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Abstract
Coupled transformations occur in software evolution when multiple artifacts must be mod-
ified in such a way that they remain consistent with each other. An important example
involves the coupled transformation of a data type, its instances, and the programs that
consume or produce it. Previously, we have provided a formal treatment of transformation
of the first two: data types and instances. The treatment involved the construction of type-
safe, type-changing strategic rewrite systems. In this paper, we extend our treatment to the
transformation of corresponding data processing programs.

The key insight underlying the extension is that both data migration functions and data
processors can be represented type-safely by a generalized abstract data type (GADT).
These representations are then subjected to program calculation rules, harnessed in type-
safe, type-preserving strategic rewrite systems. For ease of calculation, we use point-free
representations and corresponding calculation rules.

Thus, coupled transformations are carried out in two steps. First, a type-changing rewrite
system is applied to a source type to obtain a target type together with (representations of)
migration functions between source and target. Then, a type-preserving rewrite system
is applied to the composition of a migration function and a data processor on the source
(or target) type to obtain a data processor on the target (or source) type. All rewrites are
type-safe.

Key words: Program transformation, term rewriting, strategic
programming, generalized abstract datatypes, data refinement.

1 Introduction

Coupled transformations occur in software evolution when multiple artifacts must
be modified in such a way that they remain consistent with each other. Lämmel [14]
identified the category of coupled transformations and discussed their widespread
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A datatype
A′ transformed datatype
a,a′ instances of A and A′, resp.
p producer, generates data of type A
q query, consumes data of type A

T transformation of type A into type A′

to migration function of type A→ A′

from migration function of type A′ → A

p′ transformed producer
q′ transformed query

Fig. 1. Coupled transformation of data type A, data instance a, data producer p, and data
query q. The challenge is to calculate p′ and q′ by fusing the compositions to ◦ p and
q ◦ from such that they work on A′ directly rather than via A.

occurrence in problem domains such as cooperative editing, software modeling,
model transformation, and re-/reverse engineering.

A particularly challenging instance of coupled transformation involves the joint
transformation of a data type, its instances, and the programs that consume or pro-
duce it. In the context of software renovation, this problem occurs for example
when the schema of a database needs to be adapted. The adaptation of the database
schema must then be coupled with migration of the database instances and with
updates of the programs that connect to these database instances.

An important research challenge remains in providing a general and compre-
hensive conceptual framework for coupled transformations [15]. Previously, we
have taken first steps to providing such a framework. In particular, we have pro-
vided a formal treatment of two-level data transformations, i.e. coupled transforma-
tion of data types and instances [6]. In this paper, we extend our previous treatment
to include transformations of data processors.

A global overview of our perspective on the coupled transformation problem is
given in Figure 1. A type-level transformation T of a source type A into a target
type A′ is witnessed by associated instance migration functions to and from. In
Section 5 we recapitulate how such type-level and value-level transformations can
be coupled into a two-level data transformation system, modeled as a strongly-
typed, type-changing, strategic rewrite system.

The query q that consumes values of type A and the producer p that gener-
ates such values are examples of data processing programs. To obtain queries and
producers on the transformed type A′, we can simply compose q and p with the
migration functions from and to. This amounts to a wrapper approach to program
migration where the original type and the original processors are still explicitly
present. The challenge that we take up in the present paper is to calculate proces-
sors q′ and p′ from those wrapper compositions in such a way that they no longer
involve the original type and processors. In Section 4 we explain how such program
calculations can be harnessed in an additional type-preserving strategic rewrite sys-
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tem on type-safe representations of the functions (queries, producers, migrations)
involved. The key idea is to use fusion or deforestation techniques [24] in order to
eliminate the intermediate data type A.

In Section 2 we present a concrete example to motivate our approach to cou-
pled transformation. In Section 6 we show how the type-preserving rewrite system
for program calculation (Section 4), and the type-changing rewrite system for two-
level data transformation (Section 5) can be combined to perform coupled trans-
formations. Both rewrite systems employ a strongly-typed representation of types
at the value level, recapitulated in Section 3. Section 7 discusses related work and
Section 8 concludes.

