
Grammar-centered Development of VDM
Support

Tiago Alves? and Joost Visser??

Departamento de Informática, Universidade do Minho, Braga, Portugal
{tiago.alves,joost.visser}@di.uminho.pt

http://www.di.uminho.pt

Abstract. Starting from the ISO language reference, we have devel-
oped an industrial strength grammar for the VDM specification lan-
guage. We summarize both the development process and its result. The
employed methodology can be described as iterative grammar engineer-
ing and includes application of techniques such as grammar metrication,
unit testing, and test coverage analysis. The result is a VDM grammar
of industrial strength, in the sense that it is well-tested, it can be used
for fast parsing of high volumes of VDM specifications, and it allows au-
tomatic generation of support for syntax tree representation, traversal,
and interchange. In particular, we have generated Haskell support for
parsing VDM, traversing the resulting ASTs, representing the ASTs in
XML and in the ATerm maximal sharing interchange format, and for
pretty-printing the ASTs back to VDM’s surface syntax. This front-end
has proven its usefulness in the implementation of VooDooM, a tool that
supports generation of relational models from VDM data types.

1 Introduction

We advocate a grammar-centered approach to language tool development [16],
in which a variety of tool components and support libraries are generated from
platform-neutral grammars. We are applying this approach for the development
of tool support for the VDM specification language (VDM-SL). In the current
paper, we provide a summary of the first two phases of this development.

In the first phase, we have applied grammar engineering techniques to obtain
a complete grammar of the VDM-SL language from its ISO standard language
reference. This phase is summarized in Sections 2 and 3. A fully detailed treat-
ment can be found in [2], which includes the resulting platform-independent
grammar as an appendix.

In the second phase, we have generated a parser, a pretty-printer, and li-
braries for serialization and traversal of abstract syntax trees from our VDM-SL
grammar. We have used these generated components and libraries in the de-
velopment of VooDooM. This tool converts VDM datatype definitions into the

? Supported by Information Knowledge Fusion, IKF-P E!2235.
?? Supported by Fundação para a Ciência e a Tecnologia, SFRH/BPD/11609/2002.

form of a relational model, and was implemented in Haskell. In Section 4, we
discuss generation of components and libraries, specifically for target languages
Java and Haskell, and we provide some details of how tool construction proceeds
after such generation. Full detailes on VooDooM are provided in [1], including
the refinement theory that underpins the conversion it implements.

The paper is concluded in Section 5 with a note on availabilty and iden-
tification of future challenges. For discussions of related work, we refer to [3]
and [1].

2 Grammar Engineering

Grammar engineering is an emerging field of software engineering that aims to
apply solid software engineering techniques to grammars, just as they are ap-
plied to other software artifacts. Such techniques include version control, static
analysis, and testing. Through their adoption, the notoriously erratic and unpre-
dictable process of developing and maintaining large grammars can become more
efficient and effective, and can lead to results of higher-quality. Such timely deliv-
ery of high-quality grammars is especially important in the context of grammar-
centered language tool development, where grammars are used for much more
than single-platform parser generation.

2.1 Grammar-centered tool development

In traditional approaches to language tool development, the grammar of the
language is encoded in a parser specification. Commonly used parser generators
include Yacc, Antlr, and JavaCC. The parser specifications consumed by such
tools are not general context-free grammars. Rather, they are grammars within
a proper subset of the class of context-free grammars, such as LL(1), or LALR.
Entangled into the syntax definitions are semantic actions in a particular target
programming language, such as C, C++ or Java. As a consequence, the gram-
mar can serve only a single purpose: generate a parser in a single programming
language, with a singly type of associated semantic functionality (e.g. compila-
tion, tree building, metrics computation). For a more in-depth discussion of the
disadvantages of traditional approaches to language tool development see [6].

For the development of language tool support, we advocate a grammar-
centered approach [16]. In such an approach, the grammar of a given language
takes a central role in the development of a wide variety of tools or tool com-
ponents for that language. For instance, the grammar can serve as input for
generating parsing components to be used in combination with several differ-
ent programming languages. In addition, the grammar serves as basis for the
generation of support for representation of abstract syntax, serialization and de-
serialization in various formats, customizable pretty-printers, and support for
syntax tree traversal. This approach is illustrated by the diagram in Figure 1.

