Generic Traversal
over
Typed Source Code
Representations

STz,

. (1 3

W wao},,

&

&

W
’\\q
S
22

‘ “v,
NDE g we

The work reported in this thesis has been carried out at the Center for Mathematics
and Computer Science (CWI) in Amsterdam under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

Generic Traversal
over
Typed Source Code
Representations

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. mr. P. F. van der Heijden
ten overstaan van een door het
college voor promoties ingestelde commissie,
in het openbaar te verdedigen
in de Aula der Universiteit
op vrijdag 14 februari 2003, te 10.00 uur

door

Johannes Michiel Willem Visser

geboren te Middelburg, Nederland

Promotor: prof. dr P. Klint
Co-promotor: Dr.-Ing. R. Ldmmel
Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam

Kruislaan 403

1098 SJ Amsterdam

Preface

Environment is of decisive importance to the success or failure of a starting re-
searcher. To get into a productive research and publication mode, one is helped
tremendously by the challenges and examples that others set before him. At a
time that my research qualities were all but evident, | was very lucky that Paul
Klint gave me the opportunity to become part of his software engineering research
group at CWI. The thesis that lies before you is a witness to the fact that this group
has been a fruitful environment for me.

In my perception, the key axiom pervading Paul’s group is that science is pur-
sued not purely as an end in itself, but with relevance to and inspiration from the
realities of software users and producers. The work presented in this thesis at-
tempts such a blending of theory and practice. | am grateful to Paul’s challenge
and his support in meeting it.

Ralf Lammel has been a great inspirational influence from the moment he ar-
rived at CWI. His relentless drive for productivity and quality is truly amazing.
Our collaboration on our first joint paper gave me that push in the right direction
which | needed to get into orbit. Since then we have worked together intensively
and fruitfully, as witnessed by various of the papers underlying this thesis, and by
the success of the Strafunski project. On top of all this, working with Ralf is a lot
of fun.

Merijn de Jonge, Leon Moonen, and I started at CWI simultaneously and we
shared an office during most of our time there. Both proved to have ample ex-
pertise in areas where | was an utter ignoramus, and they were kind enough to
show me some ropes. Their continuous strive to genericity (Merijn) and perfec-
tion (Leon) were a source of both short-lived frustration and enduring inspiration.
Miraculously, Leon and I never published together — an omission that must some
day be repaired. Merijn and | worked together on various projects, including XT,
workshop organization, ‘programmatuurvoeding’, and arduous traveling in the in-
terest of science.

At all times, Tobias Kuipers can be counted on for boundless optimism, out-
spoken opinions, and action. In projects such as HaSdf and JJForester, | was still
contemplating possibilities while he just went ahead and started implementing. He

Vi

is my favorite remedy against indecisiveness.

I enjoyed working with Arie van Deursen because of his cheerful scrutiny.
He never stops to ask critical questions until he is fully satisfied, while always
maintaining his natural positive attitude.

Eelco Visser has been a close colleague, even though he was not part of our
group at the same time as | was. | enjoyed ‘conspiring’ in the XT project with him
and Merijn, and many of the ideas in this thesis have been inspired by his work.

Assilent, but extremely stimulating force in the background has been my father,
Wim Visser. His unconditional trust and support for whatever | try to achieve has
been a factor in actually achieving it that can not be overestimated. My sisters,
Esther and Lucie, have helped me keep things within perspective by making fun
of me whenever | deserved it. Thanks!

Finally, | thank all members of the reading committee, Claude Kirchner, Erik
Meijer, Jan Bergstra, Peter van Emde Boas, and Jan van Eijck, for their willingness
to review this thesis.

Hilversum, December 2002

Contents

1

Introduction

11
1.2
1.3
14
15
1.6
1.7

Areas of language processing L
Theroleoftypes
Traditional typeful approachestotraversal
Challenges.
Limitations of novel typeful approaches
Researchquestions
Roadmap @ .

Grammars as Contracts

21
2.2

2.3

24

2.5

2.6
2.7
2.8

Introduction
Concrete syntax definition and meta-tooling
2.2.1 Concrete syntax definition
2.2.2 Concrete meta-tooling
Abstract syntax definition and meta-tooling
2.3.1 Abstract syntax definition
2.3.2 Abstract syntax tree representation
2.3.3 Abstract from concrete syntax
Generating librarycode
241 TargetingC
24.2 TargetingJava
24.3 TargetingStratego
244 TargetingHaskell
A comprehensive architecture L
2.5.1 Grammar version management
2.5.2 Connecting components
Applications
Relatedwork
Contributions

NN e

viii

CONTENTS

3 Dealing with Large Bananas
3.1 Introduction
3.2 Programmingwithfolds

321 Anexample
3.2.2 Scalabilityproblems oL
3.3 Programming with updatable fold algebras
3.3.1 Updatingalgebras
3.3.2 Type-preserving and type-unifying
333 Crushing
3.4 Merging monads and updatablefolds
341 Monadicfolds
3.4.2 Liftingfoldalgebras
3.4.3 Foldalgebracomposition.
344 Carriedmonads
3.4.5 Casting weaved-in to carried monadic fold algebras
35 Generichananas.
3.5.1 Systemsofdatatypes
352 Foldalgebras
353 Foldfunctions

3.54
3.5.5
3.5.6

Basicalgebras
Algebracombinators
Extensions

3.6 Concludingremarks.

4 Typed Combinators for Generic Traversal
41 Introduction
42 Astrategylibraryo

421
422
423
424
4.2.5
4.2.6

Strategy types and application
Strategy construction L.
Sequential composition
Partiality and non-determinism
Traversal combinators
Some defined combinators

4.3 Application: Refactoring

43.1
4.3.2
4.3.3

The extract method refactoring
Design
Implementation with strategies

4.4 Modelsofstrategieso oo

44.1
442
443

Strategies as functions on a universal term representation .
Strategies as rank-2 polymorphic functions with type case
Trade-offs and alternatives

45 Conclusion

45
45
47
47
48
49
49
50
51
52
52
52
53
54
54
55
56
56
57
58
58
59
61

63
63
65
66
67
68
68
69
70
71
71
72
72
75
75
7

CONTENTS

5 Visitor Combination and Traversal Control

51
5.2
53
54
55

5.6

57

Introduction
Sequential composition
Alternative composition. o oL
Traversal combinators
Syntax-independence
55.1 Lackofgenericity
5.5.2 Visitor combinators in frameworks
5.5.3 Genericcombinators
5.5.4 Towards libraries of generic algorithms
SUPPOrt . . e e
56.1 MTraveler
5.6.2 JJForester
5.6.3 Visitor combinators for ATerms
Concludingremarks
571 Evaluation
5.7.2 Generic traversal across paradigms.
573 Relatedwork
574 Futurework

6 Object-oriented Tree Traversal with JJForester

6.1
6.2

6.3

6.4

6.5

Introduction
JIForester
6.21 Overview
6.22 SDF . . . e
6.2.3 Codegeneration
6.2.4 Programming against the generatedcode
6.2.5 Assessment of expressiveness
6.2.6 Limitations
JTraveler
6.3.1 The architecture of JJTraveler
6.3.2 Generic visitorcombinators
6.3.3 Building visitors from combinators
6.34 Evaluation
Casestudy oo e
6.41 TheProblem
6.4.2 T-scriptsexplained
6.4.3 Analysisusing JJForester
Concludingremarks
6.5.1 Contributions
6.52 RelatedWork

6.5.3 FutureWork,

81
82
84
86
88
90
92
92
94
95
98
98
98
100
100
101
102
102
104

CONTENTS

7 Building Program Understanding Tools Using Visitor Combinators

7.1
7.2

7.3

7.4

7.5

7.6

7.7

8.1
8.2
8.3
8.4
8.5

Introduction
VisitorCombinators
7.2.1 Thearchitecture of JTraveler
7.2.2 Alibrary of generic visitor combinators
Cobol Control Flow
7.3.1 CobolProcedures
7.3.2 Analysisand visualization
ControlCruiser Architecture
7.4.1 Initial Representation
7.4.2 GraphRepresentation.
7.4.3 GraphConstruction.
744 GraphAnalysis
ControlCruiser Implementation
751 CCGRefinement
752 CCGuvisualization
Evaluation
7.6.1 Developmenttechniques
7.6.2 Benefitsandrisks
ConcludingRemarks

Conclusions

Typed generictraversal
Mainstream programming
Integrated language tool development
Availablesoftware oo
Perspectives

Bibliography

Summary

Samenvatting

139

Chapter 1

| ntroduction

Languages are at the heart of computing. These include not only programming lan-
guages of humerous shapes and sizes (object-oriented, logical, functional, general-
purpose, domain-specific, low level, (very) high level), but also command lan-
guages, scripting languages, query languages, configuration languages, specifi-
cation languages, data formats, interface definition languages, and mark-up lan-
guages.

Software products are created by writing source code in these languages, and
then having this source code processed by appropriate language processing tools,
such as compilers, interpreters, configuration managers, database management
systems, and code generators. Similarly, secondary software development tasks,
such as program comprehension, reverse engineering, quality assessment and soft-
ware renovation, are supported by language processing tools such as documenta-
tion generators, renovation factories, refactoring tools, and testing tools. Thus,
computer languages are more than a means of expression and communication for
software developers. They also form the interface to the software developer’s tools.
From the perspective of these tools, the expressions of computer languages are
data to be processed.

Software development tools are themselves software products that need to be
developed. This thesis focuses on providing support for such tool development, in
particular for tasks that are common to and at the core of all language processing
tools: creating representations of source code, and traversing these representations
to analyze them, modify them, or generate new representations from them. The
prime objective of this thesis is to demonstrate that traversal of these representa-
tions can be done in a generic manner, whilst their well-formedness is guaranteed
by a strong type system.

Introduction 1

1.1 Areas of language processing

We briefly review some areas of language processing, their scope and aim. We
make an inventory of the source code representations employed in these areas, and
the typical traversal scenarios that occur in them.

Language implementation

A compiler implements the operational semantics of a programming language by
translating source code to expressions in a target language [ASU86]. This target
language can be the instruction set of a particular execution platform, or it can be
an intermediate language which in its turn needs to be compiled.

In the first phase of compilation, the source code is parsed and turned into
an abstract syntax tree (AST). The target code generated in the last phase of a
compiler may in turn be represented by an AST. Sometimes, tree-shaped or graph-
shaped intermediate representations (IRs) are used between translation steps. Be-
tween parsing and code generation, various static checks may be performed, such
as type checks and initialization checks. Another phase that may precede transla-
tion is desugaring or normalization.

Optimizing compilers perform sophisticated analyses to be able to reduce the
number of instructions that are generated, the memory or time consumption of the
generated program, or to improve other properties. Such analyses include data
flow analysis, control flow analysis, and liveness analysis. Typically, various kinds
of dependency graphs are constructed during these analyses. The results of these
analyses are often used to steer subsequent transformations, such as inlining and
deforestation.

An interpreter, like a compiler, consumes source code, but implements oper-
ational semantics in a different way. Not by translation to a target language, but
by executing target instructions on the execution platform directly. The parsing,
checking, and desugaring phases of a compiler, including the source representa-
tions involved in them, may also be found in interpreters. The actual interpretation
phase itself is a traversal of a source code representation that is programmed in the
target language, i.e. in a language that runs on the execution platform.

Reverse Engineering

Reverse engineering [CC90] aims at creating representations of a software system,
its components, and their interrelationships at a higher level of abstraction. This in-
cludes activities such as decompilation (reconstruct source code from object code),
architecture extraction (reconstruct design from implementation), and documen-
tation generation (extract APIs, textual and graphical overviews, indexes). The
ultimate goal of reverse engineering can be (interactive) program comprehension,
impact analysis, quality assessment, re-implementation, or migration.

1.1 Areas of language processing

Often, reverse engineering only concerns certain aspects of the source code,
because the particular higher level model that is to be constructed abstracts over
other aspects. For example, in architecture extraction for Java, one is usually not
interested in the bodies of methods, but only in their signatures and the call re-
lations among them. As a consequence, reverse engineering tools may not per-
form a full syntactic analysis, but opt for selective parsing with an island gram-
mar [DK99a, Mo002], or for lexical analysis. In such cases, the initial source rep-
resentation is not a fully detailed AST, but a rather trimmed-down AST, or simply
a table.

Other source code representations employed in reverse engineering include
module graphs, conditional call graphs (see Chapter 7), concept lattices [Sne00,
DK99b], and document trees.

Generative Programming

The objective of generative programming [CE99] is the construction of programs
by automating the construction and configuration of components. Generative pro-
gramming is, in some sense, directed in the opposite sense of reverse engineering,
as it involves generation of actual programs from higher-level specifications of
such programs. The effect of using generative programming is that the level of
abstraction at which the programmer works is raised from the solution domain to
the problem domain.

Three kinds of computer languages play a central role in generative program-
ming: domain-specific languages, template programming languages, and configu-
ration languages.

Domain-specific languages (DSLs) or ‘little languages’ are executable specifi-
cation languages that provide expressive power focused on a particular application
domain [DKV00]. In generative programming, DSLs are used to give high-level
specifications of software components. DSL compilers (also called application
generators [Cle88]) generate implementations in general-purpose programming
languages from DSL programs. Examples of domains for which DSLs have been
developed include digital hardware design [JB99], financial products [B*96], and
telecommunications [LR94].

One of the implementation techniques for DSL compilers, commonly used in
generative programming is template programming. A template language is an ex-
tension to a general-purpose programming language that allows the programmers
to generate base language code at, or immediately preceding, compilation time. A
well-known example is the template programming facility of C++.

Both generated and hand-crafted components must be configured into a final
software product. To automate such configuration, configuration languages can
be used. These are formats or little languages in which the configuration of a
system can be described, usually at the problem level. Examples of configuration

Introduction 1

languages include the Feature Description Language [DKO02], and the autobundle
package description language [Jon02b].

Source code representations that may play a role in generative programming
are the ASTs of DSL programs and of generated code, as well as representa-
tions of configuration spaces and component dependencies. DSL compilers and
transformation-based generators implement similar traversal scenarios as compil-
ers for general-purpose languages. Traversal scenarios on representations of con-
figurations and component dependencies include computation of transitive clo-
sures or transitive reductions, and normalization.

Software Renovation

The aim of software renovation [DKV99] (also known as re-engineering [DV02a])
is to automatically carry out modifications on a complete software system such that
errors are removed (corrective maintenance), or additional or different require-
ments are met (perfective or adaptive maintenance). Such modifications can range
from minor changes (e.g. bug fixes) to structural change (e.g. re-modularization,
goto-elimination).

Software renovation bears similarity to reverse engineering in the sense that
it is usually only concerned with certain aspects of the source code. A differ-
ence is that in software renovation the end product is of the same abstraction level
as the initial source, and therefore the aspects of the code that are not changed
still need to be preserved. These include aspects such as comments and layout.
The consequence of this is that software renovation, like reverse engineering, may
use selective analysis techniques, such as parsing with island grammars, or lex-
ical analysis, but the source code representations that are constructed still need
to contain all non-relevant parts of the source code in an unanalyzed form. This
means that the ASTs still need to contain ‘water’, i.e. strings of unparsed code.
Another technique is to keep detailed information in the AST about the origin of
each node, and to perform the changes, not on the AST itself, but directly on the
source. One may also decide to use parse trees (concrete syntax trees) that contain
all information about the source (including lexicals, layout, and comments), and to
implement traversals on these. To regain space-efficiency, compression techniques
such as hash-consing [AG93, BJKOO00] may be used, and traversal will take place
on compressed trees.

Whether ASTs with water or origins are used, or full parse trees, the traversal
scenarios to be implemented are basically the same. The trees must be analyzed to
determine which changes need to be made, and subsequently they must be trans-
formed accordingly. Finally, the representation of the renovated source code must
be unparsed or pretty-printed in a conservative fashion (i.e. with preservation of
layout and comments [BV96, Jon02a]). As in the case of compilation, additional
analyses involving dependency graphs may be needed as well.

1.2 The role of types

Document processing

Mark-up languages, most notably HTML and XML [BPSM98], are intended to
represent and exchange semi-structured information in documents that contain not
only text, but also markers that lend structure to the document. Just like program
source text, marked-up documents can be parsed to construct ASTs. Such ASTs
may contain large portions of unanalyzed text.

Document processing may be aimed at retrieving information from a docu-
ment, transforming a document, or translating it to another format. XML doc-
uments are typically used to hold information that can be presented in different
forms by applying different document processors that translate to HTML. Also,
marked-up documents can be used as exchange format in electronic data inter-
change (EDI).

Representations and traversal scenarios in language processing

Thus, the source code representations that are used throughout these areas of lan-
guage processing are syntax trees (abstract, concrete, with and without portions of
unanalyzed text), dependency graphs (data flow, control flow, import structure),
and tables with metrics and other properties.

The traversals over these source code representations can be categorized as
translations (compilation, reverse engineering, type inference, pretty-printing, flow
analysis), rephrasings (normalization, desugaring, renovation), and analyses (type
checking, unparsing, computation of metrics). Here we adopt the terminology of
the program transformation taxonomies in [JVVO01, V*], where a translation is a
traversal that generates a representation of a different type, a rephrasing is a traver-
sal that produces a modified representation of the same type, and an analysis is
a traversal that derives properties or values. Note that, following this taxonomy,
traversals such as type inference and flow analysis are categorized as translations
rather than analyses, because their results are highly structured and can themselves
be viewed as (trimmed-down) source code representations.

1.2 The role of types

As we have seen, the source code representations involved in different areas of
language processing are usually highly heterogeneous data structures. An abstract
syntax tree, for instance, is a term over the many-sorted signature that corresponds
to the abstract syntax of the input language. For widely used languages such as
Java and XML, the signature contains about 100 sorts and several hundreds of
productions. Grammars for (dialects of) the legacy language Cobol contain about

Introduction 1

200 sorts and about 600 productions.® For smaller languages and formats, such as
DSLs, syntax definition formats, graph representation formats, and island gram-
mars, these numbers are usually lower, but around 20 sorts and several dozens of
productions is not uncommon.

Likewise, graph-shaped source code representations, such a data-flow graphs
and conditional call graphs, are usually heterogeneous. For instance, Control-
Cruiser (to be discussed in Chapter 7) represents Cobol control flow with a condi-
tional call graph that contains 5 concrete and 5 abstract node types. The exchange
format FAMIX, used within the FAMOQOS re-engineering project for exchange of
object-oriented source code, consists of 22 types [DTS99].

In case of document processing, the structure of a document is dictated by
a document format. In the special case of XML, a distinction is made between
well-formedness and validity. A well-formed document adheres to the general
XML format. A valid document additionally adheres to a given document type
definition (DTD), or ‘schema’. A close correspondence exists between document
schemas and many-sorted signatures: roughly, ‘elements’ correspond to sorts, and
their alternatives correspond to productions (see [MLMO1] for a more in depth
discussion).

When processing heterogeneous data structures, the use of a programming lan-
guage with a strong type system can bring various benefits. Firstly, by giving
strong types to the elements of the data structures, the programs that operate on
them are guaranteed to preserve their well-formedness (as far as the expressive-
ness of the type system goes). IlI-formed input will be rejected, and well-formed
output is guaranteed. Secondly, the programs themselves will be guaranteed to
be well-formed. Any error in a pattern-match, a data component selection, a data
construction, or other manipulation will be discovered and reported at compila-
tion time. Secondly, types abstract over a piece of functionality and therefore can
be used to describe its interface. This is useful for encapsulation, program un-
derstanding, and it can form the basis for generated documentation. The method
headers in Java, for instance, are used to form the interface of a class as well as
the API of an entire application, and they are presented in browsable form by the
javadoc documentation generator.

In various programming language paradigms, heterogeneous data structures,
such as source code representations, are given types in different ways. In object-
oriented programming, a class-hierarchy provides the types. In term rewriting a
first-order many-sorted signature provides the types. In functional programming a
set of algebraic datatypes serves this role. When a strongly typed language from
one of these paradigms is used for language processing, the abovementioned ben-
efits can be enjoyed.

But, when the aim is to program traversals, strong type systems may also entail
some disadvantages, as we will explain below.

1These figures are based on the SDF grammars of these languages in the online grammar base [GB].

1.3 Traditional typeful approaches to traversal

Grammar(NonTerminal, Prod™)
Prod(NonTerminal, RegExp)

T (Terminal)

N (NonTerminal)

Empty

Star(RegEzp)

Plus(RegEzp)

Opt(RegEzp)

Seq(RegExp, RegExp)
Alt(RegEzxp, RegExp)

Grammar
Prod
RegExp

Terminal and Non Terminal are the set of terminal symbols, and the set of non-terminal
symbols.

Figure 1.1: Abstract syntax of EBNF.

1.3 Traditional typeful approaches to traversal

Let’s consider some of the consequences of using a typeful programming approach
to solve traversal problems.

Suppose the source code representation at hand is the AST of a syntax defini-
tion formalism, say EBNF, and among the operations we want to implement are
(i) collecting all non-terminals, and (ii) normalizing optional symbols (replace all
regular expressions of the form [R] with expressions of the form R|e). Figure 1.1
shows an abstract syntax for EBNF (in the form of a tree grammar) that consists of
5 sorts (node types) and 10 productions (node constructors). Let’s sketch the ‘text-
book’ approach to solving these problems in various strongly typed programming
language paradigms.

Term rewriting

In term rewriting the abstract syntax of EBNF can be represented with a first-order
signature, as shown in Figure 1.2. The main difference with the tree grammar of
Figure 1.1 is that the iteration of productions (Prod *) has been expanded into the
sort Prods. Solutions to our two example problems are shown in Figure 1.3. We
will now explain these solutions.

To solve the collection problem (i) in a term rewriting system, we need to
introduce a new function symbol colls of type S — NonTermSet for each (non-
lexical) sort S. Here we assume that a sort Non TermSet for sets of non-terminals
has been previously defined together with appropriate operations on them. Fur-
thermore, for all these additional function symbols, a rewrite rule must be added
for each production of the argument sort. These rules perform recursive calls on all

Introduction 1

Grammar : NonTerminal x Prods — Grammar
ProdsNil : Prods

ProdsCons : Prod x Prods — Prods

Prod : NonTerminal x RegExp — Prod
T 1 Terminal — RegExp

N : NonTerminal — RegEzp
Empty : RegEzxp

Star : RegEzp — RegEzp

Plus : RegExp — RegExp

Opt : RegFzp — RegExp

Seq : RegFExp x RegFExp — RegFxp
Alt : RegFEzp % RegFExp — RegEzp

Figure 1.2: First-order signature that represents the abstract syntax of EBNF.

subterms except those of type Non Terminal. The results of the recursive calls are
concatenated with each other and with singleton sets that contain the encountered
non-terminals. This style of rewriting can be called the ‘functional style’ in view
of the pervasive use of additional function symbols.

To solve the normalization problem (i), two alternative avenues can be taken.
Firstly, one can refrain from introducing additional function symbols and solve
the problem in a ‘pure’ rewriting style. To this end, a single rewrite rule is added
which simply rewrites Opt(re) to Alt(re, Empty). This solution is very concise,
but problematic when more traversals need to be implemented in a single rewrite
system. The lack of function symbols results in a lack of control over the schedul-
ing of traversals and to which subterms they are applied. If, for instance, our
application needs to return not only the normalized grammar, but must also report
which expressions have been eliminated, this is impossible, simply because we
can not prevent the eliminated expressions from being normalized as well. Also,
if we want to implement the introduction rule for optional expressions in the same
system, we will immediately obtain a non-terminating rewrite system.

The second avenue to solve the normalization problem is to again use the func-
tional style of rewriting. This time, function symbols normg : S — S are in-
troduced for all sorts S. For normy(Opt(re)), a rule is added that reduces to
Alt(normp(re), Empty). For all other productions, a rule is added that recur-
sively calls the appropriate normalization functions on all subterms, and recon-
structs the term with the results as subterms. Here, conciseness is lost, but traversal
control is regained. For instance, traversal can be cut off by omitting a recursive
call, and traversals can be sequenced by applying functions in a particular order.

1.3 Traditional typeful approaches to traversal

Collection of non-terminals in “functional’ rewriting style:

Grammar — NonTermSet

COllGrammar
COllProds
COlled

COllRegE‘zp

Prods — NonTermSet
Prod — NonTermSet
RegExp — NonTermSet

collGrammar (Grammar (nt, ps))

collproqs (ProdsNil)

collproas (ProdsCons(p, ps))

collproq (Prod(nt, re))

COllRegEzp(T(t))
collregrop (N (nt))
collpegrzp (Empty)
collpegrzp (Star(re))
collRegrap (Plus(re))
collpegrzp (Opt(re))
collRegrap (Seq(req, res))
cOllpegrap (Alt(req,reg))

~ {nt} U collproqs (ps)
0

~ ollproa(p) U collproas (ps)
~ {nt} U collpegisp (re)

0

{nt}

0

collpegrzp (1€)
collRegrap (T€)
collpegrzp (1€)
(res
(res

$3 3333

collRegrmp (re1) U collpegrap (Te2)
collRegrmp (re1) U collpegrap (Te2)

$

Normalization of optionals in ‘pure’ rewriting style.

Opt(re)

b d

Alt(re, Empty)

Normalization of optionals in “functional’ rewriting style.

NOTMGrammar

NOTMPprods
NnOoTrmprod
TNOTMRegEp

NOTMGrammar (Grammar (nt, ps))

NOTMProds (PTOdSNll)
normprods (ProdsCons(p, ps))

normprod (Prod(nt, re))

normeegrap (T (1))
nOTMEegrap (N (nt))
NOTMRegEzp (Empty)
NOTMRegEzp (Star(re))
NOTMRegrzp (Plus(re))
nOTMRegrzp (Opt(re))
NOTMpgegrzp (Seq(rer, eg))
NOTMRegEzp (Alt(rer, Te2))

Grammar — Grammar
Prods — Prods

Prod — Prod

RegExp — RegEzxp

$

IR AT O A T

Grammar(nt, normprods (ps))

ProdsNil

ProdsCons(normprod (p), normpreds (ps))
Prod(nt, normpegrzp (re))

T(t)

N(nt)

Empty

Star(normpeggep (re))

Plus(normpegrzp (re))

Alt(normpegrsp (re), Empty)
Seq(normpegpep (1e1), nOrMRegrap (re2))
Alt(nOTmRegEzp (T'€1), TOTMRegEzp (7"62))

Figure 1.3: Implementations of EBNF operations in term rewriting.

10

Introduction 1

data Grammar
data Prod
data RegEzp

= Grammar NonTerminal [Prod]
= Prod NonTerminal RegExp
= T Terminal

| N NonTerminal

| Empty

| Star RegEzp

| Plus RegExp

| Opt RegEzp

| Seq RegEzp RegExp

| Alt RegExp RegEzp

= String

= Siring

type Terminal
type NonTerminal

Figure 1.4: Haskell datatypes that represent the abstract syntax of EBNF.

Functional programming

In functional programming, the abstract syntax of EBNF would be represented by
a set of algebraic datatypes. This is shown in Figure 1.4. Both operations (i) and
(ii) can then be implemented in a fashion quite similar to the functional style of
rewriting discussed above. These are shown in Figure 1.5. Apart from syntax, the
differences are minor and not relevant for our particular problem (e.g. the iteration
of productions Prod™ is represented by a list [Prod] which is processed with the
polymorphic map function rather than by a dedicated function; also, lists are used
to represent sets of non-terminals).

In contrast to first-order term rewriting languages, functional programming
languages support parametric polymorphism and higher-order types. We can
make use of these features to implement our EBNF operations with generalized
folds [MFP91]. We would start by defining a function folds for every datatype S,
as shown in Figure 1.6. These functions take as many arguments as there are data
constructor functions in our set of datatypes, i.e. as there are productions in the
abstract grammar. These arguments can be grouped into a fold algebra, which is
modeled in Haskell by a record Alggpnr. The type of each argument (record
member) reflects the type of the constructor function to which it corresponds.
For instance, the constructor Opt : RegExzp — RegFEzp is represented by an ar-
gument of type re — re, where re is a type variable that represents occurrences
of RegEzp. Together, the fold functions capture the scheme of primitive recur-
sion over our set of datatypes. By supplying appropriate functions as arguments to
the function fold grammar, the EBNF operations can be reconstructed, as shown in
Figure 1.7. For collection, these arguments are empty lists or repeated list concate-
nations for most cases, and a singleton construction function for the argument that
corresponds to NonTerminal. For normalization, all arguments are instantiated

1.3 Traditional typeful approaches to traversal

11

Collection of non-terminals

coll Grammar it Grammar — [NonTerminal]

coll Grammar (Grammar nt ps) = [nt] H# (concat (map coll prog ps))
coll proq it Prod = [NonTerminal

collproa (Prod nt re) = [nt] # (coll pegrzp 7€)

coll Regrp i RegEzp — [NonTerminal]
COllRegEzp (T t) = []

coll Regrnp (N nt) = [nt]

[]

coll Regrzp Te

collRegrepy Empty
coll pegrmp (Star re)
coll pegizp (Plus re)
coll pegrzp (Opt Te) = coll pegizp T
(
(

coll pegizp T

coll Regrap (Seq re_1 re_2) (coll pegrap Te-1) H (Ol Regrap TE_2)
coll Regrap (Alt e_1 1€_2) = (collpegrap re-1) H (cOll Regrp T€_2)

Normalization of optionals

NOTN Grammar :: Grammar — Grammar

NOTM Grammar (Grammar nt ps) = Grammar nt (map normpreqa ps)
NOTM Prod it Prod — Prod

normpreq (Prod nt re) = Prod nt (normpegezp €)

NOTM RegFzp 2 RegExp — RegExp

nOTM Reghzp (T 1) = Tt

NOTM Reghzp (N nt) = Nat

NOTM RegEzp Empty = Empty

NOTM Reghzp (Star re) Star (normpegpop T€)

NOTM Regrgp (Plus re) Plus (norm gegpzp 7€)

NOTM Regizp (Opt 1) = Alt (normpeguzp r¢) Empty

NOTM Regrzp (Seq re_1 re_2) Seq (normpegrzp re_1) (NOTN Regrgp T€_2)
NOTM RegEzp (Alt Te_1 1€ _2) Alt (normpegrzp re-1) (ROTM RegRzp TE_2)

We use the following standard functions on lists for appending, mapping, and concatena-
tion:

(4) @ [a] = [a] = [a]
map iz (a—=b) > [a] - [b]
concat i [[a]] = [a]

Figure 1.5: Haskell implementation of example problems.

12

Introduction 1

Fold algebra for EBNF:

data Alg gy 9 P p Te
= Alg ggnp{ grammar
prodsnil
prodscons
prod
t
n
e
star
plus
opt
seq
alt

ized with these variables.

Fold functions for EBNF:

fOld Grammar
f0ld Grammar

f 0 ldProds
f OldProds a []
fOl(lProds a (p : pq)

fOldProd
foldp,,, a (Prod nt re)

fOIdchlZ'zp

foldpegpay a (T)
foldpegpey a (N)
fOIdRegEzp a Empty
foldg,,p,, a (Star re)
fold iy @ (Plus re)
fOldRegEzp a (Opt 1’6)
foldpyp,y a (Seq req rez)
foldp, gy @ (Alt req reg)

a (Grammar nt ps)

asca.

The fold algebra is modeled as a Haskell record with one member for each constuctor in
the EBNF abstract syntax. The types of these members are derived from the types of the
constructors by replacing the constant types Grammar, [Prod), Prod, and RegEzp that
stand for non-terminals by type variables g, ps, p, and re. The fold algebra is parameter-

Each fold function replaces the application of a constructor C' by the application of the
corresponding algebra member ¢ to the recursive applications of the fold function to the
arguments of the constructor. The selection of member ¢ from algebra a is written simply

NonTerminal — ps — g,
s,

p — ps = ps,
NonTerminal — re — p,
Terminal — re,
NonTerminal — re,

re,
re — re,
re = re,
re
re

re

re,
re = re,
re = re }

Lil il

Alggenr 9 ps p re = Grammar — g
grammar a nt (foldp, ;. a ps)

Algppnr 9 PS p re = [Prod] — ps
prodsnil a
prodscons a (foldp,,; a p) (foldp,yg, a ps)

Algpgnr 9 ps p re = Prod — p
prod a nt (fold g, p,, @ re)

Algpgnr 9 S p re — RegEzp — re

tazx

naz

ea

star a (foldg,,p,, o re)

plus a (fold g,y sy, @ re)

opt a (fold pypy, a re)

seq a (fold pegpyy, a rer) (foldpogpyy, a re2)
alt a (foldp,,p,, a rer) (foldg,,p,, a rez)

Figure 1.6: Haskell implementation of the generalized fold for EBNF.

1.3 Traditional typeful approaches to traversal

13

Collection of non-terminals:

coll :: Grammar — [NonTerminal |
COll = fOldGrammar algcall

alg i it Alg y e [NonTerminal] [NonTerminal] [NonTerminal] [NonTerminal]

alg ..y = Alg ggnp{grammar = Ant ps = [nt] H ps,
prodsnil =[],
prodscons = Ap ps = p H ps,
prod = Ant re = [nt] H re,
t = At -],
n = Ant — [nt],
€ =[],
star = Are — re,
plus = Are — re,
opt = Are — re,
seq = Arey reg — reg H reg,
alt = Are;res > req Hores}

Most algebra members are functions that return empty lists or concatenations of their
arguments. Arguments that represent non-terminals are placed in singleton lists.

Normalization of optionals:
norm :: Grammar — Grammar

norm = fOIdGrammar algnor‘m

alg,orm 3 Alg gy Grammar [Prod] Prod RegEzp

alg,orm = Algpgnp{ grammar = Grammar,
prodsnil =[],
prodscons = (),
prod = Prod,
t = T,
n = N,
e = FEmpty,
star = Star,
plus = Plus,
opt = Are — Alt re Empty,
seq = Seg,
alt = Alt}

Most algebra members are the constructor functions to which they correspond. The mem-
ber opt is a function that returns a term constructed with Alt and Empty, instead of
Opt.

Figure 1.7: Haskell implementation of example problems, using folds.

14

Introduction 1

to the constructor functions to which they correspond, except for the argument
corresponding to Opt, which is instantiated to the function A\re — Alt re Empty.

Thus, by using folds we are able to reuse the recursion scheme between var-
ious operations on the same source code representation, as long as they can be
solved with primitive recursion. Note that the use of (generalized) folds has been
advocated mainly to facilitate reasoning about programs and optimizing them on
the basis of the mathematical properties of folds. The possibility of using them to
improve reuse is largely unexplored (but see Chapter 3).

Object-oriented programming

In class-based object-oriented programming, the abstract syntax of EBNF can be
represented with a class hierarchy, as shown in Figure 1.8. The most straightfor-
ward approach to implementing operations (i) and (ii) is by adding corresponding
methods to each of the classes in the hierarchy. For each class C, the methods have
signatures coll(Set) : void and norm() : C. The bodies of these methods are im-
plemented in a way quite similar to the functional and rewriting implementations.

Hle‘arohy

g |N Seq || |Plus Star
coll() coll() coll() coll()
norm() norm() norm() norm()

nt
Y A T Alt | |opt | |Empty
Terminal | coll() coll() coll() coll()
norm() norm() norm() norm()
class N extends RegExp { class Opt extends RegExp {
v0| d coll(Set results) { RegExp norm() {
results.add(nt); return new Alt(re.norn(),
} new Enpty());
e }
} o
}

Figure 1.8: UML diagram of the class hierarchy for the EBNF syntax. The Java
implementation of the methods coll() and norm() are shown only for the ‘inter-
esting’ cases.

1.3 Traditional typeful approaches to traversal

o
e Visitable (vistor)
accept(Visitor) VisitA
7~ visitRegExp
\‘\da‘cx\Y T //\\
! | o
o
o [
Call Norm
Set result = new Set(); RegExp wstOpt(Opt opt) {
return new A
void VISItNéN n) (ll?JegExp) opt.re().accept(this),
resuit.add(n.nt(); hew EMBty 0 - 1
return new N(n.nt()); }

class N extends RegExp inplenents Visitable {

Visitable accept(Visitor v) {
return v.visitN(this); }

class Opt extends RegExp inplenents Visitable {

Visitabl e accept(Visitor v) {
return v.visitOpt(this); }

_

cl ass TopDown extends Visitor {

.p.ui)lic RegExp visitN(N n) {
return new N(n.nt()); }

bﬁi)lic RegExp visitOpt (Opt opt) {
return new Opt ((RegExp) opt.re().accept(this)); }

b.u.blic RegExp visitAlt(At alt) {
return new Al t ((RegExp) alt.rel().accept(this),
(RegExp) alt.re2().accept(this)); }

}

Figure 1.9: Implementation of the example problems, using the Visitor pattern.
The code excerpts show the implementation of the Visitable interface by the con-
crete classes N and Opt, as well as fragments of the default TopDown visitor. The
UML diagram shows the specific visitors required to solve the example problems.

16

Introduction 1

They mostly make recursive method calls on their components, and only the bodies
of N.coll() and Opt.norm() implement ‘interesting” behavior. Figure 1.8 shows
the implementation of these two methods in Java. Here, the parameter result is
a reference to a Set of non-terminals. With the add method, the nonterminal nt
referred to by an object of type NonTerminal is added to this set.

Alternatively, one could implement the EBNF operations in accordance with
the Visitor design pattern [GHJV94]. This is illustrated in Figure 1.9. In this ap-
proach, an accept(Visitor) method is added to every class in the hierarchy, where
the interface Visitor contains a method visitC'(C) : A for each concrete class C'
with abstract superclass A. Here, we assume returning visitors, i.e. visitors with
visit methods that have their input type as result type, instead of void. Now, oper-
ations on the hierarchy can be implemented by providing implementations of the
Visitor interface. A common approach is to first implement a default visitor that
performs a top-down traversal over the object graph. Then, this top-down visitor
can be specialized to implement our example problems (i) and (ii) by redefining
the visitN and visitOpt methods, respectively. This is shown in the figure. In the
case of collection (i), an additional field result needs to be added to the special-
ization of Visitor to hold the result of the collection, i.e. a set of NonTerminal
objects. In case of normalization (ii), the component re of the argument opt is
selected and used in the construction of a new Alt object.

The visitor approach is somewhat similar to the fold approach in functional
programming, in the sense that the recursion behavior is factored out and can be
reused to implement a range of particular traversals.

Lack of genericity in traditional typeful approaches

Thus, in each of the sketched typeful approaches to our little EBNF example prob-
lems, we observe that traversal of the AST is dealt with in a non-generic man-
ner. The traversal behavior is implemented separately for each specific node type,
where access to and iteration over the immediate subtrees is dealt with in a type-
specific way.

Though we have intentionally constructed our examples to bear out the conse-
quences of a typeful approach to traversal, the situation is not atypical. In traver-
sal problems where the proportion of ‘interesting’ nodes is larger, where the tree
needs to be traversed only partially, or in a different order, where traversals must be
nested or sequenced, where side-effects or environment propagation are needed, or
where other considerations add to the complexity, the bottom line remains: each
type needs to be dealt with in a type-specific way, regardless of the conceptual
genericity of the required behavior.

1.4 Challenges

17

1.4 Challenges

Given the scenarios sketched above, and the general assessment that adding types
leads to non-generic implementation of traversal behavior, we can now articulate
a number of concrete disadvantages of using a typeful approach to traversals. We
will take up these disadvantages as challenges to be met by the techniques for
typeful generic traversal presented in this thesis.

Conciseness

The most obvious casualty in our example scenarios is conciseness. Note that
our example traversal problems (i) and (ii) only require ‘interesting’ behavior for
nodes of a single type. For all the other nodes, only straightforward recursion
behavior is needed. Though this recursion behavior is conceptually the same for
all types, it needs to be implemented over and over again for each type. The
reason is that when the data structure is heterogeneous, access to and traversal over
its subelement requires dealing with many specific types in specific ways. None
of the mentioned programming languages offers constructs or idioms to perform
such access and traversal in a generic manner. As a result, lengthy traversal code
is needed.

In the functional style of rewriting, the functional programming approach with-
out folds, and the object-oriented approach without visitors, this means that for
each new traversal problem, new function symbols, functions, or methods need to
be introduced for all types.

The functional approach with folds allows some reuse between traversals, but
without gaining much conciseness. The recursion behavior captured by the fold
function is reusable, but needs to be instantiated over and over again with functions
for all types. Also, a different lengthy fold function is needed for every system of
datatypes.

The visitor approach is an exception. Here, the same lengthy encoding of
traversal behavior is needed. But at least this behavior can be encapsulated in a
single visitor class, after which particular traversals can be implemented succinctly
as subclasses that refine only a limited number of visit methods. However, when
different default traversal behavior is needed, or when a different class hierarchy
is employed, a new, lengthy visitor class must be constructed again.

If conciseness would be realized also for typed traversals, this would signifi-
cantly reduce the effort needed to develop and maintain traversal implementations.

Composability

In all of the sketched approaches, composability of traversals is limited. Imagine,
for example, one would implement a traversal that collects all terminals, in addi-
tion to the one that collects non-terminals. Could we compose the functionality

18

Introduction 1

of these two traversal into a single traversal that collects both terminals and non-
terminals? In the functional style of rewriting, the functional approach without
folds, and the object-oriented approach without visitors, this is impossible. The
new traversal must be implemented from scratch. In the fold approach, the fold
function can of course be reused, and the argument functions for collecting termi-
nals and non-terminals can be composed, but the lengthy instantiation of the fold
function must be repeated. In the visitor approach, this simple form of composi-
tion is possible, but only if multiple inheritance is available. More complex forms
of composition can not be realized even with multiple inheritance.

Another form of desired composability would be to instantiate different traver-
sal schemes with the same node action. For instance, would it be possible to
reuse the node action of non-terminal collection for a traversal that selects a single
non-terminal from the AST? None of the sketched approaches allows such compo-
sition. In the functional style of rewriting, the functional approach without folds,
and the object-oriented approach without visitors there is no separation between
traversal schema and node actions at all. In the pure style of rewriting, the node
actions are captured in separate rewrite rules, but the navigation behavior is im-
plicit in the strategy of the rewrite engine. Therefore, the rules can not be used
in separation from the navigation. In the fold approach, the recursion behavior is
factored-out, and parameterized with node actions, but these node actions can not
be used to instantiate other traversal schemes than the one captured by the fold
function. Finally, the visitor approach achieves some separation, but node actions
(implemented as visitor refinements) can not be used independently of the traversal
visitor they refine.

Ideally, a high degree of composability would be realized where new traversals
can conveniently be composed by combining and refining given functionality in a
combinatorial style. Thus, we would like to adopt the style of typeful programming
available with function combinators and rewrite strategy combinators [KKV95],
and apply it to traversal problems. This would allow a high degree of reuse within
applications.

Traversal control

In each of the sketched traversal approaches, the possibilities for control over the
traversal are unsatisfactory. By traversal control, we mean the ability to deter-
mine which parts of the representation are visited in which order, and under which
conditions.

In the functional style of rewriting, functional programming without folds, and
object-oriented programming without visitors, the traversal strategy is hard-wired
into the traversal itself. Traversal control can be implemented by adding parame-
ters to the various functions or methods that implement the traversal, but this re-
quires entangling the control mechanism with the basic functionality of the traver-

1.4 Challenges

19

sal throughout the code. In the fold approach, the traversal scheme is fixed in the
fold function. Control is absent. In the visitor approach, the default visitor im-
plements the basic traversal scenario. The visit method redefinitions in subclasses
of this default visitor have the responsibility of iterating over the subelements of
a type, and by changing the iteration behavior, some traversal control can be ex-
erted. Here, tangling is again an issue, and control can only be implemented per
node type.