2 Motivating example: query evolution

Suppose information about music albums is kept in XML files that conform to a
document schema captured by the following Haskell types:

type Albums = [Album ]
type Album = (ASIN , (Title,Artist))
type ASIN = String
type Title = String
type Artist = String

A query on this format would be a function such as the following:

getArtists :: Albums → [Artist ]
getArtists = List .map (snd ◦ snd)

And an instance of a music album collection would look as follows:

collection = [
("B000002UB2", ("Abbey Road","The Beatles")),
("B000002HCO", ("Debut","Bjork"))]

In a realistic situation, there would be many queries and producers on a given for-
mat, and large, possibly many instances.

Suppose that the album format is changed into a new format in two steps. First,
track information is added to each album. This involves introducing a new field,
which holds a nested list of track titles:

type Album ′ = (ASIN , (Title, (Artist ,Tracks)))
type Tracks = [Title ]

Subsequently, to store the album collection in a relational database, the format is
transformed into a map-based representation:

type DB = (Map Int Album,Map (Int , Int) Title)

The first map represents a table of albums. The second map is a table with com-
pound key that holds track titles.

The first step is an example of format evolution. The second is a hierarchical-
relational data mapping. Of course, these two transformation steps invalidate all
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existing data instances and processors.
In this paper, we will show that the existing data and queries can actually be

automatically migrated to the new format by a program transformation coupled
to the format transformation. For example, after the first step, the query can be
migrated to:

getArtists ′ = List .map (fst ◦ snd ◦ snd)

After the second step, the query is migrated to:

getArtistsDB = elems ◦Map.map (snd ◦ snd) ◦ fst

Here elems is a standard function on finite maps that returns the range of the map as
a list (in ascending order of the keys), and Map.map applies its argument function
to each range element. Note that the migrated queries do not involve the original
album type as intermediate format, and are not defined in terms of the original
query wrapped by a migration function.

3 Representation of types

In both rewrite systems that we will define, we need access to type-representations
on the value-level. The type-preserving rewrite system on point-free expressions
needs them for type-directed rewrite decisions, while the type-changing rewrite sys-
tem performs rewrites on types themselves. To ensure type-safety of both rewrite
systems, a universal representation of types does not suffice.

Using generalized algebraic data types (GADTs) [22], a recent extension to
the Haskell type system, it is possible to declare a parameterized data type Type a
whose inhabitants must be representations of type a [12]:

data Type a where
Int :: Type Int
String :: Type String
One :: Type ()
Either :: Type a → Type b → Type (Either a b)
Prod :: Type a → Type b → Type (a, b)
Func :: Type a → Type b → Type (a → b)
List :: Type a → Type [a ]
Map :: Type a → Type b → Type (Map a b)
Tag :: String → Type a → Type a

Notice that in this declaration the type a that parameterizes Type a is restricted dif-
ferently in each constructor. This is precisely the difference between a GADT and
a regular parameterized data type, where the parameter of the resulting type must
always be unrestricted. For example, the type constructor Int has type Type Int
but List Int has type Type [Int ]. Thus, the parameter a of the GADT Type a
allows us to carry around the necessary type-information to ensure type-safety.

Type a allows representation of some base types, sums, products, functions,
lists, and finite maps – sufficient for the purposes of this paper, but extensible to
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more types if needed. The Tag constructor allows us to tag types with names. For
example, the type representation for Albums can be defined as follows.

albums :: Type Albums
albums = List (Tag "Album" (Prod String (Prod String String)))

The use of the Tag will become clear later.
Given a ground type a it is possible to use the Haskell type system to infer

its representation. We define a class Typeable a with a single method typeof that
returns the representation:

class Typeable a where typeof :: Type a
instance Typeable Int where typeof = Int
instance Typeable a ⇒ Typeable [a ] where typeof = List typeof

Trivial instances of Typeable must be defined for the remaining types present in
Type. Now, the following interaction with the interpreter is possible:

> typeof :: Type [(Int ,Char)]
(List (Prod Int Char))

This relies on a straightforward instance of the class Show for Type a.

4 Point-free program calculus

In this section, we explain how type-safe, type-preserving strategic rewrite sys-
tems are defined to apply program calculation rules to migration functions and data
processors. In particular, we aim to apply fusion laws to simplify wrapped proces-
sors of original data into processors that work directly on new data, thus avoiding
to build intermediate data structures of the original types. If fusion is successful,
substantial gains of efficiency can be achieved.

Our functions will be represented using the so-called point-free style of pro-
gramming, in which functions are built from simpler ones using a small set of com-
binators and primitive functions, without mentioning their arguments explicitly. In
fact, the getArtists query was defined in this style. Point-free combinators satisfy
a powerful set of equational laws for reasoning about functional programs by cal-
culation [11], and due to the absence of variables and λ-abstractions, implementing
a rewrite system to automate such calculations is straightforward.

