
Tutorial On
Strategic Programming Across Programming Paradigms1

Joost Visser João Saraiva
joost.visser@di.uminho.pt jas@di.uminho.pt

Department of Informatics
University of Minho

Portugal
http://www.di.uminho.pt/

1Partially funded by Fundação para a Ciência e Tecnologia, grants No. SFRH/BPD/11609/2002
and POSI/CHS/44304/2002.

Contents

1 Introduction 1
1.1 Topics and Schedule . 2
1.2 Curriculum Vitæ: Joost Visser . 4
1.3 Curriculum Vitæ: João Saraiva . 4

2 Motivation 5
2.1 What is Strategic Programming? . 5
2.2 What is Strategic Programming good for? 5
2.3 Examples from different paradigms. 5

3 Basic Concepts 18
3.1 Expressiveness . 18
3.2 Methodology . 20
3.3 Characteristics . 21
3.4 Algebra . 22
3.5 Compound combinators and libraries . 24

4 Incarnations across Paradigms 26
4.1 Term Rewriting . 26
4.2 Functional Programming . 27
4.3 Object-Oriented . 29

4.3.1 The architecture of JJTraveler . 30
4.3.2 A library of generic visitor combinators 32

4.4 Attribute Grammars . 33

5 Design Patterns and Programming Idioms 36
5.1 Traversal idioms . 36
5.2 Transformation idioms . 37
5.3 Variation points . 37
5.4 Object-oriented . 37
5.5 Functional . 38

i

6 Strategic Programming in the Large 39
6.1 Cobol reverse engineering . 39
6.2 Haskell refactoring . 40
6.3 XML querying . 40

Bibliography 41

A Strategic Programming in a Nutshell 46

ii

Chapter 1

Introduction

Strategic programming is a form of generic programming that combines the notions of
one-step traversal and dynamic nominal type case into a powerful combinatorial style
of traversal construction. Strategic programming allows novel forms of abstraction and
modularization that are useful for program construction in general. In particular when
large heterogeneous data structures are involved (e.g. in document and language process-
ing), strategic programming techniques enable a high level of conciseness, composability,
structure-shyness, and traversal control [Vis03b].

The basic concepts of strategic programming are independent of the programming
paradigm. The tutorial will include an explanation of these concepts in a language-
independent way. For various specific programming languages, incarnations of strategic
programming have been realized in various ways. The tutorial will cover incarnations in
several main paradigms, among which an object-oriented incarnation in Java [Vis01b], a
functional incarnation in Haskell [LV02b, LV03], and an attribute-grammar incarnation in
LRC [Sar99, KS98]. For each of these incarnations, the mapping of basic strategic pro-
gramming concepts to specific language constructs will be discussed, as well as a quick
start introduction to the supporting tools and libraries.

Since strategic programming enriches the programmer’s repertoire of abstraction and
modularization techniques, it has given rise to a body of programming experience. This
experience is laid down in design patterns and programming idioms that guide the program-
mer in his programmming activities [LV02a, Vis01a]. The tutorial includes a presentation
of these design patterns and idioms involving typical examples and sample code.

Strategic programming has been used in various non-trivial applications, including pro-
gram understanding tools, refactoring tools, and incremental document processors [DV02,
LV03, TR03, LRT03, SS03]. The tutorial will include a cursory treatment of the strategic
internals of one or more show-case applications. The design trade-offs and lessons-learned
from these applications will be shared with the participants. Also, these applications will
be used to demonstrate practical implications of strategic programming in the large.

Acknowledgements. We would like to thank Ralf Lämmel and Eelco Visser for the
collaboration they provided in research projects related to strategic programming.

1

1.1 Topics and Schedule

• Tutorial length: 3 hours

• Motivation (30 minutes)

– What is Strategic Programming?

– What is Strategic Programming good for?

– Series of motivating examples from different paradigms.

• Basic concepts of Strategic Programming (30 minutes)

– Expressiveness: one-layer traversal and dynamic type-case

– Methodology: brew your own in three steps

– Characteristics: an abstract definition of ‘strategies’

– Algebra: a set of basic strategy combinators

– Compound strategy combinators and growing combinator libraries

• Incarnations of Strategic Programming across paradigms (45 minutes)

– Term Rewriting (the Stratego system)

– Functional Programming (Haskell: the Strafunski library)

– Object-Oriented (Java: the JJTraveler library and JJForester generator)

– Attribute Grammars (Strategic LRC)

– Document Processing (XML: HaQuery)

• Design patterns and programming idioms (45 minutes)

– Traversal idioms: fix-points, propagation, accumulation, backtracking, ...

– Transformation idioms: cascading, staging, nesting, ...

– Variation points: completeness, order, cut-offs, ...

– Object-oriented: circularity, sharing, state, ...

– Functional: use of monads, meta-schemes, type guards, ...

• Strategic Programming in the large (30 minutes)

– General considerations.

– Ex : Cobol Reverse Engineering (developed at CWI - SIG)

– Ex : HaRe, A Haskell Refactoring Tool (developed at Kent University)

– Ex : HaQuery: A Query Language for XML (developed at Minho University)

2

Tutorial’s Organization: This tutorial covers all aspects of Strategic Programming:
fundamental concepts (paradigm-independent), incarnations in representatives of specific
programming paradigms (OOP, functional programming, term rewriting, attribute gram-
mars), common and best programming practices, and application in-the-large. At each
of these levels, explanations are tuned to helping participants get started with Strategic
Programming. Ample use will be made of examples. To gain deeper understanding of
particular issues, pointers will be given to background material (see also References).

Since no previous knowledge or experience with Strategic Programming is expected,
we start with introducing the concept, and providing motivation for it. In particular, we
will discuss the potential benefits that Strategic Programming offers in practical program-
ming projects. To appeal to programmers of all persuasions, motivating examples will be
presented from various programming paradigms.

The basic concepts of Strategic Programming will be discussed in a paradigm-independent
way. In particular, the concepts of one-layer traversal and dynamic type-case will be ex-
plained, as well as their interplay [LV02c, LP03]. A three-step methodology for creating
strategic programs will be presented. A small set of defining characteristics will be given
to delineate the concept of strategies in an abstract, i.e. paradigm-independent way. This
abstract definition will be made more concrete by discussing a strategic programming alge-
bra, i.e. a minimal set of strategic programming combinators and their properties. Finally,
we will explain by example how compound strategies can be composed from basic ones in
order to create libraries of reusable strategy combinators [SAS99].

In the second hour, specific incarnations of Strategic Programming in well-known
programming paradigms will be presented. Depending on the interest of the partici-
pants, some paradigms may be given more emphasis than others. A very elegant and
easy-to-grasp incarnation of Strategic Programming is the Stratego term-rewriting sys-
tem [Vis03a, VBT99]. A functional programming incarnation is available in the form of
the Strafunski bundle for generic functional programming [LV02b]. An object-oriented
incarnation is realized by the Java-based JJTraveler library, in combination with the JJ-
Forester visitor generator [KV01]. The embedding of strategies in the attribute grammar
formalism will be discussed and the strategic extension of the LRC attribute grammar
based system will be presented [KS98, Sar02]. Finally, we will discuss HaQuery, a DSL for
strategic processing of XML documents [SS03].

Since strategic programming enriches the programmer’s repertoire of abstraction and
modularization techniques, it has given rise to a body of programming experience. This
experience is laid down in design patterns and programming idioms that guide the pro-
grammer in his program construction activities. The tutorial includes a presentation of
these design patterns and idioms involving typical examples and sample code. These will
be taken from various programming paradigms, and may be tuned to the interests and
wishes of the participants of the tutorial. The objective is to bring the participants to a
point where they are ready to start programming strategically in their preferred languages.

Finally, we will discusse the use of strategic programming in the real world. We will
discuss several large projects in which essential use has been made of strategic program-
ming techniques. One of them is the developement of Cobol reverse engineering support

3

with object-oriented strategic programming techniques [DV02]. Another is the Haskell
refactoring tool, HaRe [TR03, LRT03], developed with functional strategic programming
techniques. Also, the application of strategic programming for XML document processing
will be explained, using the HaQuery language. For each of these applications we will point
out how strategic programming techniques have been deployed, why they were beneficial
for the success of the projects, and what strategic programming lessons were learned in
the course of them.

1.2 Curriculum Vitæ: Joost Visser

Joost Visser is a post-doctoral fellow at the University of Minho, Portugal. Strategic
Programming is one of his main research topics. Joost carried out his Ph.D. research at the
CWI in Amsterdam on the topic of generic traversal over typed source code representations.
He is co-designer and co-developer of Haskell-based and Java based tools for strategic
programming. As senior architect and consultant at the Software Improvement Group,
The Netherlands, he has experience with applying strategic programming techniques in
industrial settings, in particular for the tool-based analysis of large legacy software systems.

1.3 Curriculum Vitæ: João Saraiva

João Saraiva is an Auxiliar Professor of Computer Science at University of Minho. His
research is focused on programming language design and implementation, and functional
programming. João finished a Ph.D. program at Utrecht University, The Netherlands, in
December 1999 where he worked on purely functional implementation of attribute gram-
mars. During his Ph.D. and now as part of his academic activities (both research and
teaching) his work has been concerned with the Lrc system: a generator of purely func-
tional and incremental language-based tools.

4

Chapter 2

Motivation

Since no previous knowledge or experience with Strategic Programming is expected, we
start with introducing the concept, and providing motivation for it. In particular, we
will discuss the potential benefits that Strategic Programming offers in practical program-
ming projects. To appeal to programmers of all persuasions, motivating examples will be
presented from various programming paradigms.

2.1 What is Strategic Programming?

Strategic programming is a form of generic programming that combines the notions of
one-step traversal and dynamic nominal type case into a powerful combinatorial style of
traversal construction.

2.2 What is Strategic Programming good for?

Strategic programming allows novel forms of abstraction and modularization that are useful
for program construction in general. In particular when large heterogeneous data struc-
tures are involved (e.g. in document and language processing), strategic programming tech-
niques enable a high level of conciseness, composability, structure-shyness, and traversal
control [Vis03b].

2.3 Examples from different paradigms.

Let’s consider some examples of using a typeful programming approach to solve traversal
problems.

Suppose the source code representation at hand is the AST of a syntax definition
formalism, say EBNF, and among the operations we want to implement are (i) collecting
all non-terminals, and (ii) normalizing optional symbols (replace all regular expressions
of the form [R] with expressions of the form R|ε). Figure 2.1 shows an abstract syntax

5

Grammar := Grammar(NonTerminal ,Prod∗)
Prod := Prod(NonTerminal ,RegExp)
RegExp := T (Terminal)

| N (NonTerminal)
| Empty
| Star(RegExp)
| Plus(RegExp)
| Opt(RegExp)
| Seq(RegExp,RegExp)
| Alt(RegExp,RegExp)

Terminal and NonTerminal are the set of terminal symbols, and the set of non-terminal symbols.