It would be desirable to offer powerful means of traversal control, where pro-
grammers can concisely construct the traversal strategies that their applications
require. An elegant and effective means of achieving this is to take inspiration
from the (untyped) Stratego language [VBT99], which deconstructs traversal into
one-step traversal combinators and ordinary recursion.

Robustness

The traversal approaches sketched above are fragile with respect to changes in the
underlying source code representation. If, for instance, a change would be needed
to the representation of iterated symbols, each of the solutions would break. This
is especially disappointing because the two example traversals include no ‘inter-
esting” behavior for iterated symbols. Ideally, their solutions would never break
unless the representation is changed of the types they are specifically intended
to deal with: non-terminals, optional symbols, alternatives and epsilon. In the
functional rewriting style, the functional approach without folds, and the object-
oriented approach without visitors, the implementation of every operation so far
defined on the representation will need modification. In the fold approach, the fold
function would need to be modified, as well as all instantiations of it. In the visitor
approach, the situation is slightly better, since the default visitors must be changed,
but their specializations will keep working.

If typed traversals would be defined in a (largely) generic fashion, they would
be more robust against changes in source code representations. Furthermore, if
the non-generic parts could be properly separated form the generic parts, the latter
could be reused across different source code representations. This would open the
door to the construction of libraries of reusable traversal components.

Thus, when using traditional approaches, typeful programming of traversals is at
odds with conciseness, composability, traversal control, and robustness. Access
to and traversal over subelements of typed representations involves dealing with
many specific types in specific ways. As a consequence, type-safety comes at the
cost of lengthy traversal code, which can not be reused to process different parts of
the representation or for differently typed representations, and which breaks with
any change in the representation type. This is the dilemma that this thesis seeks to
escape.

20

Introduction 1

1.5 Limitations of novel typeful approaches

In various programming paradigms, new techniques have been invented that allow
a more generic treatment of traversals. To some extent, these approaches alleviate
the problems of typeful traversal. We will discuss them and indicate what is still
lacking.

Traversal functions

The term rewriting language ASF has been extended with traversal func-
tions [BKV02]. This means that when appropriate annotations are added to a
function symbol, the programmer is relieved from providing the tedious imple-
mentation of function symbols for all types in the signature. He only needs to
provide declarations and rules for the types at which non-default behavior is re-
quired.

The traversal functions effectively eliminate the problem of loss of concise-
ness of the functional style of rewriting. Also, robustness against representation
changes is realized. Our two example problems, for instance, can be implemented
with traversal functions in just a few lines. Unfortunately, the approach is lim-
ited with respect to traversal control and composability. The repertoire of possible
traversal schemes is fixed. The programmer is not enabled to construct his own
traversal schemes, but is rather forced to encode the desired scheme in terms of
the fixed set. For instance, to retrieve only a single non-terminal from an EBNF
grammar, an accumulating topdown traversal function would need to be used that,
when encountering a non-terminal, continues to traverse peer subtrees but ignores
any further non-terminals that it might find. This leads again to a loss of concise-
ness, but also to non-intuitive encodings or unwarranted performance complexity,
though recently support for additional directives, such as break and continue, has
been added to alleviate these problems.

As the fold and visitor approaches, the traversal function approach allows
traversal schemes to be instantiated with different node actions, but not vice versa.
A node action is always implemented as a member of a family of traversal func-
tions that follows a particular traversal strategy. In some cases, part of the traversal
strategy is entangled in the node actions, in the form of recursive calls that restart
the traversal when needed. Also, traversals can not be composed from reusable
traversal ingredients such as one-step traversal combinators.

Polytypic programming

Polytypic programming [Mee96, JJ97a] extends the functional programming par-
adigm with a means of defining functions by induction over a sums-of-products
representation type. Such functions are generic, since any type can be represented
by sums of products. For specific types, additional equations can be provided in a

1.6 Research questions

21

polytypic function definition to provide non-generic behavior. At compile-time, a
polytypic function definition is expanded to specialized functions for all encoun-
tered types.

Polytypic programming makes concise and robust implementation of traversals
possible. Unfortunately, the approach is limited with respect to composability.
For instance, a traversal scheme can not be defined separately from node actions,
because polytypic functions are not first-class. One polytypic function can not be
passed as argument to another. But the argument of a traversal scheme needs to be
a polytypic function to enable application of the node action to more than a single
node type.

A recent implementation of polytypic programming, Generic Haskell [CL02],
complements induction over sums-of-products representation types with the addi-
tional notions of copy lines, constructor cases, and generic abstractions. These
are inspired by the expressiveness of updatable fold algebras, as will be presented
in Chapter 3. Though the composability of polytypic functions is to some extent
improved with these additional notions, they still fail to be first-class citizens and
hence are limited regarding composability.

Adaptive programming

In the Demeter project [LPS97], a notion of traversal strategy has been introduced
for object-oriented programming. This notion of strategy should not be confused
with the one from term rewriting in general or Stratego in particular. Demeter’s
strategies are high-level descriptions of paths through object structures in terms of
start nodes, intermediate nodes, and end nodes. From these high-level descriptions,
traversal code is generated.

The Demeter project has succeeded in making traversals more robust against
changes in the class hierarchy, i.e. in making object-oriented software more adap-
tive. The approach is limited in composability, traversal control, and reusability.
Demeter’s strategies are never fully generic: though they define traversals in terms
of only a few types, they do not allow traversals to be defined independent of any
particular type.

1.6 Research questions

The prime objective of this thesis is to demonstrate that traversal of source code
representations can be done in a generic manner, whilst their well-formedness is
guaranteed by a strong type system. But this objective is not pursued in the sterile
environment of theoretical study. Rather, we take the pragmatic viewpoint that the
theoretical solutions need to be brought to a larger audience by proposing worked-
out, light-weight, practically viable support for these solutions in mainstream gen-
eral purpose programming. Only through such efforts can one entertain the hope

Introduction 1

that the potential benefits of typed generic traversal will actually be realized. The
concrete research questions that this thesis aims to answer are:

1. Can traversal over source code representations be both generic and strongly
typed?

2. Can typed generic traversal be supported within the context of general-
purpose, mainstream programming languages?

3. Can typed generic traversal support be integrated with support for other
common language tool development tasks?

Typed generic traversal Aswe have seen, traditional approaches to typed traver-
sal lack any constructs for generic traversal. As a consequence, lengthy traversal
code is needed, composition of complex traversals from smaller building blocks is
hardly possible, reuse within applications and across applications is hindered, and
traversal code is brittle with respect to changes in source code representations.

In various programming paradigms novel techniques have been proposed that
allow some form of typed generic traversal. These approaches regain conciseness
of traversal code and robustness, but unfortunately, they fail to address the issues
of composability, traversal control, or reuse across source code representations.

Our objective will be to provide support for generic traversal that improves
over these approaches in a few essential ways. We aim to take a combinatorial ap-
proach to traversal construction, where generic traversal combinators are first-class
citizens that allow amalgamation of generic and type-specific behavior. Success
of our approach will be measured by the amount of conciseness, composability,
traversal control, and robustness that can be achieved with it.

Mainstream programming The need for generic traversal support stems from
application areas such as compiler construction, software renovation, reverse engi-
neering, generative programming, and document processing. To build competitive
applications in these areas, one may need support for a wide range of technologies,
such as database access, interoperability, multi-threading, and graphical user inter-
faces. For this reason, it is preferable to add generic traversal techniques to existing
mainstream general-purpose programming languages, rather than to offer a dedi-
cated niche-language with generic traversal support. That would allow leveraging
the expressiveness of these mainstream languages, as well as the libraries and tool
support that have been developed for them, and to make use of the deployment
expertise gathered by an extensive user community.

We will direct our efforts at appropriate representatives from the object-oriented
and functional programming paradigms. In particular, we will attempt adding
generic traversal support to the class-based object-oriented programming language
Java, and the non-strict strongly-typed functional programming language Haskell.

1.7 Road map

23

The mainstream character of Java needs no corroboration. Though no functional
language can at the present time be called genuinely mainstream, Haskell comes as
close as any other strongly typed functional language (SML would also have been
a good candidate). It is supported by several compilers and interpreters, it has a
significantly large user community, and libraries and tools are available that ad-
dress issues such as database access, concurrency, interoperability, graphical users
interfaces, and more [Rei02].

Integrated language tool development Traversal of source code representa-
tions is only one out of several tasks that are common to all language process-
ing tools. Other essential tasks are parsing to create representations, and pretty-
printing to convert representations back to code. When language tool development
is done in a component-based fashion, another important task is exchange of source
code representations via appropriate exchange formats.

We intend to integrate our support for generic traversal with support for pars-
ing, pretty-printing and exchange of source code representations. Through such
integration, generic traversal support should be usable for component-based de-
velopment of complete language tools. In particular, we aim for integration with
the language tool components developed in the context of the ASF+SDF Meta-
Environment [BDH*01].

1.7 Road map

Chapter 2 presents a general architecture for language processing tools. In this
architecture, SDF grammars are used as contracts between tool components. From
these grammars, one can generate parsers, pretty-printers, and traversal support as
well as the necessary code for representing and exchanging syntax trees between
parsers, traversal components, and pretty-printers. Instantiations of this architec-
ture are sketched for various implementation languages. In the subsequent chap-
ters, the most challenging elements of the architecture instantiations are worked
out for representative typed languages from the functional and object-oriented pro-
gramming paradigms, viz Haskell and Java.

In Chapters 3 and 4, generic traversal support is developed for the strongly
typed functional programming language Haskell, following two approaches. The
first approach is more ‘conventional’ from the perspective of the functional para-
digm, since it is based on the notion of generalized folds, which is well-established
in this paradigm. We make these folds updatable and composable. The second ap-
proach is more flexible and powerful. It constitutes a realization in Haskell of the
strategic programming idiom, of which Stratego [VBT99] and (an extension of)
the Rewriting Calculus [CK99] provide earlier, but untyped, incarnations.

In Chapters 5, 6, and 7, generic traversal support is developed for the strongly
typed object-oriented language Java. Also, integration is realized of traversal com-

24

Introduction 1

ponents developed in Java with SDF tools for parsing and pretty printing. In this
paradigm, the notion of a visitor combinator is introduced to realize the idiom of
strategic programming.

Finally, Chapter 8 discusses how our research questions are met by the material
of the various chapters.

1.7 Road map 25

Origins of the Chapters

Chapter 2, “Grammars as Contracts”, was co-authored by Merijn de Jonge. It was
published earlier as:

M. de Jonge and J. Visser. Grammars as Contracts. In Proceedings of
the Second International Conference on Generative and Component-
based Software Engineering (GCSE 2000). Lecture Notes in Com-
puter Science 2177, pages 85-99. Springer, 2000.

Chapter 3, “Dealing with Large Bananas”, was co-authored by Ralf Lammel and
Jan Kort. It was published earlier as:

R. Lammel, J. Visser and J. Kort. Dealing with Large Bananas.
In Proceedings of the second Workshop on Generic Programming
(WGP 2000). Technical Report UU-CS-2000-19, Universiteit Utrecht.

Chapter 4, “Typed Combinators for Generic Traversal”, was co-authored by Ralf
Ldmmel. It was published earlier as:

R. Ldmmel and J. Visser. Typed Combinators for Generic Traversal.
In Proceedings of the Fourth International Symposium on Practical
Aspects of Declarative Languages (PADL 2002). In Lecture Notes in
Computer Science 2257, pages 137-154. Springer, 2002.

Chapter 5, “Visitor Combination and Traversal Control”, was published earlier as:

J. Visser. Visitor Combination and Traversal Control. In Proceedings
of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2001). ACM SIGPLAN No-
tices (36)11, pages 270-282. ACM 2001.

Chapter 6, “Object-Oriented Tree Traversal with JJForester”, was co-authored by
Tobias Kuipers. It was published earlier as:

T. Kuipers and J. Visser. Object-oriented Tree Traversal with JJ-
Forester. In Proceedings of the First Workshop on Language De-
scriptions, Tools and Applications 2001 (LDTA’01). Electronic Notes
in Theoretical Computer Science 44(2). Elsevier Science Publishers,
2001. To appear also in Science of Computer Programming.

Chapter 7, “Building Program Understanding Tools Using Visitor Combinators”,
was co-authored by Arie van Deursen. It was published earlier as:

A. van Deursen and J. Visser. Building Program Understanding Tools
Using Visitor Combinators. In Proceedings of the Tenth International
Workshop on Program Comprehension (IWPC 2002). IEEE Com-
puter Society, pages 137-146.

26

Introduction 1

Chapter 2

Grammars as Contracts

This chapter presents a general architecture for component-based develop-
ment of language processing tools. It demonstrates how traversal compo-
nents can be integrated with components for parsing, pretty-printing, and
data-exchange. Thus, the architecture of this chapter provides a context for
the generic traversal techniques to be presented in the upcoming chapters.

Component-based development of language tools stands in need of meta-
tool support. This support can be offered by generation of code — libraries
or full-fledged components — from syntax definitions. We develop a com-
prehensive architecture for such syntax-driven meta-tooling in which gram-
mars serve as contracts between components. This architecture addresses
exchange and processing both of full parse trees and of abstract syntax trees,
and it caters for the integration of generated parse and pretty-print compo-
nents with tree processing components.

We discuss an instantiation of the architecture for the syntax definition
formalism SDF, integrating both existing and newly developed meta-tools
that support SDF. The ATerm format is adopted as exchange format. This
instantiation gives special attention to adaptability, scalability, reusability,
and maintainability issues surrounding language tool development.

This chapter is based on [JV00].

2.1 Introduction

A need exists for meta-tools supporting component-based construction of lan-
guage tools. Language-oriented software engineering areas such as development
of domain-specific languages (DSLs), language engineering, and automatic soft-
ware renovation (ASR) pose challenges to tool-developers with respect to adapt-
ability, scalability, and maintainability of the tool development process. These

28

Grammars as Contracts 2

Input Syntax Output
Term Definition Term

l |
Cl> >

4
YA CDE7AN

Figure 2.1: Architecture for meta-tool support for component based language tool
development. Bold arrows are meta-tools. Grey ellipses are generated code.

challenges call for methods and tools that facilitate reuse. One such method is
component-based construction of language tools, and this method needs to be sup-
ported by appropriate meta-tooling to be viable.

Component-based construction of language tools can be supported by meta-
tools that generate code — subroutine libraries or full-fledged components — from
syntax definitions. Figure 2.1 shows a global architecture for such meta-tooling.
The bold arrows depict meta-tools, and the grey ellipses depict generated code.
From a syntax definition, a parse component and a pretty-print component are
generated that take input terms into trees and vice versa. From the same syntax
definition a library is generated for each supported programming language, which
is imported by components that operate on these trees. One such component is
depicted at the bottom of the picture (more would clutter the picture). Several
of these components, possibly developed in different programming languages can
interoperate seamlessly, since the imported exchange code is generated from the
same syntax definition.

In this chapter, we will refine the global architecture of Figure 2.1 into a com-
prehensive architecture for syntax-driven meta-tooling. This architecture embod-
ies the idea that grammars can serve as contracts governing all exchange of syn-
tax trees between components and that representation and exchange of these trees
should be supported by a common exchange format. An instantiation of this archi-
tecture is available as part of the Transformation Tools package XT [JVVO01]. The
architecture is also instantiated by the tool JJForester, which will be the subject of
Chapter 6.

The chapter is structured as follows. In Sections 2.2, 2.3, and 2.4 we will
develop several perspectives on the architecture. For each perspective we will
make an inventory of meta-languages and meta-tools and formulate requirements
on these languages and tools. We will discuss how we instantiated this architec-

2.2 Concrete syntax definition and meta-tooling

29

Concrete
I nput Syntax Output
Term Definition Term

l |
Cl> >

Parsetree Parsetree

Figure 2.2: Architecture for concrete syntax meta-tools. The concrete syntax defi-
nition serves as contract between components. Components that import generated
library code interoperate with each other and with generated parsers and pretty-
printers by exchanging parse trees adhering to the contractual grammar.

ture: by adopting or developing specific languages and tools meeting these require-
ments. In Section 2.5 we will combine the various perspectives thus developed into
a comprehensive architecture. Applications of the presented meta-tooling will be
described in Section 2.6. Sections 2.7, and 2.8 contain a discussion of related work
and a summary of our contributions.

2.2 Concrete syntax definition and meta-tooling

One aspect of meta-tooling for component based language tool development con-
cerns the generation of code from concrete syntax definitions (grammars). Fig-
ure 2.2 shows the basic architecture of such tooling. Given a concrete syntax defi-
nition, parse and pretty-print components are generated by a parser generator and
a pretty-printer generator, respectively. Furthermore, library code is generated,
which is imported by tool components (Figure 2.2 shows no more than a single
component to prevent clutter). These components use the generated library code
to represent parse trees (i.e. concrete syntax trees), read, process, and write them.
Thus, the grammar serves as an interface description for these components, since
it describes the form of the trees that are exchanged.

A key feature of this approach is that meta-tools such as pretty-printer and
parser generators are assumed to operate on the same input grammar. The reason
for this is that having multiple grammars for these purposes introduces enormous
maintenance costs in application areas with large, rapidly changing grammars. A
grammar serving as interface definition enables smooth interoperation between
parse components, pretty-print components and tree processing components. In

30

Grammars as Contracts 2

fact, we want grammars to serve as contracts governing all exchange of trees be-
tween components, and having several contracts specifying the same agreement is
a recipe for disagreement.

Note that our architecture deviates from existing meta-tools in the respect that
we assume full parse trees can be produced by parsers and consumed by pretty-
printers, not just abstract syntax trees (ASTs). These parse trees contain not only
semantically relevant information, as do ASTs, but they additionally contain nodes
representing literals, layout, and comments. The reason for allowing such concrete
syntax information in trees is that many applications, e.g. software renovation,
require preservation of layout and comments during tree transformation.

2.2.1 Concrete syntax definition

In order to satisfy our adaptability, scalability and maintainability demands, the
concrete syntax definition formalism must satisfy a number of criteria. The syn-
tax definition formalism must have powerful support for modularity and reuse. It
must be possible to extend languages without changing the grammar for the base
language. This is essential, because each change to a grammar on which tooling
is based potentially leads to a modification avalanche®. Also, the syntax definition
language must be purely declarative. If not, its reusability for different purposes is
compromised.

In our instantiation of the meta-tool architecture, the central role of con-
crete syntax definition language is fulfilled by the Syntax Definition Formalism
SDF [HHKR89]. Figure 2.3 shows an example of an SDF grammar. This exam-
ple definition contains lexical and context-free syntax definitions distributed over a
number of modules. Note that the orientation of productions is flipped with respect
to BNF notation.

SDF offers powerful modularization features. Notably, it allows modules to
be mutually dependent, and it allows alternatives of the same non-terminal to be
spread across multiple modules. For instance, the syntax of a kernel language and
the syntaxes of its extensions can be defined in separate modules. Also, mutu-
ally dependent non-terminals can be defined in separate modules. Renamings and
parameterized modules further facilitate syntax reuse.

SDF is a highly expressive syntax definition formalism. Apart from symbol
iteration constructors, with or without separators, it provides notation for optional
symbols, sequences of symbols, optional symbols, and more. These notations for
building compound symbols can be arbitrarily nested. SDF is not limited to a
subclass of context-free grammars, such as LR or LL grammars. Since the full
class of context-free syntaxes, as opposed to any of its proper subclasses, is closed
under composition (combining two context-free grammars will always produce a

1The generic traversal techniques to be presented in the upcoming chapters alleviate the dependence
of tools on grammars, but generally do not quite eliminate it.

2.2 Concrete syntax definition and meta-tooling

31

definition module Main
module Exp imports Exp Let Def
exports exports
context-free syntax sorts Exp
Identifier — Exp {cons(var)} lexical syntax
Identifier “(” {Exp “"}* “)” — Exp {cons(fcall)} [_\t\n] = LAYOUT
“(" Exp)" — Exp {bracket} contexi free restrictions
module Let LAYOUT? -I- [_\t\n]
exports

context-free syntax
let Defs in Exp — Exp {cons(let)}
Exp where Defs — Exp {cons(where)}

module Def
exports
aliases
{(Identifier “=" Exp) “,"}+ — Defs

Figure 2.3: An example SDF grammar.

grammar that is context-free as well), this absence of restrictions is essential to
obtain true modular syntax definition, and “as-is” syntax reuse.

SDF offers disambiguation constructs, such as associativity annotations and
relative production priorities, that are decoupled from constructs for syntax def-
inition itself. As a result, disambiguation and syntax definition are not tangled
in grammars. This is beneficial for syntax definition reuse. Also, SDF grammars
are purely declarative, ensuring their reusability for other purposes besides parsing
(e.g. code generation, pretty-printing).

SDF offers the ability to control the shape of parse trees. The alias construct
(see module Def in Figure 2.3) allows auxiliary names for complex sorts to be in-
troduced without affecting the shape of parse trees or abstract syntax trees. Aliases
are resolved by a normalization phase during parser generation, and they do not
introduce auxiliary nodes.

2.2.2 Concrete meta-tooling

Parsing SDF is supported by generalized LR parser generation [Rek92]. In con-
trast to plain LR parsing, generalized LR parsing is able to deal with (local) am-
biguities and thereby removes any restrictions on the context-free grammars. A
detailed argument that explains how the properties of GLR parsing contribute to
meeting the scalability and maintainability demands of language-centered appli-
cation areas can be found in [BSV98]. The meta-tooling used for parsing in our
architecture consist of a parse table generator pgen, and a generic parse com-
ponent, called sglr, which parses terms using these tables, and generates parse

32

Grammars as Contracts 2

trees [Vis97].

Parse tree representation In our architecture instantiation, the parse trees pro-
duced from generated parsers are represented in the SDF parse tree format, called
AsFix [Vis97]. AsFix trees contain all information about the parsed term, includ-
ing layout and comments. As a consequence, the exact input term can always be
reconstructed, and during tree processing layout and comments can be preserved.
This is essential in the application area of software renovation.

Full AsFix trees rapidly grow large and become inefficient to represent and
exchange. It is therefore of vital importance to have an efficient representation for
AsFix trees available. Moreover, component based software development requires
a uniform exchange format to share data (including parse trees) between compo-
nents. The ATerm format is a term representation suitable as exchange format
for which an efficient representation exists. Therefore AsFix trees are encoded
as ATerms to obtain space efficient exchangeable parse trees ([BJKOOO] reports
compression rates of over 90 percent). In Section 2.3.2 we will discuss tree repre-
sentation using ATerms in more detail.

Pretty-printing We use GPP, a generic pretty-printing toolset that has been de-
fined in [Jon00]. This set of meta-tools provides the generation of customizable
pretty-printers for arbitrary languages defined in SDF. The layout of a language is
expressed in terms of pretty-print rules which are defined in an ordered sequence
of pretty-print tables. The ordering of tables allows customization by overruling
existing formatting rules.

GPP contains a formatter which operates on AsFix parse trees and supports
comment and layout preservation. An additional formatter which operates on
ASTs is also part of Gpp.

Since GPP is an open system which can be extended and adapted easily, support
for new output formats (in addition to plain text, IATEX, and HTML which are
supported by default) and language specific formatters can be incorporated with
little effort.

2.3 Abstract syntax definition and meta-tooling

A second aspect of meta-tooling for component based language tool development
concerns the generation of code from abstract syntax definitions. Figure 2.4 shows
the architecture of such tooling. Given an abstract syntax definition, library code
is generated, which is used to represent and manipulate ASTs. The abstract syntax
definition language serves as an interface description language for AST compo-
nents. In other words, abstract syntax definitions serve as tree type definitions
(analogous to XML’s document type definitions).

2.3 Abstract syntax definition and meta-tooling

33

Abstract

Syntax
Definition

Figure 2.4: Architecture for abstract syntax meta-tools. The abstract syntax def-

inition, prescribing tree structure, serves as a contract between tree processing
components.

2.3.1 Abstract syntax definition

For the specification of abstract syntax we have defined a subset of SDF, which
we call AbstractSDF. AbstractSDF was obtained from SDF simply by omitting
all constructs specific to the definition of concrete syntax. Thus, AbstractSDF
allows only productions specifying prefix syntax, and it contains no disambigua-
tion constructs or constructs for specifying lexical syntax. AbstractSDF inherits
the powerful modularity features of SDF, as well as the high expressiveness con-
cerning arbitrarily nested compound sorts. Figure 2.5 shows an example of an
AbstractSDF definition.

The need to define separate concrete syntax and abstract syntax definitions
would cause a maintenance problem. Therefore, the concrete syntax definition can
be annotated with abstract syntax directives from which an AbstractSpr definition
can be generated (see Section 2.3.3 below). These abstract syntax directives con-
sist of optional constructor annotations for context-free productions (the “cons”
attributes in Figure 2.3) which specify the names of the corresponding abstract
syntax productions.

2.3.2 Abstract syntax tree representation

In order to meet our scalability demands, we will require a tree representation
format that provides the possibility of efficient storage and exchange. However, we
do not want a tree format that has an efficient binary instantiation only, since this
makes all tooling necessarily dependent on routines for binary encoding. Having
a human readable instantiation keeps the system open to the accommaodation of
components for which such routines are not (yet) available. Finally, we want the
typing of trees to be optional, in order not to preempt integration with typeless
generic components. For instance, a generic tree viewer should be able to read the
intermediate trees without explicit knowledge of their types.

ASTs are therefore represented in the ATerm format, which is a generic format

34

Grammars as Contracts 2

definition module Def
module Exp exports
exports aliases
syntax (Identifier Exp)+ — Defs
“var” (ldentifier) — Exp module Main
“fcall” (Identifier, Exp*) — Exp imports Exp Let Def
module Let
exports
syntax

“let” (Defs, Exp) — Exp
“where” (Exp, Defs) — Exp

Figure 2.5: Generated AbstractSDF definition.

for representing annotated trees. In [BJKOO0O0] a 2-level API is defined for ATerms.
This API hides a space efficient binary representation of ATerms (BAF) behind
interface functions for building, traversing and inspecting ATerms. The binary
representation format is based on maximal subtree sharing. Apart from the binary
representation, a plain, human-readable representation is available.

AbstractSDF definitions can be used as type definitions for ATerms by lan-
guage tool components. In particular, the AbstractSpr definition of the parse tree
formalism AsFix serves as a type definition for parse trees (See Section 2.2). The
AbstractSDF definition of Figure 2.5 defines the type of ASTs representing expres-
sions. Thus, the ATerm format provides a generic (type-less) tree format, on which
AbstractSDF provides a typed view.

2.3.3 Abstract from concrete syntax

The connection between the abstract syntax meta-tooling and the concrete syntax
meta-tooling can be provided by three meta-tools, which are depicted in Figure 2.6.
Central in this picture is a meta-tool that derives an abstract syntax definition from
a concrete syntax definition. The two accompanying meta-tools generate tools for
converting full parse trees into ASTs and vice versa. Evidently, these ASTs should
correspond to the abstract syntax definition which has been generated from the
concrete syntax definition to which the parse trees correspond.

An abstract syntax definition is obtained from a grammar in two steps. Firstly,
concrete syntax productions are optionally annotated with prefix constructor names.
To derive these constructor names automatically, the meta-tool sdfcons has been
implemented. This tool basically collects keywords and non-terminal names from
productions and applies some heuristics to synthesize nice names from these. Non-
unique constructors are made unique by adding primes or qualifying with non-
terminal names. By manually supplying some seed constructor names, users can
steer the operation of sdfcons, which is useful for languages which sparsely

2.4 Generating library code

35

Concrete

Syntax
Definition
Parsetree / l 3\ Parsetree

Figure 2.6: Architecture for meta-tools linking abstract to concrete syntax. The
abstract syntax definition is now generated from the concrete syntax definition.

contain keywords.

Secondly, the annotated grammar is fed into the meta-tool sdf2asdT, yield-
ing an AbstractSDF definition. For instance, the AbstractSDF definition in Fig-
ure 2.5 was obtained from the SDF definition in Figure 2.3. This transformation
basically throws out literals, and replaces mixfix productions by prefix produc-
tions, using the associated constructor name.

Together with the abstract syntax definition, the converters parsetree2ast
and ast2parsetree which translate between parse trees and ASTs are gener-
ated. Note that the first converter removes layout and comment information, while
the second inserts empty layout and comments.

Note that the high expressiveness of SDF and AbstractSDF, and their close
correspondence are key factors for the feasibility of generating abstract from
concrete syntax. In fact, SDF was originally designed with such generation in
mind [HHKR89]. Standard, Yacc-like concrete syntax definition languages are
not satisfactory in this respect. Since their expressiveness is low, and LR restric-
tions require non-natural language descriptions, generating abstract syntax from
these languages would result in awkwardly structured ASTs, which burden the
component programmers.

2.4 Generating library code

In this section we will discuss the generation of library code (see Figures 2.2
and 2.4). Our language tool development architecture contains code generators
for several languages and consequently allows components to be developed in dif-
ferent languages. Since ATerms are used as uniform exchange format, components
implemented in different programming languages can be connected to each other.

36

Grammars as Contracts 2

2.4.1 Targeting C

For the programming language C an efficient ATerm implementation exists as a
separate library. This implementation consists of an API which hides the efficient
binary representation of ATerms based on maximal sharing and provides functions
to access, manipulate, traverse, and exchange ATerms.

The availability of the ATerm library allows generic language components to
be implemented in C which can perform low-level operations on arbitrary parse
trees as well as on abstract syntax trees.

A more high-level access to parse trees is provided by the code generator
asdf2c which, when passed an abstract syntax definition, produces a library of
match and build functions.? These functions allow easy manipulation of parse
trees without having to know the exact structure of parse trees. These high-level
functions are type-preserving with respect to the AbstractSDF definition.

2.4.2 Targeting Java

In Chapters 5 and 6 the tool support for targeting Java will be discussed in detail.
For the Java programming language, as for C, an implementation of the ATerm API
exists which allows Java programs to operate on parse trees and abstract syntax
trees. The code generator JJForester has been developed to provide high level ac-
cess and traversals of trees similar to the other supported programming languages.
Here, syntax trees are represented as object trees, and tree traversals are supported
by instantiation of the visitor combinator framework JJTraveler.

2.4.3 Targeting Stratego

Our initial interest was to apply our meta-tooling to program transformation prob-
lems, such as automatic software renovation. For this reason we selected the
transformational programming language Stratego [Vis99] as the first target of code
generation. Stratego offers powerful tree traversal primitives, as well as advanced
features such as separation of pattern-matching and scope, which allows pattern-
matching at arbitrary tree depths. Furthermore, Stratego has built-in support for
reading and writing ATerms. Stratego also offers a notion of pseudo-constructors,
called overlays, that can be used to operate on full parse trees using a simple AST
interface.

Two meta-tools support the generation of Stratego libraries from syntax de-
scriptions. The library for AST processing is generated by asdf2stratego
from an AbstractSpr definition. The library for combined parse tree and AST
processing is generated by sdf2stratego from an SDF grammar. The latter
library subsumes the formerS.

2The asdf 2c has been subsumed by ApiGen [J002].
3Code generation for Stratego has further been elaborated and applied in [Wes02].

2.5 A comprehensive architecture

37

The Stratego code generation allows programming on parse trees as if they
were ASTs. Underneath such AST-style manipulations, parse trees are processed
in which hidden layout and literal information is preserved during transformation.
This style of programming can be mixed freely with programming directly on
parse trees. Since Stratego has native ATerm support, there is no need for generat-
ing library code for reading and writing trees.

2.4.4 Targeting Haskell

In Chapters 3 and 4, the support for targeting Haskell as available in Tabaluga
and Strafunski will be discussed. Code generated in this case is of various kinds.
Firstly, the meta-tool sdf2haskel I generates datatypes to represent parse trees
and ASTs. These datatypes are quite similar to the signatures generated for Strat-
ego. Secondly, an extended version of the DrIFT code generator can be used to
generate exchange and traversal code from these datatypes. The generated ex-
change code allows reading ATerm representations into the generated Haskell da-
tatypes and writing them to ATerms. The generated traversal code allows composi-
tion of analyses and traversals from either updatable fold combinators or functional
strategy combinators. We developed the Haskell ATerm Library to support input
and output of ATerms from Haskell types.

Note that not only general purpose programming languages of various paradigms
can be fitted into our architecture, but also more specialized, possibly very high-
level languages. An attribute grammar system, for instance, would be a convenient
tool to program certain tree transformation components.

2.5 A comprehensive architecture

Combining the partial architectures of the foregoing subsections leads to the com-
plete architecture in Figure 2.7. This figure can be viewed as a refinement of our
first general architecture in Figure 2.1, which does not differentiate between con-
crete and abstract syntax, or between parse trees and ASTSs.

The refined picture shows that all generated code (libraries and components),
and the abstract syntax definition stem from the same source: the grammar. Thus,
this grammar serves as the single contract that governs the structure of all trees
that are exchanged. In other words, all component interfaces are defined in a sin-
gle location: the grammar. (When several languages are involved, there are of
course equally many grammars.) This single contract approach eliminates many
maintenance headaches during component-based development. Of course, care-
ful grammar version management is needed when maintenance due to language
changes is not carried out for all components at once.

38

Grammars as Contracts 2

Concrete
Input Syntax Output
Term Definition Term

Compqnent

| | |

Abstract

Syntax
Definition

Figure 2.7: Complete meta-tooling architecture. The grammar serves as the con-
tract governing all tree exchange.

2.5.1 Grammar version management

Any change to a grammar, no matter how small, potentially breaks all tools that
depend on it. Thus, sharing grammars between tools or between tool components,
which is a crucial feature of our architecture, is potentially at odds with grammar
change. To pacify grammar change and grammar sharing, grammar management
is needed.

To facilitate grammar version management, we established a Grammar Base,
in which grammars are stored. Furthermore, we subjected the stored grammars to
simple schemes of grammar version numbers and grammar maturity levels.

To allow tool builders to unequivocally identify the grammars they are building
their tool on, each grammar in the Grammar Base is given a name and a version
number. To give tool builders an indication of the maturity of the grammars they
are using to build their tools upon, all grammars in the Grammar Base are labeled
with a maturity level. We distinguish the following levels:

2.6 Applications

volatile The grammar is still under development.
stable The grammar will only be subject to minor changes due to bug fixing.
immutable The grammar will never change.

Normally, a grammar will begin its life cycle at maturity level volatile. To build
extensive tooling on such a grammar is unwise, since grammar changes are to be
expected that will break this tooling. Once confidence in the correctness of the
grammar has grown, usually through a combination of testing, bench-marking,
and code inspection, it becomes eligible for maturity level stable. At this point,
only very local changes are still allowed on the grammar, usually to fix minor
bugs. Tool-builders can safely rely on stable grammars without risking that their
tools will break due to grammar changes. Only a few grammars will make it to
level immutable. This happens for instance when a grammar is published, and thus
becomes a fixed point of reference. If the need for changes arises in grammars that
are stable or immutable, a new grammar (possibly the same grammar with a new
version number) will be initiated instead of changing the grammar itself.

2.5.2 Connecting components

The connectivity to different programming languages allows components to be
developed in the programming language of choice. The use of ATerms for the
representation of data allows easy and efficient exchange of data between different
components and it enables the composition of new and existing components to
form advanced language tools.

Exchange between components and the composition of components is sup-
ported in several ways. First, components can be combined using standard script-
ing techniques and data can be exchanged by means of files. Secondly, the uniform
data representation allows for a sequential composition of components in which
Unix pipes are used to exchange data from one component to another. Finally, the
ToolBus [BK96] architecture can be used to connect components and define the
communication between them. This architecture resembles a hardware commu-
nication bus to which individual components can be connected. Communication
between components only takes place over the bus and is formalized in terms of
Process Algebra [BW90].

2.6 Applications

Extensive experience is available about actually applying the meta-tooling pre-
sented in the previous sections. We will present a selection of such experiences.
To start with, the meta-tooling has been applied for its own development, and
for the development of some other meta-tools that it is bundled with in the Trans-
formation Tools package XT. These bootstrap flavored applications include the

40

Grammars as Contracts 2

generation of an abstract syntax definition for the parse tree format AsFix from
the grammar of SDF. From this abstract syntax definition, a modular Stratego
library for transforming AsFix trees was generated and used for the implementa-
tion of some AsFix normalization components. Also, the tools sdf2stratego,
sdfcons, asdf2stratego, sdf2asdf, and many more meta-tools were im-
plemented by parsing, AST processing in one or more components, and pretty-
printing.

Apart from SbF and AbstractSpr, the domain specific languages Box (for
generic formatting), and BENCH (for generating benchmark reports), have been
implemented with syntax-driven meta-tooling. In the Box implementation, a gram-
mar for pretty-print tables was built by reusing the SDF grammar and the BOX
grammar. New BOX components were implemented in Stratego and connected to
existing BOX components programmed in other languages.

The generated transformation frameworks for Haskell have been applied to
software renovation problems. In [KLV00], a Cobol renovation application is re-
ported. It involves parsing according to a Cobol grammar, applying a number of
function transformers to solve a data expansion problem, and unparsing the trans-
formed parse trees. The functional transformers have been constructed by refining
a transformation framework generated from the Cobol grammar.

The Stratego meta-tools have been elaborated and applied in the CobolX
project [Wes02]. Transformations implemented in this project include goto-
elimination, and data field expansion with preservation of layout and comments.

In the upcoming chapters, further applications will be described. Chapter 4
describes the implementation of Java refactoring. Chapter 5 describes analysis
of GraphXML, where the roots and sinks are extracted from a graph document.
Chapter 6 contains a case study in which communication graphs are generated
from Toolbus scripts. Chapter 7 describes procedure reconstruction for Cobol for
program understanding purposes.

2.7 Related work

Syntax-driven meta-tools for language tool development are ubiquitous, but rarely
do they address a combination of features such as those addressed in this chapter.
We will briefly discuss a selection of approaches some of which attain a degree of
integration of various features.

e Parser generators such as Yacc [Joh75] and JavaCC are meta-tools that gen-
erate parsers from syntax definitions. Compared with SDF with its support-
ing tools pgen and sgl r, they offer poor support for modular syntax defi-
nition, their input languages are not sufficiently declarative to be reusable for
the generation of other components than parsers, and they do not generally
target more than a single programming language.

2.7 Related work

e The language sYN [Bou96] combines notations for specifying parsers, pretty-
printers and abstract syntax in a single language. However, the underlying
parser generator is limited to LALR(1), in order to have both parse trees and
ASTs, users need to construct two grammars, and code the mapping be-
tween trees by hand. Moreover, the expressiveness of the language is much
smaller than the expressiveness of SDF, and the language is not modular.
Consequently, sYN and its underlying system can not meet our adaptability,
scalability and maintainability requirements.

e Wile [Wil97] describes derivation of abstract syntax from concrete syntax.
Like us he uses a syntax description formalism more expressive than Yacc’s
BNF notation in order to avoid warped ASTs. Additionally, he provides
a procedure for transforming a Yacc-style grammar into a more “tasteful”
grammar. His BNF extension allows annotations that steer the mapping
with the same effect as SDF’s aliases. He does not discuss automatic name
synthesis.

o AsdlGen [WAKS97] provides the most comprehensive approach we are
aware of to syntax-driven support of component-based language tools. It
generates library code for various programming languages from abstract
syntax definitions. It offers AsDL as abstract syntax definition formalism,
and pickles as space-efficient exchange format. It offers no support for deal-
ing with concrete syntax and full parse trees.

AsdIGen targets more languages than our architecture instantiation does at
the moment. The choice of target languages, including C and Java, has pre-
sumably motivated some restrictions on the expressiveness of ASbL. AsSDL
lacks certain modularity features, compared to AbstractSpDF: no mutually
dependent modules, and all alternatives for a non-terminal must be grouped
together. Furthermore, AspL is much less expressive. It does not allow nest-
ing of complex symbols, it has a very limited range of symbol constructors,
and it does not provide module renamings or parameterized modules.

Unlike ATerms, the exchange format that comes with AsDL is always typed,
thus obstructing integration with typeless generic components. In fact, the
compression scheme of AsbL relies on the typedness of the trees. The rate
of compression is significantly smaller than for ATerms [BJKOOQ]. Further-
more, pickles have a binary form only.

e The DTD notation of XML [BPSM98] is an alternative formalism in which
abstract syntax can be defined. Tools such as HaXML [WR99] generate
code from DTDs. HaXML offers support both for type-based and for generic
transformations on XML documents, using Haskell as programming lan-
guage. Other languages are not targeted. Concrete syntax support is not
integrated.

42

Grammars as Contracts 2

XML is originally intended as mark-up language, not to represent abstract
syntax. As a result, the language contains a number of inappropriate con-
structs, and some awkward irregularities from an abstract syntax point of
view. XML also has some desirable features, currently not offered by Ab-
stractSDF, such as annotations, and inclusion of DTDs (abstract syntax def-
initions) in documents (abstract terms).

e Many elements of our instantiation of the architecture for syntax-driven
component-based language tool development were originally developed in
the context of the ASF+SDF Meta-Environment [BHK89, HHKR89, DHK96,
BDH™01]. This is an integrated language development environment which
offers SDF as syntax definition formalism and the term rewriting language
ASF as programming language. Programming takes place directly on con-
crete syntax, thus hiding parse trees from the programmers view. Program-
ming, debugging, parsing, rewriting and pretty-printing functionality are
all offered via a single interactive user interface. Meta-tooling has been
developed to generate AsrF-modules for term traversal from SDF defini-
tions [BSV97].

The AsrF+SDF Meta-Environment is an interactive environment for compo-
nent-based development of language tools. It offers a single programming
language (ASF), and programming on abstract syntax is not supported.

To provide support for component-based tool development, we have adopted
the SDF, AsFix, and ATerm formats from the AsF+SDF Meta-Environment
as well as the parse table generator for SDF, the parser sglr, and the ATerm
library. To these we have added the meta-tooling required to complete the
instantiation of the architecture of Figure 2.7. In future, some of these meta-
tools might be integrated into the Meta-Environment.

2.8 Contributions

We have presented a comprehensive architecture for syntax-driven meta-tooling
that supports component based language tool development. This architecture em-
bodies the vision that grammars can serve as contracts between components under
the condition that the syntax definition formalism is sufficiently expressive and
the meta-tools supporting this formalism are sufficiently powerful. We have pre-
sented our instantiation of such an architecture based on the syntax formalism
SDF. SDF and the tools supporting it have agreeable properties with respect to
modularity, expressiveness, and efficiency, which allow them to meet scalability
and maintainability demands of application areas such as software renovation and
domain-specific language implementation. We have shown how abstract syntax
definitions can be obtained from grammars. We discussed the meta-tooling which
generates library code for a variety of programming languages from concrete and

2.8 Contributions

43

abstract syntax definitions. Components that are constructed with these libraries
can interoperate by exchanging ATerms that represent trees.

44

Grammars as Contracts 2

Chapter 3

Dealing with Large Bananas

This chapter presents techniques for generic traversal in functional program-
ming, based on an elaboration of the established notion of generalized folds.
We make these folds updatable and composable.

Many problems call for a mixture of generic and specific programming
techniques. We propose a generic programming approach based on general-
ized (monadic) folds where a separation is made between basic fold algebras
that model generic behavior and updates on these algebras that model spe-
cific behavior. We identify particular basic algebras as well as some algebra
combinators, and we show how these facilitate structured programming with
updatable fold algebras. This blend of genericity and specificity allows pro-
gramming with folds to scale up to applications involving large systems of
mutually recursive datatypes. Finally, we address the possibility of provid-
ing generic definitions for the functions, algebras, and combinators that we
propose.

This chapter is based on [LVKOOQ].