Point-free combinators and their laws The most fundamental combinators
of point-free programming are function composition and the identity function.

(· ◦ ·) : (b→ c)→ (a→ b)→ a→ c
(· ◦ ·) = λfgx. f (g x)

id : a→ a
id = λx. x

Together these combinators enjoy the following laws, which are so fundamental
that they are usually used implicitly during program calculations.

f ◦ (g ◦ h) = (f ◦ g) ◦ h Comp-Assoc
id ◦ f = f ◦ id = f Id-Nat

To handle products we have the split combinator (M), which pairs the results of
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applying two functions to the same value, and the projections:
(· M ·) : (a→ b)→ (a→ c)→ a→ (b× c)
(· M ·) = λfgx. (f x, g x)
fst : (a× b)→ a
fst = λ(x, y). x

snd : (a× b)→ b
snd = λ(x, y). y

Concerning these we have the following laws and a derived product combinator:

fst M snd = id Prod-Reflex
fst ◦ (f M g) = f ∧ snd ◦ (f M g) = g Prod-Cancel
(f M g) ◦ h = f ◦ h M g ◦ h Prod-Fusion
f × g = f ◦ fst M g ◦ snd Prod-Def

We also have the primitive function bang : a → 1 that given any value returns the
single inhabitant of type 1. It satisfies the following law.

f = bang iff f : a→ 1 Bang-Eta
Similar combinators and laws exist for sums and functions, but they are not used in
this paper. The combinators and laws for lists and maps will be presented later.

Type-safe representation of functions For type-safe representation of point-
free functions, we resort again to a GADT:

data PF f where
Id :: PF (a → a)
Comp :: Type b → PF (b → c)→ PF (a → b)→ PF (a → c)
Fst :: PF ((a, b)→ a)
Snd :: PF ((a, b)→ b)
· 4 · :: PF (a → b)→ PF (a → c)→ PF (a → (b, c))
· × · :: PF (a → b)→ PF (c → d)→ PF ((a, c)→ (b, d))
Bang :: PF (a → One)
Fun :: String → (a → b)→ PF (a → b)

An inhabitant of type PF (a → b) is a point-free representation of a function of
type a → b. The presence of the intermediate type representation in the composi-
tion constructor will be explained later. The Fun constructor allows us to include
pointwise functions in point-free expressions without being forced to convert them
into point-free shape; it can be used for functions over which no specific reasoning
is performed. By using a GADT to represent point-free expressions we gain type-
checking for free: it is not possible to write an impossible function like fst ◦ bang
or assigning an incorrect type to an expression.

This abstract syntax of pointfree expressions can be translated into concrete
functions by the following evaluation function:

eval :: PF a → a
eval Id = λx → x
eval (Comp f g) = λx → (eval f ) (eval g x )
eval Fst = λ(x , y)→ x
eval Snd = λ(x , y)→ y
eval (f4g) = λx → (eval f x , eval g x )
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eval (f × g) = λ(x , y)→ (eval f x , eval g y)
eval Bang = λ → ()
eval (Fun n f ) = f

For example:

> let assocr = (Comp (Prod Int String) Fst Fst)4(Snd × Id)
> eval assocr ((1,"foo"),True)
(1, ("foo",True))

Rewriting point-free expressions In order to simplify point-free expressions
we implemented a type-preserving strategic rewrite system, where rules as well as
strategies composed from them have the following type:

type Rule = ∀a . Type a → PF a → RewriteM (PF a)

Here, RewriteM is a monad. Thus, rewrite rules are basically monadic functions
on point-free representations, additionally parameterized with a type representa-
tion.

The RewriteM monad models partiality and is an instance of class MonadPlus:

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

A well-known instance of the MonadPlus class is the type data Maybe a =
Just a | Nothing . Our RewriteM monad extends this with the capability to
produce a proof trace during rewriting that includes intermediate results and names
of applied rules, but this is not relevant for the purposes of this paper.

The additional parameter of rules is used for type-directed rewriting. Type-
directed rewriting is essential, because some laws need type information: using
syntax alone is not possible to decide if the law can be applied. For example, the
Bang-Eta law states that any function of type a→ 1 can be transformed into bang
regardless of its definition. Consider also the Prod-Reflex law when used as an
expansion (from right to left). It cannot be applied to just any identity function but
only to those of type a × b → a × b. The use of such type-directed expansions is
becoming extremely relevant; they were fundamental, for example, in establishing
the decidability of equality in the simply typed λ-calculus [8,9].

