
Type-safe Two-level Data Transformation

Alcino Cunha, José Nuno Oliveira, and Joost Visser

Departamento de Informática, Universidade do Minho
Campus de Gualtar, 4710-057 Braga, Portugal

Abstract. A two-level data transformation consists of a type-level transforma-
tion of a data format coupled with value-level transformations of data instances
corresponding to that format. Examples of two-level data transformations include
XML schema evolution coupled with document migration, and data mappings
used for interoperability and persistence.
We provide a formal treatment of two-level data transformations that is type-
safe in the sense that the well-formedness of the value-level transformations with
respect to the type-level transformation is guarded by a strong type system. We
rely on various techniques for generic functional programming to implement the
formalization in Haskell.
The formalization addresses various two-level transformation scenarios, covering
fully automated as well as user-driven transformations, and allowing transforma-
tions that are information-preserving or not. In each case, two-level transforma-
tions are disciplined by one-step transformation rules and type-level transforma-
tions induce value-level transformations. We demonstrate an example hierarchical-
relational mapping and subsequent migration of relational data induced by hier-
archical format evolution.
Keywords: Two-level transformation, Program calculation, Refinement calculus,
Strategic term rewriting, Generalized abstract datatypes, Generic programming,
Coupled transformation, Format evolution, Data mappings.

1 Introduction

Changes in data types call for corresponding changes in data values. For instance,
when a database schema is adapted in the context of system maintenance, the persistent
data residing in the system’s database needs to be migrated to conform to the adapted
schema. Or, when the grammar of a programming language is modified, the source code
of existing applications and libraries written in that language must be upgraded to the
new language version. These scenarios are examples of format evolution [12] where a
data structure and corresponding data instances are transformed in small, infrequent,
steps, interactively driven during system maintenance.

Similar coupled transformation of data types and corresponding data instances are
involved in data mappings [13]. Such mappings generally occur on the boundaries be-
tween programming paradigms, where for example object models, relational schemas,
and XML schemas need to be mapped onto each other for purposes of interoperabil-
ity or persistence. Data mappings tend not to be evolutionary, but rather involve fully
automatic translation of entire data structures, carried out during system operation.

Both format evolution and data mappings are instances of what we call two-level
transformations, where a type-level transformation (of the data type) determines or con-
strains value-level transformations (of the data instances).

When developing a two-level data transformation system, a challenge arises regard-
ing the degree of type-safety that can be achieved. Two approaches to deal with this
challenge are common: (i) define a universal representation in which any data can be
encoded, or (ii) merge the input, output, and intermediate types into a single union type.
Transformation steps can then be implemented as type-preserving transformations on
either the universal representation or the union type. The first approach is simple, but
practically abandons all typing. The second approach maintains a certain degree of
typing at the cost of the effort of defining the union type. In either case, defensive
programming and extensive testing are required to ensure that the transformation is
well-behaved.

In this paper, we show how two-level data transformation systems can be devel-
oped in a type-safe manner. In this approach, value-level transformations are statically
checked to be well-typed with respect to the type-level transformations to which they
are associated, and well-typed composition of type-level transformation steps induces
well-typed compositions of value-level transformation steps. Unlike the mentioned ap-
proaches, our solution does not compromise precise typing of intermediate values.

In Section 2 we present a formalization of two-level transformations based on a the-
ory of data refinement. Apart from some general laws for any transformation system,
we present two groups of laws that cater for data mapping and format evolution scenar-
ios, respectively. In Section 3, we implement our formalization in the functional pro-
gramming language Haskell. We rely on various techniques for data-generic functional
programming with strong mathematical foundations. In Section 4 we return to the data
mapping and format evolution scenarios and demonstrate them by example. Section 5
discusses related work, and Section 6 discusses future extensions and applications.

2 Data refinement calculus

The theory which underlies our approach to two-level transformations finds its roots
in a data refinement calculus which originated in [17, 19, 20]. This calculus has been
applied to relational database design [21] reverse engineering of legacy databases [18].

Abstraction and representation Two-level transformation steps are modeled by in-
equations between datatypes and accompanying functions of the following form:

A

to

''
6 B

from

gg

Here, the inequation A 6 B models a type-level transformation where datatype A gets
transformed into datatype B, and abbreviates the fact that there is an injective, total
relation to (the representation relation) and a surjective, possibly partial function from
(the abstraction relation) such that from · to = idA, where idA is the identity function
on datatype A. Though in general to can be a relation, it is usually a function as well,

and functions to and from model the value-level transformations that accompany the
type-level transformation.

Since the equality of two relations is a bi-inclusion we have two readings of the
above equation: idA ⊆ from · to, which ensures that every inhabitant of datatype A has
a representation in datatype B; and from · to ⊆ idA, which prevents “confusion” in the
transformation process, in the sense that only one inhabitant of the datatype A will be
transformed to a given representative in datatype B.