For the description of grammars that play such central roles, it is essential
to employ a grammar description language that meets certain criteria. It must

grammar

parser
pretty-printer

Abstract
Syntax

serialization
deserialization

Traversal
Support

Fig. 1. Grammar-centered approach to language tool development.

be neutral with respect to target implementation language, it must not impose
restrictions on the set of context-free languages that can be described, and it
should allow specification not of semantics, but of syntax only. Possible candi-
dates are BNF or EBNF, or our grammar notation of choice: SDF [12, 22].

The syntax definition formalism SDF allows description of both lexical and
context-free syntax. It adds even more regular expression-style constructs to
BNF than EBNF does, such as separated lists. It offers a flexible modularization
mechanism that allows modules to be mutually dependent, and distribution of
alternatives of the same non-terminal across multiple modules. Various kinds of
tool support are available for SDF, such as a well-formedness checker, a GLR
parser generator, generators of abstract syntax support for various programming
languages, among which Java, Haskell, and Stratego, and customizable pretty-
printer generators [4, 23, 19, 17, 15, 14].

2.2 Grammar evolution

Grammars for sizeable languages are not created instantaneously, but through
a prolonged, resource consuming process. After an initial version of a grammar
has been created, it goes through an evolutionary process, where piece-meal
modifications are made at each step.

A basic instrument in making such evolutionary processes tractable is version
control. We have chosen the Concurrent Versions System (CVS) as the tool to
support such version control [10].

In grammar evolution, different kinds of transformation steps occur:

Recovery: An initial version of the grammar may be retrieved by reverse en-
gineering an existing parser, or by converting or transcribing a language
reference manual, available as electronic or paper document.

Error correction: Making the grammar complete, fully connected, and correct
by supplying missing production rules, or adapting existing ones.

Extension or restriction: Adding rules to cover the constructs of an extended
language, or removing rules to limit the grammar to some core language.

Refactoring: changing the shape of the grammar, changing neither the lan-
guage that is generated, nor its semantics.

In our case, grammar descriptions will include disambiguation information, so
adding disambiguation information is yet another kind of transformation step
present in our evolution process.

2.3 Grammar metrics

Quantification is an important instrument in understanding and controlling
grammar evolution, just as it is for software evolution in general. We have
adopted, adapted, and extended the suite of metrics defined for BNF in [20]
and implemented a tool, called SdfMetz, to collect grammar metrics for SDF
grammars. Full details about the definition and the implementation of these
SDF metrics are provided in [3]. Here we will provide just a brief description.

Size and complexity metrics Table 1 (left side) lists a number of size and
complexity metrics for grammars. McCabe’s cyclometric complexity (MCC),
originally defined for program complexity, was adapted for grammars, based
on an analogy between grammar production rules and program procedures. In
SDF, each non-terminal can have several productions associated to it. Therefore,
average right hand side (AVS) is split into two separate metrics: average size of
right-hand sides per production (AVS-P) and average size of right-hand sides per
non-terminal (AVS-N). While the AVS-N metric is more appropriate to compare
with other formalisms (like BNF), the AVS-P metric is more accurate.

Structure metrics Table 1 (right side) lists a number of structure metrics also
previously defined in [20]. The grammar is first represented as a graph that has
non-terminal as nodes, and contains edges between two non-terminals whenever
one occurs in the RHS of the definition of the other. Only the tree impurity
metric (TIMP) is calculated directly from this graph, all the others are calculated
from the strongly connected components graph. This graph is obtained from the
previous graph in which each node (level) is obtained by grouping the elements
that are strongly connected.

Table 1. Size, complexity, and structure metrics for grammars.

Size and complexity metrics

TERM Number of terminals
VAR Number of non-terminals
MCC McCabe’s cyclometric complexity
AVS-P Avg. size of RHS per production
AVS-N Avg. size of RHS per non-terminal

Structure metrics

TIMP Tree impurity (%)
CLEV Normalized count of levels (%)
NSLEV Number of non-singleton levels
DEP Size of largest level
HEI Maximum height

Tree impurity (TIMP) measures how much the graph resembles a tree, ex-
pressed as a percentage. A tree impurity of 0 percent means that the graph is a
tree, and a tree impurity of 100 percent means that it is a fully connected graph.

Halstead metrics The Halstead Effort metric [11] has also been adapted for
BNF grammars [20]. The essential step in adapting Halstead’s metrics to gram-
mars is to interpret the notions of operand and operator in the context of gram-
mars.

