
Monitoring the Quality of Outsourced Software
Tobias Kuipers

Software Improvement Group
The Netherlands

Email: t.kuipers@sig.nl

Joost Visser
Software Improvement Group

The Netherlands
Email: j.visser@sig.nl

Gerjon de Vries
Software Improvement Group

The Netherlands
Email: g.devries@sig.nl

Abstract—Outsourcing application development or mainte-
nance, especially offshore, creates a greater need for hard facts to
manage by. We have developed a tool-based method for software
monitoring which has been deployed over the past few years in a
diverse set of outsourcing situations. In this paper we outline the
method and underlying tools, and through several case reports
we recount our experience with their application.

I. INTRODUCTION

Outsourcing of application development or maintenance
brings about an interesting dilemma. One the one hand, out-
sourcing promisses cost reduction and increased focus on core
business. The vendor organization specializes in software engi-
neering capabilities and realizes scaling benefits. On the other
hand, the loss of technical expertise at the client organization
leads to loss of control over the quality of the delivered product
which, in turn, leads to loss of efficiency and increased costs.
To prevent that costs, deadlines, and functionality slip out of
control, the remote management of outsourced projects must
be grounded in factual technical knowledge of the outsourced
system. Is there a way out of this dilemma?

In this paper, we argue that this outsourcing dilemma can
be resolved by performing tool-assisted monitoring of the
quality of outsourced software. Such software monitoring is
a highly specialized activity that supports IT management by
translating technical findings to actionable recommendations.
To avoid the need for in-house technical know-how, this highly
specialized activity of monitoring outsourced software can in
turn be outsourced to a third, independent party.

We have developed a tool-based method for software mon-
itoring which has been deployed over the past few years in a
diverse set of outsourcing situations. In this paper we outline
the method and underlying tools, and through several case
reports we recount our experience with their application.

The paper is structured as follows. Section II provides
a global overview of the tool-based method for software
monitoring that we have developed previously [1]. Section III
high-lights the tools that support the method, while Section IV
focusses on the quality model it employs. In Section V, we
share our experiences with applying the method in the form
of three case reports. These reports cover various application
scenarios and various software technology platforms. The
paper is concluded in Section VI, where we summarize our
contributions and reflect on lessons learned and on the value
of software monitoring on a more generalized level.

Software Engineers

Board

IT Management

Project Management

Source code

Software Annual 
Report

Quarterly
Iteration

Montly
Iteration

Generated
Documentation

Monitor

Fig. 1. The various deliverables of software monitoring and their relationships
to management levels. On the basis of source code analysis, insight in the
technical quality of software systems or entire portfolios is provided at regular
intervals to project managers, IT management, and general management.

II. SOFTWARE MONITORING

Previously, we have developed and described a tool-based
method for software monitoring which consists of a cycle
of activities designed to drive continuous improvement in
software products and processes [1]. An overview of the
method is provided in Figure 1.

A. Source code analysis

The basis of monitoring is the frequent analysis of all
source code in an automated manner. We have developed a
suite of tools, dubbed the Software Analysis Toolkit (SAT),
which contains components for parsing, flow analysis, and
metric extraction for a wide range of programming languages.
The SAT has been designed to be highly scalable and highly
customizable. It is suitable for processing software portfolios
of many millions of lines of code. We continuously extend the
SAT with support for further languages.

A dynamic web portal with all extracted software metrics
is available to all stake holders in the system or portfolio.

B. Scope

The scope of software monitoring is flexible, both in du-
ration and in the number of systems being monitored. In
some cases, only a single system is monitored, but more
commonly all systems with a particular technology footprint
(e.g. mainframe systems, or .Net systems) are under scrutiny.
When the scope extends to all systems, we use the term
software portfolio monitoring. In some cases, monitoring is



Software Annual Report
Summarizing

Quarterly Iteration
Evaluation, interpretation, 

illumination, recommendation

Monthly Iteration
Apply SAT

Jan
ua

ry

D
ec

em
be

r

Fig. 2. The various nested iterations of software monitoring.

initiated at the start of system development, and ended at
first delivery. In other cases, systems are monitored in their
maintenance or renovation phase.