As an example of encoding a type-directed rule, consider Bang-Eta (left to
right):

bang eta :: Rule
bang eta Bang = mzero
bang eta (Func One) = return Bang
bang eta = mzero

In order to avoid non-termination the rule fails (mzero) on Bang itself. Other
expressions of type a → () are rewritten to Bang . Otherwise the rule fails.

Type-directed rewriting does not require us to annotate all point-free combina-
tors with type representations. In most cases types of subexpressions can be derived
from those of the enclosing expressions. Unless a type variable appears existen-
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tially quantified in the type of a constructor, as is the case for Comp. This explains
why we must parameterize Comp with a representation of its intermediate type. As
a consequence, the user must reason explicitly about types when specifying rules
involving composition. An example is Comp-Assoc from left to right:

comp assocr :: Rule
comp assocr (Comp a (Comp b f g) h)

= return (Comp b f (Comp a g h))
comp assocr = mzero

Note how the new intermediate types are specified using the input ones.
Dealing with associativity of composition When implementing rewrite sys-

tems for point-free expressions special care must be taken about Comp-Assoc.
When calculating by hand, this rule is implicitly assumed by omitting parenthe-
ses around composition combinators. This strategy has been hard-wired into some
rewrite systems, such as Bird’s functional calculator [2], by using a composition
operator of variable arity and implementing a dedicated pattern matching mecha-
nism modulo Comp-Assoc.

We used a different approach. Before applying any rule concerning products
we apply comp assocr exhaustively in order to guarantee that all compositions are
associated to the right. Then some completion must be performed on the laws with
an outermost composition when the right parameter is not arbitrary. As example
consider the encoding of Prod-Cancel:

prod cancel :: Rule
prod cancel (Comp Fst (f4g)) = return f
prod cancel (Comp Snd (f4g)) = return g
prod cancel (Comp Fst (Comp a (f4g) h)) = return (Comp a f h)
prod cancel (Comp Snd (Comp a (f4g) h)) = return (Comp a g h)
prod cancel = mzero

The additional third and fourth equation allow application of this rule at any posi-
tion in a sequence of right-associated compositions.

Strategy combinators We define the typical strategic rewriting combinators:

nop :: Rule
nop t = return

(.) :: Rule → Rule → Rule
(f . g) t x = f t x >>= g t

(�) :: Rule → Rule → Rule
(f � g) t x = f t x ‘mplus ‘ g t x

many :: Rule → Rule
many r = (r . many r)� nop

many1 :: Rule → Rule
many1 r = r . many r

try :: Rule → Rule
try x = x � nop

The . combinator applies two rules in sequence (the second is only applied if the
first succeeds). � is a left-biased choice that tries to apply the first rule or, if it fails,
it tries the second. The many combinator repeatedly tries to apply a rule until it
fails. many1 is similar but must succeed at least once. try tries to apply a rule and
returns the original expression if it fails, and nop is a rule that always succeeds.

We also define standard traversal combinators, whose definitions we omit:
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once :: Rule → Rule everywhere :: Rule → Rule

These combinators take a single rule as argument and apply it once, resp. every-
where, during a top-down traversal of an expression.

Composing a rewrite system Equipped with basic rules and combinators, it is
possible to define rewrite systems, e.g. to simplify expressions involving products:

prods :: Rule
prods = many1 (many (once comp assocr) .

once (bang eta � prod cancel � prod reflex � ...))

Although simple, this handles an interesting and useful class of simplifications.
For convenience, we define a function to apply a rewrite system to a point-free

expression:

rewrite :: Typeable a ⇒ Rule → PF a → IO (PF a)

Internally, it handles deriving the type representation of the expression subject to
rewriting and the reporting of success and failure.

5 Two-level data transformation

The second component of our solution to coupled transformation are type-changing
rewrite systems that allow two-level data transformation. We rely on the rewrite
systems presented by us in previous work [6] with a single, essential modification:
instead of value-level transformations (or migration functions) themselves, we will
use their point-free representations, which can then subsequently be subjected to
the type-preserving rewrite system of the previous section.