Ambiguity metrics In SDF, disambiguation constructs are provided in the
same formalism as the syntax description itself. To quantify this part of SDF
grammars, we defined a series of metrics. One of these is the number of unique
productions in priorities (UPP).

2.4 Grammar testing

In grammar testing, as in general software testing, a global distinction can be
made between functional tests (black box) and unit tests (white box). A func-
tional grammar test will use complete files as test data. A unit test will use
fragments of files as test data. Typically, such fragments are composed by the
grammar developer to help him detect and solve specific errors in the grammar,
and to protect himself from reintroducing the error in subsequent development
iterations. For both functional and unit testing we have used the parse-unit
utility [7].

2.5 Coverage metrics

To determine how well a given grammar has been tested, a commonly used
indicator is the number of non-empty lines in the test suites. A more reliable
instrument to determine grammar test quality is coverage analysis. We have
adopted the rule coverage (RC) metric [21] for this purpose. The RC metric
simply counts the number of production rules used during parsing of a test
suite, and expresses it as a percentage of the total number of production rules
of the grammar. To computed these numbers for our functional test suite and
unit test suite we developed a tool called SdfCoverage.

SDF allows two possible interpretations of RC, due to the fact that a single
non-terminal may be defined by multiple productions. Thus, as in the case of
AVS, we measured two metrics, by the names of RC (rule coverage) and NC
(non-terminal coverage), respectively.

3 Development of the VDM grammar

We have applied the grammar engineering techniques described above during the
iterative development of an SDF grammar of VDM-SL. In this section we first

describe the scope, priorities, and planned deliverables of the project. Then, the
evolution of the grammar during development is explained. We provide measure-
ment data on the evolution process and interpretations of the measured values.
Finally we describe the test suites used, and the evolution of the unit tests and
test coverage during development.

3.1 Scope, priorities, and planned deliverables

We limited the scope of the initial project to the VDM-SL language as described
in the ISO VDM-SL standard [13]. Not only should the parser accept the VDM-
SL language exactly as defined in the standard, we also want the shape of the
grammar, the names of the non-terminals, and the module structure to corre-
spond closely to the standard.

A release plan was drawn up with three releases within the scope of the initial
phase of the project:

Initial grammar Straightforward transcription of the concrete syntax BNF
specification of the ISO standard into SDF notation. Introduction of ex-
tended SDF constructs.

Disambiguated grammar Addition of disambiguation information to the gram-
mar, to obtain a grammar from which a non-ambiguous GLR parser can be
generated.

Refactored grammar Addition of constructor attributes to context-free pro-
ductions to allow generated parsers to automatically build ASTs with con-
structor names corresponding to abstract syntax of the standard. Changes
in the grammar shape to better reflect the tree shape as intended by the
abstract syntax in the standard.

3.2 Grammar creation and evolution

To accurately keep track of all grammar changes, for each transformation a new
revision was created, leading to the creation of a total of 48 development versions.
While the first and the latest release versions (initial and refactored) correspond
to development versions 1 and 48 of the grammar, respectively, the intermediate
release version (disambiguated) corresponds to development version 32.

The initial grammar The grammar was typed from the hardcopy of the ISO
Standard [13]. In that document, context-free syntax, lexical syntax and disam-
biguation information is specified in a semi-formal notation. Context-free syntax
is specified in EBNF1, but the terminals are specified as mathematical symbols.
To translate the mathematical symbols to ASCII symbols, an interchange table
is defined. Lexical syntax is specified in tables by enumerating the possible sym-
bols. Finally, disambiguation information is specified in terms of precedence in
tables and equations.
1 Although the grammar is specified in EBNF only BNF constructs were used.

Apart from changing syntax from EBNF to SDF and using the interchange
table to substitute mathematical symbols for their parseable representation, sev-
eral issues were addressed. For instance, SDF’s constructs for iteration (with
separators) were introduced to make the grammar more elegant and concise.
SDF’s modularization features were used to modularize the grammar following
the sectioning of the ISO standard. In the ISO standard, lexical syntax is de-
scribed in an ad-hoc notation, resembling BNF but without clear semantics, plus
a table that enumerates symbols. We interpreted this lexical syntax description
and converted it into SDF, where lexical syntax can be defined in the same gram-
mar as context-free syntax. Obtaining a complete and correct definition required
renaming some lexical non-terminals and providing additional definitions.

Disambiguation In SDF, disambiguation is specified by means of dedicated
disambiguation constructs [5]. These are specified more or less independently
from the context-free grammar rules. The constructs are associativity attributes,
priorities, reject productions and lookahead restrictions.