C. Deliverables

The information extracted from source code is combined
with information obtained from secondary sources, such as
documentation and interviews with stake holders. On the basis
of this combination, insight into the software is provided to
various levels of management at different frequencies. With
high frequency (typically monthly), fairly detailed information
about individual systems is communicated to project man-
agers. With medium frequency, more aggregated information is
presented and discussed at the level of overall IT management.
With low frequency, the monitoring information of an entire
year is compressed into an annual software report, to be
presented at board level.

Note that the various deliverables are not limited to simply
communicating measurement values. The results of source
code analysis are interpreted by experts, followed by evalua-
tion and recommendations. Where feasible, targets are set for
quality improvement. Thus, a significant consultancy effort is
mounted to incorporate the lessons to be learned from software
measurements into the software management processes.

Below we discuss the various iterations and their deliver-
ables in more detail.

D. Iterations

The three nested iterations of the monitoring methodology
are illustrated in more detail in Fig. 2. Though the typical
duration of the shortest iteration is one month, shorter and
longer time spans are also used. The yearly iteration is
optional, and is typically used only when a significant part
of the software portfolio is being monitored.

1) Monthly iteration: In the inner iteration, the Software
Analysis Toolkit is applied to the selected software systems
or entire portfolio, resulting in a large number of basic facts

about the code. These facts include metrics, dependency infor-
mation, and detected violations of programming conventions
or standards. All these facts are collected into a data repository.
From this repository, reports are generated that present the
facts in a human digestible fashion. This means that the data
is appropriately grouped and filtered, and visualized in graphs
and charts that meet the information needs of assessment
experts, project managers, and other stake holders.

2) Quarterly iteration: Every three months, the technical
data gathered in the inner iterations is interpreted and evaluated
by assessment experts. Also, the data is related to other infor-
mation elicited in workshops and interviews. The findings are
presented to IT management together with recommendations
about how to react to the findings.

By interpretation, we mean that various selections of the
data are combined and contrasted to discover for instance
trends, correlations, and outliers. For example, based on the
fact that certain modules have exceeded a certain complexity
threshold, an assessment expert might hypothesize that these
modules implement several related functions in a tangled
fashion. He might discover that the database dependency
information for these modules corroborates his hypothesis.
Finally, he may take a small sample from these modules,
inspect their code and verify that his hypothesis is indeed true.

By evaluation, we mean that the expert makes value judg-
ments about the software system or portfolio. The judgments
are based on best practices reported in the literature, on
published quality standards, comparisons with industry best
and average, and so on. In Section IV, we provide further
insight into the structured method we use for software quality
evaluation according to the ISO/IEC 9126 software product
quality model [2].

The evaluation and interpretation of technical data, as well
as elicitation of IT-related business goals are instrumental in
the most important element of the quarterly iteration: the
drafting of recommendations. These recommendations are of
various kinds. They can be detailed, short-term recommenda-
tion, such as redesigning a particular interface, migrating par-
ticular persistent data from hierarchical to relational storage,
or upgrading a particular third-party component. On the other
hand, some recommendations may have a more general, long
term character, such as integrating two functionally similar,
but technically distinct systems, or reducing the procedural
character of the object-oriented portions of the portfolio.

The deliverable of the quarterly iteration is a presentation of
findings, evaluation, and recommendations to IT management
in a workshop dedicated to that purpose.

3) Annual iteration: Every year, the deliverables of the
monthly and quarterly iterations are summarized in an Annual
Software Report. The intended audience of this report is the
general management of the company, which is not necessarily
IT-savvy. For this reason, the software engineering experts that
compile the report need to be able to explain IT issues in lay-
man’s terms. In addition to the summaries of the monthly and
quarterly iterations, the Annual Software Report may include
IT-related financial information, if available in sufficient detail.