In a situation where the abstraction is also a representation and vice-versa we have
an isomorphism A ∼= B, a special case of 6-law which works in both directions.

Thus, type-level transformations are not arbitrary. They arise from the existence
of value-level transformations whose properties preclude data mixup. When applied
left-to-right, an inequation A 6 B will preserve or enrich information content, while
applied in the right-to-left direction it will preserve or restrict information content.

Below we will present a series of general laws for composition of two-level trans-
formations that form a framework for any two-level transformation system. This frame-
work can be instantiated with sets of problem-specific two-level transformations steps
to obtain a two-level transformation system for a specific purpose. We will show sets of
rules for data mapping and for format evolution.

Sequential and structural composition laws Individual two-level transformation steps
can be chained by sequentially composing abstractions and representations:

if A

to

''
6 B

from

gg and B

to′

''
6 C

from′

gg then A

to′·to
''

6 C

from·from′

gg

Such transitivity, together with the fact that any datatype can be transformed to itself (re-
flexivity), witnessed by identity value-level transformations (from = to = id), means
that 6 is a preorder.

Two-level transformation steps can be applied, not only at the top-level of a datatype,
but also at deeper levels. Such transformations on locally nested datatypes must then be
propagated to the global datatype in which they are embedded. For example, a transfor-
mation on a local XML element must induce a transformation on the level of a complete
XML document. The following law captures such upward propagation:

if A

to

''
6 B

from

gg then F A

F to

((
6 F B

F from

hh (1)

Here F is a functor that models the context in which a transformation step is performed.
Recall that a functor F from categories C to D is a mapping that (i) associates to each
object X in C an object FX in D, and (ii) associates to each morphism f : X → Y
in C a morphism Ff : FX → FY in D such that identity morphisms and composition
of morphisms are preserved. When modeling two-level transformations, the objects X
and Y are data types, and the morphism f and g are value-level transformations.

Thus, a functor F captures (i) the embedding of local datatypes A or B inside global
datatypes, and (ii) the lifting of value-level transformations to and from on the local

datatypes to value-level transformations on the global datatypes, in a way such that
the preorder (transitivity and reflexivity) on local datatypes is preserved on the global
datatypes. Generally, a functor that mediates between a global datatype and a local
datatype is constructed from primitive functors, such as products A×B, sums A + B,
finite maps A ⇀ B, sequences A?, sets 2A, etc. By modeling the context of a local
datatype by a composition of such functors, the propagation of two-level transforma-
tions from local to global datatype can be derived.

Rules for data mapping and format evolution In [1] we presented a set of two-level
transformation rules that can be combined with the general laws presented above into
a calculator that automatically converts a hierarchic, possibly recursive data structure
to a flat, relational representation. These rules are summarized in Figure 1. They are
designed for step-wise elimination of sums, sets, optionals, lists, recursion, and such, in
favor of finite maps and products. When applied according to an appropriate strategy,
they will lead to a normal form that consists of a product of basic types and maps, which
is readily translatable to a relational database schema in SQL. There are rules for elim-
ination and distribution, and a particularly challenging rule for recursion elimination,
which introduces pointers in the locations of recursive occurrences.

While data mappings rely on a automatic and fully systematic strategy for apply-
ing individual transformation rules, format evolution assumes more surgical and adhoc
modifications. For instance, new requirements might call for the introduction of a new
data field, or for the possible omission of a previously mandatory field. Figure 2 shows
a set of two-level transformation rules that cater for these scenarios. These rules for-
malize co-evolution of XML documents and their DTDs as discussed by Lämmel et
al [12]. Note that the rule for adding a field assumes that a new value x for that field
is somehow supplied. This may be done through a generic default for type B, through
interaction with a user or some other oracle, or by querying another part of the data.

3 Two-level Transformations in Haskell

Our solution to modeling two-level data transformations in Haskell consists of four
components. Firstly, we will define a datatype to represent the types that are subject to
rewriting. Secondly, we will extend that datatype with a view constructor that can encap-
sulate the result of a type-level rewrite step together with the corresponding value-level
functions. Such encapsulation will allow type-changing rewrite steps to masquerade as
type-preserving ones. Thirdly, we define combinators that allow us to fuse local, single-
step transformations into a single global transformation. Finally, we provide functions
to release these transformations out of their type-preserving shell, thus obtaining the
corresponding type-changing, bi-directional data migration functions.

We will illustrate the Haskell encoding with this example transformation sequence:
(A + B)? 6 IN ⇀ (A + B) 6 (IN ⇀ A)× (IN ⇀ B)

This is a valid sequence according to rules (2) and (5) presented in Figure 1.