Figure 2.1: Abstract syntax of EBNF.

Grammar : NonTerminal ∗ Prods → Grammar
ProdsNil : Prods
ProdsCons : Prod ∗ Prods → Prods
Prod : NonTerminal ∗ RegExp → Prod
T : Terminal → RegExp
N : NonTerminal → RegExp
Empty : RegExp
Star : RegExp → RegExp
Plus : RegExp → RegExp
Opt : RegExp → RegExp
Seq : RegExp ∗ RegExp → RegExp
Alt : RegExp ∗ RegExp → RegExp

Figure 2.2: First-order signature that represents the abstract syntax of EBNF.

for EBNF (in the form of a tree grammar) that consists of 5 sorts (node types) and 10
productions (node constructors). Let’s sketch the ‘text-book’ approach to solving these
problems in various strongly typed programming language paradigms.

Term rewriting

In term rewriting the abstract syntax of EBNF can be represented with a first-order signa-
ture, as shown in Figure 2.2. The main difference with the tree grammar of Figure 2.1 is
that the iteration of productions (Prod ∗) has been expanded into the sort Prods . Solutions
to our two example problems are shown in Figure 2.3. We will now explain these solutions.

To solve the collection problem (i) in a term rewriting system, we need to introduce
a new function symbol collS of type S → NonTermSet for each (non-lexical) sort S.
Here we assume that a sort NonTermSet for sets of non-terminals has been previously

6

Collection of non-terminals in ‘functional’ rewriting style:

collGrammar : Grammar → NonTermSet
collProds : Prods → NonTermSet
collProd : Prod → NonTermSet
collRegExp : RegExp → NonTermSet

collGrammar (Grammar(nt , ps)) ; {nt} ∪ collProds(ps)

collProds(ProdsNil) ; ∅
collProds(ProdsCons(p, ps)) ; collProd (p) ∪ collProds(ps)

collProd (Prod(nt , re)) ; {nt} ∪ collRegExp(re)

collRegExp(T (t)) ; ∅
collRegExp(N (nt)) ; {nt}
collRegExp(Empty) ; ∅
collRegExp(Star(re)) ; collRegExp(re)
collRegExp(Plus(re)) ; collRegExp(re)
collRegExp(Opt(re)) ; collRegExp(re)
collRegExp(Seq(re1 , re2)) ; collRegExp(re1) ∪ collRegExp(re2)
collRegExp(Alt(re1 , re2)) ; collRegExp(re1) ∪ collRegExp(re2)

Normalization of optionals in ‘pure’ rewriting style.

Opt(re) ; Alt(re,Empty)

Normalization of optionals in ‘functional’ rewriting style.

normGrammar : Grammar → Grammar
normProds : Prods → Prods
normProd : Prod → Prod
normRegExp : RegExp → RegExp

normGrammar (Grammar(nt , ps)) ; Grammar(nt ,normProds(ps))

normProds(ProdsNil) ; ProdsNil
normProds(ProdsCons(p, ps)) ; ProdsCons(normProd (p),normProds(ps))

normProd (Prod(nt , re)) ; Prod(nt ,normRegExp(re))

normRegExp(T (t)) ; T (t)
normRegExp(N (nt)) ; N (nt)
normRegExp(Empty) ; Empty
normRegExp(Star(re)) ; Star(normRegExp(re))
normRegExp(Plus(re)) ; Plus(normRegExp(re))
normRegExp(Opt(re)) ; Alt(normRegExp(re),Empty)
normRegExp(Seq(re1 , re2)) ; Seq(normRegExp(re1),normRegExp(re2))
normRegExp(Alt(re1 , re2)) ; Alt(normRegExp(re1),normRegExp(re2))

Figure 2.3: Implementations of EBNF operations in term rewriting.

7

defined together with appropriate operations on them. Furthermore, for all these additional
function symbols, a rewrite rule must be added for each production of the argument sort.
These rules perform recursive calls on all subterms except those of type NonTerminal . The
results of the recursive calls are concatenated with each other and with singleton sets that
contain the encountered non-terminals. This style of rewriting can be called the ‘functional
style’ in view of the pervasive use of additional function symbols.

To solve the normalization problem (ii), two alternative avenues can be taken. Firstly,
one can refrain from introducing additional function symbols and solve the problem in a
‘pure’ rewriting style. To this end, a single rewrite rule is added which simply rewrites
Opt(re) to Alt(re,Empty). This solution is very concise, but problematic when more
traversals need to be implemented in a single rewrite system. The lack of function symbols
results in a lack of control over the scheduling of traversals and to which subterms they are
applied. If, for instance, our application needs to return not only the normalized grammar,
but must also report which expressions have been eliminated, this is impossible, simply
because we can not prevent the eliminated expressions from being normalized as well. Also,
if we want to implement the introduction rule for optional expressions in the same system,
we will immediately obtain a non-terminating rewrite system.

The second avenue to solve the normalization problem is to again use the functional
style of rewriting. This time, function symbols normS : S → S are introduced for all
sorts S. For normN (Opt(re)), a rule is added that reduces to Alt(normN (re),Empty). For
all other productions, a rule is added that recursively calls the appropriate normalization
functions on all subterms, and reconstructs the term with the results as subterms. Here,
conciseness is lost, but traversal control is regained. For instance, traversal can be cut off
by omitting a recursive call, and traversals can be sequenced by applying functions in a
particular order.

Functional programming

In functional programming, the abstract syntax of EBNF would be represented by a set of
algebraic datatypes. This is shown in Figure 2.4. Both operations (i) and (ii) can then be
implemented in a fashion quite similar to the functional style of rewriting discussed above.
These are shown in Figure 2.5. Apart from syntax, the differences are minor and not
relevant for our particular problem (e.g. the iteration of productions Prod∗ is represented
by a list [Prod] which is processed with the polymorphic map function rather than by a
dedicated function; also, lists are used to represent sets of non-terminals).

In contrast to first-order term rewriting languages, functional programming languages
support parametric polymorphism and higher-order types. We can make use of these
features to implement our EBNF operations with generalized folds [MFP91]. We would
start by defining a function foldS for every datatype S, as shown in Figure 2.6. These
functions take as many arguments as there are data constructor functions in our set of
datatypes, i.e. as there are productions in the abstract grammar. These arguments can be
grouped into a fold algebra, which is modeled in Haskell by a record AlgEBNF . The type
of each argument (record member) reflects the type of the constructor function to which

8

data Grammar = Grammar NonTerminal [Prod]
data Prod = Prod NonTerminal RegExp
data RegExp = T Terminal

| N NonTerminal
| Empty
| Star RegExp
| Plus RegExp
| Opt RegExp
| Seq RegExp RegExp
| Alt RegExp RegExp

type Terminal = String
type NonTerminal = String

Figure 2.4: Haskell datatypes that represent the abstract syntax of EBNF.

it corresponds. For instance, the constructor Opt : RegExp → RegExp is represented by
an argument of type re → re, where re is a type variable that represents occurrences
of RegExp. Together, the fold functions capture the scheme of primitive recursion over
our set of datatypes. By supplying appropriate functions as arguments to the function
foldGrammar , the EBNF operations can be reconstructed, as shown in Figure 2.7. For
collection, these arguments are empty lists or repeated list concatenations for most cases,
and a singleton construction function for the argument that corresponds to NonTerminal .
For normalization, all arguments are instantiated to the constructor functions to which
they correspond, except for the argument corresponding to Opt , which is instantiated to
the function λre → Alt re Empty .

Thus, by using folds we are able to reuse the recursion scheme between various opera-
tions on the same source code representation, as long as they can be solved with primitive
recursion. Note that the use of (generalized) folds has been advocated mainly to facilitate
reasoning about programs and optimizing them on the basis of the mathematical proper-
ties of folds. The possibility of using them to improve reuse is largely unexplored (but see
[LVK00a]).

Object-oriented programming

In class-based object-oriented programming, the abstract syntax of EBNF can be repre-
sented with a class hierarchy, as shown in Figure 2.8. The most straightforward approach
to implementing operations (i) and (ii) is by adding corresponding methods to each of the
classes in the hierarchy. For each class C, the methods have signatures coll(Set) : void and
norm() : C . The bodies of these methods are implemented in a way quite similar to the
functional and rewriting implementations. They mostly make recursive method calls on
their components, and only the bodies of N .coll() and Opt .norm() implement ‘interest-
ing’ behavior. Figure 2.8 shows the implementation of these two methods in Java. Here,

9

Collection of non-terminals:

collGrammar :: Grammar → [NonTerminal]
collGrammar (Grammar nt ps) = [nt] ++ (concat (map collProd ps))
collProd :: Prod → [NonTerminal]
collProd (Prod nt re) = [nt] ++ (collRegExp re)
collRegExp :: RegExp → [NonTerminal]
collRegExp (T t) = []
collRegExp (N nt) = [nt]
collRegExp Empty = []
collRegExp (Star re) = collRegExp re
collRegExp (Plus re) = collRegExp re
collRegExp (Opt re) = collRegExp re
collRegExp (Seq re 1 re 2) = (collRegExp re 1) ++ (collRegExp re 2)
collRegExp (Alt re 1 re 2) = (collRegExp re 1) ++ (collRegExp re 2)

Normalization of optionals:

normGrammar :: Grammar → Grammar
normGrammar (Grammar nt ps) = Grammar nt (map normProd ps)
normProd :: Prod → Prod
normProd (Prod nt re) = Prod nt (normRegExp re)
normRegExp :: RegExp → RegExp
normRegExp (T t) = T t
normRegExp (N nt) = N nt
normRegExp Empty = Empty
normRegExp (Star re) = Star (normRegExp re)
normRegExp (Plus re) = Plus (normRegExp re)
normRegExp (Opt re) = Alt (normRegExp re) Empty
normRegExp (Seq re 1 re 2) = Seq (normRegExp re 1) (normRegExp re 2)
normRegExp (Alt re 1 re 2) = Alt (normRegExp re 1) (normRegExp re 2)

We use the following standard functions on lists for appending, mapping, and concatenation:

(++) :: [a] → [a] → [a]
map :: (a → b) → [a] → [b]
concat :: [[a]] → [a]

Figure 2.5: Haskell implementation of example problems.

10

Fold algebra for EBNF:

data AlgEBNF g ps p re
= AlgEBNF{grammar :: NonTerminal → ps → g ,

prodsnil :: ps,
prodscons :: p → ps → ps,
prod :: NonTerminal → re → p,
t :: Terminal → re,
n :: NonTerminal → re,
e :: re,
star :: re → re,
plus :: re → re,
opt :: re → re,
seq :: re → re → re,
alt :: re → re → re }

The fold algebra is modeled as a Haskell record with one member for each constuctor in the
EBNF abstract syntax. The types of these members are derived from the types of the con-
structors by replacing the constant types Grammar , [Prod], Prod , and RegExp that stand for
non-terminals by type variables g, ps, p, and re. The fold algebra is parameterized with these
variables.

