
Grammars as Feature Diagrams

Merijn de Jonge Joost Visser

CWI, Amsterdam

Abstract

Feature Diagrams (FDs) have been proposed to describe the
configuration space of a software system at the problem level.
They can also be used to describe the configuration space of the
various components at the solution level. We demonstrate the
correspondance of FDs to grammars, and we exploit this cor-
respondance to generate solution configurations from problem
configurations. To this end, we view configurations as parse
trees, and we obtain a solution configuration by flattening this
tree and re-parsing it with the solution grammar. The solution
configuration is then fed to the autobundle tool to compose
and configure a source tree from all required solution compo-
nents.

1 Feature Descriptions

Feature Diagrams (FDs) have been proposed to describe
the configuration space of a software system at the level of
the problem domain [1, Chapter 4]. The Feature Description
Language (FDL) can be used as a textual representation for
FDs [2]. Such textual representations are better suited to de-
scribe large configuration spaces, and they are amenable to
automatic analysis and transformation (e.g., normalization) of
configuration spaces.

Fig. 1 and 2 give an example of a feature description for a
software renovation factory, as diagram and as text. Here, a
renovation factory has two mandatory composite features: the
language of the sources to be renovated, and the language in
which the factory is implemented. Each of these composite fea-
tures has several alternative languages as atomic features (mu-
tually exclusive in the second case). Futhermore, the imple-
mentation language has support for generic syntax tree traver-
sal as optional feature. Note that in FDL atomic features start
with lower case letters and composite features start with upper-
case letters and that features are composed using feature oper-
ators, such as all, more-of, and one-of.

A specific configuration, i.e., a point in the configuration
space, corresponds to a set of atomic features. For instance,�
cobol java traversals � describes a Cobol renova-

tion factory implemented in Java with support for generic tree
traversal.

cobol sdl sql asf java traversal

SourceLang ImplLang

RenovationFactory

Figure 1. FD for a renovation factory.

RenovationFactory :
all(SourceLang, ImplLang)

SourceLang :
more-of(cobol, sdl, sql)

ImplLang :
all(one-of(asf , java), traversals?)

Figure 2. Textual representation of Fig. 1.

SourceLang ImplLang � RenovationFactory
(“cobol” � “sdl” � “sql”)+ � SourceLang
(“asf” � “java”) “traversals”? � ImplLang

Figure 3. Generated configuration language.

2 From FD to Grammar

Feature descriptions are remarkably similar to grammars.
For instance, Fig. 3 shows a grammar in the syntax definition
language SDF that corresponds to our feature description of
Fig. 2. In this analogy, atomic features are terminals, com-
posite features are non-terminals, and feature operators map to
syntax operators. The atomic features form the alphabet of a
configuration language, and a sentence in this language spec-
ifies a particular configuration. A parse tree can be seen to
model a feature selection. In fact, we implemented a generator
that converts any FD to an SDF grammar, and we applied it to
generate Fig. 3.

By converting an FD to a grammar, we facilitate the appli-
cation of syntax tools to feature descriptions. For instance, we
can generate a parser from the grammar to serve as configura-
tion validator. To check the validity of a configuration (i.e., a
set of atomic features) we simply parse it. (To check feature
contraints, a type checker should complement the parser). We
can feed the grammar to a structure editor to obtain an inter-
active configuration editor, which guides its user through the
configuration space to a valid configuration.

1

package Meta
version 1.0.1
location=http://www.cwi.nl/projects/MetaEnv
realizes

asf, traversal?
requires

Sglr 3.5

Figure 4. Package description for meta.

PackageBase :
more-of(Meta, JJForester, GrammarBase, JDK, ...)

Meta :
all(asf , traversals?, Sglr)

JJForester :
all(JDK, Sglr, traversals)

GrammarBase :
more-of(cobol, sdl, sql, haskell, c, ...)

JDK :
java

Figure 5. FD for factory components.

3 Solution FDs
Our example feature diagram describes the configuration

space at an abstract, implementation-independent level. To
bridge the gap between problem and solution, we will start at
the level of the implementation components and work our way
up.

The Online Package Base (OPB) is a repository of language
tool components developed at CWI, Universiteit Utrecht, IN-
RIA/Loria, and Vrije Universiteit Amsterdam [4]. Each com-
ponent is represented in the OPB by a package description that
states its configuration interface and requirements. Additon-
ally, each package description states a number of atomic fea-
tures that are realized by the corresponding component. An
example is shown in Fig. 4. Here, the meta package (provid-
ing the ASF+SDF Meta-environment) requires the sglr pack-
age (Scannerless Generalized LR parser) to realize the features
asf and traversal.

Interestingly, these package descriptions can straightfor-
wardly be mapped to composite features. When taken together,
the features corresponding to all packages in the OPB form an
FD that describes the configuration space spanned by all avail-
able components. Fig. 5 shows an excerpt.

4 Parse to solve
A feature description at the implementation level can be

converted to an SDF grammar, just like the FD at the prob-
lem level. Note that the languages described by both grammars
overlap, because the sets of atomic features (alphabets) at both
levels overlap. This is no coincidence. The atomic features re-
quired at the problem level must correspond to those realized
at the solution level if these levels are to be bridged.

Recall that the parser generated from the ‘problem gram-
mar’ can be used to validate a given configuration. From the
‘solution grammar’, we can generate a second parser, which we

RenovationFactory

SourceLang ImplLang

cobol

GrammarBase

java

JDK

traversals

JJForester

Sglr

PackageBase

Figure 6. The configuration
�
cobol java

travesals � parsed with the problem grammar
(above) and the solution grammar (below).

can use to reparse such a validated configuration. If the parse
succeeds, the resulting parse tree represents a package selec-
tion that implements the required configuration. Fig. 6 shows
an example configuration, parsed by both grammars. The leafs
of the solution parse tree are the atomic features specified by
the configuration. The internal nodes are the packages required
to realize those features. If no solutions exist, the parse will
fail. If several solutions exist, the parse will be ambiguous.

5 From solution to software bundle
Once the list of required packages has been determined by

the reparsing method above, the autobundle [3] tool can
be used to retrieve the packages from the OPB. This tool per-
forms version resolution, merges the source trees of the re-
quired packages, and integrates their configuration and build
processes.

The resulting source bundle, with pre-configured packages,
forms the implementation of a configuration (product instance)
in the problem space.

References
[1] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Pro-

gramming – Methods, Tools, and Applications. Addison-Wesley,
2000.

[2] A. van Deursen and P. Klint. Domain-specific language design
requires feature descriptions. Journal of Computing and Informa-
tion Technology, 2002.

[3] Merijn de Jonge. Source tree composition. In Proceedings:
Seventh International Conference on Software Reuse, LNCS.
Springer-Verlag, 2002.

[4] Merijn de Jonge, Eelco Visser, and Joost Visser. Collabora-
tive software development. Technical Report SEN-R0113, CWI,
2001.

2