3.1 Introduction

Polytypic programming [JJ97a, Hin00, CL02] aims at relieving the programmer
from repeatedly writing functions of similar functionality for different user-defined
datatypes. For example, for any datatype parametric in «, ‘crushing’ the values of
type « in a given structure can be defined fully generically [Mee96, Hin99]. Such
a generic function abstracts from constructors. It is defined by induction on the
structure of datatypes in terms of sums, products and others.

Many problems rather call for a mixture of generic and specific programming
techniques. Think of a program transformation. On the one hand, it must imple-
ment specific behavior for particular constructs of the language at hand. On the

46

Dealing with Large Bananas 3

other hand, it acts on the remaining constructs in a completely generic way: it pre-
serves them. Or think of a program analysis. It often follows a completely generic
scheme such as accumulation or reduction, while usually only a few patterns re-
quire specific functionality. This interplay of genericity and specificity has also
been observed by others (e.g., [Vis00a]).

To address this mixture of genericity and specificity, we propose a polytypic
programming approach based on generalized [Fok92, MFP91] and monadic [Fok94,
MJ95] folds for systems of mutually recursive datatypes. It is generally accepted
that programming with folds (or, more generally, with morphisms) is desirable
because it imposes ‘structured programming’, it facilitates (optimizing) program
transformation, it untangles traversal schemes from traversal-specific ingredients,
and it facilitates reasoning about programs. Programming with folds offers a re-
stricted form of generic programming, in the sense that traversal schemes such as
fold functions can be defined generically for large classes of datatypes. Recent
research has focused on extending the class of permitted datatypes, and on iden-
tifying the various traversal schemes and their properties [Mee92, FSS92, SF93,
MH95, BP99].

Yet, programming with generalized folds is not truly generic because actual
programming means to pass algebras to the fold function. These algebras provide
the ingredients of the actual traversal, and their structure depends on the actual
datatype. Thus, while the traversal schemes might be generic, their instantiations
are obtained through non-generic programming.

We propose to separate constructing fold algebras into (i) obtaining a generic
fold algebra through polytypic programming and/or reuse from a library of basic
fold algebras and algebra combinators, and (ii) updating the generic algebra with
specific behavior for particular constructors. This separates the places where one
wants to be generic from the places where one needs to be specific. Since both al-
gebras and updates on them are regarded as first-class citizens, structured program-
ming with them is facilitated. In particular, we identify some generic functions for
calculating with monadic folds.

Our approach can be used, for example, for the development of program trans-
formations and analyses in the context of legacy system renovation [CC90, BSV00],
where one is concerned with the adaptation of large software applications, for ex-
ample written in Cobol. The sheer size of the underlying languages in this area
makes some sort of generic programming indispensable; defining traversals on the
language’s syntax non-generically is simply not feasible. Yet, for particular con-
structors specific behavior must be specified. Programming with folds scales up
to these kinds of problems when a functional language is used that provides, as
we propose, generalized folds for mutually recursive datatypes and a combinator
language for fold algebras, including a mechanism for updating generic algebras
with specific behavior.

Section 3.2 briefly recapitulates the various elements involved in existing meth-

3.2 Programming with folds

47

ods of programming with folds. Section 3.3 explains the separation of generic al-
gebras and algebra updates, which is the key to scalable programming with folds.
Section 3.4 extrapolates this separation to monadic folds. Throughout these sec-
tions, a running Haskell example, adapted from [MJ95], is used to identify and
illustrate the required elements for programming with updatable folds. Section 3.5
provides a more abstract formulation of our approach, including polytypic defini-
tions of some elements.

3.2 Programming with folds

Using an example adapted from [MJ95], we will quickly recapitulate the various
elements involved in existing methods of programming with folds. Moreover, we
will explain the lack of scalability of these methods.

Remarks We use Haskell examples throughout the chapter. In particular, we use
Haskell 98 extended with multi-parameter type classes, which are supported by
the main Haskell implementations. We use classes to overload functions merely
for convenience — our treatment does not rely on them. We chose not to use
“functional dependencies’ [Jon99] in class headers (as in: class Fold alg t a |
alg t - o where...). This would make more accurate overloading resolution
possible, allowing the user to write fewer explicit types, but it is currently not
supported by all Haskell implementations. In Section 3.4 on monadic folds, we
make use of stackable monads from Andy Gill’s Monad Template Library, to be
found via http://www.haskell .org.

3.2.1 Anexample

When using folds, a programmer writes functions consuming values of a datatype
D in terms of a fold function which captures the recursive traversal scheme for
D. The fold function is parameterized by a fold algebra, which holds as many
functions as there are constructors in the datatype. These functions are meant to
replace the constructors in the traversal.

Example 3.2.1 Assume for example the following system of datatypes, which rep-
resents the abstract syntax of a simple functional language:

data Type TVar String
Arrow Type Type

1
data Ezpr = Var String
| Apply Expr Ezpr
| Lambda (String, Type) Ezpr
The type of the algebras that parameterize folds over this system of datatypes is
the following:

48

Dealing with Large Bananas 3

data Cata a b = Cata{tvar :: String = a
,ar’r‘ow::a—)a—)a
,var i String — b
,apply b — b — b
,lambda :: (String,a) = b — b}
The algebra type is named Cata because the corresponding fold functions cap-
ture the catamorphic scheme of recursion. We will comment on paramorphisms
[Mee92] in Section 3.5. We use a flat Haskell record to model an algebra for
usability reasons. There are other possible encodings. Some of them will be dis-
cussed in Section 3.6.
The family of fold functions for the system of datatypes can be represented by
the following class and instance declarations:

class Fold alg t a where

fold o oalgot—ooa
instance Fold (Cata a b) Type a where

fold alg (TVar z) = (tvar alg) z

fold alg (Arrow s t) = (arrow alg) (fold alg s) (fold alg t)
instance Fold (Cata a b) Ezpr b where

fold alg (Var z) = (var alg) z

fold alg (Apply f a) = (apply alg) (fold alg f) (fold alg a)
fold alg (Lambda (z,t) b) = (lambda alg) (z,(fold alg t)) (fold alg b)

Note that in general the fold functions can be mutually recursive just like the system
of datatypes. Given these definitions, a programmer can begin to write functions
consuming values of one of the datatypes, by passing appropriate algebra values to
one of the fold functions. For instance, a function for constant function elimination
can be written as follows:

cfe 2 Ezpr — Ezpr

cfe = fold cfeAlg

cfeAlg 2 Cata Type Ezpr
cfeAlg = Cata{tvar = TVar

, arrow = Arrow
,var = Var
,apply = Af a — case f of
(Lambda (z,t) b) — if - (elem z (freevars b))
then b

else (Apply f a)
-— (Apply f a)
, lambda = Lambda}
The function freevars, which collects free variables from a given expression, can
be programmed in the same style, as we will show in Section 3.3.3. @

3.2.2 Scalability problems

Imagine using the technique of programming with folds, not for the toy language
of Example 3.2.1, which has a syntax definition with two nonterminals (types) and

3.3 Programming with updatable fold algebras

49

five productions (constructors), but for Cobol, which has a syntax definition with
several hundreds of nonterminals and productions. This occurs in the application
areas of program analysis and transformation such as legacy system renovation
[CC90, BSVOQ]. There are several problems with respect to scalability:

Initial effort Before programming with folds can begin, the algebra type and the
fold functions need to be defined. Since both the number of field declara-
tions in the algebra type, and the number of function equations are equal to
the number of constructors, the effort involved is proportional to the size of
the syntax definition.

Repeated effort Instantiating a fold function with an algebra almost requires as
much effort as writing a traversal from scratch. The number of field defini-
tions in the fold algebra is again equal to the number of constructors. So,
no matter how small the problem to be solved by a traversal, the size of the
algebra to be written is proportional to the size of the syntax definition.

In principle, the first problem can be solved by generating folds (refer, e.g., to
[BB85, She9d1]), offering them as language primitives (as, e.g., in Charity [CS92]),
or providing polytypic definitions for them (as, e.g., in PolyP [JJ97a] or Generic
Haskell [CL02]). However, there are some problems with the existing approaches
regarding systems of mutually recursive datatypes and the kind of algebra notion
supported by them. In Section 3.5, we attempt to improve on these existing ap-
proaches. To solve the second problem, this chapter proposes to separate generic
fold algebras from language-specific updates on them. This is explained in Sec-
tions 3.3 and 3.4.

3.3 Programming with updatable fold algebras

We propose to separate the construction of fold algebras into (i) obtaining a basic
algebra, and (ii) updating the algebra. This separates the places where one wants
to be generic from the places where one needs to be specific. In this section, we
will explain how programming with updatable fold algebras proceeds, and we will
identify some useful basic fold algebras. In Section 3.4, some sophistication is
added to the technique of programming with folds by accommodating monads and
(monadic) fold algebra combinators. Finally, in Section 3.5, the generic structures
involved in programming with updatable fold algebras are given generic defini-
tions.

3.3.1 Updating algebras

To explain the separation into basic algebras and updates, we revisit Example 3.2.1.

50

Dealing with Large Bananas 3

Example 3.3.1 The algebra cfeAlg can be constructed by applying a fold algebra
update to a basic fold algebra. In this particular case, the basic fold algebra
idmap iS appropriate:
wdmap i: Cata Type Ezpr
idmap = Cata{tvar = TVar
, arrow = Arrow
,var = Var

s apply = Apply
,lambda = Lambda}

The generic behavior captured by this algebra is to traverse a term without chang-
ing it, i.e., fold applied to idmap is the identity function. This holds because
constructors are replaced by themselves. This is a law each fold should satisfy
[MJ95]. In order to obtain cfeAlg from idmap, we apply the update cfe Upd:

cfeAlg = cfeUpd idmap
cfeUpd alg = alg{ apply = A\f a — case f of
(Lambda (z,t) b) — if = (elem z (freevars b))
then b

else (Apply f a)
- — Apply f a}

Here we make use of the Haskell syntax r{a; = z;,...,a, = =, } for record
update. &

The separation of a basic fold algebra and an update on it, is the key to making
programming with folds scalable. The basic fold algebra, which is proportional
to the size of the language’s syntax definition, can be derived automatically or
defined polytypically (see Section 3.5). The update needs to contain problem-
specific functionality only, and is provided by the programmer.

3.3.2 Type-preserving and type-unifying

The basic fold algebra idmap and all algebras obtained by updating it are type-
preserving in the sense that when folding with them a Type is mapped to a Type,
and an Ezpr is mapped to an Ezpr. This is captured by the following type syn-
onym:

type Preserve = Cata Type Ezpr

Type-preserving algebras are useful for programming (program) transformations.
Another important class of algebras are the type-unifying ones. These map both
Ezxpr and Type onto the same result type. This is captured as follows:

type Unify ¢ = Cateaaa

The next subsection features such type-unifying algebras. As will become clear,
type-unifying algebras are useful for programming (program) analyses.

3.3 Programming with updatable fold algebras

51

3.3.3 Crushing

We start our discussion of type-unifying basic fold algebras with the parameterized
basic fold algebra crush.

crush i a—=(a—a—>a)—> Unify a
crush e o = Cata{tvar = Az — e
,arrow = Aa b — a‘o‘b
,var = Az — e
,apply =Aa b — a‘o‘b
Jlambda = XNz, t) b = t‘0‘ b}

The parameters of this algebra, i.e., the value e and the binary operator o, are as-
sumed to form a monoid. Alternatively, a type class Monoid could have been used
here. Instantiation of crush would then proceed by type specialization instead of
passing parameters explicitly. The name crush is inspired by the related concept of
polytypic crushing on parameterized datatypes [Mee96, Hin99]. Polytypic crush-
ing means to collect and to reduce all values of type « in a datatype parametric
in a. In contrast, our crush has to be updated before it collects values in a given
data structure at all. The basic algebra just defines the reduction of intermediate
results. Given a term ¢, the expression fold (crush e o) t will be evaluated to e,
if we assume the monoid unit laws. This type of reduction does not depend on the
parameterization of a datatype.

Example 3.3.2 To demonstrate the use of the type-unifying parameterized algebra
crush, we will define a program analysis that collects free variables. First we
instantiate crush to obtain a basic fold algebra collect:

collect = crush [] (#)
Then we define a collector of variables:
vars i Ezpr — [String]

fold (varsUpd collect)
alg{var = Az — [z]}

vars

varsUpd alg

And we derive a collector of free variables as needed in Example 3.2.1:

freevars i Ezpr — [String]
freevars fold (fvUpd collect)
foUpd alg (varsUpd alg){lambda = X(z,t) b — filter (z £) b}

This two-step update illustrates the modularization of algebra updates. In Sec-
tion 3.4 another technique is discussed. Of course, collect could have been up-
dated in two points (i.e., constructors) at once. 1

Example 3.3.3 Another use of crush is to build a basic fold algebra count for
counting:

count = crush 0 (+)

A counter of variables is constructed by updating count:

52

Dealing with Large Bananas 3

countvars 2 Ezpr — Integer
countvars = fold (cvUpd count)
cvUpd alg = alg{var = Az — 1}
“

3.4 Merging monads and updatable folds

There are several reasons for using monads in combination with updatable fold
algebras. Firstly, monadic effects can be used to address issues such as context
propagation (environment monad), side-effects (I/O and state monad), and fail-
ure (error monad). Secondly, monadic updatable folds can be used to elegantly
modularize programs.

3.4.1 Monadic folds

Monadic folds are explained in [Fok94, MJ95]. Some variants are discussed in
[MBJ99]. The monadic algebra type and type synonyms for type-preserving and
type-unifying monadic algebras for our example language are as follows:

data Monad m = MCata m a b
= MCata{mtvar :: String = m a

,MaATTOW 1 @ = a4 — M @

,mvar :: String — m b

,mapply :b - b —>mb

,mlambda :: (String, a) = b — m b}
MCata m Type Ezpr
MCata m a a

type MPreserve m
type MUnify m a

For brevity we give the monadic fold function only for Type; for Ezpr it is similar;

instance Monad m = Fold (MCata m a b) Type (m a) where
fold alg (TVar z) = (mtvar alg) =
fold alg (Arrow s t) = do {s' + fold alg s;t' + fold alg t; marrow alg s' t'}

Note that the traversal scheme modeled by the monadic fold function explicitly
sequences the computations of the recursive calls.

3.4.2 Lifting fold algebras

Monadic algebras can be constructed via two routes. Either directly, by updating
a monadic basic fold algebra, or indirectly, by updating an ordinary algebra and
lifting it to a monadic one. The lifting operator unit is straightforwardly defined
as follows:

unat it Monad m = Cata a b - MCata m a b
unit alg = MCata{mtvar = Az — return ((tvar alg) z)
,marrow = Aa b — return ((arrow alg) a b)

3.4 Merging monads and updatable folds 53

,mvar = Az — return ((var alg) z)

,mapply = Af a = return ((apply alg) f a)

,mlambda = Azt b — return ((lambda alg) zt b)}
Of course, if the programmer wishes to use monadic effects in particular updates,
only the direct route is available. As we will show, indirectly constructed updates
and directly constructed ones can be composed, so the programmer is not forced
to deal with monads where he does not use them.

3.4.3 Fold algebra composition

The algebra update cfe Upd of Example 3.3.1 is not quite suitable to be merged (by
function composition) with other updates, because the fall-through arm of the case
and the else branch of the conditional explicitly rebuild the original term. It would
override the functionality specified by previous updates for all application nodes,
not just for constant function applications. To prepare this update for modular
composition, it could instead refer to the the algebra alg that is being updated
(substitute apply alg for Apply). There is another technique which facilitates
merging of updates. Itis based on an algebra combinator plus and a neutral algebra
ZEero.

plus it MonadPlus m = MCata m a b - MCata m a b - MCata m a b
plus s ' = MCata{mtvar = Az — ((mtvar s) z) ‘mplus‘ ((mtvar s') z)
,marrow = Aa b — ((marrow s) a b) ‘mplus‘ ((marrow s') a b)
,mvar = Az = ((mvar s) z) ‘mplus‘ ((mvar s') z)
,mapply = Af a = ((mapply 3) f a) ‘mplus‘ ((mapply s') f a)
,mlambda = X(z,t) b = ((mlambda s) (z,t) b)
“mplus‘ ((mlambda s') (z,t) b)}
zero it MonadPlus m = MCata m a b
zero = MCata{mtvar = Az — mzero
,marrow = Aa b — mzero
,muar = Az — mzero
,mapply = Af a = mzero
, mlambda = Azt e — mzero }

These employ a monad with plus and zero (backtracking or error monad) to model
the success or failure of algebra members. For convenience we additionally define
an algebra combinator #ry, which tries to apply a type-preserving algebra and
resorts to idmap when it fails:

try it MonadPlus m = MPreserve m — MPreserve m
try s = s ‘plus‘ (unit idmap)

Note that in this definition idmap is lifted to obtain a monadic idmap.

Example 3.4.1 The function cfe can now be reformulated.

cfe i1 FEzpr — Maybe Ezpr
cfe = fold (try cfeAlg :: MPreserve Maybe)

cfeAlg it MonadPlus m = MPreserve m

54

Dealing with Large Bananas 3

cfeAlg = zero{mapply = \f a — case f of
(Lambda (z,t) b)
— do guard (- (elem z (freevars b)))
return b
— — mzero}

7|

Algebras formulated as updates on zero can freely be combined with other (appro-
priately typed) algebras by means of the combinators plus and ¢try. This will be
illustrated below.

3.4.4 Carried monads

It is well known that monadic folds are not expressive enough for all effects in
traversals [MJ95]. The reason for this is that the sequencing of recursive calls
which is weaved into the monadic fold function sometimes needs to be modified.
In these cases, monads can be used in a different way, which we call carried (vs.
weaved-in). We introduce the following type synonyms for carried monadic fold
algebras:

Cata (m Type) (m Ezpr)
Unify (m a)

type PreserveM m
type UnifyM m a

Note that in carried monadic fold algebras, the sequencing of recursive calls needs
to be done explicitly by the programmer. We can define unit, zero, plus and
try for carried monadic algebras too. As in the weaved-in case, carried monadic
algebras can be constructed directly or by lifting ordinary algebras. We will postfix
names with M to indicate that carried monads are involved.

3.4.5 Casting weaved-in to carried monadic fold algebras

For some effects, carried monads are necessary, but in general they are more cum-
bersome than weaved-in monads, because the programmer is burdened with se-
quencing. Also, the restricted expressiveness of weaved-in monads yields more
theorems for free. Fortunately, we can define a function carried that casts a
weaved-in monadic algebra to a carried one.
carried i Monad m = MCata m t e = Cata (m t) (m €)
carried alg = Cata{tvar = Az — mtvar alg z
, arrow = Ama mb — do {a + ma; b + mb;marrow alg a b}
,var = Az — muar alg z
, apply = Amf ma — do {f + mf; a + ma; mapply alg f a}
,lambda = X(z, mt) mb — do t + mt

b+ mb
mlambda alg (z,t) b}}

The following example shows how carried can be used to resort to carried monads
only for effects that need them.

3.5 Generic bananas

Example 3.4.2 We define an algebra for performing substitutions. An environ-
ment monad is used to propagate a context of type Subst = [(String, Ezpr)]. A
state monad is used to generate new variable names, which are needed to prevent
variable capture.

lookupAlg :: (MonadPlus m, MonadReader Subst m) = MPreserve m
lookupAlg = zero{mwvar = Az — mlookup =}
restoreAlg 1 (MonadPlus m, MonadReader Subst m, MonadState Int m)

= PreserveM m
zeroM{ lambda = A(z, mt) mb —
do env + ask
z! + new_name
t < mt
b + restore ((z, Var z') : env) mb
return (Lambda (z',t) b)}
substAlg v (MonadPlus m, MonadReader Subst m, MonadState Int m)
= PreserveM m
tryM (carried lookupAlg ‘plusM* restoreAlg)

restoreAlg

substAlg

The algebra lookupAlg takes care of the actual substitution of a variable. It is
defined as a weaved-in monadic algebra. The algebra restoreAlg takes care
of adding a renaming of a bound variable to the context before processing the
body of a lambda abstraction. Here, a carried monad is needed. In the algebra
substAlg, these two algebras are combined into a carried algebra, by first casting
the weaved-in monadic algebra to a carried one, and then applying plusM . &

3.5 Generic bananas

In the foregoing sections, we gave Haskell definitions of the ingredients for pro-
gramming with (monadic) updatable folds: the fold algebra type, the fold func-
tions, the basic fold algebras idmap, crush and zero, the fold combinators unit
and plus, and the casting function carried. These definitions were specific to our
example system of datatypes.

Of course, to truly enable generic programming, programmers should not be
burdened with repeatedly supplying such definitions for all systems of datatypes
that come up. In this section, we will demonstrate that generic definitions of the in-
gredients of programming with updatable folds can be given. These definitions can
be implemented by a program generator (see Section 3.6), or by supplying them as
language primitives in a functional language. This would allow generic program-
ming with updatable folds. Alternatively, a generic programming language which
allows these definitions to be expressed, would additionally enable programming
of updatable folds.

56

Dealing with Large Bananas 3

3.5.1 Systems of datatypes

In the polytypic definitions to come, we use a flavor of polytypic programming
[JJ97a, Hin00]. We will perform induction over the structure of systems of (mutu-
ally recursive) datatypes. This structure is given by the following grammar:

S = O|N=D|SUS -- systems of datatypes
D = CT|D+D -- datatype definitions
T == 1|TxXT|N -- type expressions

N -- hames of datatypes
C -- constructor names

We use s, d, t, n, and ¢, possibly subscripted or primed, to range over respectively
S, D, T, N, and C. For convenience, we introduce the notation ¢(s) to denote
the type of the constructor ¢ in the system s, i.e.,,ifn =---+ct+--- € s, then
c(s) =t > n.

As the grammar details, a system of datatypes s is a set of equations, a datatype
definition d is a sum of types, labeled with constructor names, and a type expres-
sion ¢ is a product over names of datatypes. Three features of this grammar are
noteworthy. Firstly, constructor names are not suppressed in the representation of
datatype definitions. Indeed, constructor names are indispensable when generic
programming is to be mixed with specific programming. Secondly, the grammar
explicitly distinguishes datatypes from type expressions. If they would be merged
into a single nonterminal, that allows both sums and products, unintended expres-
sions would be generated, e.g., sums not qualified with constructors, or construc-
tors occurring inside products. Finally, though constructors are usually typed in a
curried fashion, we use products for the parameters of constructors. This allows
a more homogeneous treatment as common in polytypic programming. We only
consider complete and non-extensible systems of datatypes in this chapter. For the
moment being, we limit ourselves to non-parameterized datatypes without func-
tion types and nested sums involved. At the end of the section we will discuss
whether these limitations can be lifted.

3.5.2 Fold algebras

We need to define the fold algebra type induced by a system s of datatypes. This is
a generalization of the algebra type for a single datatype, which is well understood.
Since we want to abstract from the concrete structure of algebras (whether they are
records or tuples, flat or nested), we will provide a (semi-formal) axiomatization
of fold algebras. The Haskell approach of the previous sections should be regarded
as one model of this axiomatization.

Intuitively, the algebra type of a datatype system s is obtained as a collection of
function types derived from all the constructor types in s by consistently replacing
names of datatypes by distinct type variables. To accommodate type variables,

3.5 Generic bananas

57

we define type schemes T'S O T, i.e., type expressions which may contain type
variables. Type schemes are defined according to the following grammar:

TS == 1|TSxTS|N|X -- type schemes
X -- type variables

We use 7 and « to range respectively over 7°'S and X. Now we can proceed to
define s-fold algebras. A is an s-fold algebra for a system s of datatype definitions
if:

1. For each equation n = d in s there is a type scheme n(.A) called result type

(scheme) for n.

2. We lift the m(A) from data names to £(.A) for type expressions ¢:

14 = 1
t1 xt2(A) = (ta(A) x 12(A)

3. For each constructor c in s there is an algebra member A.c of type £(A) —

n(A), where ¢(s) =t — n.

We consider the set of all s-fold algebras as the fold algebra type for the system s.

3.5.3 Fold functions

Generalized folding for systems s of datatypes can be defined by induction on 7.
In an application fold(t) A z, we require that A is an s-fold algebra, and z is of
type t. The result type of folding is, of course, #(.A).

fold(1) A() = ()
fold(t1 x t3) A (z1,z2) (fold(t,) Ay, fold(ts) A xs)
foldin) A(cz) = A.c(fold(t) Az)wherec(s)=t—n

The definition of paramorphic fold functions [Mee92, SF93] and monadic fold
functions [Fok94, MJ95] (see also Section 3.4) requires just a modest elaboration
of the scheme above. Although we did not illustrate paramorphisms in this chap-
ter, we should mention that the recursion scheme underlying paramorphisms is
very desirable for traversals where the structure of subterms needs to be observed.
Paramorphisms can be encoded as catamorphisms by a tupling technique, but this
is very inconvenient in actual programming.

58

Dealing with Large Bananas 3

3.5.4 Basic algebras

Let us now define the basic fold algebras idmap, crush and zero induced by a
system s. For all c:

idmap.c = ¢
crush.c = Az.crush’(t) z wherec(s) =t —n
zero.c = Az.mzero

The definition of idmap is immediately clear. For crush, we need to define a
generic function crush’ which performs crushing for parameters of constructors.
The definition of this function (and thereby crushing) assumes a monoid {(a, e, o),
where « is a type variable, e denotes the neutral element, and o denotes the asso-
ciative operation:

crush’(1) () = e
crush'(ty x t2) (z1,22) = (crush'(t;) 1) o (crush’(ts) z2)
crush’(nyz = zforallnins

For zero, we assume a monad with zero, that is a structure (M, return, =, mzero).

In Section 3.3, we introduced the terms type-preserving and type-unifying to
describe the classes of algebras of which respectively :dmap and crush are rep-
resentatives. We can now characterize these classes by the result types of the
algebras. For a type-preserving algebra A, m(.A) = n for all n in s. For a type-
unifying algebra A, n(A) = 7 for all n in s, i.e., there is common result type 7
independent of the type index. The basic fold algebra zero (or any algebra of the
same type) is not restricted to either of these classes. The result types are of the
formm(zero) = M « (with different « for different »), i.e., the result types for the
various n in s are only constrained to be monadic.

3.5.5 Algebra combinators

Sections 3.3 and 3.4 featured a number of operators on fold algebras. Algebra
update is the most important of these operators. The combinators unit, plus, and
carried were introduced for monadic fold algebras. The definitions of these mo-
nadic combinators are similar to those for the basic algebras above. The definition
of updating is more involved.

If the datatype system s contains the constructor name c, i.e., if ¢(s) is defined,
Alc/ f] denotes the update of an s-algebra .A at ¢ by a function f. Initially, we
require the type of f to be equal to the type of .A.c. Then, updating can be defined

as follows:
| ifc=¢
Ale/ ¢ = { A.c', otherwise

3.5 Generic bananas

59

It is easy to verify that the resulting structure is indeed a proper s-algebra with
n(Alc/f]) = n(A) for all n in s. The condition that the type of f is equal to
the type of A.c is not too restrictive in the presence of an operator for type spe-
cialization. We will use A[r/7] to denote the instantiation of the result type for
n in A to the type 7. The axiomatization is omitted for brevity. Type special-
ization is allowed under the condition that = is more specific than n(.A), i.e., if
there is a substitution to replace type variables by type schemes in n(.A) such that
it becomes equal to 7. Recall that in the Haskell model, fold algebra types are
parameterized datatypes (record types), algebra updating is record updating, and
type specialization is type parameter instantiation.

3.5.6 Extensions

So far we have restricted ourselves to closed systems of non-parameterized data-
types. For many purposes this is quite sufficient. In the application areas we have
in mind, systems of datatypes are derived from syntax definitions, and the class
of systems considered so far covers simple BNF notation. Nonetheless, we will
now discuss some possibilities for extending our approach to richer classes of da-
tatypes. As will become apparent, such extensions conjure up a wealth of design
choices.

Primitive types The system of datatypes of our running example uses the prim-
itive type String. Actually, String is not quite primitive in Haskell, but defined as
list of Char. In fact, for pragmatic reasons one may choose to regard any prede-
fined type as primitive. Our approach can be easily extended to handle primitive
types. We extend our grammar as follows:

T = ---|P -- additional form of type expression
TS u= ---|P --maintainTS > T
P -- primitive types

The axiomatization of algebras can be extended to provide result types and algebra
members for primitive types. This allows to write updates for primitive types.
There is an alternative way to cover primitive types, where the axiomatization of
algebras is not affected. The values of primitive types are just preserved during
folding as modeled by the following additional case in the inductive definition of
fold:

foldlpy Az = =z
Here, p ranges over P. For values of primitive types, fold acts like the identity. In

Haskell, this is done by having instances of the fold function for primitive types,
or as in Example 3.2.1, where fold simply does not recurse into String.

60

Dealing with Large Bananas 3

Parameterized datatypes Covering systems of parameterized datatypes is more
challenging. Let us stick to uniform recursion of parameters in the sense of regular
datatypes. From an application perspective, such an extension allows us to cover
extended BNF notation including optionals (maybe type), iteration (lists), nested
alternatives (binary sums, FEither). Note that nested concatenation is already cov-
ered by the products of our basic approach.

Let us first extend our grammar to cope with regular datatypes. The syntactical
domain S is extended by a form for definitions of regular datatypes, and a form
of type expression is added to represent the application of parameterized regular
datatypes.

= - |R=F -- definition of regular datatypes
= ... | RQT -- application of regular datatypes
= ... |RQT - maintainTS O T

S
T
TS
R -- names of regular datatypes

F -- regular datatypes (functors)

We assume that F' is the syntactical domain for regular datatypes (or their func-
tors).

Parameterized datatypes can be handled in essentially the same manner as non-
parameterized ones, i.e., by defining additional result types and algebra members
for the fold algebra. However, this extension is not straightforward. The types of
the algebra members get more involved. To uniformly handle all instantiations of
a particular parameterized datatype in a single algebra member, such members ul-
timately need to be polytypic functions themselves. Furthermore, it should be pos-
sible to enforce specific behavior for particular applications of a regular datatype.

As for primitive types, there is also a way to cope with parameterized data-
types that does not affect the axiomatization of algebras. Parameterized datatypes
are folded in a homogeneous way based on the polytypic map function (pmap in
[JJ97a]). Consequently, the inductive definition of fold is extended as follows:

fold{(r@t) Az = pmap (fold(t) A)z

Here, r ranges over R. This approach is much easier to formalize. But it is re-
stricted in the sense that updating can not be performed for (constructors of) regu-
lar datatypes.

Nested and function types An elaboration to cover nested (rather than just reg-
ular) datatypes [BM98, BP99] is not needed for our intended application areas.
Nestedness does not commonly occur among large bananas. For similar reasons,
function types [MH95] are not considered.

3.6 Concluding remarks

61

3.6 Concluding remarks

Contributions The advantages of programming with folds (as opposed to gen-
eral recursion) are well known. We have presented an elaboration for generalized
(monadic) folds on systems of mutually recursive datatypes where a separation
is made between fold algebras that capture generic functionality and fold algebra
updates that implement problem-specific functionality. This separation provides a
combination of generic and specific programming which is crucial to make pro-
gramming with folds as scalable as possible. We identified a number of particular
generic fold algebras as well as some algebra combinators for calculating with
monadic folds. Furthermore, we showed that generic definitions can be given of
these algebras and combinators, and of the other ingredients for programming with
updatable folds.

Our approach is relatively lightweight in two important dimensions: it is con-
ceptually simple, and easy to implement. The first claim can be justified by the
argument that, essentially, mastering the concept of generalized folds is sufficient
to use the approach. The second claim holds for a generator-based approach, where
Haskell functions and datatypes are generated for programming with folds. Our
generator took us about 0.1 man years development effort. It is fully operational
and can be used for serious case studies as the one reported in [KLVO00]. To pro-
vide a thorough semantics for our approach and to fully integrate the concepts in a
functional language is more ambitious. The integration issue raises the question if
such an integration can be done by recasting the approach to some existing generic
framework or language such as Charity [CS92], PolyP [JJ97a], FISh [Jay99], or
Generic Haskell [Hin99]. Such a recasting is not obvious because of the (inherent
or current) limitations of the respective languages and approaches. For example,
polytypic programming systems do not allow induction over datatype systems, as
was required for our polytypic definitions of algebra types and algebras in Sec-
tion 3.5.

Related work Polytypic programming [JJ97a, Hin00] allows for general recur-
sive type-indexed (or even kind-indexed) functions. On the other hand, we require
type-indexed algebra types, i.e., a kind of polytypic datatype definition. To under-
stand the pros and cons of these variations, more research is needed. We should
mention one interesting observation, where the restriction to folds pays back in
a surprising manner, that is non-monadic traversals (say algebras) can be turned
into monadic ones. For general recursive functions, such a migration is inherently
subject to program transformation [L&mOQ], or to semantically restrictive and non-
trivial type systems [Fil99].

In [Jon95, SAS99] it is discussed how to program with catamorphisms in
Haskell in an (almost) generic way. A generic cata is easily defined based on
a Haskell class Functor whose fmap member, however, needs to be instantiated

62

Dealing with Large Bananas 3

by the programmer for each datatype. As noted in [SAS99], elaborate coding is to
be done to cope with mutually recursive datatypes. A new functor class Functor_n
is needed for each number n of datatypes. This is not a theoretical problem, but a
result of Haskell’s limited genericity. Note that datatype definitions must be writ-
ten as functors in order to fit into this scheme. On the positive side, this allows for
modularization of the datatypes, algebras, and instances of Functor.

The tension between genericity and specificity is a recurring theme. Strategies
[VBT99, Vis00a] have been proposed for term rewriting so that separation is pos-
sible of generic phenomena (such as traversal schemes and reduction) and specific
ones (one-step rewrite rules). However, the approach is untyped. In Chapters 4
and 5, we will define typed strategy operators in a functional and an object-oriented
setting.

Chapter 4

Typed Combinatorsfor
Generic Traversal

In this chapter, we develop a second approach to generic traversal in func-
tional programming. While the approach of the previous chapter was based
on updatable generalized folds, this second approach is based on the no-
tion of a functional strategy. This approach is more powerful and flexible,
but also somewhat further removed from standard functional programming
techniques.

A functional strategy is a typeful generic function that can not only be
applied to terms of any type, but which also allows mixing generic and
type-specific behaviour, and generic traversal into subterms. While the ba-
sic building blocks of updatable folds are complete (primitive) traversal
schemes, functional strategies are constructed from one-step traversal com-
binators and general recursion. Also, fold are updated per data constructor,
but strategies can be specialized per type.

We show how strategies are modeled inside a functional language, and
we present a combinator library including generic traversal combinators.
We illustrate our technique of programming with functional strategies by an
implementation of the extract method refactoring for Java.

This chapter is based on [LV02b].

4.1 Introduction

Our domain of interest is program transformation in the context of software re-
engineering [CC90, ABFP86, BSV00]. Particular problems include automated
refactoring (e.g., removal of duplicated code, or goto elimination) and conversion

64

Typed Combinators for Generic Traversal 4

(e.g., Cobol 74 to 85, or Euro conversion). In this context, the bulk of the func-
tionality consists of traversal over the syntax of the involved languages. Most
problems call for various different traversal schemes. The involved syntaxes are
typically complex (50-2000 grammar productions), and often one has to cope with
evolving languages, diverging dialects, and embedded languages. In such a setting,
genericity regarding traversal is indispensable [BSVV00, KLV00].

By lack of support for generic term traversal, functional programming suffers
from a serious and notoriously ignored scalability problem when applied to pro-
gram transformation problems. To remedy this situation, we introduce functional
strategies: generic functions that cannot only (i) be applied to terms of any type,
but which also (ii) allow generic traversal into subterms, and (iii) may exhibit non-
generic (ad-hoc) behavior for particular types.® We show how these strategies can
be modeled inside the functional language Haskell,> and we present a strategy
combinator library that includes traversal combinators.

A generic traversal problem Let us consider a simple traversal problem and
its solution. Assume we want to accumulate all the variables on use sites in a
given abstract syntax tree of a Java program. We envision a traversal which is
independent of the Java syntax except that it must be able to identify Java variables
on use sites. Here is a little Java fragment:

[lprint details
Systemout. println("nanme:" + _nane);
Systemout. println("anount” + anount);

For this fragment, the traversal should return the list [**_name**, ""amount'"] of
variables on use sites.

Using the techniques to be presented in this chapter, the desired traversal can
be modeled with a function of the following type:

collectUse Vars i TU Maybe [String]

Here, TU Maybe [String] is the type of type-unifying generic functions which
map terms of any type to a list of Strings. The Maybe monad is used to model
partiality. In general, a function f of type TU m « can be applied to a term of
any type to yield a result of type a (of a monadic type m « to be precise). Be-
sides type-unifying strategies, we will later encounter so-called type-preserving
strategies where input and output type coincide.

The definition of collectUseVars can be based on a simple and completely
generic traversal scheme of the following name and type:

collect i MonadPlus m = TU m [a] & TU m [a]

IWe use the term generic in the general sense of type- or syntax-independent, not in the stricter
senses of parametric polymorphism or polytypism. In fact, the genericity of functional strategies goes
beyond these stricter senses.

2Throughout the chapter we use Haskell 98 [Has99], unless stated otherwise.

4.2 A strategy library

65

The strategy combinator collect maps a type-unifying strategy intended for identi-
fication of collectable entities in a node to a type-unifying strategy performing the
actual collection over the entire syntax tree. This traversal combinator is included
in our library. We can use the combinator in the following manner to collect Java
variables on use sites:

collectUseVars : TU Maybe [String]
collectUseVars = collect (monoTU useVar)
use Var . Ezpression — Maybe [String]
useVar (Identifier 1) = Just []

useVar _ = Nothing

The non-generic, monomorphic function use Var identifies variable names in Java
expressions. To make it suitable as an argument to collect, it is turned into a type-
unifying generic function by feeding it to the combinator monoTU. The resulting
traversal collectUseVars can be applied to any kind of Java program fragment,
and it will return the variables identified by useVar. Note that the constructor
functions Just and Nothing are used to construct a value of the Maybe datatype
to represent the list of identified variables.

Generic functional programming Note that the code above does not mention
any of Java’s syntactical constructs except the syntax of identifiers relevant to the
problem. Traversal over the other constructs is accomplished with the fully generic
traversal scheme collect. As a consequence of this genericity, the solution to
our example program is extremely concise and declarative. In general, functional
strategies can be employed in a scalable way to construct programs that operate on
large syntaxes. In the sequel, we will demonstrate how generic combinators like
collect are defined and how they are used to construct generic functional programs
that solve non-trivial program transformation problems.

Structure of the chapter In Section 4.2 we model strategies with abstract data
types (ADTSs) to be implemented later, and we explain the primitive and defined
strategy combinators offered by our strategy library. In Section 4.3, we illustrate
the utility of generic traversal combinators for actual programming by an imple-
mentation of an automated program refactoring. In Section 4.4, we study two
implementations for the strategy ADTs, namely an implementation based on a
universal term representation, and an implementation that relies on rank-2 poly-
morphism and type case. The chapter is concluded in Section 4.5.

4.2 A strategy library

We present a library for generic programming with strategies. To this end, we in-
troduce ADTs with primitive combinators for strategies (i.e., generic functions).

66

Typed Combinators for Generic Traversal 4

Strategy types (opaque)

data Monad m = TP m = ... abstract

data Monad m = TU m a = ... abstract
Strategy application

applyTP :: (Monad m, Term t) = TPm—=t—->mt

applyTU :: (Monad m, Term t) = TUma—=t—oma
Strategy construction

polyTP :: Monad m = (Vz.z2 > mz) > TPm

polyTU :: Monad m = (Vz.z 9 >ma)—= TUma

adhocTP :: (Monad m, Term t) = TPm—=(t—->mt)—- TPm

adhocTU :: (Monad m, Term t) = TUma—(t—o>ma)—= TUma
Sequential composition

seqTP :: Monad m = TPm —+TPm —TPm

letTP :: Monad m = TUma— (a— TPm)— TP m

seqTU :: Monad m = TPm —>TUma—TUma

letTU :: Monad m = TUma—- (a— TUmb)—» TUmb
Choice

chotce TP :: MonadPlus m = TPm —>TPm — TP m

chotceTU :: MonadPlus m = TUma—>TUma—>TUma
Traversal combinators

allTP :: Monad m = TPm— TP m

oneTP :: MonadPlus m = TPm— TPm

allTU :: (Monad m, Monoid a) = TUma— TU ma

oneTU :: MonadPlus m = TUma—>TUma

Figure 4.1: Primitive strategy combinators.

For the moment, we consider the representation of strategies as opaque since dif-
ferent models are possible as we will see in Section 4.4. The primitive combina-
tors cover concepts we are used to for ordinary functions, namely application and
sequential composition. There are further important facets of strategies, namely
partiality or non-determinism, and access to the immediate subterms of a given
term. Especially the latter facet makes clear that strategies go beyond paramet-
ric polymorphism. A complete overview of all primitive strategy combinators is
shown in Figure 4.1. In the running text we will provide definitions of a number
of defined strategies, including some traversal schemes.

4.2.1 Strategy types and application

There are two kinds of strategies. Firstly, the ADT TP m models type-preserving
strategies where the result of a strategy application to a term of type ¢ is of type
m t. Secondly, the ADT TU m a models type-unifying strategies where the result
of strategy application is always of type m «a regardless of the type of the input
term. These contracts are expressed by the types of the corresponding combinators
applyTP and applyTU for strategy application (cf. Figure 4.1). In both cases,
m is a monad parameter [Wad92] to deal with effects in strategies such as state

4.2 A strategy library

67

passing or non-determinism. Also note that we do not apply strategies to arbitrary
types but only to instances of the class Term for term types. This is sensible since
we ultimately want to traverse into subterms.

The strategy application combinators serve to turn a generic functional strategy
into a non-generic function which can be applied to a term of a specific type.
Recall that the introductory example is a type-unifying traversal with the result
type [String]. It can be applied to a given Java class declaration myClassDecl of
type ClassDeclaration as follows:

applyTU collectUseVars myClassDecl :: Maybe [String]

Prerequisite for this code to work is that an instance of the class Term is available
for ClassDeclaration. This issue will be taken up in Section 4.4.

4.2.2 Strategy construction

There are two ways to construct strategies from ordinary functions. Firstly, one can
turn a parametric polymorphic function into a strategy (cf. poly TP and polyTU
in Figure 4.1). Secondly, one can update a strategy to apply a monomorphic
function for a given type to achieve type-dependent behaviour (cf. adhoc TP and
adhocTU). In other words, one can dynamically provide ad-hoc cases for a strat-
egy. Let us first illustrate the construction of strategies from parametric polymor-
phic functions:

identity @ Monad m = TP m bueld it Monad m = a— TU m a
identity = polyTP return build a = polyTU (const (return a))

The type-preserving strategy identity denotes the generic (and monadic) identity
function. The type-unifying strategy build o denotes the generic function which
returns a regardless of the input term. As a consequence of parametricity [Wad89],
there are no further ways to inhabit the argument types of polyTP and polyTU,
unless we rely on a specific instance of m (see fail TU below).

The second way of strategy construction, i.e., with the adhoc combinators,
allows us to go beyond parametric polymorphism. Given a strategy, we can provide
an ad-hoc case for a specific type. Here is a simple example:

gnot it Monad m = TP m
gnot = adhocTP identity (return o not)

The strategy gnot is applicable to terms of any type. It will behave like identity
most of the time, but it will perform Boolean negation when faced with a Boolean.
Such type cases are crucial to assemble traversal strategies that exhibit specific
behaviour for certain types of the traversed syntax.