In the ISO standard, disambiguation is described in detail by means of ta-
bles and a semi-formal textual notation. We interpreted these descriptions and
expressed them with SDF disambiguation constructs. This was not a completely
straightforward process, in the sense that it is not possible to simply translate
the information of the standard document to SDF notation. In some cases, the
grammar must respect specific patterns in order enable disambiguation. For each
disambiguation specified, a unit test was created.

Refactoring As already mentioned, the purpose of this release was to auto-
matically generate ASTs following the ISO standard as close as possible. To this
end, two operations were performed: addition of constructor attributes to the
context-free rules, and removal of injections2 to make the AST nicer.

3.3 Grammar metrics

We measured grammar evolution in terms of the size, complexity, structure and
Halstead metrics introduced above. This development is summarized in Table 2.
This table shows the values of all metrics for the three released versions. In
2 We call a production rule an injection when it is the only defining production of its

non-terminal, and its right-hand side contains exactly one (different) non-terminal.

Table 2. Grammar metrics for the three release versions.

Version term var mcc avs-n avs-p hal timp clev nslev dep hei

initial 138 161 234 4.4 2.3 55.4 1% 34.9 4 69 16
disambiguated 138 118 232 6.4 2.8 61.1 1.5% 43.9 4 39 16
refactored 138 71 232 10.4 3.3 68.2 3% 52.6 3 27 14

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

VAR
HAL (K)
CLEV

Fig. 2. The evolution of grammar metrics during development. The x-axis represents
the 48 development versions.

addition, Figure 2 graphically plots the evolution of a selection of the metrics
for all 48 development versions.

A first important observation to make is that the number of terminals is
constant throughout grammar development. This is conform expectation, since
all keywords and symbols of the language are present from the first grammar
version onward.

Normalized count of levels (CLEV) indicates roughly the percentage of modu-
larizability, if grammar levels (strongly connected components in the flow graph)
are considered as modules. Throughout development, the number of levels goes
down (from 58 to 40; values are not shown), but the potential number of lev-
els, i.e. the number of non-terminals, goes down more drastically (from 161 to
71). As a result, CLEV rises from 34% to 53%, meaning that the percentage of
modularizability increases.

Table 3. Grammar metrics for VDM and other grammars. The italicized grammars are
in BNF, and their metrics are reproduced from [20]. The remaining grammars are in
SDF. Rows have been sorted by Halstead effort (HAL), which is reported in thousands.

Grammar term var mcc avs-n avs-p hal timp clev nslev dep hei

Fortran 77 21 16 32 8.8 3.4 26 11.7 95.0 1 2 7
ISO C 86 65 149 5.9 5.9 51 64.1 33.8 3 38 13
Java v1.1 100 149 213 4.1 4.1 95 32.7 59.7 4 33 23
AT&T SDL 83 91 170 5.0 2.6 138 1.7 84.8 2 13 15
ISO C++ 116 141 368 6.1 6.1 173 85.8 14.9 1 121 4

ECMA Standard C# 138 145 466 4.7 4.7 228 29.7 64.9 5 44 28
ISO VDM-SL 138 71 232 10.4 3.3 256 3.0 52.6 3 27 14
VS Cobol II 333 493 739 3.2 1.9 306 0.24 94.4 3 20 27
VS Cobol II (alt) 364 185 1158 10.4 8.3 678 1.18 82.6 5 21 15
PL/SQL 440 499 888 4.5 2.1 715 0.3 87.4 2 38 29

Grammar comparisons We have compared our grammar, in terms of met-
rics, to those developed by others in SDF, and in Yacc-style BNF. The relevant
numbers are listed in Table 3, sorted by the value of the Halstead effort metric
(HAL). In terms of Halstead effort, our VDM-SL grammar ranks quite high,
only behind the grammars of the giant Cobol and PL/SQL languages.

For a more elaborate discussion of metric values and their interpretation, we
refer to [2].

3.4 Test suites

Functional test suite The body of VDM-SL code that strictly adheres to the
ISO standard is rather small. Most industrial applications have been developed
with tools that support some superset or other deviation from the standard,
such as VDM++ [9]. We have constructed a functional test suite by collect-
ing specifications from the internet3. A preprocessing step was done to extract
VDM-SL specification code from literate specifications. We manually adapted
specifications that did not adhere to the ISO standard.