Elimination and introduction

A?

seq2index

))
6 IN ⇀ A

list

hh (2) 2A

set2fm

))
∼= A ⇀ 1

dom

hh (3)

A + 1

opt-intro
))

∼= 1 ⇀ A

opt-elim

ii (4)

Distribution

A ⇀ (B + C)

uncojoin

,,
6 (A ⇀ B)× (A ⇀ C)

cojoin

ll (5)

A× (B + C)

distr
++

∼= (A×B) + (A× C)

undistr

kk (6)

(B + C) ⇀ A

unpeither
,,

∼= (B ⇀ A)× (C ⇀ A)

peither

ll (7)

Split, join, recursion

A ⇀ (B × (C ⇀ D))

unnjoin
,,

6 (A ⇀ B)× (A× C ⇀ D)

njoin

ll (8)

µF

rec-elim
++

6 (K ⇀ F K)×K

rec-intro

ii (9)

Fig. 1. One-step rules for a two-level transformation system that maps hierarchic, recursive data
structures to flat relational mappings. Only the names of type-level functions are given. More
details can be found elsewhere [20, 21, 1].

Representation of types Assume that IN will be represented by Haskell type Int , A ⇀
B by the data type Map a b (finite maps from standard library module Data.Map),
and A + B by data Either a b = Left a | Right b. We would like now to define a
rewriting strategy that converts type [Either a b] to type (Map Int a,Map Int b),
building at the same time a function of type [Either a b]→ (Map Int a,Map Int b)
to perform the data migration.

Both type-level and value-level components of this transformation will be performed
on the Haskell term-level, and to this end we need to represent types by terms. Rather
than resorting to an untyped universal representation of types, we define the following
type-safe representation, adapted from [8]:

Enrichment and removal
add field

A

pairwith(b)

))
6 A×B

project

gg (10)

Generalization and restriction
add alternative

A

inject

))
6 A + B

uninject(a)

gg (11)

add optional

1

inject

))
6 1 + A

const1

gg (12)

allow empty list

A+

list2nelist

((
6 A∗

nelist2list

hh (13)

allow repetition

A + 1

opt2seq

((
6 A∗

seq2opt

ii (14)

allow non-empty repetition

A

singleton

((
6 A+

nehead

gg (15)

Fig. 2. One-step rules for a two-level transformation system for format evolution. These rules
formalize the discussion of XML format evolution of Lämmel et al [12].

.

data Type a where
Int :: Type Int
String :: Type String
One :: Type ()
List :: Type a → Type [a]
Set :: Type a → Type (Set a)
Map :: Type a → Type b → Type (Map a b)
Either :: Type a → Type b → Type (Either a b)
Prod :: Type a → Type b → Type (a, b)
Tag :: String → Type a → Type a

This definition ensures that Type a can only be inhabited by representations of type a .
For example, the pre-defined type Int of integers is represented by the data constructor
Int of type Type Int , and the type [Int] of lists of integers is represented by the value
List Int of type Type [Int]. The Tag constructor allows us to tag types with names.

The datatype Type is an example of a generalized algebraic data type (GADT) [22],
a recent Haskell extension that allows to assign more precise types to data constructors
by restricting the variables of the datatype in the constructors’ result types. Note also
that the argument a of the Type datatype is a so-called phantom type [7], since no value
of type a needs to be provided when building a value of type Type a . Using a phantom
type we can represent a type at the term level without building any term of that type.

Going back to our example, our intended transformation must convert type repre-
sentation List (Either a b) into Prod (Map Int a) (Map Int b).

Encapsulation of type-changing rewrites Whenever single-step rewrite rules are in-
tended to be applied repeatedly and at arbitrary depths inside terms, it is essential that
they are type-preserving [3, 16]. Otherwise, ill-typed terms would be created as inter-
mediate or even as final results. But two-level data transformations are type-changing
in general. To resolve this tension, type-changing transformations will masquerade as
type-preserving ones.

The solution for masquerading type-changing transformation steps as type-preserving
ones is simple, but ingenious. When rewriting a type representation, we do not replace
it, but augment it with the target type and with a pair of value-level functions that allow
conversion between values of the source and target type.

data Rep a b = Rep{to :: a → b, from :: b → a }
data View a where

View :: Rep a b → Type b → View (Type a)
showType :: View a → String

The View constructor expresses that a type a can be represented as a type b, denoted as
Rep a b, if there are functions to ::a → b and from ::b → a that allow data conversion
between one and the other. Note that only the source type a escapes from the View
constructor, while the target type b remains encapsulated — it is implicitly existentially
quantified1. The function showType just allows us to obtain a string representation of
the target type.