Fold functions for EBNF:

foldGrammar :: AlgEBNF g ps p re → Grammar → g
foldGrammar a (Grammar nt ps) = grammar a nt (foldProds a ps)
foldProds :: AlgEBNF g ps p re → [Prod] → ps
foldProds a [] = prodsnil a
foldProds a (p : ps) = prodscons a (foldProd a p) (foldProds a ps)
foldProd :: AlgEBNF g ps p re → Prod → p
foldProd a (Prod nt re) = prod a nt (foldRegExp a re)
foldRegExp :: AlgEBNF g ps p re → RegExp → re
foldRegExp a (T x) = t a x
foldRegExp a (N x) = n a x
foldRegExp a Empty = e a
foldRegExp a (Star re) = star a (foldRegExp a re)
foldRegExp a (Plus re) = plus a (foldRegExp a re)
foldRegExp a (Opt re) = opt a (foldRegExp a re)
foldRegExp a (Seq re1 re2) = seq a (foldRegExp a re1) (foldRegExp a re2)
foldRegExp a (Alt re1 re2) = alt a (foldRegExp a re1) (foldRegExp a re2)

Each fold function replaces the application of a constructor C by the application of the corre-
sponding algebra member c to the recursive applications of the fold function to the arguments
of the constructor. The selection of member c from algebra a is written simply as c a.

Figure 2.6: Haskell implementation of the generalized fold for EBNF.

11

Collection of non-terminals:

coll :: Grammar → [NonTerminal]
coll = foldGrammar algcoll

algcoll :: AlgEBNF [NonTerminal] [NonTerminal] [NonTerminal] [NonTerminal]
algcoll = AlgEBNF{grammar = λnt ps → [nt] ++ ps,

prodsnil = [],
prodscons = λp ps → p ++ ps,
prod = λnt re → [nt] ++ re,
t = λt → [],
n = λnt → [nt],
e = [],
star = λre → re,
plus = λre → re,
opt = λre → re,
seq = λre1 re2 → re1 ++ re2 ,
alt = λre1 re2 → re1 ++ re2 }

Most algebra members are functions that return empty lists or concatenations of their argu-
ments. Arguments that represent non-terminals are placed in singleton lists.

Normalization of optionals:

norm :: Grammar → Grammar
norm = foldGrammar algnorm

algnorm :: AlgEBNF Grammar [Prod] Prod RegExp
algnorm = AlgEBNF{grammar = Grammar ,

prodsnil = [],
prodscons = (:),
prod = Prod ,
t = T ,
n = N ,
e = Empty ,
star = Star ,
plus = Plus,
opt = λre → Alt re Empty ,
seq = Seq ,
alt = Alt }

Most algebra members are the constructor functions to which they correspond. The member
opt is a function that returns a term constructed with Alt and Empty , instead of Opt .

Figure 2.7: Haskell implementation of example problems, using folds.

12

the parameter result is a reference to a Set of non-terminals. With the add method, the
nonterminal nt referred to by an object of type NonTerminal is added to this set.

Alternatively, one could implement the EBNF operations in accordance with the Visitor
design pattern [GHJV94]. This is illustrated in Figure 2.9. In this approach, an accept(Visitor)
method is added to every class in the hierarchy, where the interface Visitor contains a
method visitC (C) : A for each concrete class C with abstract superclass A. Here, we as-
sume returning visitors, i.e. visitors with visit methods that have their input type as result
type, instead of void . Now, operations on the hierarchy can be implemented by provid-
ing implementations of the Visitor interface. A common approach is to first implement
a default visitor that performs a top-down traversal over the object graph. Then, this
top-down visitor can be specialized to implement our example problems (i) and (ii) by
redefining the visitN and visitOpt methods, respectively. This is shown in the figure. In
the case of collection (i), an additional field result needs to be added to the specialization
of Visitor to hold the result of the collection, i.e. a set of NonTerminal objects. In case
of normalization (ii), the component re of the argument opt is selected and used in the
construction of a new Alt object.

The visitor approach is somewhat similar to the fold approach in functional program-
ming, in the sense that the recursion behavior is factored out and can be reused to imple-
ment a range of particular traversals.

norm()
coll()

norm()
coll()

norm()
coll()NonTerminal

Grammar RegExpProd
*

Hierarchy

de
f

coll()
norm()

coll()
norm()

coll()
norm()

nt

Terminal

Star

EmptyOpt

Plus

Alt

SeqN

norm()

T

coll()
norm()
coll()

norm()
coll()

norm()
coll()

norm()
coll()

class N extends RegExp {
...
void coll(Set results) {

results.add(nt);
}
...

}

class Opt extends RegExp {
...
RegExp norm() {
return new Alt(re.norm(),

new Empty());
}
...

}

Figure 2.8: UML diagram of the class hierarchy for the EBNF syntax. The Java imple-
mentation of the methods coll() and norm() are shown only for the ‘interesting’ cases.

13

Hierarchy

Interfaces

TopDownProd RegExp

Operations

Visitable

RegExp visitOpt(Opt opt) {

Coll

accept(Visitor)

Set result = new Set();
void visitN(N n) {
 result.add(n.nt());

. . .

visitA
visitRegExp

 return new N(n.nt()); }

Norm

 (RegExp) opt.re().accept(this),
 new Empty()); }

 return new Alt(

Visitor

class N extends RegExp implements Visitable {
...
Visitable accept(Visitor v) {
return v.visitN(this); }

...
}

class Opt extends RegExp implements Visitable {
...
Visitable accept(Visitor v) {
return v.visitOpt(this); }

...
}

class TopDown extends Visitor {
...
public RegExp visitN(N n) {
return new N(n.nt()); }

...
public RegExp visitOpt(Opt opt) {
return new Opt((RegExp) opt.re().accept(this)); }

...
public RegExp visitAlt(Alt alt) {
return new Alt((RegExp) alt.re1().accept(this),

(RegExp) alt.re2().accept(this)); }
}

Figure 2.9: Implementation of the example problems, using the Visitor pattern. The code
excerpts show the implementation of the Visitable interface by the concrete classes N and
Opt, as well as fragments of the default TopDown visitor. The UML diagram shows the
specific visitors required to solve the example problems.

14

Lack of genericity in traditional typeful approaches

Thus, in each of the sketched typeful approaches to our little EBNF example problems, we
observe that traversal of the AST is dealt with in a non-generic manner. The traversal be-
havior is implemented separately for each specific node type, where access to and iteration
over the immediate subtrees is dealt with in a type-specific way.

Though we have intentionally constructed our examples to bear out the consequences
of a typeful approach to traversal, the situation is not atypical. In traversal problems
where the proportion of ‘interesting’ nodes is larger, where the tree needs to be traversed
only partially, or in a different order, where traversals must be nested or sequenced, where
side-effects or environment propagation are needed, or where other considerations add to
the complexity, the bottom line remains: each type needs to be dealt with in a type-specific
way, regardless of the conceptual genericity of the required behavior.

Challenges

Given the scenarios sketched above, and the general assessment that adding types leads
to non-generic implementation of traversal behavior, we can now articulate a number of
concrete disadvantages of using a typeful approach to traversals. As this tutorial will make
clear, strategic programming techniques neutralize these disadvantages.

Conciseness

The most obvious casualty in our example scenarios is conciseness. Note that our example
traversal problems (i) and (ii) only require ‘interesting’ behavior for nodes of a single type.
For all the other nodes, only straightforward recursion behavior is needed. Though this
recursion behavior is conceptually the same for all types, it needs to be implemented over
and over again for each type. The reason is that when the data structure is heterogeneous,
access to and traversal over its subelement requires dealing with many specific types in
specific ways. None of the mentioned programming languages offers constructs or idioms to
perform such access and traversal in a generic manner. As a result, lengthy traversal code
is needed. As we will explain, strategic programming realizes conciseness also for typed
traversals, which significantly reduces the effort needed to develop and maintain traversal
implementations.

Composability

In all of the sketched approaches, composability of traversals is limited. Imagine, for
example, one would implement a traversal that collects all terminals, in addition to the
one that collects non-terminals. Could we compose the functionality of these two traversal
into a single traversal that collects both terminals and non-terminals? Another form of
desired composability would be to instantiate different traversal schemes with the same
node action. For instance, would it be possible to reuse the node action of non-terminal

15

collection for a traversal that selects a single non-terminal from the AST? None of the
sketched approaches allows such form of composition.

As we will show, strategic programming allows a high degree of composability where
new traversals can conveniently be composed by combining and refining given functionality
in a combinatorial style. This enables a high degree of reuse within applications.

Traversal control

In each of the sketched traversal approaches, the possibilities for control over the traversal
are unsatisfactory. By traversal control, we mean the ability to determine which parts of
the representation are visited in which order, and under which conditions.

In the functional style of rewriting, functional programming without folds, and object-
oriented programming without visitors, the traversal strategy is hard-wired into the traver-
sal itself. Traversal control can be implemented by adding parameters to the various func-
tions or methods that implement the traversal, but this requires entangling the control
mechanism with the basic functionality of the traversal throughout the code. In the fold
approach, the traversal scheme is fixed in the fold function. Control is absent. In the visitor
approach, the default visitor implements the basic traversal scenario. The visit method
redefinitions in subclasses of this default visitor have the responsibility of iterating over
the subelements of a type, and by changing the iteration behavior, some traversal control
can be exerted. Here, tangling is again an issue, and control can only be implemented per
node type.

Strategic programming offers powerful means of traversal control, where programmers
can concisely construct the traversal strategies that their applications require.

Robustness

The traversal approaches sketched above are fragile with respect to changes in the un-
derlying source code representation. If, for instance, a change would be needed to the
representation of iterated symbols, each of the solutions would break. This is especially
disappointing because the two example traversals include no ‘interesting’ behavior for it-
erated symbols. Ideally, their solutions would never break unless the representation is
changed of the types they are specifically intended to deal with: non-terminals, optional
symbols, alternatives and epsilon. In the functional rewriting style, the functional approach
without folds, and the object-oriented approach without visitors, the implementation of
every operation so far defined on the representation will need modification. In the fold
approach, the fold function would need to be modified, as well as all instantiations of it.
In the visitor approach, the situation is slightly better, since the default visitors must be
changed, but their specializations will keep working.

In Strategic Programming, typed traversals are defined in a (largely) generic fashion,
making them more robust against changes in source code representations. Furthermore,
the non-generic parts can be properly separated form the generic parts, making it possible

16

to reuse the latter across different source code representations. This opens the door to the
construction of libraries of reusable traversal components.