III. TOOL BASIS

In this section we provide a brief discussion of the tool
support for source code analysis on which the monitoring
approach is based.

The tools offer three overall pieces of functionality: gath-
ering source code, performing static analysis on the code,
and visualizing the analysis results. The components that
implement analysis and visualization are frameworks into
which various subcomponents can be inserted that implement
individual analysis and visualization algorithms. A repository
that persistently stores all information extracted from the
sources is shared by the components for gathering, analysis,
and visualization.

A. Source Manager

Source code files can be brought into the system in different
ways. In some cases, a connection is made to the versioning
system of the client, such that the upload procedure is fully
automatic. In other cases, the technical situation or client
preferences do now allow full automation. For these cases,
a secure upload facility is provided which can be operated by
the client via a standard web browser.

B. Analysis Components

Once source code files have been uploaded to the system,
they will be analyzed statically by the analysis framework.
Which analyses are available for the various source files
depends on the specific client configuration.

Analysis components vary in their degree of sophistication
and generality. Some components are applicable only to certain
types of files. For instance, a component of control-flow
reconstruction may implement an algorithm that works only
for ANSI-Cobol-85. Other components are applicable more
generally. For instance, a component for counting lines of code
and comment could work for any language that employs one
of the common comment conventions.

The amount of source code in a typical software portfolio
ranges between 1 million and 100 million lines of code.
Processing this code to obtain the basic monitoring data
should under no circumstance take more than a few hours.
The computational complexity of the implemented algorithms
should be kept within bounds. In this sense, the analysis
components must be scalable.

C. Visualization components

Basically, two categories of visualizations are available:
charts and graphs. Both are highly parameterizable. We are not
only interested in presenting data about software at a particular
moment. We need to visualize the evolution of the software
throughout time. Of course charts can be used for this purpose,
where one of the axes represents time. Another instrument is
the use of animations.

analysability
changeability
stability
testability

maintainability

maturity
fault tolerance
recoverability

reliability

external and internal quality

suitability
accuracy

interoperability
security

functionality

adaptability
installability
co-existence
replacability

portability

understandability
learnability
operability

attractiveness

usability

time behaviour

resource 
utilisation

efficiency

Fig. 3. Breakdown of the notions of internal and external software product
quality into 6 main characteristics and 27 sub-characteristics (the 6 so-called
compliance sub-characteristics are not shown). In this paper, we focus on
the maintainability characteristic and its 4 sub-characteristics of analyzability,
changeability, stability, and testability.

IV. A PRACTICAL MODEL OF TECHNICAL QUALITY

The ISO/IEC 9126 standard [2] describes a model for soft-
ware product quality that dissects the overall notion of quality
into 6 main characteristics: functionality, reliability, usability,
efficiency, maintainability, and portability. These characteris-
tics are further subdivided into 27 sub-characteristics. This
breakdown is depicted in Fig. 3. Furthermore, the standard
provides a consensual inventory of metrics that can be used
as indicators of these characteristics [3], [4]. The defined
metrics provide guidance for a posteriori evaluation based
on effort and time spent on activities related to the software
product, such as impact analysis, fault correction, or testing.
Remarkably, ISO/IEC 9126 does not provide a consensual set
of measures for estimating maintainability on the basis of a
system’s source code.

Over the course of several years of management consultancy
grounded in source code analysis, we have started to formulate
a software quality model in which a set of well-chosen source-
code measures are mapped onto the sub-characteristics of
maintainability according to ISO/IEC 9126, following prag-
matic mapping and ranking guidelines [5]. We briefly present
this model.

A. Mapping source code properties quality aspects

The maintainability model we have developed links system-
level maintainability characteristics to code-level measures in
two steps. Firstly, it maps these system-level characteristics to
properties on the level of source code, e.g. the changeability
characteristic of a system is linked to properties such as
complexity of the source code. Secondly, for each property one
or more source code measures are determined, e.g. source code
complexity is measured in terms of cyclomatic complexity.