Now the type of type-preserving transformation steps is defined as follows2:
type Rule = ∀a.Type a → Maybe (View (Type a))

Note that the explicit quantification of the type variable a will allow us to apply the
same rewrite step of type Rule to various different subterms of a given type represen-
tation, e.g. to both Int and String in Prod Int String . Thus, when rewriting a type
representation we will not change its type, but just signal that it can also be viewed as a
different type.

We can now start encoding some transformation rules of our data refinement calcu-
lus. For instance, given value-level functions (see Figure 1):

list :: Map Int a → [a]
seq2index :: [a]→ Map Int a
uncojoin :: Map a (Either b c)→ (Map a b,Map a c)
cojoin :: (Map a b,Map a c)→ Map a (Either b c)

the rule (2) that convert a list into a map, and the rule (5) that converts a map of sums
into a pair of maps can be defined as follows:

listmap :: Rule
listmap (List a) = Just (View rep (Map Int a))

where rep = Rep{to = seq2index , from = list }
listmap = Nothing

1 View is somewhat similar to the folklore data Dynamic = ∀a.Dyn a (Type a), which
pairs a value of an existentially quantified type with its representation.

2 We model partiality with data Maybe a = Nothing | Just a .

mapsum :: Rule
mapsum (Map a (Either b c)) = Just (View rep (Prod (Map a b) (Map a c)))

where rep = Rep{to = uncojoin, from = cojoin }
mapsum = Nothing

The remaining rules of Figure 1 can be implemented in a similar way.
The only rule that poses a significant technical challenge is rule (9) for recursion

elimination. We will only present an outline of our solution (more details in [5]), which
uses the Haskell class mechanism and monadic programming. Firstly, we represent the
fixpoint operator µ as follows:

newtype Mu f = In{out :: f (Mu f)}
data Type a where

...
Mu :: Dist f ⇒ (∀a.Type a → Type (f a))→ Type (Mu f)

Here f is a functor3, and the class constraint Dist f expresses that we require functors
to commute with monads. Rule (9) can now be implemented:

type Table f = (Map Int (f Int), Int)
fixastable :: Rule
fixastable (Mu f) = Just (View rep (Prod (Map Int (f Int)) Int))

where rep = Rep{to = recelim, from = recintro}
fixastable = Nothing
recelim :: Dist f ⇒ Mu f → Table f
recintro :: Functor f ⇒ Table f → Mu f

Internally, recelim incrementally builds a table while traversing over a recursive data
instance. It uses monadic code to thread the growing table through the recursion pattern.

Strategy combinators for two-level transformation To build a full two-level trans-
formation system, we must be able to apply two-level transformation steps sequentially,
alternatively, repetitively, and at arbitrary levels inside type representations. For this we
introduce strategy combinators for two-level term rewriting. They are similar to strategy
combinators for ordinary single-level term rewriting [16], except that they simultane-
ously fuse the type-level steps and the value-level steps. As we will see, the joint effect
of two-level strategy combinators is to combine the view introduced locally by individ-
ual steps into a single view around the root of the representation of the target type.

Let us begin by supplying combinators for identity, sequential composition, and
structural composition of pairs of value-level functions:

idrep :: Rep a a
idrep = Rep{to = id , from = id }
comprep :: Rep a b → Rep b c → Rep a c
comprep f g = Rep{from = (from f).(from g), to = (to g).(to f)}
maprep :: Functor f ⇒ Rep a b → Rep (f a) (f b)
maprep r = Rep{to = fmap (to r), from = fmap (from r)}

3 Functors are instances of: class Functor f where fmap :: (a → b) → f a → f b.

Using these combinators for pairs of value-level functions, we can define the two-level
combinators. Sequential composition is defined as follows4:

(.) :: Rule → Rule → Rule
(f . g) a = do View r b ← f a

View s c ← g b
return (View (comprep r s) c)

We further define combinators for left-biased choice (f � g tries f , and if it fails, tries
g instead), a “do nothing” combinator, and repetitive application of a rule until it fails5:

(�) :: Rule → Rule → Rule
(f � g) x = f x ‘mplus‘ g x
nop :: Rule
nop x = Just (View idrep x)
many :: Rule → Rule
many r = (r . many r)� nop

These combinators suffice for combining transformations at a single level inside a term.
Two-level combinators that descend into terms are more challenging to define. They

rely on the functorial structure of type representations and use maprep defined above to
push pairs of value-level functions up through functors. An example is the once com-
binator that applies a given rule exactly once somewhere inside a type representation:

once :: Rule → Rule
once r Int = r Int
once r (List a) = r (List a) ‘mplus‘

(do View s b ← once r a
return (View (maprep s) (List b)))

...

Note that once performs a pre-order which stops as soon as its argument rule is applied
successfully. Other strategy combinators can be defined similarly.