17

Chapter 3

Basic Concepts

The basic concepts of Strategic Programming will be discussed in a paradigm-independent
way. In particular, the concepts of one-layer traversal and dynamic type-case will be
explained, as well as their interplay [LV02c, LP03]. A three-step methodology for creating
strategic programs will be presented. A small set of defining characteristics will be given
to delineate the concept of strategies in an abstract, i.e. paradigm-independent way. This
abstract definition will be made more concrete by discussing a strategic programming
algebra, i.e. a minimal set of strategic programming combinators and their properties.
Finally, we will explain by example how compound strategies can be composed from basic
ones in order to create libraries of reusable strategy combinators [SAS99].

3.1 Expressiveness

The key insights underlying strategic programming are schematically represented in Fig-
ure 3.1. The first insight is that traversals can be decomposed into a traversal scheme,
which captures the traversal behaviour, and a number of basic actions, which capture the
functionality to be applied at various nodes. The second insight is that a traversal scheme
can further be decomposed into one-step traversal behaviour and recursion. Below we will
discuss both steps of the conceptual decomposition in more detail.

Traversal

Traversal

Traversal
Scheme

Basic
Action

RecursionOne−step

Figure 3.1: The conceptual decomposition underlying strategic programming.

18

Separating basic actions and traversal schemes

We will illustrate the separation of basic actions and traversals schemes by revisiting the
example (ii) of the previous chapter, of normalizing optionals in EBNF expressions. A a
tangled Haskell implementation of was shown in Figure 2.5.

In a first phase, we separate out the basic action for normalization, which takes the
form of a function normalizeStep that models a single rewrite step.

normalizeStep :: RegExp → Maybe RegExp
normalizeStep (Opt exp) = Just (Alt exp Epsilon)
normalizeStep = Nothing

Here, we use the Maybe type constructor in order to express whether any simplification
rule triggers or not, i.e. to model partiality of the rewrite rule. Note that this basic action,
or rewrite step, is specific to the abstract syntax of regular expressions, and that it does
not involve any recursion or traversal.

Thus, in functional programming, basic actions take the form of monomorphic non-
recursive functions. In other paradigms, candidates for basic actions are rewrite rules,
methods, horn-clauses, and such.

The second step is to select a traversal scheme to which we can feed our basic action
to obtain a traversal. In this simple example, we attempt a beginner’s favourite: full td
(read as full top-down):

normalize = full td (choice normalizeStep id)

The traversal schemes take care of iterating basic actions all over the tree. In this defi-
nition, full td performs a ‘full’ traversal in top-down fashion: it applies the basic action
to the current node, and then recursively applies itself to the child nodes. To succeed,
full td requires a basic action as argument that always succeeds. Hence, we combine the
basic action normalizeStep via the choice combinator with the identity id to recover from
potential failure of normalizeStep. In other words, if the rewrite rule fails, the node to
which it is applied will be preserved as-is.

The untangling of basic actions and traversal scheme allows the strategic programmer
to combine these building blocks in different ways, according to the specific needs of his
application.

Separating one-layer traversal and recursion

Apart from the example full td , many more traversal schemes can be imagined and found
useful. Rather than providing a finite collection of predefined traversal scheme’s, strate-
gic programming allows the composition of traversal schemes from more basic building
blocks. This is where the second key insight of strategic programming comes into play:
the separation of one-layer traversal from recursion.

The notion of ‘one-layer’ traversal presupposes that compound data (e.g. terms, objects,
document elements) can be decomposed into immediate subcomponents. In the form of

19

one-layer traversal combinators, strategic programming provides expressiveness for generic
access to the immediate components of heterogeneous data structures. Typical one-layer
traversal combinators are the following:1

all Apply an argument strategy to all immediate components while preserving the overall
shape of the datum.

one Apply an argument strategy to one ‘appropriate’ immediate sub component while
preserving the overall shape of the datum. Appropriateness can be based on the
success/failure behaviour of the argument strategy.

reduce Similar to all but the intermediate results of processing the immediate components
are reduced by a binary operation.

select Similar to one but the successfully processed immediate component is returned as
the result.

Thus, the one-layer traversal combinators only operate on the immediate subcomponents
of a given input datum.

By not anticipating any scheme of recursion, one-layer traversal can still be completed
into ‘deep’ traversal in different ways by plain recursion. Two specific one-layer combinators
and derived recursive completions are illustrated in Fig. 3.2.

Below we illustrate two one-layer traversal
combinators: all to process all immediate
components, and one to process the left-
most one for which the argument strategy
succeeds. (Shaded vs. black nodes repre-
sent failure vs. success of processing.)

Below we illustrate two recursive comple-
tions of the one-layer combinators. The
left one completes all into a full top-down
traversal (for short, full td). The right one
completes one into a single-hit bottom-up
traversal (for short, once bu).

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Figure 3.2: Strategic traversal with one-layer combinators

3.2 Methodology

The ‘strategic methodology’ can be summarised in the following 3 steps for the implemen-
tation of a piece of strategic traversal functionality:

1The names for these combinators differ in the SP literature. Here, we use the terms favoured in [Läm02].

20

1. definition of the problem-specific ingredients,

2. identification of a reusable traversal scheme, and

3. synthesis of the traversal by parameter passing.

Typically, a reusable traversal scheme is completely generic. Problem-specific actions are
anticipated via parameters. The problem-specific building blocks of a traversal are type-
specific actions or generic actions with type-specific branches. These actions are meant to
describe how data of ‘interesting’ types is processed when encountered in the course of the
traversal.

Thus, by virtue of the conceptual decomposition of Figure 3.1, strategic programming
allows the composition of problem-specific traversals from more basic building blocks, some
of which are problem-specific (the basic actions) and some of which are generic and reusable
(the traversal schemes). Furthermore, the stock of generic and reusable parts is inex-
haustible, because the are constructed by combining one-step traversal and recursion in
changing configurations.

3.3 Characteristics

Strategic programming is programming with the use of strategies. Depending on the
incarnation of strategic programming within a certain programming paradigm, strategies
correspond to programming concepts such as pure functions, impure functions, or objects;
and strategies may be statically typed or dynamically typed. We first provide an abstract
characterization of strategy that is not bound to any particular programming language or
paradigm, nor do we want to include unnecessary requirements.

Strategies are data-processing actions with the following characteristics:

Genericity Strategies are generic in the sense that they are applicable to data of any type
(say, sort, or class).

Specificity Though generic, strategies provide access to the actual data structures by
means of type-specific operations.

Compositionality Strategies are composed by putting together basic building blocks in
different constellations. There are means to express compound, conditional, and
iterated strategy application.

Traversal Strategies enable generic traversal into the immediate components of heteroge-
neous data structures.

Partiality The application of a strategy to a given datum may fail, and recovery from
failure is feasible.

First-class Strategies are first-class citizens in the sense that they can be named, can be
passed as arguments, etc.

21

We contend that the synergy of strategic programming is gone if any of these characteristics
is not present. The abstract characterization of strategy serves two purposes. Firstly, it
corresponds to a requirement specification for incarnating strategic programming in a given
programming language or paradigm. Secondly, it is a useful reference chart to assess other
generic programming approaches.

3.4 Algebra

We can make the strategy characterization significantly more concrete by prescribing a
set of combinators that must be supported by an incarnation of strategic programming.
Fig. 3.3 specifies such a set. We suggest a semi-formal reading of Fig. 3.3. In particular, the
given semantic sketch leaves open how to blend with the expressiveness offered by the host
paradigm of an eventual incarnation. Actual incarnations of strategic programming may
include further combinators than those from the figure. Also, the identified combinators
are not necessarily primitives in a specific incarnation but they might be defined in terms
of other expressiveness. We will now explain all the combinators.

Sequential control combinators

The nullary strategy id succeeds for any datum and returns its input without change. The
strategy fail fails for any datum, indicated by the output ↑. The sequence combinator seq
applies its two argument strategies in succession. The left-biased choice combinator first
attempts application of its first argument strategy. If and only if this application fails, the
second argument is attempted. There is no recursion or iteration combinator. Instead, we
assume that the definition of new named combinators can involve recursion.

One-layer traversal

The definitions of the combinators all and one formalise the intuitions from Fig. 3.2. They
both push their argument strategy one level down into the input datum to process all
immediate components, or just the leftmost one for which the argument strategy succeeds.
We use dedicated notation to differentiate between indivisible data and compound data.
Note that all and one preserve the shape of the input datum because the constructor c
reappears in the result. We also say that this kind of strategies is type-preserving, or that
they perform a transformation. There exist similar combinators for the type-unifying type
scheme, i.e., for combinators that perform a query or an analysis with a fixed result type
regardless of the input datum’s type. To illustrate the definition of recursive traversal
schemes in terms of one-layer combinators, we define full td for full top-down traversal in
terms of all:

full td(s) = seq(s, all(full td(s)))

This definition means that full td(s) applies its argument strategy s at the root of the
incoming datum, and then (cf. seq) it applies itself to all immediate components of the

22

Combinators
s ::= id Identity strategy

| fail Failure strategy
| seq(s, s) Sequential composition
| choice(s, s) Left-biased choice
| all(s) All immediate components
| one(s) One immediate component
| adhoc(s, a) Type-based dispatch

Notation
d data
c data constructors
d data with failure “↑”
a type-specific actions
s strategies
a@d application of a to d
s@d application of s to d

d ⇒ d big-step semantics
a : t type handled by a
d : t type of a datum d
[d] indivisible data
c(d1 · · · dn) compound data

Meaning
id@d ⇒ d
fail@d ⇒ ↑
seq(s, s′)@d ⇒ d if s@d ⇒ d′ ∧ s′@d′ ⇒ d
seq(s, s′)@d ⇒ ↑ if s@d ⇒ ↑
choice(s1, s2)@d ⇒ d′ if s1@d ⇒ d′

choice(s1, s2)@d ⇒ d if s1@d ⇒ ↑ ∧ s2@d ⇒ d
all(s)@[d] ⇒ [d]
all(s)@c(d1 · · · dn) ⇒ c(d′1 · · · d′n) if s@d1 ⇒ d′1,. . . ,s@d1 ⇒ d′n
all(s)@c(d1 · · · dn) ⇒ ↑ if ∃i. s@di ⇒ ↑
one(s)@[d] ⇒ ↑
one(s)@c(d1 · · · dn) ⇒ c(· · · d′i · · ·) if ∃i. s@d1 ⇒ ↑ ∧ · · · ∧ s@di−1 ⇒ ↑ ∧ s@di ⇒ d′i
one(s)@c(d1 · · · dn) ⇒ ↑ if s@d1 ⇒ ↑,. . . ,s@dn ⇒ ↑
adhoc(s, a)@d ⇒ a@d if a : t and d : t
adhoc(s, a)@d ⇒ s@d if a : t ∧ d : t′ ∧ t 6= t′

Identities
[unit] s ≡ seq(id, s) ≡ seq(s, id) ≡ choice(fail, s) ≡ choice(s, fail)
[zero] fail ≡ seq(fail, s) ≡ seq(s, fail) ≡ one(fail)
[skip] id ≡ choice(id, s) ≡ all(id)

Nested type dispatch
adhoc(adhoc(s, a), a′) ≡ adhoc(s, a′) if a : t ∧ a′ : t
adhoc(adhoc(s, a), a′) ≡ adhoc(adhoc(s, a′), a) if a : t ∧ a′ : t′ ∧ t 6= t′

adhoc(adhoc(fail, a), a′) ≡ choice(adhoc(fail, a), adhoc(fail, a′)) if a : t ∧ a′ : t′ ∧ t 6= t′

Figure 3.3: Specification of a guideline set of basic strategy combinators

23

datum.