68

Typed Combinators for Generic Traversal 4

4.2.3 Sequential composition

Since the strategy types are opaque, sequential composition has to be defined as a
primitive concept. This is in contrast to ordinary functions where one can define
function composition in terms of A-abstraction and function application. Consider
the following parametric polymorphic forms of sequential composition:

gof = Az —=g(fz)
f‘mseq‘ g = Az fz>=g
fmlet‘ g = Az fzS>=Ay—gye

The first form describes ordinary function composition. The second form describes
the monadic variation. The third form can be regarded as a let-expression with a
free variable z. An input for z is passed to both f and ¢, and the result of the
first application is fed to the second function. The latter two polymorphic forms
of sequential composition serve as prototypes of the strategic combinators for se-
quential composition. The strategy combinators seqTP and seqTU of Figure 4.1
correspond to mseq lifted to the strategy level. Note that the first strategy is al-
ways a type-preserving strategy. The strategy combinators letTP and letTU are
obtained by lifting mlet. Note that the first strategy is always a type-unifying
strategy.

Recall that the poly combinators could be used to lift an ordinary parametric
polymorphic function to a strategy. We can not just use poly to lift the prototypes
for sequential composition because they are function combinators. For this reason,
we supply the combinators for sequential composition as primitives of the ADTS,
and we postpone their definition to Section 4.4.

Let us illustrate the utility of letT'U. We want to lift a binary operator o to the
level of type-unifying strategies by applying two argument strategies to the same
input term and combining their intermediate results by o. Here is the correspond-
ing strategy combinator:

comb x Monadm=(a—=b—=¢c)>TUma—->TUmb—-TUmc
comb o s s' = s5tTU*Aa — s’ ‘letTU* Ab — build (0 a b)

Thus, the result of the first strategy argument s is bound to the variable a. Then,
the result of the second strategy argument s’ is bound to 6. Finally, a and b are
combined with the operator o, and the result is returned by the bu:ld combinator
which was defined Section 4.2.2.

4.2.4 Partiality and non-determinism

Instead of the simple class Monad we can also consider strategies w.r.t. the ex-
tended class MonadPlus with the members mplus and mzero. This provides us
with means to express partiality and non-determinism. It is often useful to consider
strategies which might potentially fail. The following ordinary function combina-
tor is the prototype for the choice combinators in Figure 4.1.

4.2 A strategy library

69

f ‘mchoice’ g = Az = (f z) ‘mplus‘ (g z)

As an illustration let us define three simple strategy combinators which contribute
to the construction of the introductory example.

fallTU it MonadPlus m = TU m z

fallTU = polyTU (const mzero)

monoTU v (Term a, MonadPlus m) = (t = m a) = TU m a
monoTU f = adhocTU falTU f

tryTU = (MonadPlus m, Monoid a) = TU m a - TU m a
tryTU s = 3 ‘choiceTU* (build mempty)

The strategy failTU denotes unconditional failure. The combinator monoTU
updates failure by a monomorphic function f, using the combinator adhocTU.
That is, the resulting strategy fails for all types other than f’s argument type. If f
is applicable, then the strategy indeed resorts to f. The combinator tryTU allows
us to recover from failure in case we can employ a neutral element mempty of a
monoid.

Recall that the mono TU combinator was used in the introductory example to
turn the non-generic, monomorphic function use Var into a type-unifying strategy.
This strategy will fail when applied to any type other than Ezpression.

4.2.5 Traversal combinators

A challenging facet of strategies is that they might descend into terms. In fact,
any program transformation or program analysis involves traversal. If we want to
employ genericity for traversal, corresponding basic combinators are indispens-
able. The all and one combinators in Figure 4.1 process all or just one of the
immediate subterms of a given term, respectively. The combinators do not just
vary with respect to quantification but also for the type-preserving and the type-
unifying case. The type-preserving combinators allTP and oneTP preserve the
outermost constructor for the sake of type-preservation. Dually, the type-unifying
combinators «lITU and oneTU unwrap the outermost constructor in order to mi-
grate to the unified type. More precisely, elITU reduces all pre-processed children
by the binary operation mappend of a monoid whereas oneTU returns the result
of processing one child. The all and one combinators have been adopted from the
untyped language Stratego [VBT99] for strategic term rewriting.

We are now in the position to define the traversal scheme collect from the
introduction. We first define a more parametric strategy crush which performs
a deep reduction by employing the operators of a monoid parameter. Then, the
strategy collect is nothing more than a type-specialized version of crush where
we opt for the list monoid.

crush it (MonadPlus m, Monoid a) = TU m a = TU m a
crush s = comb mappend (tryTU s) (allTU (crush s))
collect it MonadPlus m = TU m [a] = TU m [a]

collect s = crush s

70

Typed Combinators for Generic Traversal 4

Note that the comb combinator is used to combine the result of s on the current
node with the result of crushing the subterms. The ¢ryTU combinator is used to
recover from possible failure of s. In the introductory example, this comes down to
recovery from failure of mono TU use Var at non- Ezpression nodes, and at nodes
of type Ezpression for which use Var returns Nothing.

4.2.6 Some defined combinators

We can subdivide defined combinators into two categories, one for the control of
strategies, and another for traversal schemes. Let us discuss a few examples of
defined combinators. Here are some representatives of the category for the control
of strategies:

repeatTP it MonadPlus m = TP m — TP m

repeatTP s = tryTP (seqTP s (repeatTP s))

ifthenTP it Monad m = TP m — TP m — TP m

ifthenTP f g = (f ‘seqTU* (build ())) ‘letTP* (const g)

notTP it MonadPlus m = TP m — TP m

notTP s = ((s‘ifthenTU" (build True)) ‘choice TU* (build False))
‘letTP‘Ab — if b then failTP else identity

afterTU i Monad m=(a—b)=>TUma— TUmb

afterTU f s = s5‘tTU* Aa = build (f a)

The combinator repeat TP applies its argument strategy as often as possible. As
an aside, a type-unifying counter-part of this combinator would justly not be ty-
peable. The combinator ifthen TP precedes the application of a strategy by a
guarding strategy. The guard determines whether the guarded strategy is applied
at all. However, the guarded strategy is applied to the original term (as opposed to
the result of the guarding strategy). The combinator no#TP models negation by
failure. The combinator afterTU adapts the result of a type-unifying traversal by
an ordinary function.
Let us also define a few traversal schemes (in addition to crush and collect):

bu i Monad m = TP m — TP m

bu s = (allTP (bu s))‘seqTP‘s

oncetd it MonadPlus m = TP m — TP m
oncetd s = s ‘chotceTP* (oneTP (oncetd s))
select it MonadPlus m = TU ma — TU m a
select s = s‘choiceTU* (oneTU (select s))
selectenv i@ MonadPlus m = ¢ = (e & TU m ¢)

— (e=2>TUma)—> TUma
s' e‘letTU e/ —
(s €) ‘choiceTU* (oneTU (selectenv €' s’ 5))

selectenv e s’ s

All these schemes deal with recursive traversal. The combinator bu serves for
unconstrained type-preserving bottom-up traversal. The argument strategy has to
succeed for every node if the traversal is to succeed. The combinator oncetd serves

4.3 Application: Refactoring

71

for type-preserving top-down traversal where the argument strategy is tried until it
succeeds once. The traversal fails if the argument strategy fails for all nodes. The
type-unifying combinator select searches in top-down manner for a node which
can be processed by the argument strategy. Finally, the combinator selectenwv is
an elaboration of select to accomplish explicit environment passing. The first
argument strategy serves for updating the environment before descending into the
subterms. As will be demonstrated in the upcoming section, traversal schemes like
these can serve as building blocks for program transformations.

4.3 Application: Refactoring

Refactoring [Fow99] is the process of step-wise improving the internal structure
of a software system without altering its external behaviour. The extract method
refactoring [Fow99, p. 110] is a well-known example of a basic refactoring step.
To demonstrate the technique of programming with strategy combinators, we will
implement the extract method refactoring for Java.

4.3.1 The extract method refactoring

In brief, the extract method refactoring is described as follows:

Turn a code fragment that can be grouped together into a
reusable method whose name explains the purpose of the
method.

For instance, the last two statements in the following method can be grouped into
a method called printDetails.

voi d print Omi ng(doubl e anbunt) {
print Banner ();
[lprint details
Systemout. println("nane:" + _nane);
System out. println("amount" + anount);

}

voi d print Omi ng(doubl e anmbunt) {
printBanner ();
print Det ai | s(anount);

}

voi d printDetail s(double anmount) {
Systemout.println("nane:" + _nane);
Systemout. println("anount" + anount);

}

72

Typed Combinators for Generic Traversal 4

Note that the local variable amount is turned into a parameter of the new method,
while the instance variable _name is not. Note also, that the extract method refac-
toring is valid only for a code fragment that does not contain any return statements
or assignments to local variables.

4.3.2 Design

To implement the extract method refactoring, we need to solve a number of sub-
tasks.

Legality check The focused fragment must be analysed to ascertain that it does
not contain any return statements or assignments to local variables. The lat-
ter involves detection of variables in the fragment that are defined (assigned
into), but not declared (i.e., free defined variables).

Generation The new method declaration and invocation need to be generated. To
construct their formal and actual parameter lists, we need to collect those
variables that are used, but not declared (i.e., free used variables) from the
focused fragments, with their types.

Transformation The focused fragment must be replaced with the generated method
invocation, and the generated method declaration must be inserted in the
class body.

These subtasks need to be performed at specific moments during a traversal of the
abstract syntax tree. Roughly, our traversal will be structured as follows:

1. Descend to the class declaration in which the method with the focused frag-
ment occurs.

2. Descend into the method with the focused fragment to (i) check the legality
of the focused fragment, and (ii) return both the focused fragment and a list
of typed free variables that occur in the focus.

3. Descend again to the focus to replace it with the method invocation that can
now be constructed from the list of typed free variables.

4.3.3 Implementation with strategies
Our solution is shown in Figures 4.2 through 4.4.
Free variable analysis As noted above, we need to perform two kinds of free

variable collection: variables used but not declared, and variables defined but not
declared. Furthermore, we need to find the types of these free variables. Using

4.3 Application: Refactoring

73

typed _free_vars :: (MonadPlus m, Eq v)
= [(v,t)] > TU m [v] = TU m [(v,t)] = TU m [(v,1)]
typed _free_vars env getvars declvars
= afterTU (flip appendMap env) (tryTU declvars) ‘letTU* Aenv' —
choiceTU (afterTU (flip selectMap env') getvars)
(comb diffMap (allTU (typed_free_vars env’ getvars declvars))
(tryTU declvars))

Figure 4.2: A generic algorithm for extraction of free variables with their declared
types.

useVar (Identifier 1) = return [1]

useVar _ = mzero

defVar (Assignment i) = return [1]

declVars it MonadPlus m = TU m [(Identifier, Type)]
declVars = adhocTU (monoTU declVarsBlock) declVarsMeth

where declVarsBlock (BlockStatements vds _) = return vds
declVarsMeth (MethodDecl _ _ (FormalParams fps) _) = return fps

freeUseVars env = afterTU nubMap (typed_free vars env (monoTU useVar) declVars)
freeDefVars env = afterTU nubMap (typed_free_vars env (monoTU defVar) declVars)

Figure 4.3: Instantiations of the generic free variable algorithm for Java.

strategies, we can implement free variable collection in an extremely generic fash-
ion. Figure 4.2 shows a generic free variable collection algorithm. This algorithm
was adapted from an untyped rewriting strategy in [Vis00a]. It is parameterized
with (i) an initial type environment enw, (ii) a strategy getvars which selects any
variables that are used in a certain node of the AST, and (iii) a strategy declvars
which selects declared variables with their types. Note that no assumptions are
made with respect to variables or types, except that equality is defined on variables
so they can appear as keys in a map.

The algorithm basically performs a top-down traversal. It is not constructed
by reusing one of the defined traversal combinators from our library, but directly
in terms of the primitive combinator ¢/ITU. At a given node, first the incoming
type environment is extended with any variables declared at this node. Second,
either the variables used at the node are looked-up in the type environment and
returned with their types, or, if the node is not a use site, any declared variables are
subtracted from the collection of free variables found in the children (cf. aliTU).
Note that the algorithm is typeful, and fully generic. It makes ample use of library
combinators, such as afterTU, letTU and comb.

As shown in Figure 4.3, this generic algorithm can be instantiated to the two
kinds of free variable analyses needed for our case. The functions use Var, defVar,
and declVars are the Java-specific ingredients that are needed. They determine the
used, defined, and declared variables of a given node, respectively. We use them

74

Typed Combinators for Generic Traversal 4

eztractMethod :: (Term t, MonadPlus m) =1t — mt
extractMethod prog
= applyTP (oncetd (monoTP extrMethFromCls)) prog

extrMethFromCls
it MonadPlus m = ClassDeclaration — m ClassDeclaration
extrMethFromCls (ClassDecl fin nm sup fs cs ds)
= do (pars, body) + ifLegalGetParsAndBody ds
ds' + replaceFocus pars (ds + [constructMethod pars body])
return (ClassDecl fin nm sup fs cs ds')

ifLegalGetParsAndBody
(Term t, MonadPlus m) = t — m ([([Char], Type)], Statement)

ifLegalGetParsAndBody ds
= applyTU (selectenv [] appendLocals ifLegalGetParsAndBodyl) ds
where ifLegalGetParsAndBodyl env

= getFocus ‘letTU‘ As —
ifthenTU (isLegal env)
(freeUseVars env ‘letTU* Apars —

build (pars, s))
appendLocals env

= comb appendMap (tryTU declVars) (build env)

replaceFocus iz (Term t, MonadPlus m) = [(Identifier, Type)] - t - m t
replaceFocus pars ds
= applyTP (oncetd (replaceFocusl pars)) ds
where replaceFocusl pars
= getFocus ‘letTP‘ A_ —
monoTP (const (return (constructMethodCall pars)))

isLegal it MonadPlus m = [([Char], Type)] = TP m
wsLegal env freeDefVars env ‘letTP* Aenv' —
if null env’ then notTU (select getReturn) else fail TP

getFocus it MonadPlus m = TU m Statement

getFocus = monoTU (As — case s of (StatFocus s') — return s’
_ — mzero)

getReturn it MonadPlus m = TU m (Maybe Ezpression)

getReturn = monoTU (As — case s of (ReturnStat z) — return z
_ — mzero)

Figure 4.4: Implementation of the extract method refactoring.

to instantiate the generic free variable collector to construct freeUse Vars, and
freeDefVars.

Method extraction The remainder of the extract method implementation is shown
in Figure 4.4. The main strategy eztractMethod performs a top-down traver-
sal to the class level, where it calls extrMethFromCls. This latter function first
obtains parameters and body with ifLegalGetParsAndBody, and then replaces
the focus with replaceFocus. Code generation is performed by two functions
constructMethod and constructMethodCall. Their definitions are trivial and not

4.4 Models of strategies

75

shown here. The extraction of the candidate body and parameters for the new
method is performed in the same traversal as the legality check. This is a top-
down traversal with environment propagation. During descent, the environment is
extended with declared variables. When the focus is reached, the legality check
is performed. If it succeeds, the free used variables of the focused fragment are
determined. These variables are paired with the focused fragment itself, and re-
turned. The legality check itself is defined in the strategy isLegal. It fails when
the collection of variables that are defined but not declared is non-empty, or when
a return statement is recognized in the focus. The replacement of the focus by a
new method invocation is defined by the strategy replace Focus. It performs a top-
down traversal. When the focus is found, the new method invocation is generated
and the focus is replaced with it.

4.4 Models of strategies

We have explained what strategy combinators are, and we have shown their utility.
Let us now change the point of view, and explain some options for the implementa-
tion of the strategy ADTs including the primitives. Recall that functional strategies
have to meet the following requirements. Firstly, they need to be applicable to val-
ues of any term type. Secondly, they have to allow for updating in the sense that
type-specific behaviour can be enforced. Thirdly, they have to be able to descend
into terms. The first model we discuss uses a universal term representation. The
second model employs rank-2 polymorphism with type case.

4.4.1 Strategies as functions on a universal term representation

One way to meet the requirements on functional strategies is to rely on a universal
representation of terms of algebraic datatypes. Such a representation can easily be
constructed in any functional language in a straightforward manner. The challenge
is to hide the employment of the universal representation to rule out inconsistent
representations, and to relieve the programmer of the burden to deal explicitly with
representations rather than ordinary values and functions.

The following declarations set up a representation type TermRep, and the
ADTs for strategies are defined as functions on TermRep wrapped by datatype
constructors MkTP and MkTU :

type Typeld
type Constrld
data TermRep
data TypeRep
newtype TP m
newtype TU m a

String

String

TermRep TypeRep Constrld [TermRep]
TypeRep Typeld [TypeRep]

METP (TermRep — m TermRep)
METU (TermRep — m a)

76

Typed Combinators for Generic Traversal 4

Thus, a universal value consists of a type representation (for a potentially param-
eterized data type), a constructor identifier, and the list of universal values cor-
responding to the immediate subterms of the encoded term (if any). The strat-
egy ADTs are made opaque by simply not exporting the constructors MkTP and
METU. To mediate between TermRep and specific term types, we place members
for implosion and explosion in a class Term.

class Term t where

ezplode it t = TermRep
tmplode it TermRep — t

The instances for a given term type follow a trivial scheme, as illustrated by the
following two sample equations for Java Identifiers.

ezplode (Identifier i) = TermRep (TypeRep "Expr" []) "l dentifier" [ezplode]

implode (TermRep _" | dentifier" [i]) = Identifier (tmplode 1)

In fact, we extended the DrIFT tool [Win97] to generate such instances for us (see
Section 4.5). For a faithful universal representation it should hold that explosion
can be reversed by implosion. Implosion is potentially a partial operation. One
could use the Maybe monad for the result to enable recovery from an implosion
problem. By contrast, we rule out failure of implosion in the first place by hiding
the representation of strategies behind the primitive combinators defined below. It
would be easy to prove that all functions on TermRep which can be defined in
terms of the primitive combinators are implosion-safe.

The combinators poly TP and polyTU specialize their polymorphic argument
to a function on TermRep. Essentially, the combinators for sequential composi-
tion and choice are also defined by specialisation of the corresponding prototypes
mseq, mlet, and mchoice. In addition, we need to unwrap the constructors MkTP
and METU from each argument and to re-wrap the result.

seqTP f g = MkTP ((unTP f) ‘mseq‘ (unTP g))
polyTP f = MkTP f seqTU f g = MkTU ((unTP f) ‘mseq‘ (unTU g))
polyTU f = MKTU f 1etTP f g = MkTP ((unTU f) ‘mlet‘ (Aa = unTP (g a)))
unTP (METP f)y=f 1etTU f g = MKTU ((vnTU f) ‘mlet* (Aa = unTU (g a)))
uwnTU (METU f)=f choiceTP f g = MkTP ((unTP f) ‘mchoice‘ (unTP g))

choiceTU f g = MkTU ((unTU f) ‘mchoice’ (unTU g))

The combinators for strategy application and updating are defined as follows:

applyTP st = unTP s (explode t) >= At' — return (implode t')

applyTU st = unTU s (ezplode t)

adhocTP s f = MkETP (Au — if applicable f u
then f (implode u) = At — return (ezplode t)
else unTP s u)

adhocTU s f = MkTU (Au — if applicable f u

then f (4mplode u)
else unTU s u)

As for application, terms are always first exploded to TermRep before the func-
tion underlying a strategy can be applied. This is because strategies are functions

4.4 Models of strategies

77

on TermRep. In the case of a type-preserving strategy, the result of the applica-
tion also needs to be imploded afterwards. As for update, we use a type test (cf.
applicable) to check if the given universal value is of the specific type handled by
the update. For brevity, we omit the definition of applicable but it simply com-
pares type representations. If the type test succeeds, the corresponding implosion
is performed so that the specific function can be applied. If the type test fails, the
generic default strategy is applied.

The primitive traversal combinators are particularly easy to define for this
model. Recall that these combinators process in some sense the immediate sub-
terms of a given term. Thus, we can essentially perform list processing. The
following code fragment defines a helper to apply a list-processing function on the
immediate subterms. We also show the implementation of the primitive «lITP
which directly employs the standard monadic map function map M.

applyOnKidsTP 2 Monad m = ([TermRep] — m [TermRep]) = TP m

applyOnKidsTP s METP (X TermRep sort con ks) —
s ks >= Aks' — return (TermRep sort con ks'))

applyOnKidsTP (mapM (unTP s))

allTP s

4.4.2 Strategies as rank-2 polymorphic functions with type case

Instead of defining strategies as functions on a universal representation type, we
can also define them as a kind of polymorphic functions being directly applicable
to terms of the algebraic datatypes. But, since strategies can be passed as argu-
ments to strategy combinators, we need to make use of rank-2 polymorphism.3
The following declarations define TP m and TU m a in terms of universally
quantified components of datatype constructors. This form of wrapping is the
Haskell approach to deal with rank-2 polymorphism while retaining decidability
of type inference [Jon97].

newtype Monad m = TP m
newtype Monad m = TU m a

METP (Vt. Term t = t = m t)
METU (Vt. Term t = t — m a)

Note that the functions which model strategies are not simply universally quanti-
fied, but the domain is also constrained to be an instance of the class Term. The
following model-specific term interface provides traversal and ad-hoc primitives
to meet the other requirements on strategies.

class Update t = Term t where
allTP' :: Monad m
oneTP':: MonadPlus m
allTU' :: (Monad m, Monoid a)
oneTU' :: MonadPlus m
adhocTP' :: (Monad m, Update t')
adhocTU' :: (Monad m, Update t')

TPm—t—=>mt

TPm—t—=>mt

TUma—t—>ma
TUma—t—ma

(' omth)=(tomt)= (' = mt)
(' 5ma)— (t>ma)— (t' 5> ma)

L

3Rank-2 polymorphism is not part of Haskell 98, but available in the required form as an extension
of the Hugs and GHC implementations.

78

Typed Combinators for Generic Traversal 4

We use primed names because the members are only rank-1 prototypes which still
need to be lifted by wrapping and unwrapping. The term interface is instantiated
by defining the primitives for all possible term types.

The definitions of the traversal primitives are as simple as the definitions of
the implode and explode functions for the previous model. They are not shown
for brevity. To define adhoc TP’ and adhoc TU' for each datatype, an additional
technique is needed: we model strategy update as a type case [DRW95, CWM?99].
The instances of the Update class, mentioned in the context of class Term, im-
plement this type case via an encoding technique for Haskell inspired by [Wei00].
In essence, this technique involves two members dUpd TP and dUpdTU in the
Update class for each datatype d. These members for d select their second argu-
ment in the instance for d, and default to their first argument in all other instances.

Given the rank-1 prototypes, the derivation of the actual rank-2 primitive com-
binators is straightforward:

applyTP s t = (unTP s) t allTP s = METP (allTP' s)
applyTU st = (unTU s) t oneTP s = MkTP (oneTP' s)
adhocTP s f = MkTP (adhocTP' (unTP s) f) allTU s = MkTU (allTU' s)

adhocTU s f = MkTU (adhocTU' (unTU s) f) oneTU s = MkTU (oneTU' s)

Note that application does not involve conversion with implode and explode, as in
the previous model, but only unwrapping of the rank-2 polymorphic function. As
for sequential composition, choice, and the poly combinators, the definitions from
the previous model carry over.

4.4.3 Trade-offs and alternatives

The model relying on a universal term representation is simple and does not rely
on more than parametric polymorphism and class overloading. It satisfies exten-
sibility in the sense that for each new datatype, one can provide a new instance of
Term without invalidating previous instances. The second model is slightly more
involved. But it is more appealing in that no conversion is needed, because strate-
gies are simply functions on the datatypes themselves, instead of on a represen-
tation of them. However, extensibility is compromised, as the employed coding
scheme for type cases involves a closed world assumption. That is, the encod-
ing technique for type case requires a class Update which has members for each
datatype. Note that these trade-offs are Haskell-specific. In a different language,
e.g., a language with built-in type case, strategies would be supported via different
models. In fact, a simple language extension could support strategies directly.
Regardless of the model, it is intuitively clear that a full traversal visiting all
nodes should use time linear in the size of the term, assuming a constant node-
processing complexity. Both models expose this behaviour. However, if a traver-
sal stops somewhere, no overhead for non-traversed nodes should occur. The
described universal representation is problematic is this respect since the non-

4.5 Conclusion

79

traversed part below the stop node will have to be imploded before the node can be
processed. Thus, we suffer a penalty linear in the number of non-traversed nodes.
Similarly, implosion is needed when a strategy is applied which involves an ad-
hoc update. This is because a universal representation has to be imploded before
a non-generic function can be applied on a node of a specific datatype. Short of
switching to the second model, one can remedy these performance problems by
adopting a more involved universal representation. The overall idea is to use dy-
namic typing [ACPP91] and to do stepwise explosion by need, that is, only if the
application of a traversal primitive requires it.

4.5 Conclusion

Functional software re-engineering Without appropriate technology large-scale
software maintenance projects cannot be done cost-effectively within a reason-
able time-span, or not at all [CC90, DKV99, BSV00]. Currently, declarative re-
technologies are usually based on term rewriting frameworks and attribute gram-
mars. There are hardly (published) attempts to employ functional programming
for the development of large-scale program transformation systems. One excep-
tion is AnnoDomini [EHM™99] where SML is used for the implementation of a
Y2K tool. The traversal part of AnnoDomini is kept to a reasonable size by a spe-
cific normalisation that gets rid of all syntax not relevant for this Y2K approach.
In general, re-engineering requires generic traversal technology that is applicable
to the full syntax of the language at hand [BSV00]. In [KLV0O0], we describe an
architecture for functional transformation systems and a corresponding case study
concerned with a data expansion problem. The architecture addresses the impor-
tant issues of scalable parsing and pretty-printing, and employs an approach to
generic traversal based on combinators for updatable generalized folds (see Chap-
ter 3). The functional strategies described in the present chapter provide a more
lightweight and more generic solution than folds, and can be used instead.

Of course, our techniques are not only applicable to software re-engineering
problems, but generally to all areas of language and document processing where
type-safe generic traversal is desirable. For example, our strategy combinators
can be used for XML processing where, in contrast to the approaches presented
in [WR99], document processors can at once be typed and generic.

Generic functional programming Related forms of genericity have been pro-
posed elsewhere. These approaches are not just more complex than ours, but they
are even insufficient for a faithful encoding of the combinators we propose. With
intensional and extensional polymorphism [DRW95, CWMZ99] one can also en-
code type-parametric functions where the behaviour is defined via a run-time type
case. However, as-is the corresponding systems do not cover algebraic data types,

80

Typed Combinators for Generic Traversal 4

but only products, function space, and basic data types. With polytypic program-
ming (cf. PolyP and Generic Haskell [JJ97a, Hin99]), one can define functions by
induction on types. However, polytypic functions are not first class citizens: due
to the restriction that polytypic parameters are quantified at the top level, poly-
typic combinators cannot be defined. Also, in a polytypic definition, though one
can provide fixed ad-hoc cases for specific data types, an adhoc combinator is ab-
sent. It may be conceivable that polytypic programming is generalized to cover
the functionality of our strategies, but the current chapter shows that strategies can
be modelled within a language like Haskell without type-system extensions.

The origins of functional strategies The term “strategy’ and our conception of
generic programming were largely influenced by strategic term rewriting [Pau83,
LV97, Bor98, VBT99, L&m02b]. In particular, the overall idea to define traversal
schemes in terms of basic generic combinators like all and one has been adopted
from the untyped language Stratego [VBT99] for strategic term rewriting. This
idea is equally present in the rewrite strategy language of the ELAN system [Bor98].
Our contribution is that we integrate this idea with typed and higher-order func-
tional programming. In fact, Stratego was not defined with typing in mind. Inte-
gration of rewriting and functional programming concepts is also an objective of
the Rewriting Calculus [CK99, CKL01, BKKRO01], and we hope that our treatment
of typed generic traversal will help its further development.

Chapter 5

Visitor Combination and
Traversal Control

We now turn to the support of generic traversal in the context of object-
oriented programming. This chapter introduces the essential notion of a
visitor combinator, which can be seen as the object-oriented counterpart
of a strategy. In Chapters 6 and 7, the traversal support offered by visitor
combinators will be integrated with parsing support, and will be applied in
the construction of language processing tools.

The Visitor design pattern allows the encapsulation of polymorphic be-
havior outside the class hierarchy on which it operates. A common applica-
tion of Visitor is the encapsulation of tree traversals. Unfortunately, visitors
resist composition and allow little traversal control. To remove these limi-
tations, we introduce visitor combinators. These are implementations of the
visitor interface that can be used to compose new visitors from given ones.
The set of combinators we propose includes traversal combinators that can
be used to obtain full traversal control. A clean separation can be made be-
tween the generic parts of the combinator set and the parts that are specific
to a particular class hierarchy. The generic parts form a reusable framework.
The specific parts can be generated from a (tree) grammar. Due to this sep-
aration, programming with visitor combinators becomes a form of generic
programming with significant reuse of (visitor) code.

This chapter is based on [Vis01b].

82

Visitor Combination and Traversal Control 5

5.1 Introduction

Language processing involves tree traversal. For instance, program analysis and
transformation require traversal of syntax trees. In the object-oriented paradigm,
tree traversal can be performed in accordance with a particular variant of the Vis-
itor design pattern [GHJV94]. In this approach, the tree to be traversed is rep-
resented according to the Composite pattern, the actions to be performed at tree
nodes are encapsulated in a visitor class, and iteration over the tree is performed
either by the visitor or by the accept methods in the tree classes. Several parser
and visitor generation tools exist that support tree traversal with visitors (e.g. Java
Tree Builder, SableCC [GH98]).

Unfortunately, tree traversal with visitors suffers from two main limitations.
The first limitation is lack of traversal control. The tree traversal strategy is either
hard-wired into the accept methods, or entangled in the visitor code. In the first
case, traversal control is absent, or limited to selecting one out of a few predefined
strategies. In the second case, traversal control is limited to overriding the iteration
behavior of particular visit methods. For instance, downward traversal can be cut
off by omitting the call to the accept method of one or more subtrees of a particular
node. In neither case can full traversal control be exerted.

The second limitation of tree traversal with visitors is that visitors resist com-
bination. Visitors can only be specialized. In a language that supports multiple
implementation inheritance, visitors may even inherit behavior from different par-
ent visitors. But the only flavor of combination obtained with multiple inheritance
is static exclusive disjunction (each visit method is either inherited from the one
or from the other parent, and this is decided at compile time), and may require an
overwhelming ambiguity resolution effort from the programmer. Less restricted
combination of visitors would allow better visitor code reuse.

In this chapter, we propose a solution to both limitations. We introduce a small
set of visitor combinators that can be used to construct new visitors from given
ones. As will become clear, by combinators we mean reusable classes capturing
basic functionality that can be composed in different constellations to obtain new
functionality. The basic visitor combinators to be introduced are summarized in
Table 5.1. This set of combinators is inspired by the strategy primitives of the
term rewriting language Stratego [VBT99]. The combinators AI'l and One are
traversal combinators that can be used to obtain full traversal control.

In our explanation of the visitor combinators we will use a tiny tree syntax as
running example. Figure 5.1 shows its description in BNF. As can be gleaned from
this BNF definition, there are two kinds of nodes in our example tree syntax. An
internal node, or fork, has two subtrees as children, and leaf nodes have an Integer
value as child. These two kinds of nodes suffice to capture all relevant variability
to be found in non-trivial syntaxes, which generally contain large numbers of sorts
(non-terminals) and syntax rules.

5.1 Introduction

83

One(v)

Combinator Description
Identity Do nothing (non-iterating default visitor).
Sequence(vl,v2) Sequentially perform visitor v2 after v1.
Fail Raise exception.
Choice(vl,v2) Try visitor v1. If v1 fails, try v2 (left-biased choice).
All(v) Apply visitor v sequentially to every immediate subtree.

Apply v sequentially to the imm. subtrees until it succeeds.

Table 5.1: The set of basic visitor combinators.

Node ::= “Fork” “(” Node “,” Node “)~’
| “Leaf” “(” Integer)’

Vistor | accept [T TTTTTToooo visit_Leaf :
N 2 visit_Fork

Figure 5.1: BNF definition of the running tree example.

Visitor

| |
N
N
A P

Node j ConcreteVisitor | :

public void accept(Visitor v) {
v.visit_Fork(this);

Figure 5.2: Using the Visitor pattern and the Composite pattern for object-oriented
tree traversal.

interface Visitor {
public void visit_Leaf (Leaf |eaf);
public void visit_Fork(Fork fork);

}

class ldentity inplenments Visitor {
public void visit_Leaf (Leaf leaf) {}
public void visit_Fork(Fork fork) {}

}

Figure 5.3: The Vi si t or interface and the Identity combinator.

84

Visitor Combination and Traversal Control 5

The use of the Visitor and Composite patterns for object-oriented tree traver-
sal is illustrated for our example syntax in Figure 5.2. The Vi si t or interface
declares a visit method for each alternative in the grammar. The Vi si t abl e
interface declares the accept method. This method calls the appropriate visit
method from its argument visitor and passes the current top node (this) as a pa-
rameter. Iteration over a tree can either be implemented in the accept methods, or
in default implementations of the visit methods. For the Fork node, the Java im-
plementation of the (non-iterating) accept method is shown in a note. Throughout
the chapter, we will use Java as implementation language.

The chapter is structured as follows. Sections 5.2 through 5.4 introduce and
explain each of the basic visitor combinators of Table 5.1. In Section 5.5 these
combinators are refactored into a generic framework, to make them independent
of any specific class hierarchy. In Section 5.6 we discuss the support of visitor
combinators by our visitor generator JJForester. Finally, Section 5.7 summarizes
our contributions, and discusses related work.

5.2 Sequential composition

The first (nullary) combinator in our set of visitor combinators is the traditional
non-iterating default visitor, which we call Identity. It satisfies the Vi si t or
interface. The name Identity is justified by the behavior of its constituent visit
methods: these methods have empty bodies, and therefore preserve the nodes to
which they are applied. Also, this default visitor will fulfill the role of an identity
element in our set of combinators in an algebraic sense. This will be explained
later.

For our example grammar, the Vi si t or interface and the Identity com-
binator are shown in Figure 5.3. The Vi si t or interface declares a visit method
for each kind of node. The visit method for a node takes this node as its argument.
The Identity visitor implements this interface by providing an empty method
body for every visit method. For clarity of presentation, we keep the names of
these methods distinct instead of overloading them.

The Identity visitor may seem to be useless, because it does nothing, liter-
ally. However, in the case of larger tree grammars its usefulness becomes clear. By
creating specific visitors as specializations of 1dentity, instead of writing them
from scratch, only those methods need to be refined which correspond to nodes at
which “special” action needs to be taken. For all other nodes, the default identity
behavior is reused. As we will see, its usefulness increases further in the presence
of other visitor combinators. Figure 5.4 shows how Identity can be refined to
a visitor that increments all values in leaf nodes with 1.

Having defined 1dentity, we can proceed to our first “real” combinator:
Sequence. This is a binary combinator that takes two visitors as arguments,
which it sequentially applies to a node. For our example tree syntax, the sequential

5.2 Sequential composition

85

cl ass AddOne extends ldentity {
public void visit_Leaf(Leaf leaf) {
| eaf.value = | eaf.value + 1;
}

}
Figure 5.4: Refinement of the default visitor combinator Identity.

cl ass Sequence inplenents Visitor {
Visitor first;
Visitor then;
public Sequence(Visitor first, Visitor then) {
this.first = first;
this.then = then;
}
public void visit_Fork(Fork fork) {
fork.accept(first);
fork. accept (then);
}
public void visit_Leaf(Leaf leaf) {
| eaf . accept (first);
| eaf . accept (t hen);
}
}

Figure 5.5: The binary visitor combinator Sequence applies its argument visitors
Firstand then one after the other.

visitor combinator is show in Figure 5.5. The Sequence combinator is again
modeled as a class that implements the Vi si t or interface. The arguments of
the combinator are modeled as fields First and then of type Vi sitor. The
constructor method of Sequence initializes these arguments. The visit method
for each kind of node is implemented by Sequence in the following way. First,
the visitor argument stored in field First is applied to the node, by calling its
accept method with this visitor. Then, the same is done with the visitor stored
in then.

How is the Sequence combinator used to create new visitors from given
ones? For instance, Figure 5.6 demonstrates how to create a visitor AddTwo that
applies the AddOne visitor twice. First the Sequence combinator is refined to
the auxiliary combinator Twi ce, which applies its argument visitor twice, sequen-
tially. Then, Twice is further refined to use the AddOne visitor as argument. In a
more concise, mathematical notation these definitions would be written as follows:

Twice(v) =qgg Sequence(v,v)
AddTwo =g4¢ Twice(AddOne)

The benefit of creating additional combinators (classes), instead of inlining their
definitions, is that this makes them reusable.

86

Visitor Combination and Traversal Control 5

class Twi ce extends Sequence {
public Twice(Visitor v) {
super (v, Vv);

}

cl ass AddTwo extends Twice {
public AddTwo() ({
super (new AddOne());
}

}

Figure 5.6: Definition of AddTwo in terms of Sequence, using an auxiliary
combinator Twice.

|pub|ic class VisitFailure extends Exception { } |

Figure 5.7: The notion of success and failure of visitors is modeled using a refine-
ment VisitFai lure of the Exception class.

In an algebraic sense, the combinator Identity is an identity element for the
combinator Sequence. This means that the following equalities hold:

Sequence(ldentity,v) v

Sequence(v,Identity) v

These equations do not necessarily hold for subclasses of Sequence and 1den-
tity, as they might introduce side-effects. Note also that Twice applies the
same argument visitor twice, which means that the same state can be accessed at
both applications.

5.3 Alternative composition

We will now introduce a binary visitor combinator Choice, which alternatively
applies its first or its second argument visitor. More precisely, it will first try one
argument visitor, and when this visitor fails, it will try the other. This notion of
left-biased alternative composition presupposes a notion of success and failure of
visitors.

Success and failure of visitors can be modeled with exceptions. At failure, a
VisitFai lureexception is thrown. Figure 5.7 shows the corresponding refine-
ment of the Exception class. The try and catch constructs are used at choice
points.

Given our modeling of visitor failure with exceptions, a nullary visitor combi-
nator Fai I can be defined, which raises a VisitFai lure exception for every
node. For our example tree syntax, this combinator is defined in Figure 5.8. The
clause throws VisitFailure also needs to be added to the headers of the
previously defined visit and accept methods.

5.3 Alternative composition 87

class Fail inplenents Visitor {
public void visit_Leaf (Leaf leaf) throws VF {
throw new VisitFailure();
}
public void visit_Fork(Fork fork) throws VF {
throw new VisitFailure();

}

}

Figure 5.8: The Failure combinator. The throws VisitFailure clause
is abbreviated to throws VF for reasons of space. We will do so in all figures
throughout the chapter.

cl ass Choice inplenents Visitor {

Visitor first;

Visitor then;

public Choice(Visitor first, Visitor then) {
this.first first;
this.then t hen;

}

public void visit_Leaf (Leaf leaf) throws VF {
try { leaf.accept(first); }
catch (VisitFailure f) { leaf.accept(then); }

}

public void visit_Fork(Fork fork) throws VF {
try { fork.accept(first); }
catch (VisitFailure f) { fork.accept(then); }

}

}

Figure 5.9: The Choice combinator.

Finally, we can proceed to the Choice combinator we set out to define.
Figure 5.9 shows its definition for our example tree syntax. Like Sequence,
the Choice combinator has two visitor arguments, which are modeled by fields
first and then. It implements the visit method for each kind of node by a
try statement that attempts to apply the First visitor. If this visitor raises a
VisitFai lure exception, the subsequent catch statement defaults to the then
visitor.

Fai Il isa zero element for Sequence, and an identity for Choice. Because
of its left-bias, Choice has Identity as left-zero, but not as right-zero.

Sequence(Fail,v) = Fail

Sequence(v,Fail) = Fail (if v side-effect free)
Choice(Fail,v) = v

Choice(v,Fail) = vV

Choice(ldentity,v)

Identity

88

Visitor Combination and Traversal Control 5

class |sZero extends Fail {
public void visit_Leaf (Leaf leaf) throws VF {
if (leaf.value !'= 0) {
throw new VisitFailure();
}

}

}

class Try extends Choice {
public Try(Visitor v) {
super (v, new ldentity());

}
}

cl ass | fZeroAddOne extends Try {
public |fZeroAddOne() {
super (new Sequence(new | sZero(), new AddOne()));

}

}
Figure 5.10: Conditional application of visitors, using Choice and Fail.

The Fail and Choice combinators can be used to create visitors that con-
ditionally fire at certain nodes. For instance, Figure 5.10 demonstrates how to
construct a visitor 1 fZeroAddOne that applies the AddOne visitor only to leaf
nodes that contain the value 0. A visitor 1 sZero that tests the value of a leaf node
is defined by extending Fai 1. The auxiliary unary visitor combinator Try is de-
fined as the alternative composition of its visitor argument and the 1dentity
visitor. The sequential composition of 1sZero and AddOne is supplied as visi-
tor argument to Try. In mathematical notation, these definitions would be written
down as follows:

Try(v) =4es Choice(v,Identity)
IfZeroAddOne =4.¢ Try(Sequence(lsZero,AddOne))

5.4 Traversal combinators

The visitor combinators introduced above can be used to construct new visitors
from given ones. A visitor thus created can be applied to a tree by passing it
to an accept method. Depending on whether this method performs iteration,
the visitor is applied to the top node of the tree, or according to a fixed traversal
strategy to all nodes in the tree. To obtain more control over traversal behavior, we
additionally introduce two traversal combinators.

Ouir first traversal combinator, called Al 1, takes one visitor as argument, and
applies it to every immediate subtree of the current top node. For our example
tree syntax, Figure 5.11 provides the definition of Al L. Since leaf nodes have no
subtrees, their visit method does nothing. Fork nodes have two subtrees, to which

5.4 Traversal combinators

89

class Al inplenents Visitor {

Visitor v;

public All(Visitor v) {
this.v = v;

}

public void visit_Leaf (Leaf leaf) throws VF { }

public void visit_Fork(Fork fork) throws VF {
fork.left.accept(v);
fork.right.accept(v);

}

}

Figure 5.11: The traversal combinator ALl applies its argument visitor to each
immediate subtree.

cl ass TopDown extends Sequence {
public TopDown(Visitor v) {
super (v, null);
then = new Al l (this);
}

}

cl ass Bottonlp extends Sequence {
public Bottomp(Visitor v) {
super (null,v);
first = new All (this);

}

}

Figure 5.12: Reconstruction of the top-down and bottom-up traversal strategies in
terms of Sequence and Al l.

the argument visitor is applied one after the other.

The A1l combinator suffices to reconstruct the top-down (pre-order) and bottom-
up (post-order) traversal strategies. In mathematical terms, their definitions are as
follows:

TopDown(v) =g« Sequence(v,All(TopDown(v)))

BottomUp(v) =q4¢ Sequence(All(BottomUp(v)),v)

Note that these definitions are recursive: the combinator being defined occurs in
its own definition. For our example tree syntax, the definitions of TopDown and
BottomUp are given in Figure 5.12. The TopDown and BottomUp visitor com-
binators are both defined as specializations of the Sequence combinator. To
model the recursive call of the combinator in Java is somewhat tricky since it is
not allowed to reference this before the superclass constructor has been called.
This is solved by first setting the corresponding visitor argument to nul 1. Sub-
sequently this argument is set to its proper value AL (this). The combinators
TopDown and BottomUp demonstrate that our set of basic visitor combinators
obviates the need for implementing the pre- or post-order traversal strategies in

90

Visitor Combination and Traversal Control 5

class One inplenments Visitor {
Visitor v;
public void One(Visitor v) {
this.v = v;
}
public void visit_Leaf (Leaf |eaf) throws VF {
throw new VisitFailure(); // Leaf has no kids.
}
public void visit_Fork(Fork fork) throws VF {
try { fork.left.accept(v); }
catch (VisitFailure f) {
fork.right.accept(v);
}
}
}

Figure 5.13: The traversal combinator One applies its argument visitor to one of
its immediate subtrees.

accept methods or in a default visitor implementation. In fact, visitor combinators
make any traversal strategy programmable.