Our selection of source code properties, and the mapping of
system characteristics onto these properties is shown in Fig. 4.
The notion of source code unit plays an important role in
various of these properties. By a unit, we mean the smallest
piece of code that can be executed and tested individually. In
Java or C# a unit is a method, in C a unit is a procedure.
For a language such as COBOL, there is no smaller unit
than a program. Further decompositions such as sections or
paragraphs are effectively labels, but are not pieces of code
that are sufficiently encapsulated to be executed or tested
individually.



IS
O

/I
E

C
91

26
m

ai
nt

ai
na

bi
lit

y

source code properties

vo
lu

m
e

co
m

pl
ex

ity
pe

r
un

it

du
pl

ic
at

io
n

un
it

si
ze

un
it

te
st

in
g

analysability x x x x
changeability x x
stability x
testability x x x

Fig. 4. Mapping system characteristics onto source code properties. The
rows in this matrix represent the 4 maintainability characteristics according to
ISO/IEC 9126. The columns represent code-level properties, such as volume,
complexity, and duplication. When a particular property is deemed to have
a strong influence on a particular characteristic, a cross is drawn in the
corresponding cell. .

The influence of the various source code properties on
maintainability characteristics of software is as follows:

• Volume: The overall volume of the source code influences
the analysability of the system.

• Complexity per unit: The complexity of the code units
influences the system’s changeability and its testability.

• Duplication: The degree of source code duplication influ-
ences analysability and changeability.

• Unit size: The size of units influences their analysability
and testability and therefore of the system as a whole.

• Unit testing: The degree of unit testing influences the
analysability, stability, and testability of the system.

This list of properties is not intended to be complete, or pro-
vide a watertight covering of the various system-level charac-
teristics. Rather, they are intended to provide a minimal, non-
controversial estimation of the main causative relationships
between code properties and system characteristics. Intention-
ally, we only high-light the most influential causative links
between source code properties and system characteristics. For
instance, the absence of a link between volume and testability
does not mean the latter is not influenced at all by the former,
but rather that the influence is relatively minor.

B. Ranking

For ranking, we use the following simple scale for each
property and characteristic: ++ / + / o / - / --. For various code-
level properties we have defined straightforward guidelines for
measuring and ranking them.

As an example, consider the property of complexity. The
complexity property of source code refers to the degree of
internal intricacy of the source code units from which it is
composed. Since the unit is the smallest piece of a system
that can be executed and tested individually, it makes sense
to calculate the cyclomatic complexity on each unit. To arrive
at a meaningful aggregation of the complexity values of the
various unit of a system, we take the following categorization

low

59%

moderate

14%

high

16%

very high

11%

low

78%

moderate

13%

high

7%

very high

2%

Fig. 5. Distribution of lines of code over the four complexity risk levels
for two different systems. Regarding complexity, the leftmost system scores
-- and the rightmost system scores -.

of units by complexity, provided by the Software Engineering
Institute, into account [6]:

CC Risk evaluation
1-10 simple, without much risk

11-20 more complex, moderate risk
21-50 complex, high risk
> 50 untestable, very high risk

Thus, from the cyclomatic complexity of each unit, we can
determine its risk level. We now perform aggregation of
complexities per unit by counting for each risk level what
percentage of lines of code falls within units categorized at that
level. For example, if, in a 10.000 LOC system, the high risk
units together amount to 500 LOC, then the aggregate number
we compute for that risk category is 5%. Thus, we compute
relative volumes of each system to summarize the distribution
of lines of code over the various risk levels. These complexity
‘footprints’ are illustrated in Fig. 5 for two different systems.