Lifting type-specific actions

In Fig. 3.3, we distinguish type-specific actions vs. generic actions. There are means to
mediate between the two categories. Obviously, a generic action s can be applied to a
datum d of any type without much ado. Application . . . @d is overloaded for type-specific
and generic actions accordingly. Notably, a type-specific action can also be applied in a
generic context either by explicit ‘lifting’ via the adhoc combinator or by implicit lifting.
Such lifting is needed because the most basic ingredients of a strategic program are type-
specific actions which eventually are applied to components of different sorts in the course
of traversal. Using the adhoc combinator for type-based dispatch, one can construct a new
strategy from a generic default s and a type-specific action a. The strategy adhoc(s, a) be-
haves like s except for data a’s input type where it dispatches to a. Not every incarnation of
strategic programming needs to perform explicit lifting via adhoc. Instead, one can favour
implicit lifting which can be thought of as adhoc(fail, a). Implicit lifting is problematic for
static typechecking.

3.5 Compound combinators and libraries

The power of our small set of basic combinators can best be demonstrated with a few
examples. Fig. 3.4 shows a list of combinators defined in terms of the basic ones. The first
two control patterns try and repeat do not involve traversal control whereas the remaining
combinators define different traversal schemes.

Non-traversal control

The combinator try manipulates the success value of its argument strategy: try(s) recovers
from failure of s via id if necessary. This control pattern is useful whenever it must be
enforced that a given action s succeeds. The incoming datum is returned when s normally
would fail. The repeat combinator serves for fixpoint computation: repeat(s) applies its
argument strategy s repeatedly until s fails. This control pattern is useful in the definition
of traversal schemes whenever traversal involves exhaustive application of actions.

Traversal schemes

The combinators full td and full bu model a full top-down or bottom-up traversal, respec-
tively. They apply their argument strategy at the root of the incoming datum, and at
all its immediate and non-immediate components. The combinators once td and once bu
are variations that apply the argument strategy only to the first component at which it
succeeds. The combinator stop td attempts the application of the argument strategy to

24

try(s) = choice(s, id)

repeat(s) = try(seq(s, repeat(s)))

full td(s) = seq(s, all(full td(s)))

full bu(s) = seq(all(full bu(s)), s)

once td(s) = choice(s, one(once td(s)))

once bu(s) = choice(one(once bu(s)), s)

stop td(s) = choice(s, all(stop td(s)))

path td(s) = seq(s, choice(all(fail), one(path td(s))))

naive innermost(s) = repeat(once bu(s))

innermost(s) = seq(all(innermost(s)), try(seq(s, innermost(s))))

beloweq(s1, s2) = once td(seq(s2, once td(s1)))

untileq(s1, s2) = seq(s1, choice(s2, one(untileq(s1, s2))))

full td stop td once td once bu
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Figure 3.4: Some defined strategy combinators

components along all branches, and it stops in a given branch when an application suc-
ceeds. The combinator path td searches for a complete path through the compound datum
such that the argument strategy succeeds at all levels. The naive innermost and innermost
combinators both implement the leftmost innermost evaluation strategy, but the second
is more efficient than the first. The combinators beloweq and untileq take two argument
strategies for some form of path traversal very much in the sense of adaptive programming.
The combinator beloweq searches for a component that can be successfully processed by
the first argument nested inside a component for which the second argument succeeds. The
combinator untileq searches for a path such that the first argument holds for every node
down the path until eventually the second argument holds. For generality, in both cases,
it is not yet ruled out that the two argument strategies succeed at the same node.

25

Chapter 4

Incarnations across Paradigms

In the second hour, specific incarnations of Strategic Programming in well-known pro-
gramming paradigms will be presented. Depending on the interest of the participants,
some paradigms may be given more emphasis than others. A very elegant and easy-to-
grasp incarnation of Strategic Programming is the Stratego term-rewriting system [Vis03a,
VBT99]. A functional programming incarnation is available in the form of the Strafun-
ski bundle for generic functional programming [LV02b]. An object-oriented incarnation is
realized by the Java-based JJTraveler library, in combination with the JJForester visitor
generator [KV01]. The embedding of strategies in the attribute grammar formalism will be
discussed and the strategic extension of the LRC attribute grammar based system will be
presented [KS98, Sar02]. Finally, we will discuss HaQuery, an DSL for strategic processing
of XML documents [SS03].

4.1 Term Rewriting

Stratego is a language for program transformation based on the paradigm of rewriting
strategies. Rewrite rules are a natural formalism to express program transformations. In
standard term rewriting, terms are normalised by exhaustive applying rewrite rules to it
until no further application is possible. However, in some contexts it may be necessary,
for example, to apply a rule in one phase of a transformation only, or to apply a rule
only to part of the term under consideration.These restrictions may be necessary to avoid
non-termination, for example. To avoid this problem, Stratego makes the the rewriting
strategy explicit and programmable, thus allowing the careful control over the application
of transformation rules.

A Stratego program defines a transformation on first-order ground terms. Transforma-
tion rules define single transformation steps and are combined into transformation strate-
gies by means of strategy combinators. These combinators determine where and in what
order rules are applied. Stratego provides basic combinators for the composition of strate-
gies. Strategies can be parameterised with the set of rules, or in general, the transformation
to be applied by the strategy. There are six stretegy combinators to compose strategies:

26

sequential composition (s1; s2), deterministic choice (s1 < +s2; first try s1, only if that
fails s2), non-deterministic choice (s1 + s2; same as <=, but the order of trying is not
defined), guarded choice (s1 < s2 + s3; if s1 succeeds then commit to s2 else s3), testing
(where(s); ignores the transformation achieved), negation (not(s); succeeds if s fails), and
recursion (rec x(s)).

Strategies composed with these combinators can be named using the so-called strategy
definitions. For example, the definition

try(s) = s < +id

defines the combinator try, which applies s to the current term. If that fails it applies
id, the identity strategy which always secceeds with the original term as result. Similarly,
the repeat stratagy

repeat(s) = try(s; repeat(s))

repeats transformation s until it fails.
The above strategy combinators combine strategies which apply transformation rules at

the roots of their terms. In order to apply a rule to a subterm , the term must be traversed,
obviously. Stratego provides combinators for composing generic traversals. The operator
all(s) applies s to each of the direct subterms ti of a constructor application C(t1, . . . , tn).
It succeeds if and only if the application of s to each direct subterms suceeds. In this
case the resulting term is the constructor C(t′1, . . . , t

′
n), where each T − i′ is obtained by

applying s to ti. Next we present the definition of the bottomup strategy where all is used.

bottomup(s) = all(bottomup(s)); s

This expression defines that s is first applied recursivelly to all direct subterms of the
term under consideration. If that succeeds, then s is applied to the resulting term. Similar
generic traversal combinators can be defined in this way (e.g., topdown, alltd, etc).

4.2 Functional Programming

Strafunski is a Haskell-centered software bundle for generic programming and language
processing. Strafunski provides programming support for generic traversal as useful for
the implementation of program analyses and transformation components of language pro-
cessors. Strafunski is based on the notion of a functional strategy. These are generic
functions that can traverse into terms of any type while mixing type-specific and uniform
behaviour. Strafunski offers both a strategy combinator library StrategyLib, including
generic traversal combinators, and a generative tool support based on DrIFT to use the
library on large systems of data types. There are further ingredients of the Strafunski
architecture that support interchange formats and derivation of algebraic datatypes from
syntax definitions.

27

XmlLib

ATermLib

StrategyLib Haskell−based
components

Import

RepositoryLanguage processing applicationCollection of Haskell libraries

Import

Parsing
UnparsingI/O

Generator

Generator

Generator

Term

datatypes
Haskell

Documents

SDF grammars

Themes

instances
Xml

instances
ATerm

instances

XML schemas

Sources

components
External

Dtd2Haskell

Sdf2Haskell

DrIFT

ATerms

Figure 4.1: Haskell-centred language processing with Strafunski.

”Stra” refers to strategies, ”fun” refers to functional programming, and their har-
monious composition is a homage to the music of Igor Stravinsky. Strafunski is being
developed by Ralf Lämmel and Joost Visser at CWI (Amsterdam), VU (Amsterdam),
Universidade do Minho (Braga) since August 2000.

Figure 4.1 illustrates Haskell-centred language processing with Strafunski. The block
labelled ‘language processing application’ emphasises that Haskell-based and external com-
ponents coexist in an application. The components communicate on the basis of the inter-
change formats XML and ATerms, or they access a repository with source programs and
XML documents. Haskell-based components take advantage of generic programming with
functional strategies based on the Haskell library StrategyLib. Here we assume that alge-
braic datatypes serve for the typed representation of parse trees. Strategic programming
in Haskell relies on supportive code per term type. The corresponding instances of a Term
class can be generated using the DrIFT preprocessing technology. The algebraic datatypes
might be derived from XML schemas (or DTDs) and syntax definitions in SDF; see the
generators Sdf2Haskell and Dtd2Haskell. There are further Haskell libraries: XmlLib for
XML document processing (contributed by HaXML) and ATermLib for data interchange.
DrIFT is also used to generate XML instances and ATerm instances needed as media-
tors between Haskell terms and the interchange formats. The collection of libraries also
encompasses themes for language processing such as name analyses and refactorings.

Packages in the Strafunski bundle

StrategyLib Haskell combinator library for generic programming

DrIFT-Strafunski Generative support for algebraic datatypes

ATermLib Haskell library for I/O for the ATerm interchange format

28

Sdf2Haskell Derivation of algebraic datatypes from syntax definitions

StrategyLib can be used as a plain Haskell combinator library on its own. The other
packages provide additional convenience and support in developing language processors
and in strategic programming for large syntaxes.