Data refinement calculus Two-level transformation steps are modeled by in-
equations between datatypes and by accompanying functions of the following form:

A

to

''
6 B

from

ff

Here, the inequation A 6 B models a type-level transformation where datatype A
gets transformed into datatype B, and abbreviates the fact that there is an injective,
total relation to (the representation relation) and a surjective, possibly partial func-
tion from (the abstraction relation) such that from ◦ to = idA, where idA is the
identity function on datatype A. Though in general to can be a relation, it is usually
a function. Thus, type-level transformations arise from the existence of value-level
transformations to and from whose properties preclude data mixup. When applied
left-to-right, an inequation A 6 B will preserve or enrich information content,
while applied right-to-left it will preserve or restrict information content.

Encapsulation of type-changing rewrites The core of our solution to model-
ing two-level data transformations in Haskell are the following type declarations:

data Rep a b = Rep{to :: PF (a → b), from :: PF (b → a)}
data View a where View :: Rep a b → Type b → View (Type a)
type RULE = ∀a . Type a → Maybe (View (Type a))
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The View constructor expresses that a type a can be represented as a type b, if
there are (pointfree expressions of) functions to :: a → b and from :: b → a that
allow data conversion between one and the other. Note that only the source type
a escapes from the View constructor, while the target type b remains encapsulated
— it is implicitly existentially quantified. The RULE type expresses that, when
rewriting a type representation, we do not replace it, but augment it with the target
type and with a pair of value-level functions that allow conversion between the
source and target type.

Strategy combinators for two-level transformation As for type-preserving
strategic rewrite systems, we supply combinators for identity, sequential composi-
tion, left-biased choice, repetition, and structural composition of two-level trans-
formation rules:

nop :: RULE
nop x = Just (View (Rep Id Id) x )

(.) :: RULE → RULE → RULE
(f . g) a = do View (Rep t1 f1 ) b ← f a

View (Rep t2 f2 ) c ← g b
return (View (Rep (Comp b t2 t1 ) (Comp b f1 f2 )) c)

(�) :: RULE → RULE → RULE
many :: RULE → RULE
once :: RULE → RULE

For conciseness, we show definitions of the first two only. These combinators allow
us to combine local, single-step transformations into a single global transformation.

Sample two-level rewrite rules Depending on the scenarios to be addressed,
the strategy combinators above can be combined with different sets of single-step
rewrite rules to obtain appropriate rewrite systems. Elsewhere we provided sets of
rules for format evolution and for hierarchical-relational data mappings [6]. The
following format evolution rules are relevant for our example:

inside :: String → RULE → RULE
inside n r (Tag m a) | n ≡ m = do

View rep b ← r a
return (View rep (Tag m b))

inside = Nothing

type Query b = ∀a . Type a → PF (a → b)

addfield :: Type b → Query b → RULE
addfield b f a = Just (View (Rep (Id4(f a)) Fst) (Prod a b))

assocr :: RULE
assocr (Prod (Prod a b) c) = return $ View rep (Prod a (Prod b c))

where rep = Rep ((Comp (Prod a b) Fst Fst)4(Snd × Id))
((Id × Fst)4(Comp (Prod b c) Snd Snd))

assocr = mzero

The inside combinator applies its argument rule under a given tag. The addfield
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Fig. 2. The Albums format is mapped to a relational database both before and after an
evolution step that adds track information.

combinator adds a new field, whose value is obtained by querying existing data.
The assocr rule associates a nested product to the right. Below we will introduce
further rules where necessary.

Staged access to data migration functions The data migration functions en-
capsulated in a View can be accessed using a simple staged approach, for which
we can define the following two functions:

showType :: View (Type a)→ String
unView :: View (Type a)→ Type b → Maybe (PF (a → b),PF (b → a))

Note that the target type representation must be fed to unView , but in general this
type is only available dynamically, after computing it. Hence the staging. In the
first stage, we apply the transformation to obtain b dynamically, using showType, in
the form of its string representation. In the second stage, that string representation
is incorporated in our source code, and gets parsed and compiled and becomes
statically available after all. Below we will demonstrate the use of this staged
approach in interpreter sessions.

Note that this staged approach is not our only alternative for making use of the
dynamically computed result type and migration functions. Instead, we can make
judicious use of existential and universally quantified types to model dynamic types
and dynamically typed values and functions, in a type-safe way [1]. With these,
migration functions can be computed and used in a single stage.