Table 4 lists the suite of functional tests that we obtained in this way. Note
that in spite of the small size of the functional test suite in terms of lines of
code, the test coverage it offers for the grammar is satisfactory. Still, since test
coverage is not 100%, a follow-up project specifically aimed at enlarging the
functional test suite would be justified.

Unit tests During development, unit tests were created incrementally. For every
problem encountered, one or more unit tests were created to isolate the problem.

We measured unit tests development during grammar evolution in terms of
lines of unit test code, and coverage by unit tests in terms of rules (RC) and
non-terminals (NC). This development is shown graphically in Figure 3. As the
chart indicates, all unit tests were developed during the disambiguation phase,
i.e. between development versions 1 and 32.

3 A collection of specifications is available from http://www.csr.ncl.ac.uk/vdm/.

Table 4. Functional test suite. The second column gives the number of code lines. The
third and fourth columns gives coverage values for the final grammar.

Origin LOC RC NC

Specification of the MAA standard (Graeme Parkin) 269 19% 30%
Abstract data types (Matthew Suderman and Rick Sutcliffe) 1287 37% 53%
A crosswords assistant (Yves Ledru) 144 28% 43%
Modelling of Realms in (Peter Gorm Larsen) 380 26% 38%
Exercises formal methods course Univ. do Minho (Tiago Alves) 500 35% 48%

Total 2580 50% 70%

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

LOC

RC

NC

Fig. 3. The evolution of unit tests during development. The x-axis represents the 48
development versions. The three release versions among these are 1, 32, and 48. The
left y-axis corresponds to lines of unit test code. Rule coverage (RC) and non-terminal
coverage (NC) are shown as well.

VDM
grammar

VDM
specs

parse
table

SGLR

AST
datatypes

customizable
pretty-printer

aterm
conversion generic term

interface

customized
pretty-printer

traversals

sdf2table sdf2haskell

DrIFT
DrIFT

tra
ve

rs
al

co
m

bi
na

to
r

lib
ra

rypretty-print
com

binator
library

Haskell

sdf2haskell

XML
conversion

DrIFT

Fig. 4. Architecture of Strafunski. Bold arrows represent generators and grey boxes
represent generated code.

4 VDM Tool Development

We have used the developed VDM grammar for construction of VDM tool sup-
port, following the grammar-centered approach outlined in Section 2.

4.1 Generation of support libraries

Given a high-quality, platform-independent grammar of VDM-SL, grammar-
centered language tool development proceeds by generating components and
libraries. For SDF grammars, such code generation is supported by various tools.
To develop the VooDooM tool, we made use of the Haskell-based Strafunski bun-
dle [19], of which the architecture is shown in Figure 4. This architecture is an
instantiation of the general architecture of Figure 1, and we will briefly describe
its main elements.

sdf2haskell From the VDM grammar, this tool generates (i) a Haskell module
with datatypes that represent the VDM abstract syntax, and (ii) a Haskell
module with a customizable pretty-printer that can convert ASTs into tex-
tual representation.

DrIFT [25] From the Haskell datatypes, this tool generates support libraries
(i) for conversion between ASTs and the external ATerm representation, (ii)
for providing ASTs with a generic term interface, and (iii) for conversion
between ASTs and XML documents.

sdf2table [4] This generator produces a parse table from the VDM grammar,
which can be consumed by the SGLR parser to parse VDM specifications
into ATerms.

libraries A library of generic traversal combinators allows construction of traver-
sals over the VDM ASTs using so-called strategic programming. A library of
generic pretty-print combinators helps to customize the VDM pretty-printer.

user code The user uses the generated code and the libraries to construct a
complete language processing tool, including a customized pretty-printer,
and problem-specific AST traversals.

For targeting Java, similar support tools are available. In particular, the JJ-
Forester tool generates Java class hierarchies and corresponding visitors from
SDF grammars [17]. These generated class hierarchies and visitors enable generic
and flexible traversal construction by instantiating the JJTraveler visitor com-
binator framework [24, 8].

4.2 Tool construction

In the case of VooDooM, the implemented traversals constitute a conversion
engine that transforms sets of VDM datatypes into relational form. A second
grammar, of SQL, was used to generate a pretty-printer for SQL, allowing export
both to VDM and SQL. For a detailed explanation of the conversion engine and
the use of strategic programming in its implementation, we refer to [1].

