
1

 1

Observing Unit Test Maturity in the Wild

Ilja Heitlager, Tobias Kuipers, Joost Visser
Software Improvement Group, Amsterdam, The Netherlands

Presentation at the 13th Dutch Testing Day, hNovember 29, 2007.

Abstract
This talk provides an anecdotal account of unit testing maturity and its
evolution in Dutch IT organizations as we have observed it during the last
7 years in our IT consultancy practice.

During these years, we have performed independent Software Risk Assess-
ments on scores of mission-critical information systems, typically in the
domains of finance, government, and logistics. A wide variety of tech-
nologies were used to construct, and to test these systems.

Unit testing, specifically, was observed by us as an initially unknown phe-
nomenon, which has been met by all sorts of misunderstandings, but is
nonetheless gaining popularity.

Based on our observations, we distinguish 5 evolutionary stages. In con-
trast to the 5 maturity levels of the Testing Maturity Model (TMM, pre-
sented at the 12th Dutch Testing Day, 2006), these stages are not norma-
tive or prescriptive, but simply descriptive of actual practice in the Dutch
IT industry. Call our study unit testing phenomenology, if you will.

Stage 1: no unit testing

Not surprisingly, unit testing still does not enjoy widespread uptake. Many sys-
tems are devoid of unit tests. Some systems have unit testing only in name: a
unit testing framework is actually used as an instrument for functional or inte-
gration testing, or simply as a sandbox for experimental code.

In case of legacy systems built in technologies that predate the rise of unit test-
ing, the unavailability of a unit-testing framework may be a valid reason for not
doing unit tests. But what about the many C# and Java systems that we ob-
served in recent years for which no unit testing was employed?

Resistance to unit testing comes in many shapes and forms. Often, unit testing
is perceived as a cost factor only, while their benefits go unnoticed. “We had no
time to do unit testing”, “the client does not pay for it”, are among the reasons
we have heard. In other cases, the team simply missed unit-testing skills and
felt unable to retrofit unit tests to an existing system, or did not know how to
organize their code into testable units. Not to be discounted is the argument
never voiced explicitly, that unit tests improve maintainability, which cuts into
hours billable in future.

Stage 2: Unit tests, but no coverage measurement

Unit testing is increasingly adopted, but the accompanying best practice of
measuring unit test coverage lags behind. In these systems, a unit-testing in-
frastructure is in place, unit testing is encouraged or even demanded, but the
lack of coverage measurement means that there is no shared awareness of
how good the unit testing is.

2

 2

Stage 3: Coverage measurement, but not approaching 100%

Once coverage measurement is monitored, full coverage is generally not at-
tained easily. Code may need reorganization to be made testable, testing GUI
code remains out of reach, and advanced unit testing skills are lacking.

Stage 4: Approaching 100%, but no test quality measurement

Eager to close the gap and approach full coverage, some teams produce unit
tests of low quality. Testing large chunks of code at a time, or writing test code
without any assert statements are among the phenomena we observed. These
unit tests attain coverage, but miss some of the main benefits of true unit tests:
traceability of errors and documenting value.

Stage 5: Measuring test quality

To ensure that the drive for coverage does not hurt the quality of the unit tests,
the quality of tests must be made tangible. Several measures for unit test qual-
ity can be employed, such as the ratio between asserts in a test and the num-
ber or linear execution paths of the production code it covers. Or the number of
production statements covered by a single test. Systems in this evolutionary
stage, we must admit, have been rarely observed in the wild.

Short profile of the authors
Il ja Heitlager is responsible for Software Risk Assessment operations at the
Software Improvement Group (SIG).

Tobias Kuipers is co-founder and CTO of SIG. Tobias is co-designer of tools
and methods for software quality and risk assessments.

Joost Visser is R&D lead at the SIG, in charge of developing a new genera-
tion of tools and methods for software quality and risk assessment.

All three authors provide CIO-level management consulting for a large number
of public institutes and multi-national companies.