It is now possible to combine individual two-level transformation rules into the
following rewrite system:

flatten :: Rule
flatten = many (once (listmap �mapsum � ...))

which can be successfully applied to our running example, as the following interaction
with the Haskell interpreter shows:

> flatten (List (Either Int Bool))
Just (View (Rep <to> <from>) (Prod (Map Int Int) (Map Int Bool)))

Note that the result shown by the interpreter is a String representation of a value of type
Maybe (View (Type (List (Either Int Bool)))). Placeholders <to> and <from>
are shown in place of function objects, which are not printable. Thus, the existentially
quantified result type of the transformation is not available statically, though its string
representation is available dynamically.

4 For composing partial functions we use the monadic do-notation, exploiting the fact that
Maybe is an instance of a Monad [23].

5 mplus :: Maybe a → Maybe a → Maybe a returns the first argument if it is constructed
with Just or the second argument otherwise.

Unleashing composed data migration functions So far, we have developed tech-
niques to implement rewrite strategies on types, building at the same time functions
for data migration between the original and the resulting type. Unfortunately, it is still
not possible to use such functions with the machinery developed so far. The problem
is that the target type is encapsulated as an existentially quantified type variable inside
the View constructor. This was necessary to make the type-changing transformation
masquerade as a type-preserving one.

We can access the hidden data migration functions in two ways. If we happen to
know what the target type is, we can simply take them out as follows:

forth :: View (Type a)→ Type b → a → Maybe b
forth (View rep tb′) tb a = do {Eq ← teq tb tb′; return (to rep a)}
back :: View (Type a)→ Type b → b → Maybe a
back (View rep tb′) tb b = do {Eq ← teq tb tb′; return (from rep b)}

Again, GADTs are of great help in defining a data type that provides evidence to the
type-checker that two types are equal (cf [22]):

data Equal a b where
Eq :: Equal a a

Notice that a value Eq of type Equal a b is a witness that types a and b are indeed
equal. A function that provides such a witness based on the structural equality of type
representations is then fairly easy to implement.

teq :: Type a → Type b → Maybe (Equal a b)
teq Int Int = return Eq
teq (List a) (List b) = do {Eq ← teq a b; return Eq }
...

In the format evolution scenario, where a transformation is specified manually at system
design or maintenance time, the static availability of the target type is realistic.

But in general, and in particular in the data mapping scenario, we should expect
the target type to be statically unknown, and only available dynamically. In that case
we can access the result type via a staged approach. In the first stage, we apply the
transformation to obtain its result type dynamically, using showType, in the form of its
string representation. In the second stage, that string representation is incorporated in
our source code, and gets parsed and compiled and becomes statically available after
all. Below, we will use such staging in Haskell interpreter sessions.

4 Application Scenarios

We demonstrate two-level transformations with two small, but representative examples.

Evolution of a music album format Suppose rudimentary music album information
is kept in XML files that conform to the following XML Schema fragment:
<element name="Album" type="AlbumType"/>
<complexType name="AlbumType">

<attribute name="ASIN" type="string"/>
<attribute name="Title" type="string"/>
<attribute name="Artist" type="string"/>

<attribute name="Format"><simpleType base="string">
<enumeration value="LP"/><enumeration value="CD"/>

</simpleType></attribute>
</complexType>

In a first evolution step, we want to allow an additional media type beyond CDs and
LPs, namely DVDs. In a second step, we want to add a list of track names to the format.

We can represent the album schema and an example album document as follows:
albumFormat = Tag "Album" (

Prod (Tag "ASIN" String) (
Prod (Tag "Title" String) (
Prod (Tag "Artist" String)

(Tag "Format" (Either (Tag "LP" One) (Tag "CD" One))))))
lp = ("B000002UB2", ("Abbey Road", ("The Beatles",Left ())))

With a generic show function gshow :: Type a → a → String , taking the format as
first argument, we can print the album with tag information included:

> putStrLn $ gshow albumFormat lp
Album = (ASIN = "B000002UB2", (Title = "Abbey Road", (

Artist = "The Beatles",Format = Left (LP = ()))))
This function also ensures us that lp is actually well-typed with respect to albumFormat.

To enable evolution, we define the following additional combinators for adding al-
ternatives, adding fields, and triggering rules inside tagged types:

addalt :: Type b → Rule
addalt b a = Just (View rep (Either a b))

where rep = Rep{to = Left , from = λ(Left x)→ x }
type Query b = ∀a.Type a → a → b
addfield :: Type b → Query b → Rule
addfield b f a = Just (View rep (Prod a b))

where rep = Rep{to = λy → (y , f a y), from = fst }
inside :: String → Rule → Rule
inside n r (Tag m a)
| n ≡ m = do {View r b ← r a; return (View r (Tag m b))}

inside = Nothing
Note that the addalt combinator inserts and removes Left constructors on the data level.
The addfield combinator takes as additional argument a query that gets applied to the
argument of to to come up with a value of type b, which gets inserted into the new field.