Given the complexity footprint of a system, we determine
its complexity rating using the following schema:

maximum relative LOC

rank moderate high very high
++ 25% 0% 0%
+ 30% 5% 0%
o 40% 10% 0%
- 50% 15% 5%
-- - - -

Thus, to be rated as ++, a system can have no more than 25%
of code with moderate risk, no code at all with high or very
high risk. To be rated as +, the system can have no more than
30% of code with with moderate risk, no more than 5% with
high risk, and no code with very high risk. A system that has
more than 50% code with moderate risk or more than 15%
with high or more than 5% with very high risk is rated as --.

For example, the system with the leftmost complexity
profile of Fig. 5 will be rated as --, since it breaks both the
15% boundary for high risk code and the 5% boundary for
very high risk code. The rightmost profile leads to a - rating,
because it breaks the 0%, but not the 5% boundary for very
high risk code.

Similar rating guidelines have been defined for other source
code properties. Details can be found elsewhere [5]. The



boundaries and thresholds we defined are based on experience.
During the course of evaluating numerous systems, these
boundaries turned out to partition systems into categories that
corresponded to expert opinions.

C. Practicality of the quality model

Our quality model exhibits a number of desirable properties.
• The measures are mostly technology independent. As a

result, they can be applied to systems that harbour various
kinds of languages and architectures.

• Each measure has a straightforward definition that is easy
to implement and compute. Consequently, little up-front
investment is needed to perform the measurement.

• Each measure is simple to understand and explain, also
to non-technical staff and management. This facilitates
communication to various stake holders in the system.

• The measures enable root-cause analysis. By giving clear
clues regarding causative relations between code-level
properties and system-level quality, they provide a basis
for action.

Due to these properties, the model has proven to be practically
usable in the context of software monitoring.

V. CASE STUDIES

Over the past few years, we have applied software moni-
toring in a wide range of management consultancy projects.
In this section, we share some of our experiences in three
anonymized case reports.

A. Curbing system erosion during maintenance

An organisation has automated a part of its primary business
process in a software system some 10 to 15 years ago. A party
that currently plays no role in the maintenance of the system
built it. Over time, maintenance has passed through a number
of organisations. The system is currently being operated and
managed in a location in central Europe, and being maintained
in South East Asia. The system owner (business requirements
developer) is in a different location in western Europe. The
system owner periodically requests specific features to be
added to the system, and from time to time the system needs
to be adapted to a changing hardware environment.

We were asked to monitor the maintenance of the system
in order to improve management’s control over the technical
quality of the software and the associated costs of the main-
tenance process.

As a result of the monitoring activity, we had accurate in-
sight into various system parameters, among which its volume.
In Fig. 6, the volume of the system, measured in lines of code,
is plotted for the 4 latest releases of the system, separated into
C code, stored procedures (PL/SQL), and scripts. Note that
an increase in the volume of C code of about 35% occurred
between release r1 and release r2. Such increases are normal
in development situations, but in the current maintenance
situation, where the system had been more or less stable for a
number of years, this amount of growth is remarkable. When
we asked the various parties involved with the system what

Lines of code

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

r1 r2 r3 r4

C Stored procs Scripts

Fig. 6. System volume in lines of code for the latest 4 releases (Case V-A).

Duplication [%]

0

10

20

30

40

50

60

r1 r2 r3 r4

C Stored procs Scripts

Fig. 7. Code duplication for the latest 4 releases (Case V-A).

could explain this growth, we were met with blank stares;
nobody could come up with a reason why the system was
growing so much.

Another parameter that we monitored is the amount of code
duplication in the system. This is expressed as a percentage
of code lines. A code line counts as duplicated when it
participates in a block of code of at least 6 lines that occurs
more than once. Apart from some compensation for spacing
issues, we count exact duplicates. For the same 4 releases, the
measurement values are plotted in Fig. 7. As it turned out,
the unexplained growth of the C code between release r1 and
release r2 was accompanied by an increase in duplication that
was even more pronounced.

After some further investigation the underlying cause was
identified: from version r1 to r2 a particular piece of hardware
was upgraded for some installations of the system. As a result,
the driver for that hardware needed to be changed as well.
Since the old driver was still needed for the old piece of
hardware, the driver was copied completely, and a few minor
changes were made to it to facilitate the new hardware.