6 Coupled transformation

Now we will demonstrate how the rewrite systems introduced in the previous sec-
tion allow us to address the motivating example of a coupled transformation de-
scribed in Section 2. An overview of transformations involved is show in Figure 2.

The album example involves lists and finite maps. We need to extend the type
of point-free expressions with primitive operations on these data types:

data PF a where
...
Listmap :: PF (a → b)→ PF ([a ]→ [b ])
Mapmap :: PF (b → c)→ PF (Map a b → Map a c)
Elems :: PF (Map a b → [b ])
Fromlist :: PF ([a ]→ Map Int a)
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Fromlist builds a map out of a list, by assigning ascending integer keys to its ele-
ments. We do not show the straightforward extension of eval for these primitives.
Of course these functions could be written in terms of more fundamental list and
map functions, such as folds, but that would unnecessarily complicate calculations.
Getting the right compromise between expressiveness and ease of calculation is one
of the most challenging tasks when choosing the set of primitives for a particular
application scenario.

Given these primitives, we can write the getArtists query in abstract syntax:

getArtists :: PF (Albums → [Artist ])
getArtists = Listmap (Comp typeof Snd Snd)

To allow simplification of function representations involving lists and maps, we
must also add new simplification rules to the point-free rewrite system. Some of
the relevant laws concerning these primitives are:

listmap f ◦ listmap g = listmap (f ◦ g) Listmap-Fusion
mapmap f ◦mapmap g = mapmap (f ◦ g) Mapmap-Fusion
listmap f ◦ elems = elems ◦mapmap f Elems-Map
elems ◦ fromlist = id Elems-Fromlist

The encoding of these laws as rewrite rules is straightforward. Listmap-Fusion,
for example, is encoded as follows (again assuming right-association of composi-
tions):

listmap fusion :: Rule
listmap fusion (Comp (List a) (Listmap f ) (Listmap g)) =

return (Listmap (Comp a f g))
listmap fusion (Comp (List a) (Listmap f ) (Comp b (Listmap g) h)) =

return (Comp b (Listmap (Comp a f g)) h)
listmap fusion = mzero

Together with prods these laws were incorporated in a rewrite system optimize that
simplifies point-free expressions involving products, lists and finite maps.

Using the combinators defined in the previous section we can define a rule
addTracks that evolves an Album by adding track information.

addTracks = once addInside . many (once assocr)
where addInside = inside "Album" (addfield (List String) getTracks)

getTracks :: Query [String ]
getTracks (Prod String )

= Comp String (Fun "graceNote" graceNote) Fst

Notice the use of inside to restrict the application of addfield to a type representa-
tion tagged with "Album". The graceNote function (whose definition is omitted)
uses the ASIN field to lookup track titles in some external data source such as the
internet. After the field addition, the assocr rule is applied exhaustively to bring
the resulting nested tuple into the desired right-associated form.

First transformation step With these definitions in place, we can perform mi-
gration of the query in accordance with the first transformation step, as show in the
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following interpreter interaction. First we apply addTracks to the type representa-
tion of albums to obtain the expected view:

> let Just vw1 = addTracks albums
> showType vw1
List (Tag "Album" (

Prod String (Prod String (Prod String (List String)))))

With the new type representation it is now possible to obtain the migration func-
tions, and build the new query by composing getArtists with from .

> let albums ′ = List (Tag "Album" (Prod ... (List String)))))
> let Just (to, from) = unView vw1 albums ′

> let getArtists ′ = Comp albums getArtists from
> getArtists ′

List .map (snd ◦ snd) ◦
List .map fst ◦
List .map ((id × fst)4(snd ◦ snd)) ◦
List .map (id × ((id × fst)4(snd ◦ snd))) ◦ id

In this composed query, we can recognize the original query (first line), the removal
of track information (second line), and the reversal of right-associating the nested
tuple (last two lines).

The simplification of this composed query uses Listmap-Fusion and various
laws on products to obtain:

> rewrite optimize getArtists ′

List .map (fst ◦ snd ◦ snd)

This simplified query directly selects the artist field from each album.
Second transformation step The second transformation step involves a strat-

egy called toDB for hierarchical-relational mapping [6]. One of its ingredient rules
relevant for this example refines lists to maps using the Fromlist function:

listmap :: Rule
listmap (List a) = Just (View (Rep Fromlist Elems) (Map Int a))
listmap = mzero

Following similar steps as above we first obtain the type representation of the
database refinement of Albums ′.