Themes in the StrategyLib of Strafunski Packages in the Strafunski bundle

TraversalTheme a powerful array of traversal schemes

NameTheme language-parametric name analyses

RefactoringTheme language-parametric refactoring transformations

MetricsTheme combinators for the computation of software metrics

PathTheme adaptive programming with paths on trees

FlowTheme combinators to wire up control- and data-flow

FixpointTheme traversals by fixpoint computation

KeyholeTheme strategies with hidden strategy types

EffectTheme monadic effect handling for strategies

ContainerTheme strategies as heterogeneous containers

In addition, there is support for XML processing, import chasing, monadic programming
and others.

4.3 Object-Oriented

An object-oriented incarnation of strategic programming is provided by the notion of
generic visitor combinators. Visitor combinators were introduced in [Vis01b] as an ex-
tension of the regular visitor design pattern. The aim of visitor combinators is to compose
complex visitors from elementary ones. This is done by simply passing them as arguments
to each other. Furthermore, visitor combinators offer full control over the traversal strategy
and applicability conditions of the constructed visitors.

The use of visitor combinators leads to small, reusable classes, that have little depen-
dence on the actual structure of the concrete objects being traversed. Thus, they are less
brittle with respect to changes in the class hierarchy on which they operate. In fact, many
combinators (such as the top-down or breadth-first combinators) are completely generic,
relying only on a minimal Visitable interface. As a result, they can be reused for any
concrete visitor instantiation.

Visitor combinator programming is supported by JJTraveler: a combination of a frame-
work and library that provides generic visitor combinators for Java. We briefly discusses
the key elements of JJTraveler.

29

A B

Framework

Instantation

Hierarchy

Library

OperationsVisitorVisitable
visitA
visitB

Fwd

VisitorVisitable
getChildCount

setChildAt

visit(Visitable)
getChildAt

Figure 4.2: The architecture of JJTraveler.

4.3.1 The architecture of JJTraveler

Figure 4.2 shows the architecture of JJTraveler (upper half) and its relationship with an
application that uses it (lower half). JJTraveler consists of a framework and a library. The
application consists of a class hierarchy, an instantiation of JJTraveler’s framework for this
hierarchy, and the operations on the hierarchy implemented as visitors.

Framework The JJTraveler framework offers two generic interfaces, Visitor and Vis-
itable. The latter provides the minimal interface for nodes that can be visited. Visitable
nodes should offer three methods: to get the number of child nodes, to get a child given
an index, and to modify a given child. The Visitor interface provides a single visit method
that takes any visitable node as argument. Each visit can succeed or fail, which can be
used to control traversal behavior. Failure is indicated by a VisitFailure exception.

Library The library consists of a number of predefined visitor combinators. These rely
only on the generic Visitor and Visitable interfaces, not on any specific underlying class
hierarchy. An overview of the library combinators is shown in Figure 4.3. They will be
explained in more detail below.

Instantiation To use JJTraveler, one needs to instantiate the framework for the class
hierarchy of a particular application. To do this, the hierarchy is turned into a visitable
hierarchy by letting every class implement the Visitable interface. Also, the generic Visitor
interface is extended with specific visit methods for each class in the hierarchy. Finally, a
single implementation of the extended visitor interface is provided in the form of a visitor
combinator Fwd. This combinator forwards every specific visit call to a generic default

30

Name Args Description
Identity Do nothing
Fail Raise VisitFailure exception
Not v Fail if v succeeds, and v.v.
Sequence v1, v2 Do v1, then v2

Choice v1, v2 Try v1, if it fails, do v2

All v Apply v to all immediate children
One v Apply v to one immediate child
IfThenElse c,t,f If c succeeds, do t, otherwise do f

Try v Choice(v,Identity)
TopDown v Sequence(v,All(TopDown(v)))
BottomUp v Sequence(All(BottomUp(v)),v)
OnceTopDown v Choice(v,One(OnceTopDown(v)))
OnceBottomUp v Choice(One(OnceBottomUp(v)),v)
AllTopDown v Choice(v,All(AllTopDown(v)))
AllBottomUp v Choice(All(AllBottomUp(v)),v)

Figure 4.3: JJTraveler’s library (excerpt).

visitor given to it at construction time. Concrete visitors are built by providing Fwd with
the proper default visitor, and overriding some of its specific visit methods.

Though instantiation of JJTraveler’s framework can be done manually, automated sup-
port for this is provided by a generator, called JJForester [KV01]. This generator takes
a grammar as input. From this grammar, it generates a class hierarchy to represent the
parse trees corresponding to the grammar, the hierarchy-specific Visitor and Visitable in-
terfaces, and the Fwd combinator. In addition to framework instantiation, JJForester
provides connectivity to a generalized LR parser [BSVV02].

Operations After instantiation, the application programmer can implement operations
on the class hierarchy by specializing, composing, and applying visitors.

The starting point of hierarchy-specific visitors is Fwd. Typical default visitors provided
to Fwd are Identity and Fail. Furthermore, Fwd contains a method visitA for every class
A in the hierarchy, which can be overridden in order to construct specific visitors. As an
example, an A-recognizer IsA (which only does not fail on A-nodes) can be obtained by
an appropriate specialization of method visitA of Fwd(Fail).

Visitors are combined by passing them as (constructor) arguments. For example,
All(IsA) is a visitor which checks that any of the direct child nodes are of class A, and
OnceTopDown(IsA) is a visitor checking whether a tree contains any A-node. Visitors are
applied to visitable objects through the visit method, such as IsA.visit(myA) (which does
nothing), or IsA.visit(myB) (which fails).

31

public class Sequence implements Visitor {
Visitor v1;
Visitor v2;
public Sequence(Visitor v1, Visitor v2) {
this.v1 = v1;
this.v2 = v2;

}
public void visit(Visitable x) {
v1.visit(x);
v2.visit(x);

} }

Figure 4.4: The Sequence combinator.

public class Try extends Choice {
public Try(Visitor v) {
super(v, new Identity());

} }

Figure 4.5: The Try combinator.

4.3.2 A library of generic visitor combinators

Figure 4.3 shows high-level descriptions for an excerpt of JJTraveler’s library of generic
visitor combinators. A full overview of the library can be found in the online documentation
of JJTraveler. Two sets of combinators can be distinguished: basic combinators and defined
combinators, which can be described in terms of the basic ones as indicated in the overview.
Note that some of these definitions are recursive.

Basic combinators Implementation of the generic visitor combinators in Java is straight-
forward. Figures 4.4 and 4.5 show implementations for the basic combinator Sequence and
the defined combinator Try. The implementation of a basic combinator follows a few
simple guidelines. Firstly, each argument of a basic combinator is modeled by a field of
type Visitor. For Sequence there are two such fields. Secondly, a constructor method
is provided to initialize these fields. Finally, the generic visit method is implemented in
terms of invocations of the visit method of each Visitor field. In case of Sequence, these
invocations are simply performed in sequence.

Defined combinators The guidelines for implementing a defined combinator are as
follows. Firstly, the superclass of a defined combinator corresponds to the outermost
combinator in its definition. Thus, for the Try combinator, the superclass is Choice.
Secondly, a constructor method is provided that supplies the arguments of the outermost
constructor in the definition as arguments to the superclass constructor method (super).
For Try, the first superclass constructor argument is the argument of Try itself, and the
second is Identity. The visit method is simply inherited from the superclass.

32

public class TopDownWhile extends Choice {
public TopDownWhile(Visitor v1, Visitor v2) {
super(null,v2);
setArgument(1,new Sequence(v1,new All(this)));

}
public TopDownWhile(Visitor v) {
this(v,new Identity());

} }

Figure 4.6: The TopDownWhile combinator.

Recursive combinators In order to demonstrate how visitor combinators can be used
to build recursive visitors with sophisticated traversal behavior, we will develop a new
generic visitor combinator TopDownWhile(v1, v2).

TopDownWhile(v1, v2) =

Choice(Sequence(v1, All(TopDownWhile(v1, v2))), v2)

The first argument v1 represents the visitor to be applied during traversal in a top-down
fashion. When, at a certain node, this visitor v1 fails, the traversal will not continue into
subtrees. Instead, the second argument v2 will be used to visit the current node. The
encoding in Java is given in Figure 4.6. Note that Java does not allow references to this

until after the super constructor has been called. For this reason, the first argument, which
contains the recursion, gets its value not via super, but via the setArgument() method.
Note also that the visitor has a second constructor method that provides a shorthand for
calling the first constructor with Identity as second argument.

4.4 Attribute Grammars

In the context of the design and implementation of language-based tools, attribute gram-
mars provide powerful properties to improve the productivity of their users, namely, the
static scheduling of computations. Indeed, an attribute grammar writer is neither con-
cerned with breaking up her/his algorithm into different traversal functions, nor is she/he
concerned in conveying information between traversal functions (i.e., how to pass inter-
mediate values computed in one traversal function and used in following ones). A second
important property is that circularities are statically detected. Thus, the existence of cy-
cles, and, as a result, the non-termination of the algorithms, is detected statically. That
is to say that for (ordered) attribute grammars the termination of the programs for all
possible inputs is statically guaranteed.

An attribute grammar [Knu68, Kas80] consists of a context-free grammar, and a set of
attributes and attribute equations. The context-free grammar of a language specifies the
(finite) set of symbols of the alphabet, and defines which sequences of those symbols form
a syntactically valid sentence. On the other hand, the set of attributes and attribute equa-
tions describe semantic properties of the language. The static semantics of the language

33

is specified by establishing conditions on the attributes. In other words, the context-free
grammar defines the structure of the language while the attributes and their equations
define the meaning of the language.

In order to present attribute grammars let us analyse in detail the well-known “rep-
min” problem. The formulation of the problem, taken from Bird [Bir84] who originally
introduced it, is as follows: consider the problem of transforming a tree into a second tree,
identical in shape to the original one, but with all the tip values replaced by the minimum
tip value. In listing 2 we show the formulation of the repmin in the attribute grammar
formalism. We use a standard AG notation, where semantic rules are Haskell expressions.
Furthermore, this AG is organised by aspect, that is to say, that we structure the grammar
according to the different aspects of the repmin problem: computing the minimum value
(left) and passing the global minimum down to the leaves and constructing the desired
tree.

Tree <↑ min : Int >
Tree = Tip Int

Tree.min = Int
| Fork Tree Tree
Tree1.min = min Tree2.min Tree3.min

R <↑ new : Tree >
R = Root Tree

Tree.m = Tree.min
R.new = Tree.new

Tree <↓ m : Int, ↑ new : Tree >
Tree = Tip Int

Tree.new = Tip Tree.m
| Fork Tree Tree
Tree1.new = Fork Tree2.new

Tree3.new
Tree2.m = Tree1.m
Tree3.m = Tree1.m

Fragment 1: The repmin attribute grammar.