Although there may have been a reason for copying initially



-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

r1 r2

deleted

added

changed

unchanged

total

Fig. 8. Code modifications on the file level, between two versions (Case V-B).

(shorter time to market, a belief that this was a temporary
solution), it will be a burden to maintenance cost in the
long run. As the charts show, the initial copying was not
subsequently cleaned up in later versions of the system.

The fundamental problem, of course, was that no explicit
decision was ever made: the developers took this course of
action because they felt this was the best, easiest, or quickest
way to satisfy a particular change request, but they did not take
into account the consequences to the overall system health.

By analysing the numbers, and showing the result of the
action on the complete code base, we provide both developers
and management with the data needed to make an informed,
explicit decision regarding the future of the system. In this
case, actions were planned in subsequent releases to curb
system erosion by refactoring the code such that the introduced
duplication was eliminated again.

B. Systems accounting from code churn

An organisation was building an information system to
automate its primary business process. System development
was done on three sites on two continents. Requirements
gathering and management was done on another two sites in
two different countries. An estimated 25 subcontractors were
involved in the project, with an estimated 240 people. The
perception of higher management was that a significant part
of the 240 people involved were developing code on a day-
to-day basis. We were asked to monitor the technical quality
of the system.

When we analysed the system, it turned out to be quite large.
It was developed in a modern object-oriented language, and
consisted of about 1.5 million lines of code divide over about
7000 files. Based on software productivity statistics [7], a
system of this volume, built with this technology, corresponds
to about 170 man years, as a rough estimate. The technical
quality of the system, judged on the basis of indicators such
as modularization, complexity, duplication, etc. did not reveal
any major risks, though several points for improvement were
identified.

Since the system was several years old already, strong doubt
arose whether for a system of this size and quality the staffing

of 240 people was justified. To answer this question from
management we made an in-depth comparison of two versions
of the system, separated by about one year.

The overall volume of the system, its complexity, dupli-
cation, and other indicators turned out to have been more
or less stable over that period. Still, many modifications had
been made. We charted those modifications in terms of file
creations, deletions, and modification, as can be seen in Fig. 8.
When a file was copied, the copy was adapted, and the old file
was removed, we counted this as a single file modification.

Based on our measurements, it turned out that the amount of
change over that year was nowhere near the productivity that
one may expect from a 240 people effort. Perhaps 50 would
have been more realistic.

After we reported our findings, an investigation was started
to establish how many staff members were actually active as
software developers, to find out what exactly the other people
on the project were doing, and what sources of overhead
could be eliminated. This investigation led to a restart of
the project with less than 30 people, of which about 18 are
actively developing software. Development of the system has
been brought back to a single location. Requirements gathering
is still done at a different location, but people responsible
for the requirements spend at least three days a week at the
development location.

After the restart, the productivity of the project grew in
absolute terms. We were told that the project was delivering
more functionality (defined in terms of feature requests or
change requests) per time unit with 30 people than they were
with 240 people.

In retrospect this is not as surprising as it seems. It is widely
acknowledged that adding more manpower to a software
project does not make it necessarily more productive [8]. In
addition, dividing resources over a multitude of locations was
identified as a major source of overhead and waste.

What was surprising to us is that our technology apparently
can be used for what we call ‘systems accounting’. Using a
very technical (and not very sophisticated) measure, we were
able to see right through the 25 subcontractors and the 240
people. In this case, software monitoring at the system level
and fact-based interaction with high-level management proved
to be decisive in radically improving efficiency.

C. Learn from failure, measure for success

We were asked to monitor the development of an e-
Commerce platform for a large bank in the Netherlands.
This platform was built from scratch as a replacement for
a functionally identical platform which failed in the rollout
phase. Because of the earlier failure, the bank and its (new)
outsource party decided to use our monitoring service in order
to gain insight into the technical quality of the new software.
Their key targets for this new project were to realize low costs
of maintenance and operation.