A visitor combinator similar to A6l is the One traversal combinator. Whereas
AL applies its argument visitor to all its subtrees, One applies it to exactly one.
More precisely, it tries to apply it to each subtree in turn, until application succeeds.
Figure 5.13 gives the definition of One for our example tree grammar. As leaf
nodes have no subtrees, the corresponding visit method of One immediately fails.
In the case of fork nodes, a visit to the left subtree is attempted first. If it fails, a
visit to the next subtree is attempted.

As an indication of the level of traversal control that can be obtained with
the combinators AIl and One, Figure 5.14 lists a number of different traversal
strategy combinators. These combinators are object-oriented reconstructions of a
few out of many strategy combinators that can be found in the standard library of
the strategic term rewriting language Stratego [Vis01a].

5.5 Syntax-independence

All combinators presented above were defined relative to our example tree syntax
of Figure 5.1. So the question arises to what extent they are specific to this par-
ticular syntax, and to what extent they are genericand reusable for any syntax. In
this section we will explain that our combinators are generic in nature, and we will

1\We use the term ‘generic’ in the general sense that a generic program is not restricted to one
particular type, but can work on entities of many different types. In a more restricted sense, ‘generic’
has been used for programs that uniformly work for entities of every type (parametric polymorphism),
for instance in the context of Ada, Eiffel, and GenericJava. In the context of PolyP [JJ97b], ‘generic’
has been used for programs that perform induction on a type parameter (polytypism).

5.5 Syntax-independence

91

cl ass OnceBottomlp extends Choice {
public OnceBottonp(Visitor v) {
super (null, v);
first = new One(this);
}

}

cl ass Spi neBottomJp extends Sequence {
publ i c SpineBottonmp(Visitor v) {
super (null,v);
first = new Choi ce(new One(this),
new Al l (new Fail ()));
}

}

cl ass DownUp extends Sequence {
publ i c DownUp(Visitor down, stop, up) {

super (null, up);
first = new Sequence(
down,

new Choi ce(stop, new All (this)));

}

}

Figure 5.14: With the combinators Al l and One, arbitrary traversal strategies can
be defined. OnceBottomUp applies v exactly once at the first location found
during bottom-up traversal. SpineBottomUp applies v bottom-up along a path
which reaches from the root to one of the leaves. DownUp applies down going
down the tree, and applies up when coming back up. It cuts off the traversal below
nodes where stop succeeds.

Visitor Combination and Traversal Control 5

show how we can modify their encoding to isolate them from the specifics of any
particular syntax.

5.5.1 Lack of genericity

The combinators presented above lack genericity in two respects.

Firstly, when defining a visitor, whether from scratch or by specialization of
a basic visitor combinator, all its visit methods need to be (re)defined separately,
even if the same behavior is required for each of them. At the risk of sounding
paradoxical, one might say that a more generic way of specialization is needed.
For instance, specialization should be possible of all visit methods at once, or, in
case of a syntax with multiple sorts, of all visit methods for a particular sort at
once.

Genericity is lacking in a second respect. In natural language we would have
no trouble defining the behavior of all our basic combinators and most defined
ones without reference to the example syntax. In fact, we gave just such a generic
explanation in the running text of this chapter. Still, they can not be reused ‘as
is’ for other syntaxes, because they refer (directly or indirectly) to the specific
terminals of our example syntax.

5.5.2 Visitor combinators in frameworks

To remove these limitations on the genericity of our visitor combinators, we need
to refactor the design pattern of Figure 5.2 such that syntax-specific functionality
is separated from generic functionality. Our solution is a variation on the stag-
gered Visitor pattern [V1i99], which introduces generic counterparts AnyVi s-

i tor and AnyVi st abl e for the syntax-specific interfaces. This is illustrated
in Figure 5.15. Note that AnyVi si t abl e and Vi si t abl e are now abstract
classes instead of interfaces because Any Vi si t abl e implementsthe accept_Any
method. Likewise, Vi si t abl e is now an abstract class, because it implements
the visit_Any method. For our example tree syntax, this implementation is
shown in Figure 5.16. It uses runtime type identification (RTTI) to cast its generic
AnyVi si t abl e argument to a syntax-specific Vi si t abl e. If the cast suc-
ceeds, it applies itself, using the syntax-specific accept method. Thus, syntax-
specific visitors have forwarding (delegation) built-in from generic to syntax-specific
visit methods.

In the original staggered visitor pattern, the Vi si t or class also has the con-
verse forwarding built-in, from syntax-specific visit methods to generic visit meth-
ods. In Figure 5.15, this converse forwarding has been factored out into a new
combinator Fwd. Its definition for our example syntax is shown in Figure 5.17.
Fwd is a unary combinator that takes a generic visitor as argument, and imple-
ments all syntax-specific visit methods by forwarding to that generic visitor. The

5.5 Syntax-independence

93

) v.visit_Any(this);

public void accept_Any(AnyVisitor v) {

AnyVisitable

ﬁ framework (generic)

O application (syntax—dependent)

public int nrOfKids() {
return 2;

public Visitable getKid(int i) {
switch (i) {
case 0 : return left;
case 1 : return right;
default : return null;

}
}

public void accept(Visitor v) {

accept_Any [~

nrOfKids
getKid

7S

Visitable

accept |

AnyVisitor

,,,,,,,,, visit_Any
I B
.

4/, - A

Visitor

/I implementation of

visit_Leaf O o -
4 = Il visit_Any (Fig 16
visit_Fork visit_Any (Fig 16)

X

Fwd

} v.visit_Fork(this);

Fork

Figure 5.15: Separating out generics from specifics.

} else

}

}

{

public void visit_Any(AnyVisitable x) throws VF {
if (x instanceof Visitable) {
((Visitable) x).accept(this);

throw new VisitFailure();

Figure 5.16: The default implementation of visit_Any of the syntax-specific

abstract Vi si t or cl

ass.

AnyVi
t hi

}

}

}
}

sitor v;

S.V =V,

public class Fwd inplenents Visitor {
public Fwd(AnyVisitor v) {
public void visit_Leaf (Leaf leaf) throws VF {
v.visit_Any(leaf);

public void visit_Fork(Fork fork) throws VF {
v.visit_Any(fork);

Figure 5.17: The visitor combinator Fwd creates a syntax-specific visitor from a

generic visitor.

94

Visitor Combination and Traversal Control 5

Identity: |; // Skip

Sequence: |x.accept_Any(this.first);
x. accept _Any(this.then);

Fail: |throw new VisitFailure(); |

Choice: |try { x.accept_Any(first); }
catch (VisitFailure f) {

X. accept _Any(then);
}

All: |for (int i =0; i <x.nrOKids(); i++) {
X.getKid(i).accept_Any(this.v);

One: |for (int i =0; i <x.nrOKids(); i++) {
try {
X.getKid(i).accept_Any(this.v);
return;

}
catch(VisitFailure f) { ; }
}

throw new VisitFailure();

Figure 5.18: Generic reformulations of the basic visitor combinators. Only the
body of vi si t _Any(AnyVi si t abl e x) for the various combinators is shown.

benefit of this new combinator over built-in converse forwarding is that the for-
warding behavior is reusable for several generic visitors. This is essential in the
setting of visitor combinators, because these are typically used to continuously
construct new visitors.

Apart from the generic visit method visit_Any, the abstract Any Vi si t or
class declares two additional methods. nrOfKids returns the number of children
of a visitable node, and getKid (i) returns its i'" child. Below, we will use these
methods for the generic definition of the traversal combinators A1, and One. For
fork nodes, the definitions of these methods are shown in Figure 5.15.

5.5.3 Generic combinators

With this refactoring in place, “‘generic specialization’ of visitors is possible. In
particular, the basic visitor combinators can now be given syntax-independent def-
initions. The required implementations of the corresponding visit_Any meth-
ods are shown in Figure 5.18. When these generic combinators are passed to Fwd,
the original, syntax-specific combinators are obtained. The penalty for the addi-
tional genericity is the method call from Fwd to the generic visitor, and, in the
case of combinators with arguments, the explicit cast from AnyVi si t abl e to
Vi si t abl e in the visit_Any method.

Note that the generic formulation of the traversal combinators Al'l and One
make use of the methods nrOfKids and getKid of the generic AnyVi si t or

5.5 Syntax-independence

95

interface. Thus, the syntax-specific knowledge about children is hidden behind
these two methods.

To assess the performance penalty of the additional genericity, we compared
three implementations of a topdown traversal.

Iterating visitor Node actions and traversal code are entangled in a single syntax-
specific visitor, which is passed to a syntax-specific accept method.

Syntax-specific combinator The syntax-specific TopDown combinator (see Fig-
ure 5.12) takes a syntax specific visitor with node actions as argument, and
is passed to a syntax-specific accept method.

Generic combinator The generic TopDown combinator takes a syntax-specific
visitor with node actions as argument, and is passed to a generic accept
method.

Benchmarks on balanced trees of various sizes indicated that the syntax-specific
combinator is a constant factor 3 slower than the iterating visitor. The generic
combinator is yet another constant factor 2 slower.

5.5.4 Towards libraries of generic algorithms

Given these generic definitions of our visitor combinators where generics are cleanly
separated from syntax-specifics, all (traversal) combinators that are generic ‘in na-
ture’ can indeed be implemented as classes that are reusable across syntaxes. This
opens the door to the construction of libraries of reusable generic visitor combina-
tors, such as those in Figures 5.12 and 5.14. Programming with visitor combinators
then becomes a matter of specializing (in generic or syntax-specific manner) and
composing predefined combinators, and feeding them to the accept methods of
the particular tree structures that need to be visited. The required syntax-specific
code is limited to the specific Vi si t or and Vi si t abl e interfaces, the accept
method implementations, and the Fwd combinator. Such syntax-specific code can
be generated from a grammar (see Section 5.6.1 and Chapter 6).

To demonstrate the development of generic combinators and their instantia-
tion for specific syntaxes we discuss a small example. First, we will define a
generic combinator for simple def-use analysis. This combinator abstracts from
which syntactic constructs count as definitions, and which as uses. Secondly,
we will instantiate the generic combinator for the syntax of a specific language:
GraphXML [HMO00]. GraphXML is an XML-based graph description and ex-
change language. It allows graphs to be described in terms of nodes and edges,
where each edge is defined by a source and a target attribute. We will use the
generic def-use analysis to determine the roots and sinks of a graph.

96

Visitor Combination and Traversal Control 5

public interface Coll ector extends AnyVisitor {
public Set getSet();
}

public class DefUse extends TopDown {
Col | ector def;
Col | ector use;
public DefUse(Collector def, Collector use) {
super (new Sequence(def, use));
this.def = def;
this.use = use;

}

public Set getUndefined() {
HashSet result = new HashSet (use.getSet());
return result.renmoveAl |l (def.getSet());

public Set getUnused() {
HashSet result = new HashSet (def.getSet());
return result.renoveAl |l (use.getSet());

}

}
Figure 5.19: A language-independent combinator for def-use analysis.

Generic def-use analysis The simple algorithm we wish to implement collects
use and definition occurrences from an input tree while performing a single top-
down traversal. After the traversal, two sets should be obtained: the set of entities
that are used but not defined, and the set of entities that are defined but not used.
Our implementation is shown in Figure 5.19. It consists of the interface Col | ec-
t or, which extends the generic visitor interface AnyVi st or with a getSet
method, and the class DefUse which implements the actual algorithm. Infor-
mally, DefUse is the following combinator:

DefUse(def,use) =q4¢ TopDown(Sequence(def,use))

Here, def and use are visitor parameters that have collecting defined and used en-
tities as side effect. Because TopDown is the outermost symbol in the definition
of DefUse, the latter is implemented by extending the former. The fields def and
use store the references to the visitor parameters, for reference by the methods
getUndefined and getUnused. These use simple set operations to compute
the result sets we wanted to obtain.

Instantiation To instantiate the generic algorithm for GraphXML, we need to
provide visitors that collect defined and used GraphXML entities. In the domain
of graphs, nodes can be considered ‘definitions’ when they occur as the source of a
directed edge. Likewise, they can be considered ‘uses’ when they occur as target.
A node that occurs as source but not as target is a root of the graph. Conversely. a

5.5 Syntax-independence

97

EdgeAttribute := 'source’ '= AttValue
| "target’ '=" AttValue

public class CollectTarget extends Fwd
i mpl enents Col | ector {
Set targets = new Set();
public CollectTarget() {
super (new ldentity());
}
public void visit_Target(Target attValue) {
targets. add(att Val ue);

public Set getSet() {
return targets,;

}

}

public void testDefUseVisitor(GaphXM g) throws VF {
Def Use defuse = new Def Use(new Col | ect Source(),
new Col | ect Target());

g. accept _Any(def use);
System out. println("Sinks: "+defuse. getUndefined());
Systemout. println("Roots: "+defuse.getUnused());

}
Figure 5.20: Retrieving the roots and sinks of a GraphXML document by
GraphXML-specific instantiation of the generic def-use combinator. The class
CollectSourceis not shown. Itis similarto Col lectTarget.

node that occurs as target, but not as source is a sink. Determining roots and sinks
corresponds to determining unused definitions and undefined uses.

Figure 5.20 shows the relevant fragment of the GraphXML syntax, and the
code that instantiates the generic def-use analysis for GraphXML. The classes
CollectTarget and Col lectSource are the required implementations of
the interface Col | ect or. Their definitions are similar. The combinator
CollectTarget, for example, is a specialization of the GraphXML-specific
identity combinator, which is defined as Fwd(ldentity). It redefines a single visit
method: the one corresponding to the syntax rule for targets. The redefined visit
method simply adds the target it encountered to the local Set field. Given these
collector classes, the generic def-use analysis can be instantiated for GraphXML
as follows:

DefUse(CollectSource,CollectTarget)

This is conveyed by the test method in Figure 5.20.

The def-use analysis is only one example of a generic algorithm that can be
programmed with visitor combinators. In Stratego, generic algorithms have been
defined e.g. for graph transformation and analysis, and for substitution, renaming
and unification [Vis0la, VisO0b]. In [Ld&m02a], a generic refactoring algorithm

98

Visitor Combination and Traversal Control 5

is developed, which is a generalization of the Java extract method refactoring we
presented in Section 4.

5.6 Support

In the previous sections, we have seen small, tutorial examples of programming
with (generic) visitor combinators. In Chapters 6 and 7, we will provide a detailed
account of our experiences with applying them on a larger scale. Our primary
objective in developing visitor combinators has been to support the employment
of object-oriented programming technology in the domain of language processing.
Chapter 6 discusses static analysis of Toolbus scripts to generate communication
graphs. Chapter 7 discusses the application to Cobol control flow analysis, in
the context of legacy system redocumentation [DK99a]. This application involves
traversal over both tree-shaped and graph-shaped object structures.

In this section, we provide a brief preview over the tool support that we de-
veloped to make such applications possible. Chapter 6 presents this support in
detail.

5.6.1 JJTraveler

The generic visitor combinator framework presented in this chapter, as well as the
various generic basic and defined combinators, are reusable for any Java class hier-
archy. We have collected the combinators in a visitor combinator library. We have
bundled both framework and library into a single distribution, called JJTraveler.
We have used JJTraveler in several applications, and in the course of these appli-
cations, new generic combinators have been developed and added to JJTraveler.
An excerpt of JJTraveler’s library is shown in Table 5.2. Each of the combinators
in the table is briefly explained by a single sentence or a concise mathematical
definition. A full overview of the library can be found in the online documentation
of JJTraveler.

5.6.2 JJForester

As mentioned above, the only syntax-specific code that is needed for programming
with visitor combinators, are the interfaces Vi si t or and Vi si t abl e, the ac-
cept methods, and the combinator Fwd. Rather than writing this code manually, it
can be generated from tree or syntax definitions. As will be discussed in Chapter 6,
we have extended our parser and visitor generator JJForester with this functional-
ity. The input to JJForester consists of a grammar specified in the syntax definition
formalism SDF [HHKR89]. SDF is supported by a parse table generator, and a
generalized LR parser generator. These tools are available as stand-alone com-
ponents, which are reused by JJForester to generate a parse table at compilation

5.6 Support 99
Combinator Description of behavior
Identity Do nothing
Fail Raise Vi si t Fai | ur e exception
Not(v) Fail if v succeeds, and v.v.

Sequence(vy ,v2)
ChOice(vl ,’l)z)

Do vy, then v2
Try vy, if it fails, do v,

AllTopDown(v)
AlIBottomUp(v)
TopDownWhile(v)
TopDownUntil(v)
BreadthFirst(v)
BreadthFirstWhile(v)
SpineTopDown(v)
SpineBottomUp(w)
GuaranteeSuccess(v)
LogVisitor(v)
Visited

IsDag

IsTree

All(v) Apply v to all immediate children
One(v) Apply v to one immediate child
IfThenElse(c,t, f) If ¢ succeeds, do ¢, otherwise do f
Try(v) Choice(v, Identity)

TopDown(v) Sequence(v, All(TopDown(v)))
BottomUp(v) Sequence(All(BottomUp(v)), v)
OnceTopDown(w) Choice(v, One(OnceTopDown(v)))
OnceBottomUp(v) Choice(One(OnceBottomUp(v)), v)

Choice(v, All(AUT opDown(v)))
Choice(All(AllBottomUp(v)),v)

Try(Sequence(v, All(TopDownW hile(v))))

Chotce(v, All(TopDownUntil(v)))

Breadth-first traversal strategy

Breadth-first traversal strategy with cut-off

Top-down traversal along a spine

Bottom-up traversal along a spine

Catch Vi si t Fai | ur e and re-throw it as runtime exception
Create log of each invocation of v

Succeed if not accepted by current visitable before

Test if graph rooted by current visitable is directed and acyclic
Test if graph rooted by current visitable is tree-shaped

Table 5.2: JJTraveler’s library (excerpt).

100

Visitor Combination and Traversal Control 5

time, and to parse input terms at run time. The SDF grammar is also passed to the
code-generation component of JJForester, which emits the Java classes that instan-
tiate the visitor combinator framework JJTraveler. The user programs against the
generated code and the framework. The framework, the generated code and the
user code can be compiled to byte code, and run on a virtual machine. During run
time, calls to parse methods will lead to invocations of the parser, which returns
abstract syntax trees (ASTs). These ASTs are passed to factory methods to build
the actual object structure.

In Section 5.5, we added the possibility of generic specialization to the possi-
bility of syntax-specific, per production specialization. For a many-sorted syntax,
an intermediate level of genericity is conceivable: per sort specialization. This can
be realized by inserting another set of interfaces, and another forwarding combi-
nator, like Fwd. JJForester supports a simplified variation on this scheme, where
both layers of forwarding are done in a single Fwd combinator. This combinator
offers one visit method per sort as well as one per production. The per-production
methods forward to the per-sort methods, and these in turn forward to the generic
inherited visit method.

5.6.3 Visitor combinators for ATerms

The ATerm library [BJKOOO] supports (space) efficient representation and ex-
change of generic trees through maximal subtree sharing. The Java implemen-
tation of the ATerm library has been extended to enable the use of JJTraveler’s vis-
itor combinators to process ATerms. ATerms are an instantiation of the Flyweight
pattern [GHJV94], where the children of a term belong to its internal state. Hence,
ATerms are immutable objects, and visiting them is done most appropriately with
visitors that have return values. JJTraveler caters for this need.

5.7 Concluding remarks

We reconstructed the basic strategy combinators of Stratego [VBT99] in the object-
oriented setting as a suite of basic visitor combinators (reusable classes). These
visitor combinators remove the limitations of the classic visitor pattern with re-
spect to composability of visitors and with respect to traversal control. Addition-
ally, we refactored the visitor combinator design pattern into a syntax-independent
framework, and a design pattern for instantiating the framework for a specific syn-
tax. This visitor combinator framework opens the door to a new style of generic
object-oriented programming, where new frameworks are built by composition of
basic visitor combinators of the basic framework.

5.7 Concluding remarks

101

5.7.1 Evaluation

How does programming visitor combinators compare with programming with or-
dinary visitors, or without visitors at all?

Explicit stack maintenance Visitors iterate over an object structure. Conse-
quently, they can not use the call stack to pass data. Instead, the state of the visitor
is used for this. When, at back-tracking, the state needs to be restored, this is not
done automatically as it would when the call stack would be used. Instead, state
restoration at back-tracking needs to be done explicitly by the visitor. When us-
ing visitor combinators, the stack maintenance can be done by separate, reusable
combinators.

Another technique to pass data is to stop iteration, and restart with a new in-
stance of the visitor, which has its own state to hold data. When the new instance
finishes, the iteration can be resumed with the old state. With this technique, no ex-
plicit stack maintenance is needed. At each recursive calls to the visitor constructor
method, the call stack is (implicitly) used to implement the desired back-tracking
behavior. This technique will be demonstrated in Chapter 7.

Performance Using visitor combinators introduces the overhead of forwarding
of method calls between combinators. Of course, the precise amount of forwarding
overhead is strongly dependent on the particular constellation of combinators, and
on the ratio of combinator code. On the other hand, the additional traversal control
can be used to construct more efficient traversal strategies. In our benchmarks
experiments and in the Cobol control-flow application (see Chapter 7), we did
not experience performance problems. For a complete picture of performance
consequences, more experience and experiments are needed.

Paradigm shift The style of programming with visitors is one step removed
from the ‘natural’ method passing style of object-oriented programming, where
data and operations on the data are encapsulated in the same object. The style
of programming with visitor combinators is yet one more step removed from this
‘natural’ style. In fact, programming with visitor combinators can be considered
a paradigm shift, as it not only separates data from operations, but also introduces
the technique of developing programs, not by adding classes and methods, but by
composing compound classes from basic ones.

Robustness A well-know problem of the visitor design pattern is that visitors
are brittle with respect to changes in the class hierarchy on which they operate.
When, for instance, a class is added to the hierarchy, all previously defined visitors
need to implement an additional visit method. To some extent, default Vi si t or
implementations provide isolation against such changes [GHJV94].

102

Visitor Combination and Traversal Control 5

Our visitor combinators actually are such default implementations. By inherit-
ing from them, user-defined combinators only need to depend on those fragments
of the class hierarchy (or syntax) that are relevant to the functionality they imple-
ment. By making the combinators syntax-independent, we have even made these
default implementations robust against changes in the class hierarchy. Finally, the
generator concentrates all syntax-dependence in the syntax itself. For instance,
one simply adds a new production to the syntax, and the generator takes care of
updating the class hierarchy, the Vi si t or class, and the Fwd combinator.

5.7.2 Generic traversal across paradigms

The generic traversal combinators presented in this chapter are the result of trans-
posing concepts that have (recently) been developed in other paradigms. The
most important source of inspiration is the strategic term rewriting language
Stratego [VBT99]. Our visitor combinators are reconstructions of the primitive
strategy combinators of Stratego. Similar primitives can also be found in the
rewriting calculus and its extensions [CK99]. However, both these languages
are untyped (though a proposal for an appropriate type system has recently been
drafted [L&mO02b]). Previously, we reconstructed Stratego’s primitives in the
strongly typed functional language Haskell (see [LVVOO] and Chapter 4), and these
typed strategies guided the design of our visitor combinators. Thus, incarnations of
the concept of strategy combinators, including combinators for generic traversal,
are now available in three different programming paradigms.

Strategy combinators are closely related to folds. Many-sorted folds can be
constructed by specialization and combination of fold combinators just like strate-
gies [LVKO00]. The main difference between folds and strategies is that the former
employ a fixed bottom-up traversal strategy. The relation between strategies and
folds is discussed in more detail in [L\VVOO]. The Translator pattern [Kiih98] shows
how many-sorted folds can be implemented in an object-oriented setting.

5.7.3 Related work

Traversal control The hierarchical visitor pattern [c2] employs a visitor inter-
face with two methods per visitable class: one to be performed upon entering the
class, and one to be performed before leaving it. This pattern allows hierarchical
navigation (keeping track of depth) and conditional navigation (cutting off traver-
sal below a certain point). As Figure 5.14 demonstrates, visitor combinators can
be used to achieve such traversal control, and much more.

In adaptive programming, and its implementation by the Demeter sys-
tem [LPS97], a notion is present of traversal strategies for object structures. These
strategies should not be confused with the strategies and strategy combinators of
the Stratego language which inspired our visitor combinators. Demeter’s strate-
gies are high-level descriptions of paths through object graphs in terms of source

5.7 Concluding remarks

103

node, target node, intermediate nodes, and predicates on nodes and edges. These
high level descriptions are translated (at compile time) into ‘dynamic roadmaps’:
methods that upon invocation traverse the object structure along a path that satis-
fies the description. During traversal, a visitor can be applied. The aim of these
strategies is to make classes less dependent on the particular class structure in
which they are embedded, i.e. to make them more robust, or adaptive. Unlike
our visitor combinators, Demeter’s strategies are declarative in nature and can not
be executed themselves. Instead, traversal code must be generated from them by
a constraint-solving compiler. On the other hand, while reducing commitment to
the class structure, Demeter’s strategies do not eliminate all references to the class
structure. Visitor combinators allow definition of fully generic traversals.

To complement Demeter’s declarative strategies, a domain-specific language
(DSL) has been proposed to express recursive traversals at a lower, more explicit
level [OW99]. This traversal DSL sacrifices some compactness and adaptiveness
in order to gain more control over propagation and computation of results, and to
prevent unexpected traversal paths due to underspecification of traversals. With
respect to our visitor combinators, this traversal DSL provides cleaner support
for recursive traversals. On the other hand, visitor combinators are more generic,
extensible and reusable, and they offer more traversal control. Also, they do not
essentially rely on tool support.

Generics The separation of specifics and generics in the visitor pattern is ad-
dressed by Vlissides’ staggered visitor pattern [V1i99], and the extended visitor
pattern supported by the SableCC tool [GH98]. Here the aim of this separation
is to allow extension of the syntax without altering existing (visitor) code. In the
extended visitor pattern of SableCC, the generic visitor interface does not contain
any methods. In the staggered pattern, the generic visitor contains a generic visit
method, similar to our visit_Any. The main difference with our approach is
that in these patterns forwarding from specific to generic visit methods is done in
the Vi si t or class, while we do it in a separate reusable combinator Fwd. In the
presence of Choice, the Fwd combinator allows not only extension of a syntax,
but also merging of several syntaxes.

The Walkabout class [PJ98] makes essential use of reflection (including,
but not limited to RTTI) to model generic visiting behavior. The class performs
a traversal through an object structure. At each node it reflects on itself to as-
certain whether it contains a visit method for the current node. If not, it uses
reflection to determine the fields of the current node and calls itself on these. The
authors report high performance penalties for the extensive reliance on reflection.
The benefit is that no (syntax-specific) accept methods, visitor interface, or visi-
tor combinators need to be supplied. The Walkabout class implements a fixed
top-down traversal strategy, which is cut off below nodes for which the visitor fires
(i.e. DownUp(ldentity,v,Identity), see Figure 5.14).

104 Visitor Combination and Traversal Control 5

5.7.4 Future work

Implementation The support currently offered by JJForester has a restraining
effect. Classes are generated in their entirety from a grammar. Programmers can
not add their own methods or fields. This may be desirable, for instance, to allow
decoration of the tree that is being traversed. To offer more flexibility, JJForester
should additionally generate such decoration fields, or weave the generated meth-
ods into given classes (a form of aspect-oriented programming [KL*97]).

For several visitor combinators we gave definitions in mathematical notation,
as well as in Java. Obviously, a language extension could be defined which allows
combinator definitions in this concise, mathematical style. An implementation
of such an extension would map these high-level combinator definitions to their
more verbose counterparts in the base language. Such a language extension would
be amenable to optimization by means of source-to-source transformation, on the
basis of the algebraic equations that hold between visitor combinators.

Extensions and alternatives It would be convenient to include some special-
purpose visitors into the combinator set, e.g. ToString, Equals, and Clone
visitors. These would help to address common traversal scenarios such as pretty-
printing, and non-destructive transformation. Currently, only a ToString com-
binator is generated by JJForester.

Document processing, like language processing, essentially involves tree traver-
sal. The GraphXML example of Section 5.5.4 illustrates how (DTD-aware) doc-
ument processing can be done with visitor combinators. We want to compare our
techniques with existing proposals for XML-document traversal (cf. DOM [DOM98],
XSLT [XSL99]), and investigate whether these could benefit from the combinator
approach.

Until now, we assumed tree shaped object graphs. This restriction is not es-
sential. When it is removed, the need arises for some mechanism to mark nodes
as visited, and to ensure termination (in case of cycles). Chapter 7 discusses how,
with the use of a single additional basic combinator, graph traversals can be im-
plemented with visitor combinators.

Chapter 6

Object-oriented Tree
Traversal with JJForester

In this chapter, we complement the generic traversal support for object-
oriented programming introduced in the previous chapter with the advanced
language processing technology available in the ASF+SDF Meta-Environment.
In particular, we combine the syntax definition formalism SDF and the as-
sociated components that support generalized LR parsing with the general
purpose programming language Java.

To this end, we implemented JJForester: a parser and visitor generator
for Java that takes SDF grammars definition as input. It generates class struc-
tures that implement a number of design patterns to facilitate construction
and traversal of parse trees represented by object structures. JJForester sup-
ports both simple traversals following the plain visitor pattern and advanced
traversals using our visitor combinator framework JJTraveler. In small ex-
amples and a detailed case study, we demonstrate how program analyses and
transformations can be constructed with JJForester.

This chapter is based on [KVO01].

6.1 Introduction

JJForester is a parser and visitor generator for Java that takes language defini-
tions in the syntax definition formalism SprF [HHKR89, Vis97] as input. It gen-
erates Java code that facilitates the construction, representation, and manipula-
tion of syntax trees in an object-oriented style. To support generalized LR pars-
ing [Tom85, Rek92], JJForester reuses the parsing components of the ASF+sSDF
Meta-Environment [KI1i93]. To enable visitor code reuse and to address advanced

106

Object-oriented Tree Traversal with JJForester 6

tree traversal scenarios, JJForester instantiates the visitor combinator framework
JJTraveler (see Chapter 5).

The AsF+sSDF Meta-Environment is an interactive environment for the devel-
opment of language definitions and tools. It combines SDF (Syntax Definition
Formalism) with the term rewriting language AsF (Algebraic Specification For-
malism [BHK89]). SDF is supported with generalized LR parsing technology. For
language-centered software engineering applications, generalized parsing offers
many benefits over conventional parsing technology [BSV98]. ASF is a rather
pure executable specification language that allows rewrite rules to be written in
concrete syntax.

In spite of its many qualities, a number of drawbacks of the ASF+SDF Meta-
Environment have been identified over the years. One of these is its unconditional
bias towards AsF as programming language. Though AsF was well suited for the
prototyping of language processing systems, it lacked some features to build ma-
ture implementations. For instance, ASF does not come with a strong library mech-
anism, 1/0 capabilities, or support for generic term traversal®. Also, the closed
nature of the meta-environment obstructed interoperation with external tools. As a
result, for a mature implementation one was forced to abandon the prototype and
fall back to conventional parsing technology. An example is the ToolBus [BK98],
a software interconnection architecture and accompanying language, that has been
simulated extensively using the ASF+SDF Meta-Environment, but has been imple-
mented using traditional Lex and Yacc parser technology and a manually coded C
program. For Stratego [VBT99], a system for term rewriting with strategies, a sim-
ulator has been defined using the ASF+SDF Meta-Environment, but the parser has
been hand coded using ML-Yacc and Bison. A compiler for RISLA, an industrially
successful domain-specific language for financial products, has been prototyped in
the ASF+sSDF Meta-Environment and re-implemented in C [B*96].

To relieve these drawbacks, the Meta-Environment has recently been re-imple-
mented in a component-based fashion [BDH'01]. Its components, including the
parsing tools, can now be used separately. This paves the way to adding support
for alternative programming languages to the Meta-Environment.

As a major step into this direction, we have designed and implemented JJ-
Forester. This tool combines SDF with the mainstream general purpose program-
ming language Java. Apart from the obvious advantages of object-oriented pro-
gramming (e.g. data hiding, intuitive modularization, coupling of data and accom-
panying computation), it also provides language tool builders with the massive
library of classes and design patterns that are available for Java. Furthermore, it
facilitates a myriad of interconnections with other tools, ranging from database
servers to remote procedure calls. Apart from Java code for constructing and rep-
resenting syntax trees, JJForester generates visitor classes that facilitate generic

IRecently, some support for generic traversal has been added to the ASF interpreter (see also Sec-
tion 6.5.2).

6.2 JJForester

107

traversal of these trees. For advanced traversal scenarios, JJForester enables the
use of visitor combinators. This combination of features makes JJForester suitable
for component-based development of program analyses and transformations for
languages of non-trivial size.

The chapter is structured as follows. Section 6.2 explains JJForester. We dis-
cuss what code it generates, and how this code can be used to construct various
kinds of tree traversals. Section 6.3 explains JJForester’s connection to JJTrav-
eler. We briefly review the notion of visitor combinators and demonstrate their
use in constructing complex tree traversals. Section 6.4 provides a case study that
demonstrates in depth how a program analyzer (for the ToolBus language) can be
constructed using JJForester.

6.2 JJForester

JJForester is a parser and visitor generator for Java. Its distinction with respect to
existing parser and visitor generators, e.g. Java Tree Builder, is twofold. First, it
deploys generalized LR parsing, and allows unrestricted, modular, and declarative
syntax definition in SDF (see Section 6.2.2). These properties are essential in
the context of component-based language tool development where grammars are
used as contracts (see Chapter 2). Second, to cater for a number of recurring tree
traversal scenarios, it generates variants on the Visitor pattern that allow different
traversal strategies.

In this section we will give an overview of JJForester. We will briefly review
SDF which is used as its input language (a similar review was given in Chapter 2).
By means of a running example, we will explain what code is generated by JJ-
Forester and how to program against the generated code. In the next section, we
will provide a more in-depth discussion of tree traversal using visitor combinators.

6.2.1 Overview

The global architecture of JJForester is shown in Figure 6.1. Tools are shown as
ellipses. Shaded boxes are generated code. Arrows in the bottom row depict run
time events, the other arrows depict compile time events. JJForester takes a gram-
mar defined in SDF as input, and generates Java code. In parallel, the parse table
generator PGEN is called to generate a parse table from the grammar. The gener-
ated code is compiled together with code supplied by the user. When the resulting
byte code is run on a Java Virtual Machine, invocations of parse methods will re-
sult in calls to the scannerless, generalized LR parser SGLR. From a given input
term, SGLR produces a parse tree as output. These parse trees are passed through
the parse tree implosion tool implode to obtain abstract syntax trees. Note that the
PGEN and SGLR components are reused from the ASF+SDF Meta-Environment.

108 Object-oriented Tree Traversal with JJForester 6

grammar combinator
] framework
in SDF
JJTraveler
generated
code generator
Java code

user—supplied

Java code
Y
parse table
generator
compile time | | . 000
run time byte code
input - Sort.parse("file")
GLR parser JVM result
term

Figure 6.1: Global architecture of JJForester. Ellipses are tools. Shaded boxes are
generated code.

6.2 JJForester

109

6.2.2 SDF

The language definition that JJForester takes as input is written in SDF. In order to
explain JJForester, we will give a short introduction to SDF. A complete account
of SDF can be found in [HHKR89, Vis97].

SDF stands for Syntax Definition Formalism, and it is just that: a formalism
to define syntax. SDF allows the definition of lexical and context-free syntax in
the same formalism. SDF is a modular formalism; it allows productions to be
distributed at will over modules. For instance, mutually dependent productions
can appear in different modules, as can different productions for the same non-
terminal. This implies, for instance, that a kernel language and its extensions can
be defined in different modules. Like extended BNF, SDF offers constructs to
define optional symbols and iteration of symbols, but also for separated iteration
of symbols, alternatives, and more.

Figure 6.2 shows an example of an SDF grammar. This example grammar
gives a modular definition of a tiny lambda calculus-like language with typed
lambda functions. Note that the orientation of SDF productions is reversed with re-
spect to BNF notation. The grammar contains two context-free non-terminals, Expr
and Type, and two lexical non-terminals, Identifier and LAYouT. The latter non-
terminal is used implicitly between all symbols in context-free productions. As
the example details, expressions can be variables, applications, or typed lambda
abstractions, while types can be type variables or function types.

SDF’s expressiveness allows for defining syntax concisely and naturally. SDF’s
modularity facilitates reuse. SDF’s declarativeness makes it easy and retargetable.
But the most important strength of SDF is that it is supported by Generalized LR
Parsing. Generalized parsing removes the restriction to a non-ambiguous subclass
of the context-free grammars, such as the LR(K) class. This allows a maximally
natural expression of the intended syntax; no more need for ‘bending over back-
wards’ to encode the intended grammar in a restricted subclass. Furthermore,
generalized parsing leads to better modularity and allows ‘as-is’ syntax reuse.

As SDF removes any restriction on the class of context-free grammars, the
grammars defined with it potentially contain ambiguities. For most applications,
these ambiguities need to be resolved. To this end, SDF offers a number of dis-
ambiguation constructs. The example of Figure 6.2 shows four such constructs.
The left and right attributes indicate associativity. The bracket attribute indicates
that parentheses can be used to disambiguate Exprs and Types. For the lexical
non-terminals the longest match rule is explicitly specified by means of follow re-
strictions (indicated by the -/- notation). Not shown in the example is SDF’s
notation for relative priorities.

In the example grammar, each context-free production is attributed with a con-
structor name, using the cons(..) attribute. Such a grammar with constructor
names amounts to a simultaneous definition of concrete and abstract syntax of
the language at hand. The implode back-end turns concrete parse trees emanated

110 Object-oriented Tree Traversal with JJForester 6

definition
module Expr
exports
context-free syntax
Identifier — Expr {cons(“Var”)}
Expr Expr — Expr {cons(“Apply”), left}
“\\” Identifier “:” Type “.” Expr — Expr {cons(“Lambda”)}
“(” Expr *)” — Expr {bracket}
module Type
exports
context-free syntax
Identifier — Type {cons(“TVar”)}

Type “->” Type — Type {cons(“Arrow”), right}
“(” Type “)” — Type {bracket}

module ldentifier
exports
lexical syntax
[A-Za-z0-9]+ — Identifier
lexical restrictions
Identifier-/- [A-Za-z0-9]
module Layout
exports

lexical syntax
[_\t\n] = LAYOUT

context-free restrictions
LAYOUT?-/- [\ _\t\n]

Figure 6.2: Example SDF grammar.

6.2 JJForester

111

by the parser into more concise abstract syntax trees (ASTs) for further process-
ing. The constructor names defined in the grammar are used to build nodes in
the AST?. As will become apparent below, JJForester operates on these abstract
syntax trees, and thus requires grammars with constructor names. A utility, called
sdf-cons is available to automatically synthesize these attributes when absent.

SDF is supported by two tools: the parse table generator PGEN, and the scan-
nerless generalized parser SGLR. These tools were originally developed as com-
ponents of the ASF+SDF Meta-Environment and are now separately available as
stand-alone, reusable tools.

6.2.3 Code generation

From an SDF grammar, JJForester generates the following Java code:

Class structure For each non-terminal symbol in the grammar, an abstract class
is generated. For each production in the grammar with a cons(..) attribute, a con-
crete class is generated that extends the abstract class corresponding to the result
non-terminal of the production. For example, Figure 6.3 shows a UML diagram
of the code that JJForester generates for the grammar in Figure 6.2. The relation-
ships between the abstract classes Expr and Type, and their concrete subclasses are
known as the Composite pattern [GHJV94].

Lexical non-terminals and productions are treated slightly different: for each
lexical non-terminal a class can be supplied by the user. Otherwise, this lexi-
cal non-terminal is replaced by the pre-defined non-terminal Identifier, for
which a single concrete class is provided by JJForester. This is the case in our ex-
ample. The Identifier contains a String representation of the actual lexical
that is being modeled.

When the input grammar, unlike our example, contains complex symbols such
as optionals or iterated symbols, additional classes are generated for them as well.
The case study in Section 6.4 will illustrate this.

Parsers Also, for every non-terminal in the grammar, a parse method is gen-
erated for parsing a term (plain text) and constructing a tree (object structure).
The actual parsing is done externally by SGLR. The parse method implements the
Abstract Factory design pattern [GHJV94]; each non-terminal class has a parse
method that returns an object of the type of one of the constructors for that non-
terminal. Which object gets returned depends on the string that is parsed.

2The particular parse tree format emanated by SGLR contains for each node the production with
which it was parsed. Consequently, our implode tool does not need the original grammar as input.

112

Object-oriented Tree Traversal with JJForester 6

r Visitable Visitor I dentity
accept_bu visit ’
accept_td visitExpr F 7<: -

visitApply N
Type
typel
I
P2 : typel Typed
I
I
-
I
I
| :
Lambda ! TVar Arrow
T I
—]! I
accept_bu(Visitor v){ ! identifierd ! identifier0
expr0.accept_bu(v); L Identifier
exprl.accept_bu(v);
v.visitApply(this); identifier0
}

Figure 6.3: The UML diagram of the code generated from the grammar in Fig-
ure 6.2.

Constructor methods In the generated concrete classes, constructor methods
are generated that build language-specific tree nodes from the generic tree that
results from the call to the external parser.

Set and get methods In the generated concrete classes, set and get methods are
generated to inspect and modify the fields that represent the subtrees. For example,
the Apply class will have getExpr0 and setExpr0 methods for its first child.

Accept methods In the generated concrete classes, several accept methods are
generated that take a Visitor object as argument, and apply it to a tree node. The
accept method for each class dispatches its invocation to a visit method in the
visitor that is specific to that class. Currently, two iterating accept methods are
generated: accept_td and accept_bu, for top-down and bottom-up traversal,
respectively. For the Apply class, the bottom-up accept method is shown in the
Figure 6.3. We will additionally introduce an non-iterating accept method in Sec-
tion 6.3.

Visitor interface and classes A Visitor interface is generated which declares
a visit method for each production and each non-terminal in the grammar. Fur-
thermore, it contains one method named visit which is useful for generic re-

6.2 JJForester

113

finements (see below). Some default implementations of the Visitor interface are
generated as well. First, a class named Identity is generated. Its visit methods are
non-iterating: they make no calls to accept methods of children to obtain recur-
sion. The default behavior offered by these generated visit methods is simply to
do nothing. Second, a ToStringVisitor is generated which provides an updatable
default pretty-printer for the input language. Finally, a class Fwd that implements
the Visitor interface is generated. Its use will become clear in Section 6.3.

Together, the Visitor interface and the iterating accept methods in the various
concrete classes implement a variant of the Visitor pattern [GHJV94], where the
responsibility for iteration lies with the accept methods, not with the visit meth-
ods. We have chosen this variant for several reasons. First of all, it relieves the
programmer who specializes a visitor from reconstructing the iteration behavior in
the visit methods he redefines. This makes specializing visitors less involved and
less error-prone. In the second place, it allows the traversal behavior (top-down
or bottom-up) to be varied simply by selecting a different accept method.. In Sec-
tion 6.3, we will explain a second, more powerful way to control iteration behavior,
involving a non-iterating accept method in combination with visitor combinators
that control traversal.

Apart from generating Java code, JJForester calls PGEN to generate a parse table
from its input grammar. This table is used by SGLR which is called by the gener-
ated parse methods.

6.2.4 Programming against the generated code

The generated code can be used by a tool builder to construct tree traversals
through the following steps:

1. Refine a visitor class by redefining one or more of its visit methods. As
will be explained below, such refinement can be done at various levels of
genericity, and in a step-wise fashion.