> let Just vw2 = toDB albums ′

> showType vw2
Prod (Map Int (Prod String (Prod String String)))

(Map (Prod Int Int) String)

The migration functions are then used to compose a new query (see Figure 2).

> let db ′ = Prod (Map Int ...) (Map (Prod Int Int) String)
> let Just (to2, from2) = unView vw2 db ′

> let getArtistsDB = Comp albums getArtists (Comp albums ′ from from2)
> getArtistsDB
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List .map (snd ◦ snd) ◦ List .map fst ◦ List .map ((id×fst)4(snd ◦ snd)) ◦
List .map (id × ((id×fst)4(snd ◦ snd))) ◦ id ◦ List .map id ◦ id ◦ elems ◦
Map.map (id × (id × (id × elems))) ◦ id ◦ id ◦
Map.map ((fst ◦ fst)4(snd × id)) ◦Map.map ((fst ◦ fst)4(snd × id)) ◦
id ◦ ljoin ◦ (id × njoin) ◦ id ◦ id ◦ id ◦ id ◦
(Map.map ((id × fst)4(snd ◦ snd))× id) ◦ id

Due to the complexity of the toDB strategy, this query is very long and inefficent.
It basically converts the two tables back into a list of albums (using some primitive
join operations on maps), and only then it applies the original query. However, after
simplification we get the expected result.

> rewrite optimize getArtistsDB
elems ◦Map.map (snd ◦ snd) ◦ fst

This optimized query ignores the second table, with track information, and obtains
the list of artists directly from the first table.

More transformations We have shown how our approach to coupled trans-
formations allows migration of queries on a datatype to queries on a refinement
of that datatype. But the rewrite systems that we introduced to support coupled
transformations allow us to address many other scenarios. To get a flavour of the
possibilities, consider a scenario where Albums is mapped to a relational database
both before and after the evolution step that adds track information (see Figure 2).

Remember that refinement steps are required to satisfy the equation from ◦to =
id . In many interesting cases, this law can automatically be proved by calculation
using our rewrite system. For example, to prove the correctness of the refinement
that tranforms Albums into DB ′ one must prove the following equality:

from ◦ from2 ◦ to2 ◦ to = id

Our rewrite system successfully manages to rewrite the left hand side of this equal-
ity into id , thus proving this equality.

The composition to2 ◦ to ◦ from1 migrates a database without track informa-
tion, holding a single table of albums, into a database which holds an additional
table with track information. If used as such, this migration function first converts
the original database into a list of albums, adds track information, and rebuilds the
database again with the additional table. This is extremely inefficient because in
the new database the first table is just a copy of the existing one. Only the second
table with the track information must be created from scratch. By automatic sim-
plification of this composition, a more direct migration can be computed, which
by-passes the intermediate list format:

(list2map ◦ elems)4
(unnjoin ◦ list2map ◦ elems ◦Map.map (list2map ◦ graceNote ◦ fst))

Note that this expression contains two occurrences of the expression list2map ◦
elems , that basically rebuilds a map by assigning fresh sequencial keys to its range
values. However, if the original database is obtained by migration of a list of albums
its keys must already be sequencial and this expression will not create a different
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map. In fact, each refinement induces the invariant to ◦ from = id on the target
type, assuming that its data results from migration of the original type. In the case
of the first table such invariant is precisely list2map ◦ elems = id , and thus the
above expression could be further simplified into the following expression.

id4(unnjoin ◦Map.map (list2map ◦ graceNote ◦ fst))

As expected, the database migration boils down to adding a new table (using func-
tion graceNote and a nested join operation on maps), and leaving the existing table
as it is. In essence, we have computed a database migration from the document
migration to.

7 Related work

Related work concerning coupled transformations that involve format and instance
transformation, but not program transformation, is provided in [6] and recapitulated
only briefly. We focus on related approaches that (also) take program transforma-
tion into account.

Two-level transformation Format evolution and data mappings are impor-
tant examples of coupled transformation of data format and instances, identified
by Lämmel et al [16,17]. Our approach to such two-level transformations ([6],
Section 5) is based on data refinement theory [20,21].

Co-transformation Cleve et al use the term ‘co-transformation’ for the pro-
cess of re-engineering three kinds of artifacts simultaneously: a database schema,
database contents, and application programs linked to the database [5,4]. Their ap-
proach involves generative and transformational techniques to transform data ma-
nipulation statements of legacy information systems, but is limited to information
preserving transformations on procedural statements (basically: insert, delete, up-
date). The approach abstracts over various languages (Cobol, Codasyl, Sql), but
falls short of formalization and generalization. Transformations are not reported to
involve fusion.