At the start of the second attempt, we performed an assess-
ment on the code base of the first attempt, which led us to
attribute the failure to several factors, including:



Voortgang/LOC

Oude eServices

eServices 24,122

149,713

48,441

395,615

Java Config

Voortgang/LOC

Oude eServices

eServices 24,122

149,713

48,441

395,615

Java Config

0 100000 200000 300000 400000 500000 600000

New

Old

Dummy

Java

Other

Fig. 9. Volume measurements in lines of code for both the failed project
and the new project (Case V-C).

• An overly complex design that ambitiously tried to gen-
eralize the e-Commerce platform so that it could handle
future markets.

• A design that tried to solve possible performance issues
a priori by using a complex distributed J2EE EJB-based
architecture.

• A lack of (automatic) unit tests and integration tests.
Learning from these lessons, a set of contrasting goals were
set for the new project:

• A minimalist design that focused only on the current
product line.

• A lightweight approach to system architecture.
• A test-driven approach, by focusing on automated system

and unit tests.
Continuous monitoring of the source code base was put into
place from the start of the new project.

Our monitoring of volume indicators demonstrated that the
new approach resulted in a much leaner system. Fig. 9 shows
measurements of the lines of code for both the old and new
system. The measurements are split out between Java code and
other kinds of code, which include HTML, XML, and SQL.
As the charts show, the new system was significantly smaller
than the old one (about 7,5 times smaller). Over the period of
14 months, the volume increase of the new system was almost
linear, indicating constant productivity throughout that period.

The new approach also paid off demonstrably in terms
of quality indicators such as complexity and duplication.
The complexity profiles of both old and new system are
shown in Fig. 10. Using the quality model of Section IV,
the old system is rated on complexity as poor (--), while
the new system is rated as excellent (++). The duplication
measurements are shown in Fig. 11. The new system contains
higher duplication in non-Java code (33%) than in Java code
(2%), but significantly less than the old system for both kinds
of code (23% and 57%). The timelines reveal that at the start
of the project, duplication was low and relatively unstable,

low
57%

moderate
13%

high
18%

very high
12%

low
94%

moderate
5%

high
1%

very high
0%

Fig. 10. Complexity profiles for both the failed project and the new project
(Case V-C). The former system scores --, while the new system scores ++.

Code Duplicatie

Oude eServices

eServices
33

57

2

23

Java Config

Code Duplicatie

Oude eServices

eServices
33

57

2

23

Java Config

0 10 20 30 40 50 60

New

Old

Dummy

Java

Other

Fig. 11. Duplication measurements in lines of code for both the failed project
and the new project (Case V-C).

while towards the end of the project, this measure stabilizes.
For Java code, the final value is excellent, but for non-Java
code duplication is still too high.

We also measured several coding standards, including:
• Double checked locking: 60 instances in the old system

and 0 in the new. The double checked locking construct
introduces a bug in thread synchronization code.

• String reference equality: 22 vs. 0. String reference
equality is often a bug introduced by inexperienced
programmers; the equals method should be called instead.

• Too generic error handling constructs: 2141 vs. 17. The
17 cases in the new code were manually checked, and did
not introduce risks (false positives), while sampling the
2141 violations in the old code revealed actual problems.

Monitoring also revealed that test code was being written, with
a test coverage stable at about 60% throughout the course of
the project.

In this case, monitoring helped to reduce the size and
increase the technical quality of the new system. Surprisingly,
the much simpler (non-distributed) architecture of the new
system performed much better than the original. Also the



resulting system proved to be much easier to tweak for specific
performance issues. In contrast to the previous attempt, this
system was successfully concluded and taken into production.