With these combinators in place, we can specify the desired evolution steps:
addDvd = once (inside "Format" (addalt (Tag "DVD" One)))
addTracks = once (inside "Album" (addfield (List (Tag "Title" String)) q))

where q :: Query [String]
q (Prod (Tag "ASIN" String)) (asin,) = ...
q = []

The query q uses the album identifier to lookup from another data source, e.g. via a
query over the internet6. Subsequently, we can run the type-level transformation, and
print the result type:

6 For such a side effect, an impure function is needed.

> let (Just vw) = (addTracks . addDvd) albumFormat
> showType vw
Tag "Album" (Prod (Prod (

Tag "ASIN" String) (Prod (
Tag "Title" String)(Prod (
Tag "Artist" String)(
Tag "Format" (Either (Either (

Tag "LP" One)(Tag "CD" One)) (Tag "DVD" One))))) (
List (Tag "Title" String))))

The value-level transformation is executed in forward direction as follows:
> let targetFormat = Tag "Album" (Prod (Prod (...
> let (Just targetAlbum) = forth vw targetFormat lp
> putStrLn $ gshow targetFormat targetAlbum
Album = ((ASIN = "B000002UB2", (Title = "Abbey Road", (

Artist = "The Beatles",Format = Left (Left (LP = ())))),
[Title = "Come Together", ...]))

In backward direction, we can recover the original LP:
> let (Just originalAlbum) = back vw targetFormat targetAlbum
> lp ≡ originalAlbum
True

Any attempt to execute the backward value-level transformation on a DVD, i.e. on an
album that uses a newly added alternative, will fail.

Mapping album data to relational tables We pursue our music album example to
demonstrate data mappings. In this case, we are interested in mapping the hierarchi-
cal album format, which models the XML schema, onto a flat schema, which could be
stored in a relational database. This data mapping is performed by the flatten trans-
formation defined above, but before applying it, we need to prepare the format in two
respects. Firstly, we want the enumeration type for formats to be stored as integers.
Secondly, we need to remove the tags from our datatype, since the flatten transfor-
mation assumes their absence. For brevity we omit the definitions of enum2int and
removetags; they are easy to define.

Our relational mapping for music albums is now defined and applied to both our
original and our evolved formats as follows:

> let toRDB = once enum2int . removetags . flatten
> let (Just vw0) = toRDB (List albumFormat)
> showType vw0
Map Int (Prod (Prod (Prod String String) String) Int)
> let (Just vw1) = toRDB (List targetFormat)
> showType vw1
Prod (Map Int (Prod (Prod (Prod String String) String) Int)) (

Map (Prod Int Int) String)
Note that we apply the transformations to the type of lists of albums – we want to store
a collection of them. The original format is mapped to a single table, which maps album
numbers to 4-tuples of ASIN, title, name, and an integer that represents the format. The

target format is mapped to two tables, where the extra table maps compound keys of
album and track numbers to track names.

Let’s store our first two albums in relational form:
> let dbs0 = Map Int (Prod (Prod (Prod String String) String) Int)
> let (Just db) = forth vw0 dbs0 [lp, cd]
> db
{0 := ((("B000002UB2","Abbey Road"),"The Beatles"), 0),
1 := ((("B000002HCO","Debut"),"Bjork"), 1)}

As expected, two records are produced with different keys. The last 1 indicates that the
second album is a CD.

The reverse value-level transformation restores flattened data to hierarchical form.
By composing the value-level transformations induced by data mappings with those
induced by format evolution, we can migrate from and old database to a new one7:

> let (Just lvw) = (addTracks . addDvd) (List albumFormat)
> let dbs1 = Prod (Map ...) (Map (Prod Int Int) String)
> let (Just x) = back vw0 dbs0 db
> let (Just y) = forth lvw (List targetFormat) x
> let (Just z) = forth vw1 dbs1 y
> z
({0 := ((("B000002UB2","Abbey Road"),"The Beatles"), 0),

1 := ((("B000002HCO","Debut"),"Bjork"), 1)},
{(0, 0) := "Come Together", ...})

In this simple example, the migration amounts to adding a single table with track names
retrieved from another data source, but in general, the induced value-level data trans-
formations can augment, reorganize, and discard relational data in customizable ways.