2. Start a traversal with the refined visitor by feeding it to the accept method of
a tree node. Different accept methods are available to realize top-down or
bottom-up traversals.

This method of programming traversals by refining (generated) visitors provides
interesting possibilities for reuse. Firstly, many traversals only need to do some-
thing ‘interesting’ at a limited number of nodes. For these nodes, the programmer
needs to supply code, while for all others the behavior of the generated visitor
is inherited. Secondly, different traversals often share behavior for a number of
nodes. Such common behavior can be captured in an initial refinement, which is
then further refined in diverging directions. Unfortunately, Java’s lack of multiple
inheritance prohibits the converse: construction of a visitor by inheritance from

114

Object-oriented Tree Traversal with JJForester 6

public class VarCountVisitor extends ldentity {
public int counter = O;
public void visitVar(Var x) {

count er ++;

}

public void visitTVar(TVar x) {
count er ++;

}

Figure 6.4: Specific refinement: a visitor for counting variables.

two others. In Section 6.3 we will explain how visitor combinators can remedy
this limitation. Thirdly, some traversal actions may be specific to nodes with a
certain constructor, while other actions are the same for all nodes of the same type
(non-terminal), or even for all nodes of any type. As the visitors generated by
JJForester allow refinement at each of these levels of specificity, there is no need
to repeat the same code for several constructors or types. We will explain these
issues through a number of small examples.

Constructor-specific refinement Figure 6.4 shows a refinement of the Identity
visitor class which implements a traversal that counts the number of variables oc-
curring in a syntax tree. Both expression variables and type variables are counted.
This refinement extends Identity with a counter field, and redefines the visit meth-
ods for Var and TVar such that the counter is incremented when such nodes are
visited. The behavior for all other nodes is inherited from the generated Identity
visitor: do nothing. Note that redefined methods need not restart the recursion
behavior by calling an accept method on the children of the current node. The
recursion is completely handled by the generated accept methods.

Generic refinement The refinement in the previous example is specific for par-
ticular node constructors. The visitors generated by JJForester additionally allow
more generic refinements. Figure 6.5 shows refinements of the Identity visitor
class that implement a more generic expression counter and a fully generic node
counter. Thus, the first visitor counts all expressions, irrespective of their construc-
tor, and the second visitor counts all nodes, irrespective of their type. No code
duplication is necessary. Such per-sort refinements and fully generic refinements
are possible, because in the generated Identity visitor, the specific methods such
as visitExpr invoke the visit methods for sorts, which in turn call the generic
method visit. In Section 6.3, we will show that such forwarding behavior can
be captured in a separate visitor combinator.

Note that the visitors in Figures 6.4 and 6.5 can be refactored as refinements
of a common initial refinement, say CountVisitor, which contains only the field

6.2 JJForester

115

public class ExprCountVisitor extends ldentity {
public int counter = O;
public void visitExpr(Expr x) {
count er ++;
}

}

public class NodeCountVisitor extends ldentity {
public int counter = O;
public void visit(Qoject x) {
count er ++;
}

Figure 6.5: Generic refinement: visitors for counting expressions and nodes.

counter.

Step-wise refinement Visitors can be refined in several steps. For our example
grammar, two subsequent refinements of the Identity visitor class are shown in
Figure 6.6. The class GetVarsVisitor is a visitor for collecting all variables used in
expressions. It is defined by extending the Identity class with a field vars initial-
ized as the empty set of variables, and by redefining the visit method for the Var
class to insert each variable it encounters into this set. The GetVarsVisitor is fur-
ther refined into a visitor that collects all variables, by additionally redefining the
visit methods for the Lambda class and the TVar class. These redefined methods
insert type variables and bound variables in the set of variables vars. Finally, this
second visitor can be unleashed on a tree using the accept_bu method. This is
illustrated by an example of usage in Figure 6.6.

Of course, our running example does not mean to suggest that Java would be the
ideal vehicle for implementing the lambda calculus. Our choice of example was
motivated by simplicity and self-containedness. To compare, an implementation of
the lambda calculus in the ASF+sDF Meta-Environment can be found in [DHK96].
In Section 6.4 we will move into the territory for which JJForester is intended:
component-based development of program analyses and transformations for lan-
guages of non-trivial size.

6.2.5 Assessment of expressiveness

To evaluate the expressiveness of JJForester within the domain of language pro-
cessing, we will assess which program transformation scenarios can be addressed
with it. We distinguish three main scenarios;

116

Object-oriented Tree Traversal with JJForester 6

Set

add

remove
GetVarsVisitor L

vars visitVar(Var var) { Example of usage:

visitVar o Te EPUPRUIE . vars.add(var.getl dentifier());

} 1]

4 visitambda(Lambda lambda) { L_| v = new AllVarsVisitor();
vars.add(var.getldentifier()); expr.accept_bu(v),
AllVarsVisitor }
. visitTVar(TVar var) {

visttvar | . vars.add(var.getidentifier());
visittambda }

Figure 6.6: Step-wise refinement: visitors for collecting variables.

Analysis A value or property is distilled from a syntax tree. Type-checking is a
prime example.

Translation A program is transformed into a program in a different language.
Examples include generating code from a specification, and compilation.

Rephrasing A program is transformed into another program, where the source
and target language coincide. Examples include normalization and renova-
tion.

For a more elaborate taxonomy of program transformation scenarios, we refer
to [JVVO01, V*]. The distinction between analysis and translation is not clear-
cut. When the value of an analysis is highly structured, especially when it is an
expression in another language, the label ‘translation’ is also appropriate.

The traversal examples discussed above are all tree analyses with simple accu-
mulation in a state. Here, ‘simple’ accumulation means that the state is a value or
collection to which values are added one at a time. This was the case both for the
counting and the collecting examples. However, some analyses require more com-
plex ways of combining the results of subtree traversals than simple accumulation.
An example is pretty-printing, where literals need to be inserted between pretty-
printed subtrees. In the case study, a visitor for pretty-printing will demonstrate
that JJForester is sufficiently expressive to address such more complex analyses.
Other examples are analyses that involve a notion of scoping. In section 6.3 a

6.2 JJForester

117

visitor for free variable analysis will demonstrate how such scoping issues can be
handled with visitor combinators.

Translating transformations are also completely covered by JJForester’s ex-
pressiveness. As in the case of analysis, the degree of reuse of generated visit
methods can be very low. Here, however, the cause lies in the nature of transla-
tion, because it typically takes every syntactic construct into account. This is not
always the case, for instance, when the translation has the character of an analysis
with highly structured results. An example is program visualization where only
dependencies of a particular kind are shown, e.g. module structures or call graphs.

In the object-oriented setting, a distinction needs to be made between destruc-
tive and non-destructive rephrasings. Destructive rephrasings are covered by JJ-
Forester. However, as objects can not modify their self reference, destructive mod-
ifications can only change subtrees and fields of the current node, but they can not
replace the current node by another. Non-destructive rephrasings can be imple-
mented by refining a traversal that clones the input tree. A visitor for tree cloning
can be generated, as will be discussed in Section 6.5.3.

A special case of rephrasing is decoration. Here, the tree itself is traversed, but
not modified except for designated attribute fields. Decoration is useful when sev-
eral traversals are sequenced that need to share information about specific nodes.
JJForester does not support decoration yet.

6.2.6 Limitations

The traversal support of JJForester, covered so far, caters for many basic traversal
scenarios, but it is limited in a few respects.

Traversal control Traversal control is limited to selection between top-down or
bottom-up accept methods. To obtain more complex traversal scenarios, the
user must fall back to entangling traversal and node behavior in the visitor.

Visitor combination A new visitor can be constructed by refinement of a given
one. But no support is present to combine the behavior of several given
visitors. For instance, the Al IVarsVisitor of Figure 6.6 can not be built
by combining three visitors that each counts a different kind of variable.

Genericity Generic behavior implemented by refining the generic visit method
is still class-hierarchy specific, because the visit interface is. For instance,
the NodeCountVisitor of Figure 6.5 is specific to our little lambda lan-
guage, and can not be applied to count nodes of syntax trees of other lan-
guages.

These limitations can be lifted with the visitor combinators of Chapter 5, as will
be explained in the next section.

118

Object-oriented Tree Traversal with JJForester 6

Visitable ‘ Visitor

nrofChildren
getChildAt
setChildAt

visit

JdTraveler: framework + library Library: generic visitors
JJForester: generated code

Visitable Visitor

o s
accept_td pply

T accept

User code: specific visitors

Expr I dentifier Type <]

Figure 6.7: The architecture of JJTraveler in relation to JJForester. Class-hierarchy
specific entities are shown below the dashed line.

6.3 JJTraveler

In Chapter 5 we introduced the notion of a generic visitor combinator, and we in-
troduced JJTraveler: a combination of a framework and library that provide generic
visitor combinators for Java.

Recall that visitor combinators are small, reusable classes that implement a
generic visitor interface. Here ‘generic’ means: independent of any specific class
hierarchy. Each combinator captures a basic piece of functionality. They can be
composed in different constellations to build more complex visitors.

In this section, we explain how JJForester makes use of JJTraveler to offer
more advanced traversal support, and to overcome the limitations of the basic
traversal support that was explained in the previous section. To keep the discus-
sion self-contained, we will recapitulate the essentials of JJTraveler and visitor
combinators.

6.3.1 The architecture of JJTraveler

Figure 6.7 shows the architecture of JJTraveler and its relationship with JJForester.
JJTraveler consists of a framework and a library.

Framework The framework consists of two interfaces, Visitor and Visitable. Un-
like the interfaces of the same name generated by JJForester, these inter-

6.3 JJTraveler

119

faces are not hierarchy-specific. The Visitor interface declares a single visit
method, which takes any visitable object as argument. The Visitable inter-
face declares three methods, called getChi IdCount, getChi IdAt, and
setChi IdAt, that provide generic access to the children of any visitable
object.

Library The library consists of a number of predefined visitor combinators. Each
combinators implements the generic Visitor interface. An overview of the
combinators is shown in Table 6.1. They will be explained in more detail
below.

To use JJTraveler, one needs to instantiate the framework for the class hierarchy
of a particular application. This can be done manually, but JJForester automates it.
The Visitor and Visitable interfaces must be implemented. The Visitable interface
is implemented by the various classes that model the grammar, as generated by
JJForester. The Visitor interface is implemented by a number of generic Visitors
from the library, and a JJForester generated Fwd combinator which knows about
the structure of the grammar.
After instantiation, the user can do the following:

e Apply a generic visitor to an application-specific object with the generic
visit method. Note that generic visitors do not need to be passed to an
accept method to be applied, because they have only a single visit method,
and no class-specific dispatch is needed.

e Turn a generic visitor into an application-specific one by supplying it as an
argument to the Fwd combinator. The resulting specific visitor can be then
be refined in constructor-specific or sort-specific manner.

e Supply an application-specific visitor as an argument to a generic visitor
combinator.

Below, these types of usage will be explained and demonstrated for some concrete
cases.

6.3.2 Generic visitor combinators

Table 6.1 shows high-level descriptions for an excerpt of JJTraveler’s library of
generic visitor combinators. A larger excerpt can be found in Table 5.2, and a
full overview of the library can be found in the online documentation of JJTrav-
eler. Two sets of combinators can be distinguished: basic combinators and defined
combinators. The defined combinators can be described in terms of the basic ones
as indicated in the overview. The implementation of both basic and defined com-
binators in Java is straightforward (for details see Chapter 5).

120

Object-oriented Tree Traversal with JJForester 6

Combinator Description of behavior

Identity Do nothing

Fail Raise VisitFailure exception
Not(v) Fail if v succeeds, and v.v.
Sequence(vy,vs) Do vy, then v,

Choice(vy,v2) Try vy, if it fails, do v

All(v) Apply » to all immediate children
One(v) Apply v to one immediate child
Try(v) Choice(v, Identity)

TopDown(v) Sequence(v, All(TopDown(v)))
BottomUp(v) Sequence(All(BottomUp(v)),v)
OnceTopDown(v) | Choice(v, One(OnceTopDown(v)))
OnceBottomUp(v) | Choice(One(OnceBottomUp(v)),v)
AllTopDown(v) Choice(v, All(AllT opDown(v)))
AliBottomUp(v) Choice(All(All BottomUp(v)),v)

Table 6.1: JJTraveler’s library of generic visitor combinators (excerpt).

6.3.3 Building visitors from combinators

In order to demonstrate how visitor combinators can be used to build complex vis-
itors with sophisticated traversal behavior, we will return to our example language,
and develop a solution to the problem of finding free variables in a lambda term.
The notion of scope plays an essential role in this problem.

To properly deal with scope, we can no longer rely on simple top-down or
bottom-up traversal. Instead, we must stop the traversal and restart it in a new
scope. For this purpose, we will develop a new generic visitor combinator:

TopDownW hile(vy,v2) =
Choice(Sequence(vy, All(TopDownW hile(vy,v2))), v2)

The first argument v; represents the visitor to be applied during traversal in a top-
down fashion. When, at a certain node, this visitor »; fails, the traversal will not
continue into subtrees. Instead, the second argument v, will be used to visit the
current node. The encoding in Java is given in Figure 6.8. Note that the sec-
ond constructor method provides a shorthand for calling the first constructor with
Identity as second argument.

Given the TopDown While combinator, we can compose a visitor for free vari-
able analysis by specialization of the Get Vars Visitor of Figure 6.6. The special-
ized visitor is shown in Figure 6.9. Recall that the GetVarsVisitor accumulates
variables in a vars field of type Set. Additionally, the Free VarsVisitor rede-
fines the visit method for lambda expressions. In this method, four things happen:

6.3 JJTraveler 121

public class TopDownWil e extends Choice {
public TopDownWile(Visitor vl, Visitor v2) {
super (new Sequence(vl, new Al l (this)),v2);
}

public TopDownWhile(Visitor v) {
this(v,new ldentity());
}

Figure 6.8: Encoding of the TopDown While combinator in Java.

public class FreeVarsVisitor extends GetVarsVisitor {
public void visit_Lanbda(Lanbda | anbda) {
Expr body = | anbda. get Expr();
Set freel nBody = freeVars(body);
Identifier bindingVar = | anbda. getldentifier();
freel nBody. r enove(bi ndi ngVar) ;
vars. addAl | (freel nBody) ;
throw new VisitFailure();
}
public static Set freeVars(Expr e)
throws VisitFailure {
FreeVarsVisitor v = new FreeVarsVisitor();
(new TopDownWhi | e(v)).visit(e);
return v.getVars();

Figure 6.9: A visitor for free variable analysis.

122 Object-oriented Tree Traversal with JJForester 6

(i) the free variable analysis is recursively carried out for the body of the lambda
via the method fFreeVars, (ii) the binding variable of the lambda expression is
subtracted from the resulting set of free variables, (iii) the remaining free variables
are added to the current local set vars, and (vi) the traversal is stopped by rais-
ing an exception. In the function freeVars, the TopDown While combinator is
applied to a new Free Vars Visitor to (re)start the traversal.

In the case study to be presented in Section 6.4, further examples of using
visitor combinators will be given.

6.3.4 Evaluation

In Section 6.2.6 we listed some limitations of the basic traversal support provided
by JJForester, with respect to traversal control, visitor composition, and genericity.
The additional traversal support realized by JJForester’s link to JJTraveler removes
these limitations.

Traversal control JJTraveler’s library provides combinators for a variety of generic
traversal scenarios in its library. Further (generic) scenarios can be pro-
grammed as needed by combining (basic) combinators.

Visitor combination Application-specific visitors can be supplied as arguments
to generic visitor combinators to build more complex visitors.

Genericity Visit behavior (traversing or non-traversing) that is generic in nature
can be implemented with reference only to the generic framework and li-
brary of JJTraveler.

There is also a down-side to the additional power of visitor combinators offered
by JJTraveler. When visitors are not monolithic, but built out of combinators,
their performance suffers, due to the forwarding of control between the various
combinators. Also, visitor combinators are conceptually more challenging to the
object-oriented programmer than plain visitors. With these trade-offs in mind,
JJForester supports both styles of visitor programming.

6.4 Case study

Now that we have explained the workings of JJForester, we will show how it
is used to build a program analyzer for an actual language. In particular, this
case study concerns a static analyzer for the ToolBus [BK98] script language. In
Section 6.4.1 we describe the situation from which a need for a static analyzer
emerged. In Section 6.4.2 the language to be analyzed is briefly explained. Finally,
Section 6.4.3 describes in detail what code needs to be supplied to implement the
analyzer.

6.4 Case study

123

ToolBus:

Adapters:
Tools:

Figure 6.10: The Toolbus architecture. Tools are connected to the bus through
adapters. Inside the bus, several processes run in parallel. These processes com-
municate with each other and the adapters according to the protocol defined in a
T-script.

6.4.1 The Problem

The ToolBus is a coordination language which implements the idea of a software
bus. It allows components (or tools) to be “plugged into” a bus, and to communi-
cate with each other over that bus. Figure 6.10 gives a schematic overview of the
ToolBus. The protocol used for communication between the applications is not
fixed, but is programmed through a ToolBus script, or T-script.

A T-script defines one or more processes that run inside the ToolBus in parallel.
These processes can communicate with each other, either via synchronous point-
to-point communication, or via asynchronous broadcast communication. The pro-
cesses can direct and activate external components via adapters, small pieces of
software that translate the ToolBus’s remote procedure calls into calls that are na-
tive to the particular software component that needs to be activated. Adapters can
be compiled into components, but off-the-shelf components can be used, too, as
long as they possess some kind of external interface.

Communication between processes inside the ToolBus does not occur over
named channels, but through pattern matching on terms. Communication between
processes occurs when a term sent by one matches the term that is expected by
another. This will be explained in more detail in the next section. This style of
communication is powerful, flexible and convenient, but tends to make it hard to
pinpoint errors in T-scripts. To support the T-script developer, the ToolBus runtime
system provides an interactive visualizer, which shows the communications taking
place in a running ToolBus. Though effective, this debugging process is tedious
and slow, especially when debugging systems with a large number of processes.

To complement the runtime visualizer, a static analysis of T-scripts is needed

124

Object-oriented Tree Traversal with JJForester 6

to support the T-script developer. Static analysis can show that some processes
can never communicate with each other, that messages that are sent can never
be received (or vice versa), or that two processes that should not communicate
with each other may do so anyway. Using JJForester, such a static analyzer is
constructed in Section 6.4.3.

6.4.2 T-scripts explained

T-scripts are based on Acp (Algebra of Communicating Processes) [BV95]. They
define communication protocols in terms of actions, and operations on these ac-
tions. We will be mainly concerned with the communication actions, which we
will describe below. Apart from these, there are assignment actions, conditional
actions and basic arithmetic actions. The action operators include sequential com-
position (a.b), non-deterministic choice (a + b), parallel composition (a || b), and
repetition (a b, a is repeated zero or more times, and finally b is executed). The
deadlock action (delta) always fails. The full specification of the ToolBus script
language can be found in [BK94].

The T-script language offers actions for communication between processes and
tools, and for synchronous and asynchronous communication between processes.
For the purposes of this chapter we will limit ourselves to the most commonly used
synchronous actions; for brevity, asynchronous actions are not covered. The syn-
chronous actions are snd-msg(T) and rec-msg(T) for sending and receiving
messages, respectively. These actions are parameterized with arbitrary data T,
represented as ATerms [BJKOOQ0]. A successful synchronous communication oc-
curs when a term that is sent matches a term that is received. For instance, the
closed term snd-msg(f(a)) can match the closed term rec-msg(f(a)) or
the open term rec-msg(F(T?)). At successful communication, variables in
the data of the receiving process are instantiated according to the match.

To illustrate, a small example T-script is shown in Figure 6.11. This exam-
ple contains only processes. In a more realistic situation these processes would
communicate with external tools, for instance to get the input of the initial value,
and to actually activate the gas pump. The script’s last statement is a mandatory
toolbus(. .) statement, which declares that upon startup the processes GasSta-
tion, Pump, Customer and Operator are all started in parallel. The variables C and
D in the process definitions stand for the customer’s process-id and an amount of
money (dollars), respectively. The first action of all processes, apart from Cus-
tomer, is a rec—-msg action. This means that those processes will block until
an appropriate communication is received. The Customer process starts by doing
two assignment statements: process-id (a built-in variable that contains the
identifier of the current process) is assigned to C, and 10 to D. The first communi-
cation action performed by Customer is a snd-msg of the term prepay (D, C).
This term is received by the GasStation process, which in turn sends the term

6.4 Case study

125

process GasStation is

| et

D int, C int

in

(rec-nsg(prepay(D?,C?)).
snd- nsg(request (D, Q)

| | rec-msg(schedul e(D?, C?)).
snd-nsg(activate(D)).
snd- nsg(okay(C))

|| rec-msg(turn-on).
snd- nsg(on)

| | rec-msg(report(D?)).
snd- nsg(st op) .
snd-nsg(result(D))

|| rec-msg(remt(D?)).
snd- nsg(change(D))

)*

delta

endl et

process COperator is
let C int, D int,
Payment: int, Anount: int
in
(rec-nsg(request(D?,C?)).
Paynment := D.
snd- nsg(schedul e(Paynent, Q).
rec-msg(resul t(D?)).
Amount : = sub(Paynent, D).
snd-nsg(remt (Anmount))
) *
delta
endl et

process Punp is

let D int

in

(rec-msg(activate(D?)).
rec-nsg(on).
snd- msg(report (D))

) *

delta

endl et

process Custoner is
| et
C int, D int
in
C : = process-id.
D := 10.
snd- nsg(prepay(D, Q).
rec-msg(okay(Q)).
snd-nsg(turn-on).
printf(
"Custoner %l using punp\n",
O .
rec-msg(stop).
rec-msg(change(D?)).
printf(
"Custoner % got $%l change\n",
C, D
endl| et

t ool bus(GasSt ati on, Punp,
Cust oner, Oper at or)

Figure 6.11: The T-script for the gas station with control process.

request(D, C) message. This is received by Operator, and so on.

The script writer can use the mechanism of communication through term match-
ing to specify that any one of a number of processes should receive a message,
depending on the state they are in, and the sending process does not need to know
which. It just sends out a term into the ToolBus, and any one of the accepting
processes can “pick it up”. Unfortunately, when incorrect or too general terms are
specified in a rec-msg action, communication will not occur as expected, and
the exact cause will be difficult to trace. The static analyzer developed in the next
section is intended to solve this problem.

126

Object-oriented Tree Traversal with JJForester 6

Visitor Set SendReceiveAction
Stack visit add match
visitFunTerm remove toString
push visitProcDef
pop
é send | receive
theStack TermToStringVisitor | [SendReceiveVisitor SendReceiveDB processName
visitFunTerm visitFunTerm sdb | addRecaiveAction
visitldTerm visitProcDef addSendAction
visitlterStarSepTerm_ visitProcDefArgs printMatchTable
visitOptVar storeMatchTable
visitStringTerm
visitVnameVar String
currProcess
e

Figure 6.12: UML diagram of the ToolBus analyzer.

6.4.3 Analysis using JJForester

We will first sketch the outlines of the static analysis algorithm that we imple-
mented. It consists of two phases: collection and matching. In the collection
phase, all send and receive actions in the T-script are collected into a (internal,
non-persistent) database. In the matching phase, the send and receive actions in
the database are matched to obtain a table of potential matching events, which
can either be stored in a file, or in an external, persistent relational database. To
visualize this table, we use the back-end tools of a documentation generator we
developed earlier (DocGen [DK99a]).

We used JJForester to implement the parsing of T-scripts and the representation
and traversal of T-script parse trees. To this end, we ran JJForester on the grammar
of the ToolBus® which contains 35 non-terminals and 80 productions (both lexi-
cal and context-free). From this grammar, JJForester generated 23 non-terminal
classes, 64 constructor classes, and 1 visitor class, amounting to a total of 4221
lines of Java code.

We will now explain in detail how we programmed the two phases of the anal-
ysis. Figure 6.12 shows a UML diagram of the implementation.

The collection phase

We implemented the collection phase as a top-down traversal of the syntax tree
with a visitor called SendReceiveVisitor. This refinement of the Visitor class has
two kinds of state: a database for storing send and receive actions, and a field that
indicates the name of the process currently being analyzed. Whenever a term with

3This SDF grammar can be downloaded from the online Grammar Base [GB].

6.4 Case study

127

context-free syntax
“process” ProcessName “is” ProcessExpr
— ProcessDef {cons(“procDef”)}
“process” ProcessName “(” {VarDecl “”}* “)” “is” ProcessExpr
— ProcessDef {cons(“procDefArgs”)}

Figure 6.13: The syntax of process definitions.

public void visitProcDef (procDef definition) {
currProcess = definition.getldentifierO().toString();
}

public void visitProcDef Args(procDef Args definition) {
currProcess = definition.getldentifier0O().toString();
}

Figure 6.14: Specialized visit methods to extract process definition names.

outermost function symbol snd-msg or rec-msg is encountered, the visitor will add
a corresponding action to the database, tagged with the current process name. The
current process name is set whenever a process definition is encountered during
traversal. Since sends and receives occur only below process definitions in the
parse tree, the top-down traversal strategy guarantees that the current process name
field is always correctly set when it is needed to tag an action.

To discover which visit methods need to be redefined in the SendReceiveVis-
itor, the ToolBus grammar needs to be inspected. To extract process definition
names, we need to know which syntactic constructs are used to declare these
names. The two relevant productions are shown in Figure 6.13. So, in order
to extract process names, we need to redefine visitProcDef and visit-
ProcDefArgs in our specialized SendReceiveVisitor. These redefinitions are
shown in Figure 6.14. Whenever the built-in iterator comes across a node in the
tree of type procDef, it will call our specialized visitProcDef with that
procDef as argument. From the SDF definition in Figure 6.13 we learn that
a procDefT has two children: a ProcessName and a ProcessExpr. Since Pro-
cessName is a lexical non-terminal, and we chose to have JJForester identify all
lexical non-terminals with a single type Identifier, the Java class procDef
has a field of type IdentiFfier and one of type ProcessExpr. Through the
getldentifier0() method we get the actual process name which gets con-
verted to a String so it can be assigned to currProcess.

Now that we have taken care of extracting process names, we need to ad-
dress the collection of communication actions. The ToolBus grammar allows for
arbitrary terms (‘Atoms’ in the grammar) as actions. Their syntax is shown in
Figure 6.15.

128

Object-oriented Tree Traversal with JJForester 6

context-free syntax
Vname — Var {cons(“vnameVar”)}
Var — GenVar {cons(“var”)}
Var “?” — GenVar {cons(“optVar”)}
GenVar — Term {cons(“genvarTerm”)}
Id — Term {cons(“idTerm”)}
Id “(” TermList “)” — Term {cons(“funTerm”)}
{Term “"}* — TermList {cons(“termStar”)}
Term — Atom {cons(“termAtom”)}

Figure 6.15: Syntax of relevant ToolBus terms.

public void visitFunTern{funTermterm ({
SendRecei veAction action
= new SendRecei veAction(currProcess, termgetTermist1());
if (termgetldentifier0().equals("snd-msg")) {
srdb. addSendActi on(action);
} else if (termgetidentifier0().equals("rec-msg")) {
srdb. addRecei veActi on(action);

}

}

Figure 6.16: The visit method for send and receive messages.

Thus, send and receive actions are not distinct syntactic constructs, but they
are functional terms (FunTerms) where the Id child has value snd-msg or
rec-msg. Consequently, we need to redefine the visitFunTermmethod such
that it inspects the value of its first child to decide if and how to collect a commu-
nication action. Figure 6.16 shows the redefined method.

The visit method starts by constructing a new SendReceiveAction. This
is an object that contains the term that is being communicated and the process
that sends or receives it. The process name is available in the SendReceive-
Visitor in the field currProcess, because it is put there by the visit-
ProcDef methods we just described. The term that is being communicated can
be selected from the FunTerm we are currently visiting. From the SDF grammar
in Figure 6.15 it follows that the term is the second child of a funTerm, and that
itis of type TermList. Therefore, the method getTerml istl will return it.

The newly constructed action is added to the database as a send action, a re-
ceive action, or not at all, depending on the first child of the funTerm. This
child is of lexical type Id, and thus converted to an Identifier type in the
generated Java classes. The Identifier class contains an equals(String)
method, so we use string comparison to determine whether the current funTerm

6.4 Case study

129

public static void main(String[] args) throws ParseException {
String inFile = args[0];
Tscript theScript = Tscript.parse(inFile);
SendRecei veVisitor srvisitor = new SendRecei veVisitor();
theScript.accept _td(srvisitor); /1 collection phase
srvisitor.srdb. construct MatchTabl e(); // matchi ng phase

Figure 6.17: The main() method of the ToolBus analyzer.

has “snd-msg” or “rec-msg” as its function symbol.

Now that we have built the specialized visitor to perform the collection, we
still need to activate it. Before we can activate it, we need to have parsed a T-
script, and built a class structure out of the parse tree for the visitor to operate
on. This is all done in the main() method of the analyzer, as shown in Fig-
ure 6.17. The main method shows how we use the generated parse method for
Tscript to build a tree of objects. Tscript.parse() takes a filename as an ar-
gument and tries to parse that file as a Tscript. If it fails it throws a ParseEx-
ception that contains the location of the parse error. If it succeeds it returns a
Tscript. We then construct a new SendReceiveVisitor as described in
the previous section. The Tscript is subsequently told to accept this visitor,
and, as described in Section 6.2.4 iterates over all the nodes in the tree and calls
the specific visit methods for each node. When the iterator has visited all nodes,
the SendReceiveVisitor contains a filled SendReceiveDb. The results in
this database object can then be processed further, in the matching phase. In our
case we call the method constructMatchTable() which is explained below.

The collection phase — using JJTraveler

The implementation of the collection phase given in the previous section is some-
what naive. It uses a single top-down traversal strategy to visit all nodes. Since
send and receive actions are always top-level functional terms, there is no need
to traverse into other functional terms. Therefore, a more sophisticated traversal
scenario is desirable that stops descending where possible.

Figure 6.18 shows an implementation of the collection phase using JJTrav-
eler. The main method differs from the previous version in three respects. First of
all, the action to be performed at each node is implemented by a different visitor
class, called SendReceiveTraveler. Second, we do not rely on the accept method
for iteration, but we use the TopDownWhile visitor combinator introduced in Sec-
tion 6.3.3. Finally, we call the visit method of the visitor, and pass the script as its
argument. Recall that generic visitors, such as TopDownWhile, need not be passed
via an accept method; their only visit method can be called directly.

Figure 6.19 shows part of the implementation of SendReceiveTraveler. Previ-

130

Object-oriented Tree Traversal with JJForester 6

public static void main(String[] args) throws ParseException {
String inFile = args[0];
Tscript theScript = Tscript.parse(inFile)
SendRecei veTravel er srvisitor = new SendRecei veTravel er();
jjtraveler.Visitor v = new TopDownWhi | e(srvisitor);
v.visit(theScript)
srvisitor.srdb. construct MatchTabl e(); // matchi ng phase

Figure 6.18: The main() method of the ToolBus analyzer using JJTraveler.

public class SendRecei veTravel er extends Fwd {
publ i c SendRecei veTravel er() { super(new ldentity()); }
public void visitFunTern{funTermterm
throws jjtraveler.VisitFailure {
SendRecei veAction action
= new SendRecei veAction(currProcess, termgetTermist1())
if (termgetldentifierO().equals("snd-nsg")) {
srdb. addSendActi on(action);
} else if (termgetidentifier0().equals("rec-msg")) {
srdb. addRecei veActi on(action);

}

throw new jjtraveler.VisitFailure();

Figure 6.19: The visitor using JJTraveler.

ously we explained that JJForester generates a Fwd combinator to use a generic
visitor as an application-specific one. Here we see that SendReceiveTraveler
extends the Fwd combinator to which the Identity combinator is passed as the
generic visitor argument (first method). The relevant visit method shown here is
visitFunTerm() as it is the only method that is different with respect to the
SendReceiveVisitor. The difference between the two methods is that the method in
the traveler fails after it has encountered a functional term. This failure indicates
that the traversal should be stopped. Thus, when the visitor encounters a func-
tional term, it checks whether this term is a send or receive term, if so, it stores the
corresponding SendReceiveAction. Either way it throws a VisitFailure exception.

As is shown in Figure 6.18 we pass the SendReceiveTraveler to the TopDown-
While combinator, which is responsible for traversing the tree. As was demon-
strated in Section 6.3.3 the TopDownWhile combinator will perform a top-down
traversal as long as it does not encounter a failure. When it encounters a failure,
it will stop the traversal at the node that failed, apply its second argument, and
then continue with the next sibling of the current node. In the current case, the
traversal does not need to be restarted. Therefore, we used the unary constructor
of TopDownWhile, which silently supplies Identity as a second argument.

6.4 Case study

131

The composed visitor indeed behaves as we wanted. Since the default traversal
lets all visit methods succeed, we are guaranteed to descend to the level of fun-
Terms. Once it reaches the funTerms the visitor fails (by throwing the VisitFailure
exception). As a consequence, the traversal will not go deeper.

It turns out that, using this more sophisticated traversal on typical ToolBus
scripts, the number of visited nodes is reduced by up to 70%.

The matching phase

In the matching phase, the send and receive actions collected in the SendReceive-

Db are matched to construct a table of potential communication events, which is
then printed to a file or stored in a relational database. We will not discuss the
matching itself in great detail, because it is not implemented with a visitor. A
visitor implementation would be possible, but clumsy, since two trees need to be
traversed simultaneously. Instead it is implemented with nested iteration over the
sets of send and receive actions in the database, and simple case discrimination
on terms. The result of matching is a table where each row contains the process
names and data of a pair of matching send and receive actions.

We focus on an aspect of the matching phase where a visitor does play a role.
When writing the match table to file, the terms (data) it contains need to be pretty-
printed, i.e. to be converted to String. We implemented this pretty-printer with
a bottom-up traversal with the TermToStringVisitor. We chose not to use
generated toString methods of the constructor classes, because using a visitor
leaves open the possibility of refining the pretty-print functionality.

Note that pretty-printing a node may involve inserting literals before, in be-
tween, and after its pretty-printed children. In particular, when we have a list of
terms, we would like to print a “,” between children. To implement this behavior,
avisitor with a single String field in combination with a top-down or bottom-up
accept method does not suffice. If JJForester would generate iterating visitors and
non-iterating accept methods, this complication would not arise. Then, literals
could be added to the String field in between recursive calls.

We overcome this complication by using a visitor with a stack of strings as
field, in combination with the bottom-up accept method. The visit method for
each leaf node pushes the string representation of that leaf on the stack. The visit
method for each internal node pops one string off the stack for each of its children,
constructs a new string from these, possibly adding literals in between, and pushes
the resulting string back on the stack. When the traversal is done, the user can pop
the last element off the stack. This element is the string representation of the visited
term. Figure 6.20 shows the visit method in the TermToStringVisitor for
lists of terms separated by commas®. In this method, the Vector containing the term

4The name of the method reflects the fact that this is a visit method for the symbol {Term ", " }*,
i.e. the list of zero or more elements of type Term, separated by commas. Because the comma is an

132

Object-oriented Tree Traversal with JJForester 6

public void visitlterStarSepTerm (iterStarSepTerm terns) {
Vector v = terms. get Tern0();
String str = "";
for (int i =0; i <v.size(); i++){
if (i '=0) {
str +=",";

}
str += (String) theStack. pop();

t heSt ack. push(str);

}

Figure 6.20: Converting a list of terms to a string.

list is retrieved, to get the number of terms in this list. This number of elements
is then popped from the stack, and commas are placed between them. Finally the
new string is placed back on the stack. In the conclusion we will return to this
issue, and discuss alternative and complementary generation schemes that make
implementing this kind of functionality more convenient.

After constructing the matching table, the constructMatchTable method
writes the table to a file or stores it in an SQL database, using JDBC (Java Database
Connectivity). We used a visualization back-end of the documentation generator
DocGen to query the database and generate a communication graph. The result of
the full analysis of the T-script in Figure 6.11 is shown in Figure 6.21.

Evaluation of the case study

We conducted the ToolBus case study to learn about feasibility, productivity, per-
formance, and connectivity issues surrounding JJForester. Below we briefly dis-
cuss our preliminary conclusions. In the upcoming Chapter, we describe a more
involved case study involving procedure reconstruction for Cobol programs. This
case study also corroborates our findings.

Feasibility Atfirst glance, the object-oriented programming paradigm may seem
to be ill-suited for language processing applications. Terms, pattern-matching,
many-sorted signatures are typically useful for language processing, but are not
native to an object-oriented language like Java. More generally, the reference se-
mantics of objects seems to clash with the value semantics of terms in a language.
Thus, in spite of Java’s many advantages with respect to e.g. portability, maintain-
ability, and reuse, its usefulness in language processing is not evident.

The case study, as well as the techniques for coping with traversal scenarios
outlined in Section 6.2, demonstrate that object-oriented programming can be ap-

illegal character in a Java identifier, it is converted to an underscore in the method name. When several
sorts are mapped to the same name, conflicts are prevented by adding additional underscores.

6.4 Case study

133

Sender Receiver
Pump report(D) GasStation | report(D?)
GasStation | change(D) Customer change(D?)
Customer prepay(D,C) GasStation | prepay(D?,C?)
GasStation | okay(C) Customer okay(C)
Operator remit(Amount) GasStation | remit(D?)
GasStation | result(D) Operator result(D?)
GasStation | activate(D) Pump activate(D?)
GasStation | stop Customer stop
Customer turn-on GasStation | turn-on
Operator schedule(Payment,C) | GasStation | schedule(D?,C?)
GasStation | request(D,C) Operator request(D?,C?)
GasStation | on Pump on
schedule(D?,C?)
remit(D?) change(D?)
Operator
result(D?)
okay(C)
request(D?,C?) GasStation stop
prepay(D?,C?)
report(D?) ~ T
turn-on

activate(D?
Pump 0

Figure 6.21: The analysis results for the input file from Figure 6.11.

Customer

134

Object-oriented Tree Traversal with JJForester 6

plied usefully to language processing problems. In fact, the support offered by
JJForester makes object-oriented language processing not only feasible, but even
easy.

Productivity Recall that the Java code generated by JJForester from the ToolBus
grammar amounts to 4221 lines of code. By contrast, the user code we developed
to program the T-script analyzer consists of 323 lines. Thus, 93% of the application
was generated, while 7% is hand-written.

These figures indicate that the potential for increased development productiv-
ity is considerable when using JJForester. Of course, actual productivity gains
are highly dependable on which program transformation scenarios need to be ad-
dressed (see Section 6.2.5). The productivity gain is largely attributable to the
support for generic traversals.

Components and connectivity Apart from reuse of generated code, the case
study demonstrates reuse of standard Java libraries and of external (non-Java)
tools. Examples of such tools are PGEN, SGLR and implode, an SQL database, and
the visualization back-end of DocGen. Externally, the syntax trees that JJForester
operates upon are represented in the common exchange format ATerms. This ex-
change format was developed in the context of the ASF+SDF Meta-Environment,
but has been used in numerous other contexts as well. In Chapter 2 we advocated
the use of grammars as tree type definitions that fix the interface between language
tools. JJForester implements these ideas, and can interact smoothly with tools that
do the same. The transformation tool bundle XT [JVV01] contains a variety of
such tools.

Performance To get a first indication of the time and space performance of ap-
plications developed with JJForester, we have applied our T-script analyzer to a
script of 2479 lines. This script contains about 40 process definitions, and 700 send
and receive actions. We used a machine with Mobile Pentium processor, 64Mb of
memory, running at 266Mhz. The memory consumption of this experiment did
not exceed 6Mb. The runtime was 69 seconds, of which 9 seconds parsing, 55
seconds implosion, and 5 seconds to analyze the syntax tree. A safe conclusion
seems to be that the Java code performs acceptably, while the implosion tool needs
optimization. Needless to say, larger applications and larger code bases are needed
for a good assessment.

6.5 Concluding remarks

135

6.5 Concluding remarks

6.5.1 Contributions

In this chapter we set out to combine SDF support of the ASF+SDF Meta-En-
vironment with the general-purpose object-oriented programming language Java.
To this end we designed and implemented JJForester, a parser and visitor gen-
erator for Java that takes SDF grammars as input. To support generic traversals,
JJForester generates accept methods and visitor classes. We discussed techniques
for programming against the generated code, and we demonstrated these in detail
in a case study. We have assessed the expressivity of our approach in terms of the
program-transformation scenarios that can be addressed with it. Based on the case
study, we evaluated the approach with respect to productivity and performance
issues.

6.5.2 Related Work

A number of parser generators, “tree builders”, and visitor generators exist for
Java. JavaCC is an LL parser generator by Metamata/Sun Microsystems. Its input
format is not modular, it allows Java code in semantic actions, and it separates
parsing from lexical scanning. JJTree is a preprocessor for JavaCC that inserts
parse tree building actions at various places in the JavaCC source. The Java Tree
Builder (JTB) is another front-end for JavaCC for tree building and visitor genera-
tion. JTB generates two iterating (bottom-up) visitors, one with and one without an
extra argument in the visit methods to pass objects down the tree. A version of JTB
for GJ (Generic Java) exists which takes advantages of type parameters to prevent
type casts. Demeter/Java is an implementation of adaptive programming [PXL95]
for Java. It extends the Java language with a little (or domain-specific) language
to specify traversal strategies, visitor methods, and class diagrams. Again, the un-
derlying parser generator is JavaCC. The SmartTools system supports language
tool development using XML and Java [AT02]. From an abstract syntax defini-
tion, it generates a development environment that includes a structure editor and
some basic visitors. If the user specifies additional syntactic sugar, a parser and
pretty-printer are generated as well. In a little language designed for this pur-
pose, the user can specify visitor profiles to obtain more sophisticated visitors.
JJForester’s main improvement with respect to these approaches is the support of
generalized LR parsing. Concerning traversals, JJForester is different from JJTree
and JTB, because it generates both iterating and non-iterating accept methods and
supports the use of visitor combinators to obtain full traversal control. Demeter
and SmartTools provide more traversal control than the plain visitor pattern via
little traversal languages. JJForester is less ambitious and more lightweight than
Demeter or SmartTools, which are rather elaborate programming systems rather
than code-generators.

136

Object-oriented Tree Traversal with JJForester 6

ASDL (Abstract Syntax Definition Language [WAKS97]) comes with a visitor
generator for Java (and other languages). It generates non-iterating visitors and
non-iterating accept methods. Thus, traversals are not supported. ASDL does
not incorporate parsing or parser generation; it only addresses issues of abstract
syntax.

In other programming paradigms, work has been done on incorporating
support for SDF and traversals. Previously, we combined the SDF support
of the AsSF+sSDF Meta-Environment with the functional programming language
Haskell [KLV0O0]. In this approach, traversal of syntax trees is supported either
with updatable, many-sorted folds and fold combinators (see Chapter 3), or with
generic function combinators (see Chapter 4). Recently, support for generic traver-
sals has been added to the AsF interpreter [BKV02]. These traversals allow con-
cise specification of many-sorted analyses and rephrasing transformations. Step-
wise refinement or generic refinement of such traversals is not supported. Strat-
ego [VBT99] is a language for term rewriting with strategies. It offers a suite of
primitives that allow programming of (as yet untyped) generic traversals. Strat-
ego natively supports ATerms. It is used extensively in combination with the SDF
components of the ASF+SDF Meta-Environment.