To give a brief indication of the style of programming that was employed, see
the following code fragment for constructing the graph of dependencies between
VDM types. This function is used in VooDooM to guide the transformations for
recursion removal and inlining of types.

type Edge = (Identifier, Identifier)

dependGraph :: Document-> Gph Identifier
dependGraph d = mkRel (worker "" d)
where
worker :: Term a => Identifier -> a -> [Edge]
worker parent d = maybe [] id (applyTU (stop_tdTU step) d)
where
step = failTU ‘adhocTU‘ def ‘adhocTU‘ use

types

Space = [S];

S = Box | BoxSplit;

Box :: info: BoxInfo

width: Width;

BoxSplit :: one: Space

two: Space;

BoxInfo = token;

Width = real

Box

BoxInfo Width

BoxSplit

Space

S

Fig. 5. A simple VDM document (left) and the corresponding type dependency graph
(right) computed with the dependGraph function.

def :: TypeDefinition -> Maybe [Edge]
def (UnTaggedTypeDef id a b) = return $ worker id (a,b)
def (TaggedTypeDef id a b) = return $ worker id (a,b)

use :: Type -> Maybe [Edge]
use (TypeName (Name id)) = return [(parent, id)]
use t = mzero

The dependGraph function invokes a worker function, which collects a list of
edges, on its argument d and applies mkRel to construct a graph out of those
edges. The worker takes an identifier that serves as parent node as additional
argument, which is initialized with the dummy identifier "". The worker performs
a top down collection strategy stop tdTU, instantiated with a non-traversing
step action. This step function in turn combines two helper functions for dealing
with type definitions (def) and with used type names (use). The former restarts
the worker with the defined identifier as new parent. The latter constructs an
edge between the current parent and the identifier that names the used type.
Note that this traversal works its way through all 71 Haskell datatypes, but
only needs to mention a few of them explicitly. The input and output of the
function for a simple VDM document is shown in Figure 5. A primer for traversal
construction using generic traversal combinators is found in [18].

5 Concluding remarks

We have outlined a mix of grammar engineering techniques and discussed their
application during the production of a VDM-SL grammar from its ISO specifi-
cation. We have shown how such a grammar can be used in grammar-centered
language tool development, involving generation of support libraries and generic
traversal construction.

Availability The final version of the VDM-SL grammar in SDF (development ver-
sion 48) is included in the appendix of [2]. In addition, this version is available as

browseable hyperdocument from http://voodoom.sourceforge.net/iso-vdm.html.
All intermediate versions can be obtained from the CVS repository at the project
web site at http://voodoom.sourceforge.net/. The Haskell code generated from
our VDM-SL grammars is distributed together with the grammar in the Vdm-
Front package. The VooDooM tool is based on this generated front-end. Both of
these can also be downloaded from the project web site.

Future work We plan to extend the grammar in a modular way to cover other
dialects of the VDM-SL language, such as IFAD VDM and VDM++. We are
planning to provide generated Java support as well, by feeding our grammar
to tools such as JJForester [17] or ApiGen [14]. The extensions would render
our work compatible with the Java-based open source VDM tool development
project, Overture4. It remains to be seen whether the generated artifacts would
be integrated into previously developed components, or only used for new com-
ponents.

Should the functionality of VooDooM be integrated into Overture, two pos-
sibilities exist. One is to regard the Haskell implementation as prototype for
a new Java implementation. The other is to allow non-Java components to be
plugged in to the Overture infrastructure as well. Especially for non-core func-
tionality this latter option seems acceptable. If the same grammar is used to
generate interchange support for Java and Haskell, seamless integration seems
within reach.

Discussion A grammar-centered approach to language tool development has
the advantage over more traditional approaches that it allows fast development
of tools and components with different functionalities. We contend that formal
method tools must offer more than a specification/programming language sup-
porting traditional forward engineering. Rather, the potential benefits of a for-
mally well-founded language such as VDM could be exploited to offer advanced
functionality as exemplified by the VooDooM database model calculator.

References

1. T. Alves, P. Silva, J. Visser, and J.N. Oliveira. Strategic term rewriting and its
application to a VDM-SL to SQL conversion. In Proceedings of the Formal Methods
Symposium (FM’05). Springer, 2005. To appear.

2. T. Alves and J. Visser. Development of an industrial strength grammar for VDM.
Technical Report DI-PURe-05.04.29, Universidade do Minho, April 2005.