From this specification, an attribute grammar based system - the Lrc system in our case
[KS98] - first weaves the different aspects, then, computes an evaluation order (testing for
circularities induced by the attribute equations), after that it schedules the computations
and, finally, produces a functional (or non-functional) implementation [Sar99].

In the context of AG programming, the programmer focus his work in the productions
(or constructors) where useful work has to be performed. In the repmin problem, for
example, this occurs in the production Fork where the semantic function min and the
constructor Fork is used. However, the programmer has also to include in the specification
rules to propagate attributes (i.e., context information) in the tree, by the so-called, copy
rules (shadowed equation in 2).

The propagation of information via copy rules results in large and less legible AG spec-
ifications. Typical patterns of attribution, however, can be specified in a more concise and
comprehensible notation, that makes AG specifications shorter and easier to understand
[KW94, Paa95, SAS99]. For example, propagating an attribute in a top-down, left-to-right
often occurs in AG specifications. AG systems [GHL+92, SAS99] include special notation
for specifying such flow of data. Another technique to eliminate redundant copy rules is to
include them as implicit default rules (of the AG-based system). Both of theses approaches
have a serious drawback: propagation patterns are fixed and are part of the AG specifica-
tion language. Thus, the AG programmer can not add his own propagation patterns nor

34

change the existent ones.
In Strategic Attribute Grammars we propose the use of strategies (tree traversal com-

binators) to model attribute propagation patterns. The idea is to define the propagation
of attributes as strategic semantic functions. As a result, the AG programmer as the full
expressiveness of strategic programming and can add or adapt combinators to realise exist-
ing or new forms of propagating attributes. So, the user is not restricted to a pre-defined
set of propagation patterns. Because in the LRC system we define semantic functions as
Haskell-expressions, we can use the Strafunski library to easily embed strategies in an AG
specification. Next we show the Strategic version of the repmin AG.

Tree <↓ m : Int >
R <↑ new : Tree >
R = Root Tree

Tree.m = crush (0,min, crushAction, T ree)
R.new = bottomup (repAction Tree.m, T ree)

Fragment 2: The repmin strategic attribute grammar.

As we can see in the specification, no copy rules are defined in the AG. All the propa-
gation of attributes is done by the crush and bottomup combinators.

We need to define, however, the function that perform useful work in the nodes of the
tree. They are presented next.

crushAction = build [] ‘adhocTU‘ f

where f (Tip i) -> [i]

f _ -> []

repAction min_in = identity ‘adhocTP‘ f

where f (Tip _) -> [Tip min_in]

f x -> [x]

The key idea of strategic attribute grammars is to combine the advantages of both
approaches, namely, the static scheduling of the traversal functions of the AG formalism
and the expressiveness and genericity of the strategic programming paradigm.

35

Chapter 5

Design Patterns and Programming
Idioms

Since strategic programming enriches the programmer’s repertoire of abstraction and mod-
ularization techniques, it has given rise to a body of programming experience. This expe-
rience is laid down in design patterns and programming idioms that guide the programmer
in his program construction activities. The tutorial includes a presentation of these design
patterns and idioms involving typical examples and sample code. These will be taken from
various programming paradigms, and may be tuned to the interests and wishes of the par-
ticipants of the tutorial. The objective is to bring the participants to a point where they
are ready to start programming strategically in their preferred languages.

5.1 Traversal idioms

Strategic programming is particularly useful for the construction of traversals over many-
sorted data structures. Not surprisingly, quite a number of idioms for constructing such
traversals can be identified. These idioms touch upon traversal issues such as:

Fix-points Repeating the traversal and / or its basic actions until some fix-point is
reached.

propagation Passing information down into the traversed structure.

Accumulation Retrieving information from the traversed structure by adding pieces of
information to an accumulator.

Backtracking Switching to a different part of the traverse structure, or to different traver-
sal behavior depending on success and failure of subtraversals.

36

5.2 Transformation idioms

Transformations are type-preserving traversals that reshape the traversed structure, for
instance for normalization, optimization, etc. Example idioms:

Cascading Combining simple node actions into a complex node action. The triggering of
one of the simple actions may create opportunities for other simple actions to trigger
as well.

Staging Dividing a transformation into separate steps that are executed in sequence.

Nesting Implementing an overal transformation by a traversal strategy that invokes sub-
ordinate transformations on particular substructures of the traversed structure.

5.3 Variation points

Traversals can have variation points of various kinds. When the abstraction mechanisms
of the host paradigm are sufficiently powerful, these variation points can become actual
parameters of library components.

Completeness Traversals can be complete, in the sense that they will visit each and
every node of the traversed structure, or they can be incomplete in serveral ways.
For instance, they may only walk along a spine of the traversed structure.

Order Traversals can be top-down, bottom-up, breadth-first, etc.

Cut-offs Traversals can be cut-off at certain nodes and under certain conditions. For
instance, cut-off can occur at a fixed depth, at success or failure of an ingredient
node action, etc.

5.4 Object-oriented

In object-oriented setting, several issues come into play.

Circularity The visited object structures can contain cycles. As a result, special care
needs to be taken to ensure termination of traversals. Several solution can be chosen
here, such as marking the visited graph, or accumulating history.

Sharing Even when the visited structure is not circular, its structure may not be tree-
shaped, but contain shared nodes. To prevent visiting nodes or entire substructures
repetitively, special care must be taken.

State The objects that make up a traversal, e.g., its ingredient visitors, can encapsulate
particular state information. These can be simple counters, lookup tables, but also
complete object graphs representing representing for instance the accumulated result
of the traversal.

37

5.5 Functional

In functional programming, idioms can be identified that exploit the expressiveness of the
hosting type system.

Monads Traversals can be monadic such that monadic effects can be exploited. These
include state propagation, side-effects, non-determinism, etc.

Meta-schemes When traversal schemes are highly parameterized, for instance with the
one-step traversal that they employ or the kind of combination of recursive traversals.
In this case, we call them meta-shemes.

Type guards Type guards are basic actions that succeed or fail depending on the type
of the node to which they are applied.

38

Chapter 6

Strategic Programming in the Large

Finally, we will discusse the use of strategic programming in the real world. We will
discuss several large projects in which essential use has been made of strategic program-
ming techniques. One of them is the developement of Cobol reverse engineering support
with object-oriented strategic programming techniques [DV02]. Another is the Haskell
refactoring tool, HaRe [TR03, LRT03], developed with functional strategic programming
techniques. Also, the application of strategic programming for XML document processing
will be explained, using the HaQuery language. For each of these applications we will point
out how strategic programming techniques have been deployed, why they were beneficial
for the success of the projects, and what strategic programming lessons were learned in
the course of them.

6.1 Cobol reverse engineering

Visitor Combinators, as supported by JJForester and JJTraveler, have been used in the im-
plementation of the program comprehension tool ControlCruiser. ControlCruiser is a pro-
gram comprehension tool that uses Conditional Control Graphs (CCGs) as source model.
ControlCruiser constructs such CCGs from program source texts, and subsequently visu-
alizes them. Additionally, ControlCruiser computes a number of metrics by CCG analysis.
Control Cruiser was developed by CWI and the Software Improvement Group.

Currently, ControlCruiser has a single front-end: for Cobol. On the basis of PERFORM
statements, IF statements, and section and paragraph labels, ControlCruiser reconstructs
procedures and their interrelationships from Cobol programs.

We will explain the overall design of ControlCruiser, and zoom in on some of the
strategic programming techniques employed in its implementation. In the implementation
of ControlCruiser, both tree shaped and graph shaped source models are constructed,
analyzed, and manipulated with visitor combinators.

39

6.2 Haskell refactoring

The functional programming group at Kent University, Canterbury, UK is developing the
Haskell refactoring tool HaRe in the context of their Refactoring Functional Programs
project [TR03, LRT03]. HaRe’s refactoring engine is implemented on top of Programat-
ica’s Haskell frontend and Strafunski’s generic traversal strategy library. Most of the
refactoring’s offered are implemented with strategic programming techniques. Accord-
ing to HaRe’s developers, the conciseness of strategic programming has been essential in
achieving developer productivity and keeping the project manageable.

The project describes a catalogue of Haskell program refectorings, like: Add or re-
move an argument, Delete/Add a definition, Introduce or remove a duplicate definition,
Generalise or specialise a definition, Introduce A New Definition, Widen or narrow defi-
nition scope, Widen or narrow definition scope, with compensation (generalise/specialise),
Renaming, and Unfolding.

6.3 XML querying

HaQuery is a Haskell-based combinator library for querying Xml documents being devel-
oped at Minho University. HaQuery is closely related to XQuery, a typed, functional
language for querying XML, currently being designed by the Xml Query Working Group
of the World-Wide Web Consortium [Dra02, Wad02].

The library consists of a (small) set of functions (i.e., the combinators) that can be
combined allowing us to efficiently, easily and concisely express queries over Xml docu-
ments. The HaQuery library itself is constructed in a combinatorial approach, that is
to say that its parser is defined through combinator parsers and the implementation of
HaQuery relies entirely on traversal combinators. The first prototype implementation of
HaQuery was built on top of HaXml, the standard Haskell combinator library for Xml.
Currently we are porting HaQuery system to tely on the the strafunsky library. Or, to be
more precise, we are extending Strafunsky with a new set of combinators: the HaQuery
combinators.

To introduce HaQuery, let us consider some example queries on a suitable Xml doc-
ument. We consider a document that contains the information describing a particular
university course. That is, the document describes the name of the course, the year on
the curriculum, the information concerning the teachers and the students registered in the
course. To list the students registered in the course we have to write the following simple
HaQuery sentence:

/curso/cadeiras/inscritos ?

If we wish to list the students attending the third year (or higher) or the students whose
surname is Atento and are registered as TE (working students), then we might write:

//aluno[@ano .>=. 3 | (./nome/@sobrenome=’Atento’

& ~(@estatuto = ’TE’))] ?

40

HaQuery allows us to elaborate more complex queries, like nesting queries and queries
that are performed over a list of Xml documents and not just on a single one.

In the Strafunsky-based implementation of the HaQuery processor, HaQuery sentences
are Haskell expressions that are defined through combinator functions that use a friendly
user-defined syntax to resemble the original HaQuery syntax. Such combinator functions
model HaQuery operators (like, for example, the HaQuery operator / that defines a par-
ent/child relation, is modelled with a haskell function with exatly that name). These
combinator functions are straightforwardly expressed in strafunsky.

41

Bibliography

[BDPS02] Gilles Barthes, Peter Dybjer, Luis Pinto, and João Saraiva, editors. Interna-
tional Summer School on Applied Semantics, volume 2395 of LNCS Tutorial.
Springer-Verlag, August 2002.

[Bir84] R. S. Bird. Using Circular Programs to Eliminate Multiple Traversals of Data.
Acta Informatica, (21):239–250, January 1984.