VI. CONCLUSION

A. Contributions

Some years ago, we developed our tool-based method for
software monitoring [1] and introduced it into the market.
Since then, we have applied the method in a wide range of
circumstances. On the technological side, we have monitored
systems built in modern object-oriented languages, as well
as classical mainframe languages. On the organizational side,
we have acted on behalf of both clients and providers of
application outsourcing services (but never both at the same
time, naturally). In terms of software life-cycle, we have
monitored both system maintenance and development from
scratch.

More recently, we have used our experience in software
monitoring as well as in software risk assessment [9] to
draft a practical model for measuring the technical quality
of software products [5]. This model has been instrumental
for the abstraction and aggregation of source code analysis
results necessary for translation of technical findings into
management-level notions.

In this paper, we have summarized both the monitoring
approach and the quality model, and presented them for the
first time in combination. Moreover, we have shared our
experience of applying the approach and the model in a
range of application outsourcing situations. The cases reported
include maintenance as well as development situations, various
technology mixes, and a variety of organizational contexts.

B. Lessons learned

Among the lessons learned from these cases and others not
reported here, are the following:

• Simple measures, but well-chosen and aggregated in
meaningful ways, are effective instruments for software
monitoring.

• The simultaneous use of distinct metrics can be used to
zoom in on root causes of perceived quality or produc-
tivity problems.

• The gap between technical and managerial realities can be
bridged with a practical software product quality model.

• Monitoring helps to curb system erosion in maintenance
situations.

• Monitoring code churn allows ‘systems accounting’.
• Monitoring helps to achieve clear productivity and quality

targets.
• The chances of success of software development projects

are influenced positively by software monitoring.
In the introduction, we indicated that software monitoring,
when executed by a third party, can resolve a dilemma that
arises from application outsourcing. Indeed, the paradox of
removing technical know-how from the organization to an
outsourcing party while needed that knowledge to manage the
relationship to that party, can in our experience be solved

by third-party monitoring of the technical quality of the
outsourced software.

C. Future work

Software monitoring, though supported by tools, standards,
and models, is a creative process that needs continuous im-
provement and calibration. Our quality model is still fairly
young, and will be further refined based on our experience
with its application. Also, changes in the maturity of the
software industry will call for adaptation of rating guidelines,
application of more sophisticated metrics, and perhaps other
analysis instruments. In particular, we are keeping a close
watch on developments in the area of analyzing and visualizing
software evolution.

We collect a extensive set of measurement data in the course
of our monitoring and assessment activities. We are currently
consolidating this data into a benchmarking data base that will
allow well-founded comparisons of systems on the level of
source code properties as well as system-level quality aspects.

REFERENCES

[1] T. Kuipers and J. Visser, “A tool-based methodology for software port-
folio monitoring.” in Proceedings of the 1st International Workshop on
Software Audit and Metrics, SAM 2004, In conjunction with ICEIS 2004,
Porto, Portugal, April 2004, M. Piattini and M. Serrano, Eds. INSTICC
Press, 2004, pp. 118–128.

[2] ISO, ISO/IEC 9126-1: Software Engineering - Product Quality - Part
1: Quality Model. Geneva, Switzerland: International Organization for
Standardization, 2001.

[3] ——, “ISO/IEC TR 9126-2: Software engineering - product quality - part
2: External metrics,” Geneva, Switzerland, 2003.

[4] ——, “ISO/IEC TR 9126-3: Software engineering - product quality - part
3: Internal metrics,” Geneva, Switzerland, 2003.

[5] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring
mainainability,” 2007, draft, April 30.

[6] C. M. Software Engineering Institute, “Cyclo-
matic complexity – software technology roadmap,”
http://www.sei.cmu.edu/str/descriptions/cyclomatic.html.

[7] Software Productivity Research LCC, “Programming Languages Table,”
Feb. 2006, version 2006b.

[8] F. Brooks, The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Publishing, 1975.

[9] A. van Deursen and T. Kuipers, “Source-based software risk assessment,”
in ICSM ’03: Proceedings of the International Conference on Software
Maintenance. Washington, DC, USA: IEEE Computer Society, 2003, p.
385.