6.5.3 Future Work

Concrete syntax and subtree sharing Currently, JJForester only supports pro-
cessing of abstract syntax trees. Though the parser SGLR emits full concrete parse
trees, these are imploded before being consumed by JJForester. For many program
transformation problems it is desirable, if not essential, to process concrete syntax
trees. A prime example is software renovation [DKV99], which requires preserva-
tion of layout and comments in the source code. The ASF+SDF Meta-Environment
supports processing of concrete syntax trees which contain layout and comments.
In order to broaden JJForester’s applicability, and to ensure its smooth interop-
eration with components developed in ASF, we are considering to add concrete
syntax support.

When concrete syntax is supported, the trees to be processed are significantly
larger. To cope with such trees, the ASF+SDF Meta-Environment uses the ATerm
library which implements maximal subtree sharing, which leads to significant
space efficiency. As a Java implementation of the ATerm library is available, sub-
tree sharing support could be added to JJForester. We would like to investigate the
repercussions of such a change to tree representation for the expressiveness and
performance of JJForester.

Decoration and aspect-orientation Adding a Decoration field to all generated
classes would make it possible to store intermediate results inside the object struc-
ture in between visits. This way, a first visitor could calculate some data and store

6.5 Concluding remarks 137

it in the object structure, and then a second visitor could “harvest” these data and
perform some additional calculation on them.

More generally, we would like to experiment with aspect-oriented techniques
[KL*97] to customize or adapt generated code. Adding decoration fields to gen-
erated classes would be an instance of such customization.

138 Object-oriented Tree Traversal with JJForester 6

Chapter 7

Building Program
Under standing Tools Using
Visitor Combinators

In this chapter, we apply the object-oriented support for generic traversal
presented in Chapters 5 and 6 to the construction of program understanding
tools.

Program understanding tools manipulate program representations, such
as abstract syntax trees, control-flow graphs, or data-flow graphs. This chap-
ter deals with the use of visitor combinators to conduct such manipulations.
Visitor combinators are an extension of the well-known visitor design pat-
tern. They are small, reusable classes that carry out specific visiting steps.
They can be composed in different constellations to build more complex
visitors. We evaluate the expressiveness, reusability, ease of development,
and applicability of visitor combinators to the construction of program un-
derstanding tools. To that end, we conduct a case study in the use of visitor
combinators for control flow analysis and visualization as used in a com-
mercial Cobol program understanding tool.

This chapter was based on [DV02b].

7.1 Introduction

Program analysis and source models Program analysis is a crucial part of
many program understanding tools. Program analysis involves the construction
of source models from the program source text and the subsequent analysis of
these models. Depending on the analysis problem, these source models might be
represented by tables, trees, or graphs.

140

Building Program Understanding Tools Using Visitor Combinators 7

More often than not, the models are obtained through a sequence of steps. Each
step can construct new models or refine existing ones. Usually, the first model is
an (abstract) syntax tree constructed during parsing, which is then used to derive
graphs representing, for example, control or data flow.

Visiting source models The intent of the visitor design pattern is to “represent
an operation to be performed on the elements of an object structure. A visitor
lets you define a new operation without changing the classes of the elements on
which it operates” [GHJV94]. Often, visitors are constructed to traverse an object
structure according to a particular built-in strategy, such as top-down, bottom-up,
or breadth-first.

A typical example of the use of the visitor pattern in program understanding
tools involves the traversal of abstract syntax trees. The pattern offers an abstract
class Visitor, which defines a series of methods that are invoked when nodes of
a particular type (expressions, statements, etc.) are visited. A concrete Visitor
subclass refines these methods in order to perform specific actions when accepted
by a given syntax tree.

Visitors are useful for analysis and transformation of source models for several
reasons. Using visitors makes it easy to traverse structures that consist of many
different kinds of nodes, while conducting actions on only a selected number of
them. Moreover, visitors help to separate traversal from representation, making it
possible to use a single source model for various sorts of analysis.

Visitor Combinators In Chapter 5, visitor combinators have been proposed as
an extension of the regular visitor design pattern. The aim of visitor combinators is
to compose complex visitors from elementary ones. This is done by simply pass-
ing them as arguments to each other. Furthermore, visitor combinators offer full
control over the traversal strategy and applicability conditions of the constructed
visitors.

The use of visitor combinators leads to small, reusable classes, that have little
dependence on the actual structure of the concrete objects being traversed. Thus,
they are less brittle with respect to changes in the class hierarchy on which they
operate. In fact, many combinators (such as the top-down or breadth-first combi-
nators) are completely generic, relying only on a minimal Visitable interface. As a
result, they can be reused for any concrete visitor instantiation.

Goals of the chapter The concept of visitor combinators is based on solid the-
oretical ground, and it promises to be a powerful implementation technique for
processing source models in the context of program analysis and understanding.
Now this concept needs to be put to the test of practice.

We have implemented ControlCruiser, a tool for analyzing and visualizing
intra-program control-flow for Cobol. In this chapter, we explain by reference

7.2 Visitor Combinators

141

ov% Libr
/
getChildCount ’
getChildAt
setChildAt

Frame”

Figure 7.1: The architecture of JJTraveler.

to ControlCruiser how visitor combinators can be used to develop program under-
standing tools. We discuss design tactics, programming techniques, unit testing,
implementation trade-offs, and other engineering practices related to visitor com-
binator development. Finally, we asses the risks and benefits of adopting visitor
combinators for building program understanding tools.

7.2 Visitor Combinators

Visitor combinator programming was introduced in Chapter 5 and is supported
by JJTraveler: a combination of a framework and library that provides generic
visitor combinators for Java. This section briefly recapitulates the key elements of
JJTraveler (readers familiar with Chapters 5 and 6 may wish to skip to Section 7.3).

7.2.1 The architecture of JJTraveler

Figure 7.1 shows the architecture of JJTraveler (upper half) and its relationship
with an application that uses it (lower half). JJTraveler consists of a framework
and a library. The application consists of a class hierarchy, an instantiation of
JJTraveler’s framework for this hierarchy, and the operations on the hierarchy im-
plemented as visitors.

Framework The JJTraveler framework offers two generic interfaces, Visitor and
Visitable. The latter provides the minimal interface for nodes that can be visited.
Visitable nodes should offer three methods: to get the number of child nodes, to
get a child given an index, and to modify a given child. The Visitor interface
provides a single visit method that takes any visitable node as argument. Each

142

Building Program Understanding Tools Using Visitor Combinators 7

Name Args Description

Identity Do nothing

Fail Raise Vi si t Fai | ur e exception
Not v Fail if v succeeds, and v.v.

Sequence v1, v2 | DO vy, then vy

Choice v1,v2 | Try vy, if it fails, do v,

All v Apply v to all immediate children
One v Apply v to one immediate child
IfThenElse ot f If ¢ succeeds, do ¢, otherwise do f
Try v Choice(v, Identity)

TopDown v Sequence(v, All(TopDown(v)))
BottomUp v Sequence(All(BottomUp(v)), v)
OnceTopDown | v Choice(v, One(OnceTopDown(v))
OnceBottomUp | v Choice(One(OnceBottomUp(v)), v)
AllTopDown v Choice(v, All(AUT opDown(v)))
AllBottomUp v Choice(All(AllBottomUp(v)), v)

Table 7.1: JJTraveler’s library (excerpt).

visit can succeed or fail, which can be used to control traversal behavior. Failure
is indicated by a VisitFailure exception.

Library The library consists of a number of predefined visitor combinators.
These rely only on the generic Visitor and Visitable interfaces, not on any spe-
cific underlying class hierarchy. An overview of the library combinators is shown
in Table 7.1. They will be explained in more detail below. A larger excerpt can be
found in Table 5.2, and a full overview of the library can be found in the online
documentation of JJTraveler.

Instantiation To use JJTraveler, one needs to instantiate the framework for the
class hierarchy of a particular application. To do this, the hierarchy is turned into
a visitable hierarchy by letting every class implement the Visitable interface. Also,
the generic Visitor interface is extended with specific visit methods for each class
in the hierarchy. Finally, a single implementation of the extended visitor interface
is provided in the form of a visitor combinator Fwd. This combinator forwards
every specific visit call to a generic default visitor given to it at construction time.
Concrete visitors are built by providing Fwd with the proper default visitor, and
overriding some of its specific visit methods.

Though instantiation of JJTraveler’s framework can be done manually, auto-
mated support for this is provided by a generator, called JJForester (see Chap-
ter 6). This generator takes a grammar as input. From this grammar, it generates
a class hierarchy to represent the parse trees corresponding to the grammar, the
hierarchy-specific Visitor and Visitable interfaces, and the Fwd combinator. In ad-

7.2 Visitor Combinators

143

public class Sequence inplenments Visitor {

Visitor vi;

Visitor v2;

public Sequence(Visitor vl, Visitor v2) {
this.vl = vl;
this.v2 = v2;

}

public void visit(Visitable x) {
vi.visit(x);
v2.visit(x);

} 3

Figure 7.2: The Sequence combinator.

dition to framework instantiation, JJForester provides connectivity to a generalized
LR parser [BSVV02].

Operations After instantiation, the application programmer can implement op-
erations on the class hierarchy by specializing, composing, and applying visitors.

The starting point of hierarchy-specific visitors is Fwd. Typical default visitors
provided to Fwd are Identity and Fail. Furthermore, Fwd contains a method visitA
for every class A in the hierarchy, which can be overridden in order to construct
specific visitors. As an example, an A-recognizer IsA (which only does not fail
on A-nodes) can be obtained by an appropriate specialization of method visitA of
Fwd(Fail).

Visitors are combined by passing them as (constructor) arguments. For ex-
ample, All(IsA) is a visitor which checks that any of the direct child nodes are of
class A, and OnceTopDown(IsA) is a visitor checking whether a tree contains any
A-node. Visitors are applied to visitable objects through the visit method, such as
IsA.visit(myA) (which does nothing), or IsA.visit(myB) (which fails).

7.2.2 Alibrary of generic visitor combinators

Table 7.1 shows high-level descriptions for an excerpt of JJTraveler’s library of
generic visitor combinators. Two sets of combinators can be distinguished: basic
combinators and defined combinators, which can be described in terms of the basic
ones as indicated in the overview. Note that some of these definitions are recursive.

Basic combinators Implementation of the generic visitor combinators in Java is
straightforward. Figures 7.2 and 7.3 show implementations for the basic combi-
nator Sequence and the defined combinator Try. The implementation of a basic
combinator follows a few simple guidelines. Firstly, each argument of a basic
combinator is modeled by a field of type Visitor. For Sequence there are two such
fields. Secondly, a constructor method is provided to initialize these fields. Finally,

144

Building Program Understanding Tools Using Visitor Combinators 7

public class Try extends Choice {
public Try(Visitor v) {
super (v, new ldentity());
b}

Figure 7.3: The T'ry combinator.

public class TopDownWil e extends Choice {
public TopDownWile(Visitor vl, Visitor v2) {
super (nul |, v2);
set Argunent (1, new Sequence(vl, new Al (this)));

}
public TopDownWile(Visitor v) {
this(v,new Identity());
b}

Figure 7.4: The TopDownW hile combinator.

the generic visit method is implemented in terms of invocations of the visit method
of each Visitor field. In case of Sequence, these invocations are simply performed
in sequence.

Defined combinators The guidelines for implementing a defined combinator are
as follows. Firstly, the superclass of a defined combinator corresponds to the out-
ermost combinator in its definition. Thus, for the Try combinator, the superclass
is Choice. Secondly, a constructor method is provided that supplies the arguments
of the outermost constructor in the definition as arguments to the superclass con-
structor method (super). For Try, the first superclass constructor argument is
the argument of Try itself, and the second is Identity. The visit method is simply
inherited from the superclass.

Recursive combinators In order to demonstrate how visitor combinators can
be used to build recursive visitors with sophisticated traversal behavior, we will
develop a new generic visitor combinator Top Down While(v4 , v2).

TopDounWhile(vs,vg) =
Choice(Sequence(vy, All(TopDown While(vy, v2))), v2)

The first argument »; represents the visitor to be applied during traversal in a top-
down fashion. When, at a certain node, this visitor v, fails, the traversal will not
continue into subtrees. Instead, the second argument v, will be used to visit the
current node. The encoding in Java is given in Figure 7.4. Note that Java does
not allow references to this until after the super constructor has been called.
For this reason, the first argument, which contains the recursion, gets its value
not via super, but via the setArgument() method. Note also that the visitor

7.3 Cobol Control Flow

145

has a second constructor method that provides a shorthand for calling the first
constructor with Identity as second argument.

7.3 Cobol Control Flow

The example we use to study the application of visitor combinators to the con-
struction of program understanding tools deals with Cobol control flow. Cobol
has some special control-flow features, making analysis and visualization an inter-
esting and non-trivial task. The analysis we describe is taken from DocGen (see
[DK99a]), an industrial documentation generator for a range of languages includ-
ing Cobol, which has been applied to millions of lines of code.

Control-flow in Cobol takes place at two different levels. A Cobol system
consists of a series of programs. These programs can invoke each other using call
statements. A Cobol system typically consists of several hundreds of programs.

In this chapter, we focus on control-flow within a program, for which the per-
form statement is used. This perform statement is like a procedure call, except that
no parameters can be passed (global variables have to be used for that). Typical
programs are 1500 lines large, but is not uncommon to have individual programs
of more than 25,000 lines of code, resulting in significant program comprehension
challenges.

7.3.1 Cobol Procedures

Cobol does not have explicit language constructs for procedure calls and decla-
rations. Instead, it has labeled sections and paragraphs, which are the targets of
perform and goto statements. Perform statements may invoke individual sections
and paragraphs, or ranges of them. A section can group a number of paragraphs,
but this is not necessary.

Figure 7.5(a) shows an example program in which sections, paragraphs, and
ranges are performed. Paragraph P1 acts as the main block, which reads an input
value X. If it is “1”, the program invokes the range of paragraphs P2 through P3.
This range first prints HELLO, and then performs section S5, which prints WORLD.
If the value read is not “1”, the main program invokes just the section S4. This
section consists of two paragraphs, of which P4 displays Hi, and P5 invokes S5
to display WORLD.

This example illustrates an important program understanding challenge for
Cobol systems. Viewed at an abstract level the program involves four procedures:
P1, the range P2. .P3, S4, and S5. Paragraphs P3, P4 and P5 are not intended
as procedures. This abstract view needs to be reconstructed by analysis, because
the entry and exit points of performed blocks of code is determined not by their
declaration, but by the way they are invoked in other parts of the program. In gen-

146

Building Program Understanding Tools Using Visitor Combinators 7

PROCEDURE DI VI SI ON.
P1. ACCEPT X
IF X ="1"
PERFORM P2 THRU P3 3
|

ELSE

PERFORM S4.
STOP RUN. \

P2. DI SPLAY "HELLO'.

P3. PERFORM S5.

S4 SECTI ON. - u

P4. DI SPLAY "HI". P3

P5. PERFORM S5.
S5 SECTI ON.
DI SPLAY "WORLD".

(a) Cobol source

(b) Corresponding call graph
Figure 7.5: Example Cobol source and graph

eral, this makes it hard to grasp the control-flow of a Cobol program, especially if
it is of non-trivial size.

Typical, Cobol programmers try to deal with this issue by following a particular
coding standard. Such a standard prescribes that, for example, only sections can
be performed, or only ranges, or that “perform ... thru ...” can only be used for
paragraphs with names that explicitly indicate that they are the start or end-label
of a range. Such standards, however, are not enforced. Moreover, especially older
systems may have been subjected to multiple standards, leaving a mixed style for
performing procedures. Again, it takes analysis in order to find out which styles
are actually being used at each point.

The formal semantics of “perform P, thru P,,” is that paragraphs are executed
starting with P; until control reaches P,. In principle, this makes determining
which paragraphs are actually spanned by a range a run time problem, which can-
not necessarily be solved statically. In the vast majority (99%) of Cobol programs,
however, ranges coincide with syntactic sequences. In this chapter, we will assume
that ranges are syntactically sequenced, and we refer to [FR99] for ways of dealing
with dynamic ranges (where visitor combinators may well be applicable as well).

7.3.2 Analysis and visualization

To help maintenance programmers understand the control flow of individual Cobol
programs, a tool is needed for analysis and visualization of a program’s perform
dependencies. From such a call graph, one could instantly glean which perform
style is predominant, which sections, paragraphs or ranges make up procedures,
and how control is passed between these procedures.

7.4 ControlCruiser Architecture

147

When discussing these procedure-based call graphs with maintenance pro-
grammers, they indicated that they would also like to know under what condi-
tions a procedure gets performed. This gave raise to the so-called conditional
call graph (CCG), an example of which is shown in Figure 7.5(b). These graphs
contain nodes for procedures and conditionals, which are connected by edges that
represent call relations and syntactic nesting relations. CCGs are part of the Doc-
Gen redocumentation system, in which these graphs are hyperlinked to both the
sources and to documentation at higher levels of abstraction (see [DK99a]).

Conditional call graphs are also a good starting point for computing detailed
(per-procedure) metrics, as part of a systematic quality assurance (QA) effort.
Example QA metrics include McCabe’s cyclomatic complexity, fan-in, fan-out,
deepest nesting level, coding style violations (goto’s across section boundaries,
paragraphs performing sections, or v.v.), dead-code analysis, and more.

7.4 ControlCruiser Architecture

We have implemented the analysis and visualization requirements just described
using visitor combinators. The result is ControlCruiser, a Cobol analysis tool that
provides insight into the intra-program call structure of Cobol programs. The
tool employs several visitable source models, and performs various visitor-based
traversals over them. This section discusses the ControlCruiser architecture; the
next covers in detail how visitor combinators have been used in its implementation.

7.4.1 Initial Representation

The starting point for ControlCruiser is a simple language containing just the
statements representing Cobol sections, paragraphs, perform statements, and con-
ditional or looping constructs. An example of this Conditional Perform Format
(CPF) is shown in Figure 7.6(a).

We obtain CPF from Cobol sources using a Perl script written according to the
principles discussed in [DK98]. This script takes care of handling the tricky details
of the Cobol syntax, such as scope termination of if-constructs.

The result is an easy to parse CPF file. We have written a grammar for the
CPF format, and used JJForester to derive a class hierarchy for representing the
corresponding trees. All nodes in such trees are of one of the types shown in
Figure 7.6(b). Since these all realize the Visitable interface, we can implement all
subsequent steps with visitor combinators.

7.4.2 Graph Representation

To analyze Cobol’s control flow in an easy way, we have to create a graph out
of the tree representation corresponding to Cobol statements. For this, we use an

148

Building Program Understanding Tools Using Visitor Combinators 7

PARA 2 P1
IF 3
THRU 4 P2 P3
ELSE 5
PERFORM 6 S4
END-IF 7
END- PARA 9 P1
PARA 9 P2
END- PARA 10 P2
PARA 10 P3
PERFORM 10 S5
END- PARA 11 P3
SECTION 11 $4
PARA 12 P4
END- PARA 13 P4
PARA 13 P5
PERFORM 13 S5
END- PARA 14 PS5
END- SECTI ON 14 S4
SECTI ON 14 S5
END- SECTI ON 15 S5

(a) CPF for Fig 7.5

program

Cpp

ParagraphList ‘ ‘

SectionList ‘

[«

[N
[N}

|
Zs

9]
3
[
@

section ‘

‘perform‘ ‘ thru ‘ ‘ goto

(b) The generated CPF class hierarchy
Figure 7.6: Conditional Perform Format (CPF)

9rapp

[
(GraphVisitabIe):\l ””” e |
(ccovisitable):\}”7 ********* e e |

CallGraph

ProgramPoint

[

l

Procedure

Conditional

Figure 7.7: Class hierarchy for graph representations.

7.4 ControlCruiser Architecture

149

additional visitable source model which consists of two layers (see Figure 7.7).

The first layer is a generic graph model, with explicit classes for nodes, edges,
and the overall graph providing entry points into the graph. Each of these classes
implements a GraphVisitable interface, which is an extension of generic visitables.
The classes are implemented such that the children of a node are defined as its
outgoing edges, the children of an edge as its target node, and the children of
a graph as the collection of all nodes, thus making it possible to traverse a graph
using visitor combinators. A forwarding visitor combinator taking a generic visitor
as argument is provided as required (not shown).

The second layer is a specialization of the generic graph model to the level of
control flow, called Conditional Control Graphs (CCGs). This representation con-
tains classes for procedures, conditional statements, and different types of edges.
Program points correspond to places in the original CPF tree, and have a pointer
back to their originating construct. Each class implements the CCGVisitable in-
terface. The forwarding combinator of CCG (not shown) contains three levels of
forwarding. First, visit methods of classes low in the hierarchy (such as Procedure
and Conditional) invoke a visit method higher up in the hierarchy (to Program-
Point). Second, visit methods for top-level CCG classes forward to visit methods
in a visitor at the generic graph level. Third, graph-specific visitors forward to
generic visitors by default. Observe that thanks to this two-layer design, visitors
designed for graphs can be reused to build visitors for CCGs. This will be demon-
strated in Section 7.5.2.

7.4.3 Graph Construction

Constructing the CCG graph from the initial CPF tree representation is done using
various visitors operating on CPF trees. In order to identify those paragraphs,
sections and ranges that act as procedures, a visitor PerformedLabels is used to
collectall performed labels and ranges. A second visitor ConstructProcedures then
uses these to find the corresponding paragraphs or sections and to add procedure
nodes to the graph. For ranges, the corresponding list of paragraphs or sections is
collected.

After the procedure nodes are created, the RefineProcedure visitor is applied,
in order to extend the graph with the conditionals and outgoing call edges of these
procedures.

7.4.4 Graph Analysis

Once the CCG graph is constructed, it can be analyzed. For this, we use a number
of visitors that operate on CCG graphs.

To visualize a CCG graph, we traverse it with a visitor that emits input for the
graph-drawing back-end dot. This visitor is layered, as is the CCG class hierarchy
on which it operates.

150

Building Program Understanding Tools Using Visitor Combinators 7

SuccessCounter v | Add one if v succeeds
CpflfRecognizer Succeed on CPF conditions
CcglfRecognizer Succeed on CCG conditions
Other recognizers

McCabel ndex

i | SuccessCounter(z), 7 an IfRecognizer
FanOut p | SuccessCounter(p), p PerformRecogn.
GotoCounter g | SuccessCounter(g), g GotoRecognizer
MaxNesting v | Maximum nesting level of v-Recognizer
MaxNested f 7 | MaxNesting(7), 7 an IfRecognizer

Figure 7.8: Selected Metrics Visitors

To compute metrics per procedure we have devised a number of collaborat-
ing visitors, shown in Figure 7.8. Most of these metrics are based on a Success-
Counter(v), which, when visited, applies its argument v and increments a counter
if this application was successful. An example application is the McCabelndex
combinator, which takes a visitor recognizing if-statements, and then counts the
number of successes. Observe that these metrics combinators are parameterized
by recognizers: hence they can be applied to both the CPF and the CCG source
models.

In a similar way we construct visitors for recognizing coding standards. For
example, a visitor MixedStyle operates on the CCG format, and recognizes all call
edges from section to paragraph or vice versa. Such edges indicate a mixed style,
and usually are forbidden by coding standards.

7.5 ControlCruiser Implementation

In this section we discuss some of ControlCruiser’s visitors in full detail. Due to
space limitations, we limit ourselves to the visitors dealing with graph construction
and visualization.

Collect performed labels Recall that perform statements come in two flavors:
with and without thru clause. Consequently, we need to collect both individ-
ual labels, and pairs of labels. For this purpose we use a visitor combinator
PerformedLabels with two collections in its state (see Figure 7.9). Note that
there are no dependencies between the code in this visitor pertaining to pairs of
labels and the code pertaining to individual labels. If desired, we could refactor
this visitor into two even smaller separate ones, and re-join them with Sequence
(visitor extraction).

To actually collect the labels from the input program p, we need to create the
visitor, pass it to the generic TopDown combinator, and visit the tree with it:

7.5 ControlCruiser Implementation

151

public class PerfornedLabel s extends cpf.Fwd {
Set performedLabels = ...;
Set perfornmedRanges = ...;
publ i c PerfornedLabel s() {
super (new ldentity());
}
public void visit_performperformp) {
per f or medLabel s. add(p. getcal l ee());

public void visit_thru(thru x) {
per f or medRanges. add(
new Pair (x.getstartlabel (), x.getendl abel ()));

13

Figure 7.9: Collect performed labels.

public class CreateProcedures extends cpf.Fwd {
Cal | Graph cal | Graph;
Set perfornedLabel s;
public CreateProcedures(Call Graph g, Set |abs){
super (new I dentity());

public void visit_section(section s) {
addProc(s. getlabel (), s);

public void visit_para(para p) {
addProc(p.getlabel (), p)

voi d addProc(String nanme, Visitable v) {
if (perfornmedLabel s.contains(nanme)) {
Procedure p = new Procedure(nane, V) ;
cal | Graph. addPr ocedur e(p);
11}

Figure 7.10: Create procedures for individual labels.

Per f or nedLabel s pl = new PerfornedLabel s();
(new TopDown(pl)).visit(p);

After the traversal has completed, we can obtain the performed labels and ranges
via the instance variables of pl.

Paragraphs and Sections Every performed label corresponds to either a section
or a paragraph. In order to create a procedure node with the proper link back to
the CPF tree representing the procedure body, we use a visitor that triggers at
individual sections and paragraphs (see Figure 7.10). It only actually creates a
procedure node if the given label is one of the performed labels, which it receives
at construction time. The created procedure nodes are added to a call graph, which
is also provided at construction time. To ensure we will be able to retrieve the

152

Building Program Understanding Tools Using Visitor Combinators 7

public class SpannedASTs extends cpf. Fwd {
Vi si tabl eLi st spannedASTs = new VisitableList();
String startLabel;
String endLabel ;
bool ean w t hi nRange = fal se;
publ i c SpannedASTs(String start, String end) {
super (new ldentity());

public void visit_para(para p) {
addl f Wt hi nRange(p. getl abel (), p);

public void visit_section(section s) {
addl f Wt hi nRange(s. getl abel (), s);

}
voi d addl f Wt hi nRange(String | abel,
Visitable x) {
if (1abel.equal s(startLabel)) {
wi t hi nRange = true; }
if (wthinRange) {
spannedASTs. add(x); }
if (label.equal s(endLabel)) {
wi t hi nRange = fal se;
11}

Figure 7.11: Collect section and paragraph nodes spanned by a given pair of labels.

added nodes at a later stage, we assume they become direct children of the graph.

Again, this visitor can be passed to the TopDown combinator, in order to tra-
verse the tree and collect the procedures. Below, however, we will see how we can
make better use of combinators in order to avoid visiting too many nodes.

Ranges To construct procedure nodes for a pair of (start and end) labels, we
collect those section or paragraph nodes that lie between those labels. For this
purpose we have developed an auxiliary visitor (see Figure 7.11) which takes the
start and end labels, and is triggered at each section or paragraph. If the start or
end label is encountered, a boolean flag is switched, and paragraphs or sections
visited are added to the list.

Given this auxiliary visitor, a visitor can be developed that constructs pro-
cedure nodes for pairs of labels (see Figure 7.12). This visitor triggers at Para-
graphList and SectionList nodes. This is appropriate, because the sections and
paragraphs spanned by a pair of labels must always occur in the same list. When
such a list is encountered, the method addSpannedASTs is invoked to perform
an iteration over the collection of label pairs. At each iteration, the All combina-
tor is used to fire the auxiliary visitor SpannedASTs sequentially at all members
of the current paragraph or section list. If this yields a non-empty result, a new
procedure node is created and added to the graph.

7.5 ControlCruiser Implementation

153

public class CreateRanges extends cpf.Fwd {
Cal | Graph cal | Graph;
Set todoRanges;
public CreateRanges(Call Graph g, Set todo) {
super (new ldentity());

}
public void visit_ParaList(ParaList pl) {

addSpannedASTs(pl);
}

public void visit_SectionList(SectionList sl) {
addSpannedASTs(sl);

}
voi d addSpannedASTs(Visitable list) {
Iterator pairs = todoRanges.iterator();
while (pairs.hasNext()) {
Pair pair = (Pair) pairs.next();
Vi sitabl eList asts = get ASTs(pair, list);
if (! asts.isEnpty()) {
addProc(pair.start, pair.end, asts);
} 1}

Vi sitabl eLi st get ASTs(Pair p, Visitable list) {
SpannedASTs sa=new SpannedASTs(p.start, p.end);
(new Cuar ant eeSuccess(new Al l (sa))).visit(list);
return sa.spannedASTs;

}
voi d addProc(Pair p, VisitablelList ast) {

b}

Figure 7.12: Create procedure for ranges

Top Down While Finally, we can apply the developed visitors to the input pro-
gram. This could be done with a simple top-down traversal. However, any nodes at
the block level and lower would be visited superfluously, because our visitors have
effect only on sections, paragraphs, and lists of these. To gain efficiency, we will
use the TopDownWh i e combinator instead. To detect blocks, we first define the
following visitor (using an anonymous class):

Visitor isBlock

= new Fwd(new Fail ())
{ public void visit_block(block x) {} };

This visitor fails for all nodes, except blocks. We compose it with our procedure
creation visitors to do a partial traversal:

graph new Cal | Graph();
cp new Cr eat ePr ocedur es(graph, | abel s);
cr new Cr eat eRanges(graph, ranges);
(new TopDownWhi | e(

new | f ThenEl se(i sBl ock,

new Fail (),

154

Building Program Understanding Tools Using Visitor Combinators 7

new Sequence(cp, cr))
)).visit(p);

Thus, at each node the 1 FThenElse combinator is used to determine whether a
block is reached and the traversal should stop, or the visitors for procedure creation
should be applied. Note that these two separate visitors are combined into one
with the Sequence combinator. After this traversal, the graph g contains a node
for every procedure reconstructed from the CPF tree. Each such procedure node
contains a reference to the CPF subtrees that gave rise to it.

Construct program entry point We will not show the visitors for constructing
the program entry point. They are similar to the creation of performed procedure
nodes. An auxiliary visitor collects ASTs, starting from the top of the program,
and stopping at the first STOP RUN statement or the first performed label. This
implements the heuristic that performed sections and paragraphs are never part of
the main program.

75.1 CCG Refinement

Now we have created the CCG’s procedure nodes, we need to refine them by cre-
ating nodes that represent the conditions that occur in their bodies, and by adding
nesting and call relations between the nodes. For these tasks, we have developed
the RefFineProcedure visitor (see Figure 7.13). For a given procedure node
in the CCG, this visitor is used to create nodes and edges for the conditionals and
performs contained in its AST.

For a perform or a perform-thru statement, it adds a call edge fromthe cal ler
to the procedure node that corresponds to its label (pair).

For if statements, it first creates a new conditional node and adds a nesting
edge from the cal lee to this new conditional node. It then restarts itself with
two new starting points: one for the then branch, and another for the else branch.
The restart invokes the TopDownUnti I combinator to traverse these branches.
Such restarts are a general mechanism that can be used when stack-like behavior
is needed, for example when dealing with nested constructs such as if statements.

We need to traverse the initial CCG to actually apply the RefineProcedure
visitor at each procedure node. To prevent visiting nodes more than once and
running in circles, we use the visitor Visited from JJTraveler’s library (See
Figure 7.14). This generic combinator keeps track of nodes already visited in its
state. Now, to traverse the graph, we do a top-down traversal where each node that
has not been visited yet is refined:

Visitor refine = new ccg. Fwd(new I dentity()){
public void visitProcedure(Procedure p) {
Ref i neProcedure. start(graph, p);

P}

7.5 ControlCruiser Implementation

155

public class RefineProcedure extends cpf.Fwd {
Cal | Graph graph;
ProgranPoi nt caller;
publ i c RefineProcedure(Call Gaph g,
ProgranPoint c¢) {
super (new Fail ());

}

public void visit_perform performperform {
String | abel = performgetcallee();
Procedure cal |l ee = graph. get Procedure(l abel);
cal l er. addCal | EdgeTo(cal | ee);

public void visit_thru(thru x) {
String s = x.getstartl abel ();
String e = x.getendl abel ();
Procedure cal l ee = graph. get Procedure(s,e);
cal | er. addCal | EdgeTo(cal | ee);
}
public void visit_if$(if$ x) {
Condi ti onal cond = graph. addConditional (x);
cal | er. addNest i ngEdgeTo(cond) ;
start (graph, cond.getThenPart());
start (graph, cond.getEl sePart());
}
public static void start(Call G aph graph,
ProgranPoint caller) {
Visitable ast = caller.getAst();
Refi neProcedure rp
= new RefineProcedure(graph, caller);
(new Quar ant eeSuccess(
new TopDownUntil (rp))) . visit(ast);
11}

Figure 7.13: Refine the CCG for a given procedure.

(new TopDownWhi | e(
new | f ThenEl se(new Visited(),
new Fail (),
refine)

)).visit(graph);

Note that we use an anonymous extension of the Identity visitor to invoke the
start() method of the visitor that does the actual refinement.

7.5.2 CCG visualization

The layered class hierarchy for graph representation allows us to implement a lay-
ered visualization visitor as well.

156

Building Program Understanding Tools Using Visitor Combinators 7

public class Visited inplements Visitor {
Set visited = new HashSet();
public void visit(Visitable x)
throws VisitFailure {
if (!visited.contains(x)) {
vi si ted. add(x);
throw new VisitFailure();

11}
Figure 7.14: The Visited combinator.

public class GraphToDot extends graph. Fwd {
Set dot Statenents = new TreeSet();

public G aphToDot () {

super (new Identity());

}
public void visitNode(G aphNode n) {
add(n+"; ")

public void visitEdge(DirectedEdge e) {
add(e. i nNode() +"->"+e. out Node() +";");

}
void add (String dotStaterment) { ... }
public void printDotFile(String fnane) {...}

Figure 7.15: Generic graph visualization.

Visualizing genericgraphs The visitor GraphToDot implements the construc-
tion of a representation in the dot input format for a given generic graph (see
Figure 7.15). This visitor simply collects a set of dot statements, where an appro-
priate statement is added for each node and edge. After application of this visitor
to each node and edge in a graph, the printDotFile method can be used to
print the collected statements to a file.

Visualizing CCGs For our CCGs, the generic graph visualization does not suf-
fice, because we want to generate different visual clues, for instance for call edges.
For this purpose, we implemented CCGToDot (see Figure 7.16). Note that this
visitor forwards to a generic GraphToDot visitor for all CCG elements but call
edges. For these, the redefined visit method generates an adapted dot statement.

The visualization visitors are applied to the CCG in the exact same fashion as
the refine visitor above. This calls for a refactoring of this traversal strategy
into a reusable GraphTopDown combinator (extract strategy). We have added
this combinator to JJTraveler’s library.

7.6 Evaluation

157

public class CCGToDot extends ccg. Fwd {
GraphToDot printer;
publ i c CCGToDot () {
super (new G aphToDot ());
printer = (G aphToDot) fwd;
}
public void visitCall(Call c) {
add(e. i nNode() +"->"+e. out Node()
+"[styl e=bol d, col or=bl ue] ;")

void add(String dotStatenent) {
printer.add(dot Statenent);

public void printDotFile(String fname) {
printer.printDotFile(fnane);
1}

Figure 7.16: CCG visualization.

7.6 Evaluation

During the development of ControlCruiser we have learned many practical lessons
about the use of visitor combinators for constructing program understanding tools.
In this section we summarize some development techniques we have adopted and
evaluate the benefits and risks of visitor combinator programming.

7.6.1 Development techniques

Separation of concerns Visitor combinators allow one to implement concep-
tually separable concerns in different modules, whilst otherwise they would be
entangled in a single code fragment. As a result, these concerns can be under-
stood, developed, tested, and maintained separately. Examples of (categories of)
concerns we encountered include traversal, control, state, and testing (see be-
low). Throughout all these concerns, we found it natural and beneficial to separate
application-specifics from generics.

Testing and benchmarking We developed ControlCruiser following the extreme
programming maxim of test-first design, which involves writing unit tests for ev-
ery piece of code that can potentially fail. As a result, we wanted to test not only
the compound visitors that are invoked by the application, but also each individual
visitor combinator from which such compound visitors are composed.

To this end, we developed a testing combinator LogVisitor, which logs
every invocation of its argument visitor into a special Logger. In combination
with the standard unit testing utility JUnit, this testing combinator can be used to
write detailed tests for hierarchy-specific visitors. To test the generic visitors of

158

Building Program Understanding Tools Using Visitor Combinators 7

JJTraveler itself, we used a mock instantiation of JJTraveler’s framework (with a
single visitable class).

For detailed benchmarking, we needed to collect timing results, again not just
on compound visitors, but also on individual visitor combinators. To this end,
we created a specialization TimeLogVisitor of our testing combinator that
measures and aggregates the activity bursts of its argument visitor. This enables us
to separately measure the time consumed by different concerns, such as traversal
and node action.

Failure containment When using visitor combinators that potentially fail, one
needs to declare the VisitFailure exception in a throws clause. In many
cases, the programmer knows from the context that such failure can actually never
occur. Examples are the expressions Try(Fail) and TopDownW hile(Fail).
To relieve the programmer from the burden of writing catch-throws contexts to
contain such ‘impossible’ failures, we developed the combinator Guarantee-
Success. Judicious placement of this combinator reduces code cluttering and
makes code more self-documenting.

Class organization We have used several kinds of inner classes to improve code
organization. For tiny visitors (no more than a few lines) we have used anony-
mous classes. For small visitors (no more than a few methods) that operate within
the context of another visitor (i.e. using its state), we used member classes. This
removes the need for additional instance variables and constructor method argu-
ments.

7.6.2 Benefits and risks

Benefits Visitor combinators enable separation of concerns. This helps under-
standing, development, testing, and reuse. Combinators enable reuse in several
dimensions. Within an application, a single concern, such as a particular traver-
sal strategy or applicability condition, needs to be implemented only once in a
reusable combinator. Across applications, visitors can be reused that capture generic
behavior. Examples are the fully generic combinators of the JJTraveler library, but
also the DotPrinter combinator that can be refined by any application that uses
or even specializes the graph package on which this combinator operates.

A related benefit is robustness against class-hierarchy changes. Using visitor
combinators, each concern can be implemented with explicit reference only to
classes that are relevant to it. As a result, changes in other classes will not unduly
affect the implementation of the concern.

In relation to other approaches to separation of concerns and object traver-
sal, visitor combinators are extremely lightweight. Optionally, the JJForester tool
can be used to instantiate JJTraveler’s framework. However, visitor combinators

7.7 Concluding Remarks

159

do not essentially rely on tools. The required implementation of the (very thin)
Visitable interface and the Fwd combinator is straightforward, and can easily
be done by hand.

Risks Visitor combinators pose two risks with respect to performance. Firstly,
the development of many little visitors may lead to many (relatively expensive)
object creations. One should take care to keep these within reasonable limit. For
instance, stateless combinators need only be created once. Stateful visitors can
often be re-initialized to run again, instead of continually creating new ones.

Another performance penalty may come from heavy reliance on exceptions
for steering visitor control. One should take care to choose the interpretation of
VisitFai lure such that failure is less common than success. E.g. one can use
TopDownWhi le with Identity as default, instead of TopDownUnti I with
Fai I as default.

These performance risks can be combatted by profiling (maybe using Time-
LogVisitor) and refactoring. Refactoring rules for combinators can often be
described with simple equations. However, when we applied ControlCruiser to our
code bases, including a 3,000,000 loc system, we did not experience performance
problems. (in fact, the majority of the time was spent on parsing the CPF format,
not on running the visitors on them).

7.7 Concluding Remarks

Related work We refer to Chapter 5 for a full account of related work in the ar-
eas of design patterns and object navigation approaches: of particular interest are
the extended [GH98] and staggered [V1i99] visitor patterns, and adaptive program-
ming [LPS97] for expressing “roadmaps” through object structures. The origins
of visitor combinators can furthermore be traced back to strategic term rewriting,
in particular [VBT99].

Traversals in the context of reverse engineering tools are discussed by [BSV00],
who provide a top-down analysis or transformation traversal. Their traversals have
been generalized in the context of ASF+SDF in [BKV02]. Similar traversals are
present in the Refine toolset [MNB™94], which contains a pre-order and post-order
traversal. In both cases, only a few traversal strategies are provided, and little sup-
port is available for composing complex traversals from basic building blocks or
controlling the visiting behavior.

In the field of program understanding and reengineering tools exchange for-
mats have attracted considerable attention since 1998 [WOL'98]. Visitor com-
binators provide an interesting perspective on such formats. Instead of focusing
on the underlying structure, visitor combinators make assumptions on what they
can observe in a structure. By minimizing these assumptions, for example by try-

160

Building Program Understanding Tools Using Visitor Combinators 7

ing to use the generic Visitable interface, the reusability of these combinators is
maximized.

One of the outcomes of the exchange format research is the Graph Exchange
Language GXL [HWSO00]. Visitor combinators are likely to be a suitable mecha-
nism for processing GXL representations. This requires generating directed graph
structures that implement the Visitable interface from GXL schema’s, similar to
the way JJForester generates visitable trees from context free grammars and to the
way our graph package implements the visitable interface.

Contributions We have demonstrated that visitor combinators provide a power-
ful programming technique for processing source models. We have given concrete
examples of instantiating the visitor combinator framework provided by JJTrav-
eler, and of developing complex program understanding visitors by specialization
and combination of JJTraveler’s combinator library. We have applied the devel-
oped visitors to a large code base to establish feasibility and scalability of the
approach. Finally, we have summarized the development techniques surrounding
visitor combinator programming and we have made an assessment of the risks and
benefits involved.

Chapter 8

Conclusions

In the introduction to this thesis, these research questions have been posed:

1. Can traversal over source code representations be both generic and strongly
typed?

2. Can typed generic traversal be supported within the context of general-
purpose, mainstream programming languages?

3. Can typed generic traversal support be integrated with support for other
common language tool development tasks?

We will now assess how the material of the various chapters have addressed these
questions.

8.1 Typed generic traversal

In both the functional programming paradigm and the object-oriented program-
ming paradigm, we have developed a combinatorial approach to typeful traversal
construction, where generic traversal combinators are first-class citizens that al-
low the amalgamation of generic and type-specific behavior. Our languages of
choice were the non-strict, strongly typed functional language Haskell, and the
class-based object-oriented language Java.

For Haskell, we presented a ‘conservative’ approach that stays close to the
underlying paradigm but is limited in expressivity, and a more ‘radical’ approach
that makes a paradigm shift to achieve more power. The ‘conventional’ functional
approach, presented in Chapter 3 stays close to current functional programming
practice, since it builds on the established notion of generalized folds (bananas).
For these, we introduced the notion of fold algebra update, we invented a small

162

Conclusions 8

set of basic fold algebra combinators, and we demonstrated how these ingredients
enable a combinatorial style of traversal construction. Updatable folds improve
over non-updatable folds, because they realize conciseness and robustness via the
reuse of generic default algebras. The updatable fold algebras also realize a lim-
ited amount of composability and traversal control. A clear disadvantage of the
updatable fold approach is that extension of the set of combinators requires mod-
ification of the underlying (generative) tool support; users can not program new
basic combinators themselves. Another disadvantage is that the reliance on folds
implies that the traversal scheme can not be controlled by the programmer, but is
always the primitive recursion scheme associated to the source code representa-
tion at hand. This makes this approach suitable for a limited category of traversal
scenarios only.

The “radical’ functional approach, presented in Chapter 4, is further removed
from current functional programming practices and can be considered to constitute
a paradigm shift. It takes its inspiration from the untyped language Stratego for
term rewriting with strategies. The most important feature adopted from Stratego
is the decoupling of recursion and one-step traversal. To meet the challenge of
providing definitions of the one-step traversal combinators as well as for the com-
binators that blend generic and type-specific behavior, we needed to go beyond
ordinary parametric and ad-hoc polymorphism, as available in Haskell. This was
accomplished, again via generative tool support. In contrast to the updatable fold
approach, users can construct new basic combinators without adapting the gen-
erator, and full traversal control can be exerted. Conciseness and robustness are
realized by both the fold approach and the strategy approach.