5 Related work

Software transformation Lämmel et al [12] propose a systematic approach to evo-
lution of XML-based formats, where DTDs are transformed in a well-defined, step-
wise fashion, and migration of corresponding documents can largely be induced from
the DTD-level transformations. They discuss properties of transformations and iden-
tify categories of transformation steps, such as renaming, introduction and elimination,
folding and unfolding, generalization and restriction, enrichment and removal, taking
into account many XML-specific issues, but they stop short of formalization and imple-
mentation of two-level transformations. In fact, they identify the following ‘challenge’:

“We have examined typeful functional XML transformation languages, term
rewriting systems, combinator libraries, and logic programming. However, the
coupled treatment of DTD transformations and induced XML transformations
in a typeful and generic manner, poses a challenge for formal reasoning, type
systems, and language design.”

7 Such compositions of to and from of different refinements are representation changers [9].

We have taken up this challenge by showing that formalization and implementation are
feasible. A fully worked out application of our approach in the XML domain can now
be attempted.

Lämmel et al [13] have identified data mappings as a challenging problem that
permeates software engineering practice, and data-processing application development
in particular. An overview is provided over examples of data mappings and of exist-
ing approaches in various paradigms and domains. Some key ingredients are described
for an emerging conceptual framework for mapping approaches, and ‘cross-paradigm
impedance mismatches’ are identified as important mapping challenges. According to
the authors, better understanding and mastery of mappings is crucial, and they iden-
tify the need for “general and scalable foundations” for mappings. Our formalization of
two-level data transformation provides such foundations.

Generic functional programming Type-safe combinators for strategic rewriting were
introduced by Lämmel et al in [16], after which several simplified and generalized ap-
proaches were proposed [15, 14, 8]. These approaches cover type-preserving transfor-
mations (input and output types are the same), and type-unifying ones (all input types
mapped to a single output type), but not type-changing ones.

Atanassow et al show how canonical isomorphisms (corresponding to laws for ze-
ros, units, and associativity) between types can induce the value-level conversion func-
tions [2]. They provide an encoding in the polytypic programming language Generic
Haskell involving a universal representation of types, and demonstrate how it can be
applied to mappings between XML Schema and Haskell datatypes. Recursive datatypes
are not addressed. Beyond canonical isomorphisms, a few limited forms of refinement
are also addressed, but these induce single-directional conversion functions only. A
fixed strategy for normalization of types is used to discover isomorphisms and gener-
ate their corresponding conversion functions. By contrast, our type-changing two-level
transformations encompass a larger class of isomorphism and refinements, and their
compositions are not fixed, but definable with two-level strategy combinators. This al-
lows us to address more scenarios such as format evolution, data cleansing, hierarchical-
relational mappings, and database re-engineering. We stay within Haskell rather than
resorting to Generic Haskell, and avoid the use of a universal representation.

Bi-directional programming Foster et al tackle the view-update problem for databases
with lenses: combinators for bi-directional programming [6]. Each lens connects a
concrete representation C with an abstract view A on it by means of two functions
get : C→A and put : A×C→C. Thus, get and put are similar to our from and to, ex-
cept for put’s additional argument of type C. Also, an additional law on these functions
guarantees that put can be used to reconstruct an updated C from an updated A.

On the level of problem statement, a basic difference exists between lenses and
two-level transformations (or data refinements). In refinement, a (previously unknown)
concrete representation is intended to be derived by calculation from an abstract one,
while lenses start from a concrete representation on which one or more abstract views
are then explicitly defined. This explains why some ingredients of our solution, such as
representation of types at the value level, statically unkown types, and combinators for
strategic rewriting, are absent in bi-directional programming.

6 Future work

We have provided a type-safe formalization of two-level data transformations, and we
have shown its implementation in Haskell, using various generic programming tech-
niques. We discuss some current limitations and future efforts to remove them.

Co-transformation Cleve et al use the term ‘co-transformation’ for the process of re-
engineering three kinds of artifacts simultaneously: a database schema, database con-
tents, and application programs linked to the database [4]. Currently, our approach for-
malizes the use of wrappers for this purpose, where the application program gets pre-
and post-fixed by induced value-level data migration functions. We intend to extend our
approach to formalize induction of actual application program transformations, without
resorting to wrappers.

Coupled transformations Lämmel [11, 10] identifies coupled transformation, where
‘nets’ of software artifacts are transformed simultaneously, as an important research
challenge. Format evolution, data-mapping, and co-transformations are instances where
two or three transformations are coupled. We believe that our formalization provides an
important step towards a better grasp of this challenge.

Bi-directional programming Among the outstanding problems in bi-directional pro-
gramming are decidable type checking and type inference, automatic optimization of
bi-directional programs, lens inference from given abstract and concrete formats, and
support for proving lens properties. We aim to leverage the techniques we used for
two-level transformations for these purposes.

Front-ends Work is underway to develop front-ends that convert between our type-
representations and formats such as XML Schemas, SQL database schemas, and nomi-
nal user-defined Haskell types.

