\} B \\
\left.\begin{array}{ll}
I(\emptyset) & \quad \text { Sound and complete w.r.t } \sim \\
I\left(\varepsilon_{1}\right) \oplus I\left(\varepsilon_{2}\right) & =I\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \\
r(\emptyset) & =\emptyset \\
r\left(\varepsilon_{1}\right) \oplus r\left(\varepsilon_{2}\right) & =r\left(\varepsilon_{1} \oplus \varepsilon_{2}\right)
\end{array}\right\} G_{1} \times G_{2} &
\end{array}
$$

Similar for $G_{1}+G_{2}$ and G^{A}

Axiomatization - example

LTS expressions $-G=1+(\mathcal{P} / d)^{A}$

$$
\varepsilon::=\emptyset|\varepsilon \oplus \varepsilon| \mu x \cdot \gamma|\underbrace{\sqrt{c}}_{[\nmid *]}| \underbrace{\delta}_{r[\emptyset]} \mid \underbrace{\text { a. } \varepsilon}_{r[a(\{\varepsilon\})]}
$$

$$
\begin{array}{ll}
\varepsilon_{1} \oplus \varepsilon_{2} & =\varepsilon_{2} \oplus \varepsilon_{1} \\
\varepsilon_{1} \oplus\left(\varepsilon_{2} \oplus \varepsilon_{3}\right) & =\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \oplus \varepsilon_{3} \\
\varepsilon_{1} \oplus \varepsilon_{1} & =\varepsilon_{1} \\
\varepsilon \oplus \emptyset & =\varepsilon \\
\varepsilon \oplus \delta & =\varepsilon \\
& \\
\mu X \cdot \gamma & \gamma[\mu X \cdot \gamma / X] \\
\gamma[\varepsilon / X] \leq \varepsilon \Rightarrow & \mu X \cdot \gamma \leq \varepsilon
\end{array}
$$

Axiomatization - example

LTS expressions $-G=1+(\mathcal{P} / d)^{A}$

$$
\varepsilon::=\emptyset|\varepsilon \oplus \varepsilon| \mu x \cdot \gamma|\underbrace{\vee}_{[\nmid *]}| \underbrace{\delta}_{r[\emptyset]} \mid \underbrace{a . \varepsilon}_{r a(\{\varepsilon\})]}
$$

$$
\begin{array}{lll}
\varepsilon_{1} \oplus \varepsilon_{2} & =\varepsilon_{2} \oplus \varepsilon_{1} & \\
\varepsilon_{1} \oplus\left(\varepsilon_{2} \oplus \varepsilon_{3}\right) & =\left(\varepsilon_{1} \oplus \varepsilon_{2}\right) \oplus \varepsilon_{3} & \\
\varepsilon_{1} \oplus \varepsilon_{1} & =\varepsilon_{1} & \text { No rule } \\
\varepsilon \oplus \emptyset & =\varepsilon & \text { a. }\left(\varepsilon_{1} \oplus \varepsilon_{2}\right)=a . \varepsilon_{1} \oplus a . \varepsilon_{2} \\
\varepsilon \oplus \delta & =\varepsilon & \\
& & \\
\mu X \cdot \gamma & =\gamma[\mu X \cdot \gamma / x] & \\
\gamma[\varepsilon / x] \leq \varepsilon \Rightarrow & \mu X \cdot \gamma \leq \varepsilon &
\end{array}
$$