Program transformation in calculational form Several systems have been
developed for performing program transformation in calculational form using fu-
sion laws. Among these, MAG [19] and Yicho [13] are prominent, but both are
targeted towards Haskell programs written in the pointwise style. In order to cope
with fusion laws for generic recursion patterns both resort to advanced higher-order
matching algorithms. We do not need such techniques because our recursive func-
tions are limited to very specific patterns, such as maps, for which fusion is easier to
encode. A disadvantage of the MAG system is that it uses a fixed strategy to apply
the transformation rules, while Yicho provides some basic strategy combinators.

In previous work [7] the first author presented a rewriting system for simplify-
ing point-free expressions, which was used to optimize expressions resulting from
a program transformation tool that translates pointwise Haskell code into point-free
style. The main improvement of the system presented in Section 4 is typing: we
can now use type representations to guide the rewriting process and rewrite rules are
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guaranteed to be type-safe. In his introductory book to Haskell programming [2],
Bird presents a functional calculator that can also be used to simplify point-free
expressions. Unfortunately, the expressions are not typed and, likewise to MAG, it
uses a fixed rewriting strategy, which makes it difficult to apply in our scenario.

Alternatives to GADTs Our solution relies heavily on GADTs both for type
representations and for type-directed and type-safe point-free rewrite rules. Al-
though convenient, GADTs are not essential for these particular tasks. For exam-
ple, it is possible to encode type representations in Haskell using existential quan-
tification [1,3]. Type-directed rewrite rules could in principle be encoded also with
type-classes using the techniques described in [18]. It would be interesting to see
whether all ingredients of our solution to coupled rewriting could be realized with
similar elegance without resorting to GADTs.

8 Concluding remarks

We have shown that the combination of type-changing rewrite systems for two-
level transformation with type-directed, type-preserving rewrite systems for pro-
gram calculation can capture essential characteristics of coupled transformations.
Haskell’s type system, including GADTs, have been instrumental in operational-
izing such rewrite systems in an elegant and type-safe manner. This approach can
been seen as the beginnings of a conceptual framework for coupled transforma-
tions [14].

Benefits and limitations Our rewrite systems guarantee type-safety, but for
other important formal properties external proofs may be necessary. For instance,
the required properties of the to functions (total and injective) and from functions
(surjective), and their composition (from ◦ to = id ) must be respected when defin-
ing each type-changing rewrite rule, though proofs of instantiations of the latter
can be generated by our type-preserving rewrite system. Likewise, each type-
preserving rewrite rule on point-free expressions must be proven to be semantics
preserving. But, once the properties are proven for individual rules and proven to
be preserved by the basic combinators, any system composed from them inherits
those properties.

Termination and confluence are also for the responsibility of the programmer.
The strategy combinators of both rewrite systems give ample control over which
rules are applied, how often, where, and in what order, but reasoning about their
combined effect must be done externally.

The inclusion of pointwise functions via the Fun constructor must be done with
care, lest formal properties of rewrite systems are compromised. Inclusion of the
impure graceNote function, for example, can be done safely under the assumption
that multiple invocations will produce the same result and have the same termina-
tion behaviour. In general, impure functions will not satisfy such assumptions.

Future work As mentioned in Section 6, invariants can be calculated for types
targeted by refinement. We intend to explore extension of rule sets with these
invariants to drive normalization further. We believe that our techniques for coupled
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transformations can equally be beneficial in related areas such as bi-directional
programming with lenses [10]. In particular, we intend to design rewrite systems
for checking and inferring types of bi-directional programs, optimizing them and
proving their properties. To support migration of structure-shy queries, we would
like to extend our point-free expressions with generic programming primitives, and
to extend our type-preserving rewrite system with corresponding laws [23]. Work
is underway to apply our rewrite systems to XML and SQL systems.

Implementation All Haskell code shown is part of an implementation that
contains a wide range of rules and strategies for coupled transformation. The im-
plementation is available through the authors’ homepages under the name 2LT.
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J. Saraiva, and J. Visser, editors, Generative and Transformational Techniques in
Software Engineering, volume 4143 of LNCS, pages 165–214. Springer, 2006.
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