Acknowledgments Thanks to Bruno Oliveira for inspiring discussions on GADTs. The
work reported in this paper was supported by Fundação para a Ciência e a Tecnologia,
grant number POSI/ICHS/44304/2002.

References

1. T.L. Alves, P.F. Silva, J. Visser, and J.N. Oliveira. Strategic term rewriting and its application
to a VDM-SL to SQL conversion. In J. Fitzgerald, IJ. Hayes, and A. Tarlecki, editors, Proc.
Int. Symposium of Formal Methods Europe, volume 3582 of LNCS, pages 399–414. Springer,
2005.

2. F. Atanassow and J. Jeuring. Inferring type isomorphisms generically. In D. Kozen, editor,
Proc. 7th Int. Conference on Mathematics of Program Construction, volume 3125 of LNCS,
pages 32–53. Springer, 2004.

3. M.v.d Brand, P. Klint, and J. Vinju. Term rewriting with type-safe traversal functions.
ENTCS, 70(6), 2002.

4. A. Cleve, J. Henrard, and J.-L. Hainaut. Co-transformations in information system reengi-
neering. ENTCS, 137(3):5–15, 2005.

5. A. Cunha, J.N. Oliveira, and J.Visser. Type-safe two-level data transformation – with dere-
cursivation and dynamic typing. Technical Report DI-PURe-06.03.01, Univ. Minho, 2006.

6. J.N. Foster et al. Combinators for bi-directional tree transformations: a linguistic approach to
the view update problem. In Proc. 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 233–246. ACM Press, 2005.

7. R. Hinze. Fun with phantom types. In J. Gibbons and O. de Moor, editors, The Fun of
Programming, pages 245–262. Palgrave, 2003.

8. R. Hinze, A. Löh, and B. Oliveira. ”Scrap your boilerplate” reloaded. In Proc. 8th Int.
Symposium on Functional and Logic Programming, volume 3945 of LNCS, pages 13–29.
Springer, 2006.

9. G. Hutton and E. Meijer. Back to Basics: Deriving Representation Changers Functionally.
Journal of Functional Programming, 6(1):181–188, January 1996.

10. R. Lämmel. Coupled Software Transformations (Extended Abstract). In First International
Workshop on Software Evolution Transformations, November 2004.

11. R. Lämmel. Transformations everywhere. Sci. Comput. Program., 52:1–8, 2004. Guest
editor’s introduction to special issue on program transformation.

12. R. Lämmel and W. Lohmann. Format Evolution. In Proc. 7th Int. Conf. on Reverse Engi-
neering for Information Systems, volume 155 of books@ocg.at, pages 113–134. OCG, 2001.

13. R. Lämmel and E. Meijer. Mappings make data processing go ’round. In R. Lämmel,
J. Saraiva, and J. Visser, editors, Proc. Int. Summer School on Generative and Transfor-
mational Techniques in Software Engineering, Braga, Portugal, July 4–8, 2005, LNCS.
Springer, 2006. To appear.

14. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern for generic
programming. In Proc. ACM SIGPLAN Workshop on Types in Language Design and Imple-
mentation, pages 26–37. ACM Press, March 2003.

15. R. Lämmel and J. Visser. Strategic polymorphism requires just two combinators! Techni-
cal Report cs.PL/0212048, arXiv, December 2002. An early version was published in the
informal preproceedings IFL 2002.

16. R. Lämmel and J. Visser. Typed combinators for generic traversal. In Proc. Practical As-
pects of Declarative Programming, volume 2257 of LNCS, pages 137–154. Springer, January
2002.

17. C. Morgan and P.H. B. Gardiner. Data refinement by calculation. Acta Informatica, 27:481–
503, 1990.

18. F.L. Neves, J.C. Silva, and J.N. Oliveira. Converting Informal Meta-data to VDM-SL: A
Reverse Calculation Approach . In VDM in Practice! A Workshop co-located with FM’99:
The World Congress on Formal Methods, Toulouse, France, September 1999.

19. J.N. Oliveira. A reification calculus for model-oriented software specification. Formal As-
pects of Computing, 2(1):1–23, April 1990.

20. J.N. Oliveira. Software reification using the SETS calculus. In T. Denvir, C.B. Jones, and
R.C. Shaw, editors, Proc. of the BCS FACS 5th Refinement Workshop, Theory and Practice
of Formal Software Development, pages 140–171. Springer, 1992.

21. J.N. Oliveira. Calculate databases with ‘simplicity’, September 2004. Presentation at the
IFIP WG 2.1 #59 Meeting, Nottingham, UK.

22. S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: type inference for generalised
algebraic data types. Technical Report MS-CIS-05-26, Univ. of Pennsylvania, July 2004.

23. P. Wadler. The essence of functional programming. In Proc. 19th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 1–14. ACM Press, 1992.