[BSVV02] M. G. J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation
filters for scannerless generalized LR parsers. In N. Horspool, editor, Compiler
Construction (CC’02), Lecture Notes in Computer Science. Springer-Verlag,
2002.

[Dra02] W3C Working Draft. XQuery 1.0: An XML Query Language, April 2002.

[DV02] A. van Deursen and J. Visser. Building program understanding tools using
visitor combinators. In Proceedings 10th Int. Workshop on Program Compre-
hension, IWPC 2002. IEEE Computer Society, 2002.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GHL+92] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite. Eli:
A Complete, Flexible Compiler Construction System. Communications of the
ACM,, 35(2):121–131, February 1992.

[GL01] B. Gramlich and S. Lucas, editors. Proc. International Workshop on Reduction
Strategies in Rewriting and Programming (WRS 2001), volume SPUPV 2359,
Utrecht, The Netherlands, May 2001. Servicio de Publicaciones - Universidad
Politécnica de Valencia.

[Jeu00] J. Jeuring, editor. Proc. of WGP’2000, Technical Report, Universiteit Utrecht,
July 2000.

[Kas80] Uwe Kastens. Ordered attribute grammars. Acta Informatica, 13:229–256, 1980.

42

[KLV00] J. Kort, R. Lämmel, and J. Visser. Functional Transformation Systems. In
9th International Workshop on Functional and Logic Programming, Benicassim,
Spain, July 2000.

[Knu68] Donald E. Knuth. Semantics of Context-free Languages. Mathematical Systems
Theory, 2(2):127–145, June 1968. Correction: Mathematical Systems Theory
5, 1, pp. 95-96 (March 1971).

[KS98] Matthijs Kuiper and João Saraiva. Lrc - A Generator for Incremental Language-
Oriented Tools. In Kay Koskimies, editor, 7th International Conference on
Compiler Construction, CC/ETAPS’98, volume 1383 of LNCS, pages 298–301.
Springer-Verlag, April 1998.

[KV01] T. Kuipers and J. Visser. Object-oriented tree traversal with JJForester. In
Mark van den Brand and Didier Parigot, editors, Electronic Notes in Theoret-
ical Computer Science, volume 44. Elsevier Science Publishers, 2001. Proc. of
Workshop on Language Descriptions, Tools and Applications (LDTA).

[KW94] Uwe Kastens and William Waite. Modularity and reusability in attribute gram-
mars. Acta Informatica, 31:601–627, June 1994.

[Läm01] R. Lämmel. Generic Type-preserving Traversal Strategies. In Gramlich and
Lucas [GL01].

[Läm02] R. Lämmel. Typed generic traversal with term rewriting strategies. Journal of
Logic and Algebraic Programming, 2002. To appear.

[LP03] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. ACM SIGPLAN Notices, 38(3):26–37,
March 2003. Proc. of the ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI 2003).

[LRT03] Huiqing Li, Claus Reinke, and Simon Thompson. Tool support for refactoring
functional programs. In Johan Jeuring, editor, ACM SIGPLAN 2003 Haskell
Workshop. Association for Computing Machinery, August 2003. ISBN 1-58113-
758-3.

[LV00] R. Lämmel and J. Visser. Type-safe functional strategies. In Scottish Functional
Programming Workshop, Draft Proceedings, St Andrews, 2000.

[LV02a] R. Lämmel and J. Visser. Design patterns for functional strategic program-
ming. In Proceedings of the international workshop on rule-based programming
(RULE 2002), October 2002.

[LV02b] R. Lämmel and J. Visser. Typed combinators for generic traversal. In
PADL 2002: Practical Aspects of Declarative Languages, volume 2257 of Lecture
Notes in Computer Science (LNCS). Springer, 2002.

43

[LV02c] Ralf Lämmel and Joost Visser. Strategic polymorphism requires just two com-
binators! In Preproceedings of IFL 2002, September 2002.

[LV03] R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl
and P. Wadler, editors, Proc. of Practical Aspects of Declarative Programming
(PADL’03), volume 2562 of LNCS, pages 357–375. Springer-Verlag, January
2003.

[LVK00a] R. Lämmel, J. Visser, and J. Kort. Dealing with Large Bananas. In Jeuring
[Jeu00], pages 46–59.

[LVK00b] R. Lämmel, J. Visser, and J. Kort. Dealing with large bananas. In Johan
Jeuring, editor, Workshop on Generic Programming, Ponte de Lima, July 2000.
Technical Report UU-CS-2000-19, Universiteit Utrecht.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Ba-
nanas, Lenses, Envelopes, and Barbed Wire. In Proc. FPCA’91, volume 523 of
LNCS. Springer-Verlag, 1991.

[Paa95] Jukka Paakki. Attribute Grammar Paradigms - A High-Level Methodology
in Language Implementation. ACM Computing Surveys, 27(2):196–255, June
1995.

[Sar99] João Saraiva. Purely Functional Implementation of Attribute Grammars. PhD
thesis, Department of Computer Science, Utrecht University, The Netherlands,
December 1999.

[Sar02] João Saraiva. Component-based Programming for Higher-Order Attribute
Grammars. In Don Batory, Charles Consel, and Walid Taha, editors, Proceed-
ings of the ACM SIGPLAN/SIGSOFT Conference on Generative Programming
and Component Engineering, GPCE 2002, volume 2487 of LNCS, pages 268–
282. Springer-Verlag, October 2002.

[SAS99] Doaitse Swierstra, Pablo Azero, and João Saraiva. Designing and Implement-
ing Combinator Languages. In Doaitse Swierstra, Pedro Henriques, and José
Oliveira, editors, Third Summer School on Advanced Functional Programming,
volume 1608 of LNCS, pages 150–206. Springer-Verlag, September 1999.

[SS03] João Saraiva and Doaitse Swierstra. Generating Spreadsheet-like Tools from
Strong Attribute Grammars. In Frank Pfenning and Yannis Smaradakis, edi-
tors, Proceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering, GPCE 2003, volume 2830 of LNCS,
pages 307–323. Springer-Verlag, September 2003.

[SSK00] João Saraiva, Doaitse Swierstra, and Matthijs Kuiper. Functional Incremental
Attribute Evaluation. In David Watt, editor, 9th International Conference on

44

Compiler Construction, CC/ETAPS2000, volume 1781 of LNCS, pages 279–
294. Springer-Verlag, March 2000.

[TR03] Simon Thompson and Claus Reinke. A case study in refactoring functional pro-
grams. In Roberto Ierusalimschy, Lucilia Figueiredo, and Marcio Tulio Valente,
editors, VII Brazilian Symposium on Programming Languages, pages 1–16. So-
ciedade Brasileira de Computacao, May 2003.

[V+] E. Visser et al. The online survey of program transformation. http://www.

program-transformation.org/survey.html.

[VBT99] E. Visser, Z. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. ACM SIGPLAN Notices, 34(1):13–26, January
1999. Proceedings of the International Conference on Functional Programming
(ICFP’98).

[Vis99] E. Visser. Strategic pattern matching. In Rewriting Techniques and Applications
(RTA’99), volume 1631 of Lecture Notes in Computer Science, pages 30 – 44.
Springer-Verlag, 1999.

[Vis00] E. Visser. Language Independent Traversals for Program Transformation. In
Jeuring [Jeu00], pages 86–104.

[Vis01a] E. Visser. A Survey of Strategies in Program Transformation Systems. In
Gramlich and Lucas [GL01].

[Vis01b] J. Visser. Visitor combination and traversal control. In OOPSLA 2001 Con-
ference Proceedings: Object-Oriented Programming Systems, Languages, and
Applications. ACM Press, 2001.

[Vis03a] Eelco Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In Lengauer et al., editors, Domain-
Specific Program Generation, Lecture Notes in Computer Science. Spinger-
Verlag, November 2003. (Draft; Accepted for publication).

[Vis03b] Joost Visser. Generic Traversal over Typed Source Code Representations. PhD
thesis, University of Amsterdam, February 2003.

[Wad02] Philip Wadler. Xquery: a typed functional language for querying XML. In
Fourth Summer School on Advanced Functional Programming, Oxford, August
2002.

45

Appendix A

Strategic Programming in a Nutshell

At the heart of Strategic Programming are two programming concepts: dynamic type-case,
and one-step traversal. Dynamic type-case allows mixing generic behaviour with type-
specific behaviour: depending on the type of input data, either the type-specific behaviour
is triggered, or the generic default behaviour. One-step traversal makes generic traversal
scheme’s programmable: by composing the combinators in different constellations, different
traversal scheme’s are obtained.

To make things more concrete, consider some of the basic combinators offered by Strate-
gic Programming:

id return input term unchanged
sequence(f,g) apply f to the input term, and g to the result of that

all(f) apply f to all immediate subterms of the input term
fail react to any input term with failure

choice(f,g) apply f to the input term. If it fails, apply g instead
one(f) apply f to a single immediate subterm of the input term

adhoc(f,g) apply g to the input term if it’s type matches, otherwise apply f
f�t apply strategy f to input term t

Of course, it depends on the hosting programming paradigm which combinators are avail-
able exactly, and in which form. The above list shows a paradigm-independent, almost
mathematical specification of a subset of such combinators.

Given such combinators, one can for instance define the following generic traversal
schemas:

bottomup(f) = sequence(all(bottomup(f),f))
topdown(f) = sequence(f,all(topdown(f))

oncebottomup(f) = choice(one(oncebottomup(f),f))
innermost(f) = sequence(all(innermost(f)),choice(sequence(f,innermost(f)),id))

Now, such traversal schemes can be instantiated to particular traversals by supplying a
node action as argument. For instance, with the adhoc combinator we can create a node
action integerincrement, and pass it as argument to topdown:

46

incrementinteger = adhoc(id,λx.x+1)
incrementintegerstopdown = topdown(incrementinteger)

When applied to an integer integerincrement will increment it (see the function λx.x+1 on
integers), but when applied to any other input term it will return it unchanged (see the
generic identity function id). When we apply incrementintegerstopdown to input terms of
different types, the genericity of strategic programming becomes evident:

incrementintegerstopdown�[0, 1, 2] ; [1, 2, 3]
incrementintegerstopdown�(True, [0, 1], 2) ; (True, [1, 2], 3)

Thus, the traversal incrementintegerstopdown works on input terms of any type. It walks
over the input term in a bottom-up fashion, and increments all integers that it finds on its
way.

Thus, these examples give a brief glimpse of the essentials of Strategic Programming.
The concepts of dynamic type case (adhoc) and of one step traversal (all and one) play
a fundamental role. In the tutorial, these concepts will be explained thoroughly, as well
as their realization in different programming languages from various paradigms. Also, the
practise of programming with strategies, both in the small (idioms, design patterns) and
in the large (applications, tool support) will be covered.

47