3. T. Alves and J. Visser. Metrication of SDF grammars. Technical Report DI-PURe-
05.05.01, Universidade do Minho, May 2005.

4. M. van den Brand, A. van Deursen, J. Heering, H. de Jonge, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder, J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: a component-based language
development environment. In R. Wilhelm, editor, Compiler Construction 2001
(CC 2001), volume 2027 of LNCS. Springer-Verlag, 2001.

4 See http://www.overturetool.org/

5. M.G.J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation
filters for scannerless generalized LR parsers. In N. Horspool, editor, Compiler
Construction (CC’02), volume 2304 of Lecture Notes in Computer Science, pages
143–158, Grenoble, France, April 2002. Springer-Verlag.

6. M.G.J. van den Brand, A. Sellink, and C. Verhoef. Current parsing techniques
in software renovation considered harmful. In IWPC ’98: Proceedings of the 6th
International Workshop on Program Comprehension, page 108. IEEE Computer
Society, 1998.

7. M. Bravenboer. Parse Unit home page. http://www.program-
transformation.org/Tools/ParseUnit.

8. A. van Deursen and J. Visser. Source model analysis using the JJTraveler visitor
combinator framework. Softw. Pract. Exper., 34(14):1345–1379, 2004.

9. J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs for Object–oriented Systems. Springer, New York, 2005.

10. K.F. Fogel. Open Source Development with CVS. Coriolis Group Books, 1999.
11. M.H. Halstead. Elements of Software Science, volume 7 of Operating, and Pro-

gramming Systems Series. Elsevier, New York, NY, 1977.
12. J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition

formalism SDF — Reference manual. SIGPLAN Notices, 24(11):43–75, 1989.
13. International Organisation for Standardization. Information technology—

Programming languages, their environments and system software interfaces—
Vienna Development Method—Specification Language—Part 1: Base language, De-
cember 1996. ISO/IEC 13817-1.

14. H.A. de Jong and P.A. Olivier. Generation of abstract programming interfaces
from syntax definitions. Journal of Logic and Algebraic Programming, 59(1-2):35–
61, April-May 2004.

15. M. de Jonge. A pretty-printer for every occasion. In Ian Ferguson, Jonathan
Gray, and Louise Scott, editors, Proceedings of the 2nd International Symposium on
Constructing Software Engineering Tools (CoSET2000). University of Wollongong,
Australia, 2000.

16. M. de Jonge and J. Visser. Grammars as contracts. In Proceedings of the Second
International Conference on Generative and Component-based Software Engineer-
ing (GCSE 2000), volume 2177 of Lecture Notes in Computer Science, pages 85–99.
Springer, 2000.

17. T. Kuipers and J. Visser. Object-oriented tree traversal with JJForester. In
M. van den Brand and D. Parigot, editors, Electronic Notes in Theoretical Com-
puter Science, volume 44. Elsevier Science Publishers, 2001. Proceedings of the
Workshop on Language Descriptions, Tools and Applications (LDTA).

18. R. Lämmel and J. Visser. Design patterns for functional strategic programming.
In RULE ’02: Proceedings of the 2002 ACM SIGPLAN workshop on Rule-based
programming, pages 1–14, New York, NY, USA, 2002. ACM Press.

19. R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl
and P. Wadler, editors, Proc. of Practical Aspects of Declarative Programming
(PADL’03), volume 2562 of LNCS, pages 357–375. Springer-Verlag, January 2003.

20. J.F. Power and B.A. Malloy. A metrics suite for grammar-based software. In
Journal of Software Maintenance and Evolution, volume 16, pages 405–426. Wiley,
November 2004.

21. P. Purdom. Erratum: “A Sentence Generator for Testing Parsers” [BIT 12(3),
1972, p. 372]. BIT, 12(4):595–595, 1972.

22. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

23. E. Visser and Z. Benaissa. A Core Language for Rewriting. In C. Kirchner and
H. Kirchner, editors, Proceedings of the International Workshop on Rewriting Logic
and its Applications (WRLA’98), volume 15 of ENTCS, Pont-à-Mousson, France,
September 1998. Elsevier Science.

24. J. Visser. Visitor combination and traversal control. ACM SIGPLAN Notices,
36(11):270–282, 2001. Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA 2001).

25. N. Winstanley. A type-sensitive preprocessor for haskell. In Glasgow Workshop
on Functional Programming, Ullapool, 1997. Most recent version available from
http://repetae.net/john/computer/haskell/DrIFT/.