In the object-oriented paradigm, a ‘conservative’ approach to generic traversal
was already available in the form of the Visitor pattern. Unfortunately, this ap-
proach shares the disadvantages of the functional approach with updatable folds.
Visitors resists composition, and they allow almost no traversal control. Fur-
ther disadvantages are the lack of robustness and conciseness of default visitors.
Nonetheless, for a limited category of traversal scenarios, the plain Visitor pattern
is sufficient, and for this reason it is supported by our visitor combinator JJForester.

In Chapter 5, we develop a ‘radical’ approach to traversal construction in Java,
again inspired by Stratego. We introduced the notion of a visitor combinator as the
object-oriented counterpart to a strategy combinator. All one-step traversal com-
binators can be expressed concisely as visitor combinators. The blending of type-
specific and generic behavior was realized in a special forwarding visitor combina-
tor Fwd by a combination of run-time type inspection (RTTI) and double dispatch
as simulated by the plain Visitor pattern. Our visitor generator JJForester provides
appropriate tool support to relieve the programmer of supplying this tedious and
usually lengthy combinator. In contrast to plain visitors, our visitor combinators
realize conciseness, robustness, composability, and traversal control.

8.2 Mainstream programming

163

8.2 Mainstream programming

Rather than offering a dedicated niche-language with generic traversal support, we
have chosen to add this support to existing (relatively) mainstream languages, in
particular to Java and Haskell. The typing systems of these languages, and the
accompanying expressiveness are insufficient to cope with generic typeful traver-
sal. Haskell supports ad-hoc polymorphism and parametric polymorphism. These
forms of polymorphism are too limited to support our envisioned combinator style
of traversal construction that blends genericity and specificity. Java features sub-
type polymorphism and dynamic dispatch. These are likewise insufficient for our
purposes.

For both languages we have found a way to add to the expressiveness via a
simple generative approach that involves the representation type only. The oper-
ations on the representations need not be touched by our generators. In the case
of Haskell, this means that class instances are generated from datatype definitions.
Programmers can write functions on these datatypes in plain Haskell that does not
need to be pre-compiled or pre-processed. In the case of Java, both the visitable
class-hierarchy and a single forwarding visitor combinator are generated from an
SDF definition. The visitors operating on the class-hierarchy are written in plain
Java without a need for pre-compilation.

This set-up has many advantages. Firstly, the amount of generated code is re-
lated to the size of the representation type, not to the size of the operations that are
programmed on them. Secondly, programmers need not program in an extension
of the original language, but can stick with what they know. The disadvantages
usually associated with preprocessing — poor error messages, poor static checks —
are circumvented. Also, all tooling, libraries, manuals, and programming exper-
tise for the programming language at hand remains valid when using the generic
traversal support. For instance, we have been able to generate technical documen-
tation with the javadoc tool both for the generic visitor combinators of JJTraveler,
and for the specific visitor combinators of ControlCruiser. In case of Haskell, we
have for instance been able to use libraries for parsing, pretty-printing, collections,
and XML processing directly in all our traversal code.

8.3 Integrated language tool development

Generic traversal is an important and challenging aspect of language tool develop-
ment support, but to be truly useful, it must be integrated with support for other
aspects. In Chapter 2 we have identified those aspects and established require-
ments on the components that are to support them. We have also developed a
comprehensive architecture in which all aspects are integrated. The binding fac-
tor in this architecture are the grammars of the languages that must be processed,
following the Grammars as Contracts maxim. We have also briefly discussed a

164

Conclusions 8

number of instantiations of the architecture for programming languages such Java,
Haskell, C, and Stratego. These instantiations of the architecture feature SDF as
grammar formalism, and the ATerms as common exchange format. Using this for-
mat, components written in these languages can be connected to each other and to
the generalized LR parser sglr and the generic pretty printing toolset.

For Haskell and Java, we have taken a closer look at the traversal aspect in
Chapters 3, 4, and 5. For Java, we have developed parsing support in Chapter 6.
In particular, we have provided a connection between SDF on one hand, and Java
applications on the other hand. In line with the Grammars as Contracts idea, this
connection is generated from an SDF grammar. Connectivity to SDF for Haskell
was developed and described by us in [KLV00], and is available in the Sdf2Haskell
package (see below).

Finally, Chapter 7 shows the Java instantiation at work of the comprehensive
architecture for language tool development. The particular application developed
in that chapter involves parsing, as well as traversal of tree-shaped and graph-
shaped source code representations.

8.4 Available software

Throughout the chapters of this thesis, we have reported on the development of
tools and libraries that support the presented techniques. Here we will give a short
summary of software developed during the course of our investigations:

Grammar Base The grammar base is a collection of SDF grammars that can be
used as contracts according to the meta-tool architecture described in Chap-
ter 2. All included grammars are subjected to the versioning regime ex-
plained in Section 2.5.

Many different people have contributed to the grammar base. 1ts main main-
tainers are Merijn de Jonge, Eelco Visser, and Joost Visser. The Grammar
Base is available online at:

http:/www.program-transformation.org/gb/

At this site, grammars can be browsed and downloaded. The Grammar Base
is also available as one of the packages of XT (see below).

XT The Transformation Tools bundle XT provides a wide variety of language
tool components. The meta-tools described in Chapter 2 are among XT’s
components. XT reuses various components from the AsF+SDF Meta-
Environment [BDH01]. An overall description of the XT system can be
found in [JVVO01].

The maintainers of XT are Merijn de Jonge, Eelco Visser, and Joost Visser.
XT is available from:

8.4 Available software 165

http://www.program-transformation.org/xt/

XT has been applied in a wide variety of applications, among which re-
verse engineering of SDL specifications [JM01], and Cobol transforma-
tion [Wes02].

Tabaluga Tabaluga supports programming with updatable fold algebras in Haskell.
It consists of a code generator that consumes SDF grammars and generates
Haskell datatypes, corresponding fold functions and fold algebra types, ba-
sic fold algebras, and fold algebra combinators. These were described in
Chapter 3. Also, code for connectivity with the sglr parser is generated.
Together, the generated code forms a framework for analysis and transfor-
mation of the input language, in accordance to the meta-tool architecture
presented in Chapter 2. Layout and comment preservation is supported.

The main implementor of Tabaluga is Jan Kort. Tabaluga is available from:
http://www.science.uva.nl/"kort/tabaluga/

Apart from the main system, an additional package is available with pre-
generated transformation and analysis frameworks for several languages,
including Pico, Sdf, and Cobol.

Strafunski Strafunski supports programming with functional strategies in Haskell.
The core of Strafunski are the library of strategy combinators StrategyLib
and a supporting generator DrIFT-Strafunski. These were described in Chap-
ter 4. DrIFT-Strafunski is an extended version of DrIFT (formerly called De-
rive [Win97]) which can be used (pending native support for strategies) to
generate the instances of class Term according to the model in Section 4.4.1
for any given algebraic data type. Actually, several alternative models with
different (performance) characteristics are supported by the Strafunski dis-
tribution as well.

In addition to the library and the instance generator, some meta-tools have
been developed to embed our strategy combinator support in a grammar-
centered architecture as described in Chapter 2. These tools are the Haskell
ATerm Library, to make the ATerm common exchange format available in
Haskell, and the generator Sdf2Haskell, which generates Haskell datatypes
from SDF definitions.

The main implementors of Strafunski are Ralf Ldmmel and Joost Visser.
Strafunski is available from its home page at:
http://www.cs.vu.nl/Strafunski/

The distribution contains a number of application examples that demonstrate
the usability for processing languages of non-trivial size, such as Cobol,
Java, Haskell, Sdf, and XML.

166 Conclusions 8

The Haskell ATerm Library is also separately distributed via:
http://www.cwi .nl/projects/MetaEnv/haterm/

JJTraveler JJTraveler is a combined visitor combinator framework and library for
Java. It contains all the generic visitor combinators presented in Chapters 5,
and more.

The main implementor of JJTraveler is Joost Visser. JJTraveler is available
together with online documentation from the JJForester home page (see be-
low).

JJForester JJForester is a combined parser and visitor combinator that automates
instantiation of the JJTraveler framework by generation of Java code from
an SDF grammar. JJForester was discussed in Chapter 6.

The main implementors of JJForester are Tobias Kuipers and Joost Visser.
JJForester is available from its home page at:

http://www. j jforester.org/.

The distribution contains several example applications, among which a Java
metrics extractor, and the Toolbus communication graph generator that was
described in Chapter 6.

The Software Improvement Group has used JJForester in various legacy sys-
tem reverse engineering projects. Tackled languages include Java, SQL, and
Accell.

ControlCruiser Control Cruiser is a reimplementation and elaboration of the
conditional control graph extraction component of DocGen [DK99a], a com-
mercial documentation generator for Cobol which is developed and deployed
by the Software Improvement Group. ControlCruiser was built using JJ-
Forester, JJTraveler, and some SDF tools developed for the AsF+SDF Meta-
Environment. This was described in Chapter 7.

Control Cruiser was developed by Arie van Deursen and Joost Visser. Con-
trolCruiser can be downloaded from the JJForester home page (see above).

Apart from the software developed in the course of our investigations, we also list
a selection of tools that we made use of:

The ATerm Library The ATerm Library is an important component of many of
the tools we used and developed. Apart from APIs for construction and
inspection of ATerms, the ATerm distribution contains numerous command-
line tools for ATerm processing.

The ATerm Library is available from:

8.5 Perspectives

167

http://www.cwi .nl/projects/MetaEnv/haterm/

The ATerm Library supports C and Java. As reported above, we additionally
implemented a version of the ATerm Library that supports Haskell.

SDF parse table generator and generalized LR parser The parse table genera-
tor pgen and the scannerless generalized LR parser sglr that consumes
these tables are the primary tools that support the syntax definition formal-
ism SDF. They are available from;

http://www.cwi .nl/projects/MetaEnv/pgen/
http:/7/www.cwi .nl/projects/MetakEnv/sglr/

The AsF+SDF Meta-Environment The AsF+SDF Meta-Environment is an in-
teractive development environment that integrates the tools that support SDF
and the term rewriting language AsF. It is available from:

http://www.cwi .nl/projects/MetakEnv/

Though currently the AsF+SDF Meta-Environment is limited to ASF as pro-
gramming language, efforts are underway to generalize it to allow the use
of different languages. The Haskell and Java related tools reported above
might play a role in this development, since they accomplish the integration
of SDF with these languages.

All these packages are also available through the online package base at:

http://www.program-transformation.org/package-base/

At this page, one or more of the above packages can be selected to generate a self-
contained software distribution that bundles the selected packages and those they
depend on.

8.5 Perspectives

The work presented in this thesis has laid the theoretical foundations for object-
oriented and functional strategic programming, and it has demonstrated the fea-
sibility of its practical use. Still, many open issues remain before typed strategic
programming can become a main-stream technique and fully realize its potential
for a general software development audience.

Fundamental issues How can the essential notions of strategic programming be
formalized in a single, paradigm-independent theoretical framework? How
can strategic programming be combined with other forms of generic pro-
gramming, such as polytypic programming and generic attribute grammars?

168

Conclusions 8

What properties of generic traversals can be established that are useful for
reasoning about strategic programs? How can one take advantage of recent
developments in functional and object-oriented programming (rank-2 poly-
morphism, bounded polymorphism) to make generic function combinators
and visitor combinators more expressive or more type-safe.

What is the class of traversal problems that is covered by the current strate-
gic programming constructs? What additional basic combinators would be
needed to enlarge this class? Can the technique of strategic programming be
complemented or adapted to cater for specific application areas?

Tool and library development How can the tools that offer support for strategic

programming (Strafunski, JJTraveler, JJForester) be made easy to use by
the working strategic programmer. Can they be generalized to support a
wider class of applications? Can benchmarks be developed to investigate
the performance trade-offs when applying strategic programming support?
Can optimizations be developed and implemented that exploit the theoretical
properties of strategic programming constructs?

What additional useful defined combinators can be added to the combinator
libraries? Can the libraries be made more accessible by providing (gener-
ated) documentation?

Can domain-specific frameworks, based on strategy combinators be devel-
oped, that allow rapid construction of applications in these domains? What
ingredients are needed for strategy combinator frameworks for instance for
XML transformation, Cobol legacy system renovation, or Java source code
analysis?

Consolidation of design expertise How can the experience of strategic program

construction be consolidated and communicated? An initial catalogue of de-
sign patterns for functional strategic programming has been drafted [L\V02a].
Can this catalogue be expanded with new patterns? Can a design pattern cat-
alogue likewise be developed for program construction with visitor combi-
nators? Can more show-case application examples be developed that would
guide strategic programmers in constructing their own applications?

These open issues indicate directions that future investigations concerning generic
traversal of typed data structures could take.

Bibliography

[A*02]

[ABFP86]

[ACPP91]

[AG93]

[ASUS6]

[B+96]

[BB85]

[BDHT01]

I. Attali et al. Aspect and XML-oriented semantic framework gen-
erator: SmartTools. In Mark van den Brand and Didier Parigot, edi-
tors, Electronic Notes in Theoretical Computer Science. Elsevier Sci-
ence Publishers, 2002. Proc. of Workshop on Language Descriptions,
Tools and Applications (LDTA).

G. Arango, |. Baxter, P. Freeman, and C. Pidgeon. TMM: Software
maintenance by transformation. 1EEE Software, 3(3):27-39, May
1986.

M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic Typing
in a Statically Typed Language. ACM Transactions on Programming
Languages and Systems, 13(2):237-268, April 1991.

A. W. Appel and M. J. R. Gongalves. Hash-consing garbage collec-
tion. Technical Report CS-TR-412-93, Princeton University, Com-
puter Science Department, 1993.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, tech-
niques, tools. Addison-Wesley, 1986.

M. G. J. van den Brand et al. Industrial applications of ASF+SDF. In
Algebraic Methodology and Software Technology (AMAST’96), vol-
ume 1101 of LNCS, pages 9-18. Springer-Verlag, 1996.

C. Bohm and A. Berarducci. Automatic synthesis of typed lambda-
programs on term algebras. Theoretical Computer Science, 39(2-
3):135-153, August 1985.

M. van den Brand, A. van Deursen, J. Heering, H. de Jonge, M. de
Jonge, T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder,
J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment:
a component-based language development environment. In R. Wil-
helm, editor, Compiler Construction 2001 (CC 2001), volume 2027
of LNCS. Springer-Verlag, 2001.

170

BIBLIOGRAPHY

[BHKS9]

[BJKOOO]

[BK94]

[BK96]

[BK98]

[BKKRO1]

[BKV02]

[BM98]

[Bor9g]

[Bou96]

J. A. Bergstra, J. Heering, and P. Klint. The Algebraic Specification
Formalism ASF. In Algebraic Specification, chapter 1, pages 1-66.
The ACM Press in codperation with Addison-Wesley, 1989.

M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Effi-
cient annotated terms. Software, Practice and Experience, 30(3):259—
291, 2000.

J. A. Bergstra and P. Klint. The ToolBus: a component
interconnection architecture. Technical Report P9408, Uni-
versity of Amsterdam, Programming Research Group, 1994.
Available from http://www.science.uva.nl/research/
prog/reports/reports.html.

J. A. Bergstra and P. Klint. The ToolBus coordination architecture.
In P. Ciancarini and C. Hankin, editors, Coordination Languages
and Models (COORDINATION’96), volume 1061 of Lecture Notes
in Computer Science, pages 75-88. Springer-Verlag, 1996.

J. A. Bergstra and P. Klint. The discrete time ToolBus — a software
coordination architecture. Science of Computer Programming, 31(2-
3):205-229, July 1998.

P. Borovansky, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewrit-
ing with strategies in ELAN: A functional semantics. International
Journal of Foundations of Computer Science, 12(1):69-95, 2001.

M.G.J. van den Brand, P. Klint, and J.J. Vinju. Term rewriting with
type-safe traversal functions. In B. Gramlich and S. Lucas, editors,
Second International Workshop on Reduction Strategies in Rewrit-
ing and Programming (WRS 2002), volume 70 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2002.

R. Bird and L. Meertens. Nested datatypes. In 4th International
Conference on Mathematics of Program Construction, volume 1422
of Lecture Notes in Computer Science, pages 52-67. Springer-Verlag,
1998.

P. Borovansky. Le contrdle de la réécriture : étude et implantation
d’un formalisme de stratégies. These de Doctorat d’Université, Uni-
versité Henri Poincaré — Nancy 1, 1998.

R. J. Boulton. SYN: A single language for specifying abstract syntax
trees, lexical analysis, parsing and pretty-printing. Technical report,
Computer laboratory, University of Cambridge, 1996.

BIBLIOGRAPHY

171

[BP99]

[BPSMO8]

[BSV97]

[BSV98]

[BSVOO]

[BSVV02]

[BV95]

[BV96]

[BW90]

[c2]
[CC90]

[CE99]

R. Bird and R. Paterson. Generalised folds for nested datatypes. For-
mal Aspects of Computing, 11(2):200-222, 1999.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0. Technical Report REC-xml-19980210, World
Wide Web Consortium, 1998.

M. G. J. van den Brand, M. P. A. Sellink, and C. Verhoef. Generation
of components for software renovation factories from context-free
grammars. In Proceedings Fourth Working Conference on Reverse
Engineering, pages 144-153. IEEE, 1997.

M. G. J. van den Brand, M. P. A. Sellink, and C. Verhoef. Current
parsing techniques in software renovation considered harmful. In
Proceedings of the sixth International Workshop on Program Com-
prehension, pages 108-117. IEEE, 1998.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation
of Components for Software Renovation Factories from Context-free
Grammars. Science of Computer Programming, 36(2-3):209-266,
2000.

M. G. J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disam-
biguation filters for scannerless generalized LR parsers. In N. Hor-
spool, editor, Compiler Construction (CC’02), Lecture Notes in Com-
puter Science. Springer-Verlag, 2002.

J. C. M. Baeten and C. Verhoef. Concrete process algebra. In
Handbook of Logic in Computer Science, volume 4, pages 149-268.
Clarendon Press, Oxford, 1995.

M. G. J. van den Brand and E. Visser. Generation of formatters for
context-free languages. ACM Transactions on Software Engineering
and Methodology, 5(1):1-41, 1996.

J.C.M Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts
in Theoretical Computer Science 18. Cambridge University Press,
1990.

Portland pattern repository. http://www.c2.com/cgi/wiki.

E.J. Chikofsky and J.H. Cross Il. Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software, 7(1):13-17, January 1990.

K. Czarnecki and U. Eisenecker. Generative Programming. Addison-
Wesley, 1999.

172

BIBLIOGRAPHY

[CK99]

[CKLO1]

[CLO2]

[Cles8]

[CS92]

[CWMO9]

[DHK96]

[DK98]

[DK99a]

[DK99b]

[DK02]

[DKV99]

H. Cirstea and C. Kirchner. Introduction to the rewriting calculus.
Rapport de recherche 3818, INRIA, December 1999.

H. Cirstea, C. Kirchner, and L. Liquori. The Rho Cube. In Furio
Honsell, editor, Foundations of Software Science and Computation
Structures, ETAPS’2001, Lecture Notes in Computer Science, pages
166-180, Genova, Italy, April 2001. Springer-Verlag.

D. Clarke and A. Loh. Generic haskell, specifically. In Proceedings
of The Working Conference on Generic Programming, Dagstuhl, Ger-
many, 2002.

J. C. Cleaveland. Building application generators. IEEE Software,
pages 25-33, July 1988.

R. Cockett and D. Spencer. Strong categorical datatypes . InR. A. G.
Seely, editor, International Meeting on Category Theory 1991, Cana-
dian Mathematical Society Proceedings. AMS, 1992.

K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism
in type-erasure semantics. ACM SIGPLAN Notices, 34(1):301-312,
January 1999.

A. van Deursen, J. Heering, and P. Klint, editors. Language Proto-
typing: An Algebraic Specification Approach, volume 5 of AMAST
Series in Computing. World Scientific Publishing Co., 1996.

A. van Deursen and T. Kuipers. Rapid system understanding: Two
COBOL case studies. In International Workshop on Program Com-
prehension, pages 90-97. IEEE, 1998.

A. van Deursen and T. Kuipers. Building documentation generators.
In International Conference on Software Maintenance, ICSM’99,
pages 40-49. IEEE Computer Society, 1999.

A. van Deursen and T. Kuipers. ldentifying objects using cluster and
concept analysis. In 21st International Conference on Software Engi-
neering, ICSE-99, pages 246-255. ACM, 1999.

A. van Deursen and P. Klint. Domain-specific language design re-
quires feature descriptions. Journal of Computing and Information
Technology, 2002.

A. van Deursen, P. Klint, and C. Verhoef. Research Issues in the Ren-
ovation of Legacy Systems. In J.P. Finance, editor, Proc. of FASE’99,
volume 1577 of LNCS, pages 1-21. Springer-Verlag, 1999.

BIBLIOGRAPHY

173

[DKV00]

[DOMOYS]

[DRWY5]

[DTS99]

[DV02a]

[DV02b]

[EHM*99]

[Fil9g]

[Fok92]

[Fok94]

[Fow99]

[FR99]

A. van Deursen, P. Klint, and J. Visser. Domain-specific languages —
an annotated bibliography. ACM SIGPLAN Noatices, 35(6), June 2000.

Document Object Model (DOM) Level 1 Specification Version 1.0,
October 1998. W3C Recommendation.

C. Dubois, F. Rouaix, and P. Weis. Extensional polymorphism. In
Conference record of POPL’95, pages 118-129. ACM Press, 1995.

S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0 - the FAMOOS
information exchange model. Technical report, University of Bern,
August 1999.

A. van Deursen and E. Visser. The reengineering wiki. In Proceedings
6th European Conference on Software Maintenance and Reengineer-
ing (CSMR)., pages 217-220. IEEE Computer Society, 2002.

A. van Deursen and J. Visser. Building program understanding tools
using visitor combinators. In Proceedings of the Tenth International
Workshop on Program Comprehension (IWPC 2002), pages 137-146.
IEEE Computer Society, 2002.

P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H. B. Sgrensen, and
M. Tofte. AnnoDomini: From type theory to year 2000 conversion
tool. In Conference Record of POPL’99, pages 1-14. ACM press,
1999. Invited paper.

A. Filinski. Representing layered monads. In Conference Record of
POPL ’99: The 26th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, San Antonio, Texas, pages 175-188,
New York, N.Y., January 1999. ACM.

M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Uni-
versity of Twente, Dept INF, Enschede, The Netherlands, 1992.

M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes.
Memoranda Informatica 94-28, University of Twente, June 1994.

M. Fowler. Refactoring: Improving the Design of Existing Code. Ad-
dison Wesley, 1999.

J. Field and G. Ramalingam. Identifying procedural structure in cobol
programs. In Workshop on Program analysis for software tools and
engineering; PASTE, pages 1-10. ACM Press, 1999.

174

BIBLIOGRAPHY

[FSS92]

[GB]

[GH98]

[GHIV94]

[Has99]

[HHKR89]

[Hin99]

[Hin00]

[HMO00]

[HWS00]

[Jay99]

L. Fegaras, T. Sheard, and D. Stemple. Uniform Traversal Combina-
tors: Definition, Use and Properties. In D. Kapur, editor, Proc. 11th
Intl. Conf. on Automated Deduction (CADE-11), volume 607 of Lec-
ture Notes in Artificial Intelligence, pages 148-162, Saratoga Springs,
NY, USA, June 1992. Springer-Verlag.

The online grammar base. http:/www.
program-transformation.org/gb/.

E. M. Gagnon and L. J. Hendren. SableCC, an object-oriented com-
piler framework. In TOOLS USA 98 (Technology of Object-Oriented
Languages and Systems). IEEE, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994,

Haskell 98: A Non-strict, Purely Functional Language, February
1999. http://www.haskell.org/onlinereport/.

J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism SDF — Reference manual. SIGPLAN Notices,
24(11):43-75, 1989.

R. Hinze. A generic programming extension for Haskell. In E. Mei-
jer, editor, Proceedings of the 3rd Haskell Workshop, Paris, France,
September 1999. Technical report, Universiteit Utrecht, UU-CS-
1999-28.

R. Hinze. A New Approach to Generic Functional Programming. In
Thomas W. Reps, editor, Conference record of POPL’00, pages 119-
132, January 2000.

I. Herman and M.S. Marshall. GraphXML - An XML-based
graph description format. In Symposium on Graph Drawing
(GD 2000), volume 1984 of LNCS, pages 52-62. Springer, 2000.
A full grammar for GraphXML can be found at http:/www.
program-transformation.org/gb/.

R. Holt, A. Winter, and A. Schiirr. GXL: Toward a standard exchange
format. In Proceedings of the 7th Working Conference on Reverse
Engineering, pages 162-171. IEEE Computer Society, 2000.

C.B. Jay. Programming in FISh. International Journal on Software
Tools for Technology Transfer, 2:307-315, 1999.

BIBLIOGRAPHY 175

[JB99] J. Jennings and E. Beuscher. Verischemelog: Verilog embedded
in Scheme. In Proceedings of the second USENIX Conference on
Domain-Specific Languages, pages 123-134. USENIX Association,
October 3-5 1999.

[JJ97a] P. Jansson and J. Jeuring. PolyP - a polytypic programming language
extension. In Conference record of POPL’97, pages 470-482. ACM
Press, 1997.

[JJ97Db] P. Jansson and J. Jeuring. PolyP—a polytypic programming language
extension. In POPL *97: 24th Symposium on Principles of Program-
ming Languages, pages 470-482, Paris, France, 15-17 January 1997.

[IM95] J. Jeuring and E. Meijer, editors. Advanced Functional Programming,
volume 925 of LNCS. Springer-Verlag, 1995.

[JmMO01] M. de Jonge and R. Monajemi. Cost-effective maintenance tools for
proprietary languages. In Proceedings of the International Confer-
ence on Software Maintenance (ICSM 2001), pages 240 — 249. IEEE
Computer Society Press, november 2001.

[JO02] H.A. de Jong and P.A Olivier. Generation of abstract programming
interfaces from syntax definitions. Technical Report SEN-R0212, St.
Centrum voor Wiskunde en Informatica (CWI), August 2002. Sub-
mitted to Journal of Logic and Algebraic Programming.

[Joh75] S. C. Johnson. YACC - Yet Another Compiler-Compiler. Techni-
cal Report Computer Science No. 32, Bell Laboratories, Murray Hill,
New Jersey, 1975.

[Jon95] M.P. Jones. Functional Programming with Overloading and Higher-
Order Polymorphism. In Jeuring and Meijer [JM95], pages 97-136.

[Jon97] M.P. Jones. First-class polymorphism with type inference. In Confer-
ence record of POPL’97, pages 483-496, Paris, France, 15-17 Jan-
uary 1997.

[Jon99] M.P. Jones. Type Classes and Functional Dependencies, 1999.
http://www.cse.ogi.edu/" mpj/.

[Jon00] M. de Jonge. A pretty-printer for every occasion. In lan Ferguson,
Jonathan Gray, and Louise Scott, editors, Proceedings of the 2nd In-
ternational Symposium on Constructing Software Engineering Tools
(CoSET2000). University of Wollongong, Australia, 2000.

[Jon02a] M. de Jonge. Pretty-printing for software reengineering. submitted
for publication, march 2002.

176

BIBLIOGRAPHY

[Jon02b]

[3V00]

[IVV01]

[KKV95]

[KL+97]

[KI1i93]

[KLVO0]

[Kiih98]

[KVO01]

M. de Jonge. Source tree composition. In Proceedings: Seventh
International Conference on Software Reuse, LNCS. Springer-Verlag,
2002.

M. de Jonge and J. Visser. Grammars as contracts. In Proceedings of
the Second International Conference on Generative and Component-
based Software Engineering (GCSE 2000), volume 2177 of Lecture
Notes in Computer Science, pages 85-99. Springer, 2000.

M. de Jonge, E. Visser, and J. Visser. XT: a bundle of program trans-
formation tools. In Mark van den Brand and Didier Parigot, edi-
tors, Proceedings of Language Descriptions, Tools and Applications
(LDTA 2001), volume 44 of Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, 2001.

C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic
programming languages using computational systems. In P. Van Hen-
tenryck and V. Saraswat, editors, Principles and Practice of Con-
straint Programming. The Newport Papers., chapter 8, pages 131-
158. MIT Press, 1995.

G. Kiczales, J. Lamping, et al. Aspect-oriented programming. In
Proceedings of ECOOP’97, number 1241 in LNCS. Springer Verlag,
1997.

P. Klint. A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodol-
ogy, 2:176-201, 1993.

J. Kort, R. Ld&mmel, and J. Visser. Functional Transformation Sys-
tems. In 9th International Workshop on Functional and Logic Pro-
gramming, Benicassim, Spain, July 2000.

T. Kithne. The translator pattern — external functionality with ho-
momorphic mappings. In Raimund Ege, Madhu Singh, and Bertrand
Meyer, editors, The 2374 TOOLS conference USA ’97, pages 48-62.
IEEE Computer Society, July 1998.

T. Kuipers and J. Visser. Object-oriented tree traversal with JJ-
Forester. In M. van den Brand and D. Parigot, editors, Electronic
Notes in Theoretical Computer Science, volume 44. Elsevier Science
Publishers, 2001. Proc. of the first Workshop on Language Descrip-
tions, Tools and Applications (LDTA 2001), to appear also in Science
of Computer Programming.

BIBLIOGRAPHY

177

[L4mMO0]

[LdmO02a]

[L&MO2b]

[LPS97]

[LR94]

[LV97]

[LV0O]

[LV02a]

[LVO02b]

[LVKOO]

[MBJ99]

R. Ld&mmel. Reuse by Program Transformation. In Greg Michael-
son and Phil Trinder, editors, Functional Programming Trends 1999.
Intellect, 2000. Selected papers from the 1st Scottish Functional Pro-
gramming Workshop.

R. Ldammel. Towards Generic Refactoring. Technical Report
€s.PL/0203001, arXiv, March1 2002.

R. Lammel. Typed generic traversal with term rewriting strategies.
Journal of Logic and Algebraic Programming, 2002. To appear.

K. J. Lieberherr and B. Patt-Shamir. Traversals of Object Structures:
Specification and Efficient Implementation. Technical Report NU-
CCS-97-15, College of Computer Science, Northeastern University,
Boston, MA, July 1997.

D. A. Ladd and J. C. Ramming. Two application languages in soft-
ware production. In USENIX Very High Level Languages Symposium
Proceedings, pages 169-178, October 1994,

B. Luttik and E. Visser. Specification of rewriting strategies. In
M. P. A. Sellink, editor, 2nd International Workshop on the Theory
and Practice of Algebraic Specifications (ASF+SDF’97), Electronic
Workshops in Computing, Berlin, November 1997. Springer-Verlag.

R. Lammel and J. Visser. Type-safe functional strategies. In Scottish
Functional Programming Workshop, Draft Proceedings, St Andrews,
2000.

R. Lammel and J. Visser. Design patterns for functional strategic
programming. In Proceedings of the international workshop on rule-
based programming (RULE 2002), October 2002.

R. Ldmmel and J. Visser. Typed combinators for generic traversal.
In PADL 2002: Practical Aspects of Declarative Languages, volume
2257 of Lecture Notes in Computer Science, pages 137-154. Springer,
2002.

R. Lammel, J. Visser, and J. Kort. Dealing with large bananas. In Jo-
han Jeuring, editor, Proceedings of the second Workshop on Generic
Programming, Ponte de Lima, July 2000. Technical Report UU-CS-
2000-19, Universiteit Utrecht.

E Moggi, Bellg, and C.B. Jay. Monads, shapely functors and traver-
sals. In M. Hoffman, Pavlovi€, and P. Rosolini, editors, Proceedings
of the Eighth Conference on Category Theory and Computer Science

178

BIBLIOGRAPHY

[Mee92]

[Mee96]

[MFP91]

[MH95]

[MJ95]

[MLMO1]

[MNB+94]

[Mo002]

[OW99]

[Pau83]

(CTCS’99), volume 24 of Electronic Lecture Notes in Computer Sci-
ence, pages 265-286. Elsevier, 1999.

L. Meertens. Paramorphisms. Formal Aspects of Computing,
4(5):413-424, 1992.

L. Meertens. Calculate Polytypically! In H. Kuchen and S.D. Swier-
stra, editors, Int. Symp. on Progr. Languages, Implementations, Log-
ics and Programs (PLILP’96), volume 1140 of LNCS, pages 1-16.
Springer-Verlag, 1996.

E. Meijer, M. Fokkinga, and R. Paterson. Functional Program-
ming with Bananas, Lenses, Envelopes, and Barbed Wire. In Proc.
FPCA’91, volume 523 of LNCS. Springer-Verlag, 1991.

E. Meijer and G. Hutton. Bananas in Space: Extending Fold and
Unfold to Exponential Types. In Conf. Record 7th ACM SIG-
PLAN/SIGARCH and IFIP WG 2.8 Intl. Conf. on Functional Pro-
gramming Languages and Computer Architecture, FPCA’95, La
Jolla, San Diego, CA, USA, 25-28 June 1995, pages 324-333. ACM
Press, New York, 1995.

E. Meijer and J. Jeuring. Merging Monads and Folds for Functional
Programming. In Jeuring and Meijer [JM95], pages 228-266.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Lan-
guages using Formal Language Theory. In Extreme Markup Lan-
guages, Montreal, Canada, 2001.

L. Markosian, P. Newcomb, R. Brand, S. Burson, and T. Kitzmiller.
Using an enabling technology to reengineer legacy systems. Comm.
of the ACM, 37(5):58-70, 1994.

L. Moonen. Lightweight impact analysis using island grammars. In
Proceedings of the 10th International Workshop on Program Com-
prehension (IWPC 2002). IEEE Computer Society Press, June 2002.

J. Ovlinger and M. Wand. A language for specifying recursive traver-
sals of object structures. In Proceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA*99), pages 70-81, 1999.

L.C. Paulson. A Higher-Order Implementation of Rewriting. Science
of Computer Programming, 3(2):119-149, August 1983.

BIBLIOGRAPHY

179

[PJ98]

[PXL95]

[Rei02]

[Rek92]

[SAS99]

[SF93]

[She91]

[Sne00]

[Toms5]

[v*]

[VBT99]

J. Palsberg and C. Barry Jay. The essence of the visitor pattern. In
Proceedings of COMPSAC’98, 22nd Annual International Computer
Software and Applications Conference, pages 9-15, Vienna, Austria,
August 1998.

J. Palsberg, C. Xiao, and K. Lieberherr. Efficient implementation of
adaptive software. ACM Transactions on Programming Languages
and Systems, 17(2):264-292, March 1995.

C. Reinke, editor. Haskell communities and activities report, second
edition. http://www.haskell._org/communities/, May
2002.

J. Rekers. Parser Generation for Interactive Environments. PhD the-
sis, University of Amsterdam, 1992.

S. Doaitse Swierstra, P. R. A. Alcocer, and J. Saraiva. Designing and
implementing combinator languages. In S.D. Swierstra, P.R. Hen-
riques, and J.N. Oliveira, editors, Advanced Functional Program-
ming, Third International School, AFP *98, volume 1608 of LNCS,
pages 150-206, Braga, Portugal, September 1999. Springer-Verlag.

T. Sheard and L. Fegaras. A Fold for All Seasons. In FPCA *93 Con-
ference on Functional Programming Languages and Computer Ar-
chitecture, pages 233-242, Copenhagen, Denmark, June 1993. ACM
Press. ISBN 0-89791-595-X.

T. Sheard. Automatic generation and use of abstract structure oper-
ators. ACM Transactions on Programming Languages and Systems,
13(4):531-557, October 1991.

G. Snelting. Software reengineering based on concept lattices. In Pro-
ceedings of the 4th European Conference on Software Maintenance
and Reengineering (CSMR’00), pages 3-12. IEEE Computer Society,
2000. Invited contribution.

M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm
for Practical Systems. Kluwer Academic Publishers, 1985.

E. Visser et al. The online survey of program transformation. http:
//www . program-transformation.org/survey.html.

E. Visser, Z. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. ACM SIGPLAN Notices, 34(1):13-26, Jan-
uary 1999. Proceedings of the International Conference on Functional
Programming (ICFP’98).

180

BIBLIOGRAPHY

[Vis97]

[Vis99]

[Vis00a]

[Vis00b]

[VisOla]

[VisO1b]

[V1i99]

[Wad89]

[Wad92]

[WAKS97]

[Wei00]

[Wes02]

E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, 1997.

E. Visser. Strategic pattern matching. In Rewriting Techniques and
Applications (RTA’99), volume 1631 of Lecture Notes in Computer
Science, pages 30 — 44. Springer-Verlag, 1999.

E. Visser. Language Independent Traversals for Program Transfor-
mation. In J. Jeuring, editor, Proc. of WGP’2000, Technical Report,
Universiteit Utrecht, pages 86-104, July 2000.

E. Visser. Language independent traversals for program transforma-
tion. In Johan Jeuring, editor, Workshop on Generic Programming,
Ponte de Lima, July 2000. Technical Report UU-CS-2000-19, Uni-
versiteit Utrecht.

E. Visser. The Stratego Library (version 0.4.22). Institute of Informa-
tion and Computing Sciences, Utrecht, The Netherlands, 2001. Most
recent version at http://www.stratego-language.org/.

J. Visser. Visitor combination and traversal control. ACM SIGPLAN
Notices, 36(11):270-282, 2001. Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA 2001).

J. Vlissides. Visitor in frameworks. C++ Report, 11(10), November
1999,

P. Wadler. Theorems for Free! In Proc. of FPCA’89, London, pages
347-359. ACM Press, New York, September 1989.

P. Wadler. The essence of functional programming. In Conference
record of POPL’92, pages 1-14. ACM Press, 1992.

D. C. Wang, A. W. Appel, J. L. Korn, and C. S. Serra. The Zephyr
abstract syntax description language. In Proceedings of the USENIX
Conference on Domain-Specific Languages, pages 213-28, Berkeley,
CA, October 15-17 1997. USENIX Association.

S. Weirich. Type-safe cast: (functional pearl). ACM SIGPLAN No-
tices, 35(9):58-67, September 2000.

H. Westra. Configurable transformations for high-quality automatic
program improvement — CobolX: a case study. Master’s thesis, De-
partment of Computer Science, Utrecht University, January 2002. Ap-
peared as technical report INF/SCR-02-01.

BIBLIOGRAPHY

181

[Wil97]

[Win97]

[WOL+98]

[WR99]

[XSL99]

D. S. Wile. Abstract syntax from concrete syntax. In Proceedings
of the 19th International Conference on Software Engineering (ICSE
’97), pages 472-480, Berlin - Heidelberg - New York, May 1997.
Springer.

N. Winstanley. Derive User Guide, version 1.0. Available at
http://www.dcs.gla.ac.uk/“nww/Derive/, June 1997.

S. Woods, L. O’Brien, T. Lin, K. Gallagher, and A. Quilici. An archi-
tecture for interoperable program understanding tools. In 6th Interna-
tional Workshop on Program Comprehension (IWPC), pages 54-63.
IEEE, 1998.

M. Wallace and C. Runciman. Haskell and XML: Generic combina-
tors or type-based translation? ACM SIGPLAN Notices, 34(9):148-
159, September 1999. Proceedings of the International Conference
on Functional Programming (ICFP’99), Paris, France.

XSL Transformations (XSLT) Version 1.0, November 1999. W3C
Recommendation.

182 BIBLIOGRAPHY

Summary

Many areas of software engineering essentially involve analysis and transforma-
tion of source code representations. Generally, such representations are highly
heterogenous data structures. Examples are parse trees, abstract syntax trees, de-
pendency graphs, and call graphs. Preferably, the well-formedness of such data
structures is guarded by strong static type systems.

Unfortunately, when using traditional approaches, typeful programming is at
odds with conciseness, reusability, and robustness. Access to and traversal over
subelements of typed representations involves dealing with many specific types in
specific ways. As a consequence, type-safety comes at the cost of lengthy traver-
sal code, which can not be reused in different parts of the representation or for
differently typed representations, and which breaks with any change in the repre-
sentation type.

In this thesis we present techniques to remedy the dilemma between type-
safety on the one hand, and conciseness, reusability, and robustness on the other.
For representative typed languages from the functional and object-oriented pro-
gramming paradigms, viz Haskell and Java, we developed programming idioms
that allow program construction from combinators which support typeful generic
traversal. Using these combinators, program abstractions can be composed that
capture e.g. reusable traversal strategies or analysis and transformation schemas.
Though typeful, these abstractions need make little or no commitment to the spe-
cific type structure of the representations to which they are applied.

We have developed tool support to enable the application of our generic traver-
sal techniques to source code representations that involve large numbers of differ-
ent subelement types. These tools generate combinator support from SDF gram-
mars. Parsers and pretty-printers can be generated from the same grammars, as
well as the necessary code for representing and exchanging syntax trees between
parsers, traversal components, and pretty-printers. In fact, SDF grammars are em-
ployed as contracts that govern all tree exchange, representation, and processing in
a general multi-lingual architecture for source code analysis and transformation.

The practical applicability of all these techniques has been put to the test in
several case studies, ranging from procedure reconstruction for Cobol programs,
through static analysis of Toolbus scripts, to automated Java refactoring.

184 Summary

Samenvatting

In veel gebieden van de software engineering spelen analyse en transformatie van
broncoderepresentaties een essentiéle rol. In het algemeen zijn dit soort repre-
sentaties zeer heterogene datastructuren. Voorbeelden hiervan zijn ontleedbomen,
abstracte syntaxbomen, afhankelijkheidsgrafen, en aanroepgrafen. Bij voorkeur
wordt de welgevormdheid van dit soort datastructuren bewaakt door een systeem
van sterke, statische, types.

Wanneer men traditionele methoden gebruikt, is getypeerd programmeren he-
laas strijdig met beknoptheid, herbruikbaarheid en robuustheid van de code. Voor
het benaderen en aflopen (traversal) van deelelementen van getypeerde represen-
taties is men gedwongen grote aantallen specifieke types op specifieke manieren
te behandelen. Hierdoor brengt type-veiligheid met zich mee dat code voor het
aflopen van representaties langdradig is, niet herbruikt kan worden voor verschil-
lende delen van de representatie of voor verschillende representaties, en bovendien
aanpassing vereist bij elke verandering in het representatietype.

In dit proefschrift presenteren wij technieken om het dilemma te verhelpen
tussen type-veiligheid enerzijds, en beknoptheid, herbruikbaarheid en robuust-
heid anderzijds. \oor representatieve getypeerde talen uit de paradigma’s voor
functioneel en object-gedrienteerd programmeren, hebben wij programmeeridi-
omen ontwikkeld voor het samenstellen van programma’s uit combinatoren die
ondersteuning bieden voor het aflopen van representaties op een wijze die zo-
wel getypeerd als generiek is. Met gebruikmaking van deze combinatoren kunnen
programma-abstracties samengesteld worden die bijvoorbeeld herbruikbare navi-
gatiestrategieén of analyse- en tranformatieschemas implementeren. Ondanks hun
getypeerdheid zijn deze abstracties niet of nauwelijks gebonden aan de specifieke
typestructuur van de representaties waarop zij worden toegepast.

Om het mogelijk te maken onze technieken voor het op generiek wijze aflopen
van getypeerde representaties toe te passen op broncoderepresentaties die bestaan
uit grote aantallen verschillende deelelementtypen, hebben wij ondersteunende ge-
reedschappen ontwikkeld. Uit SDF grammatica’s wordt door deze gereedschappen
code gegenereerd die het programmeren met combinatoren ondersteunt. Ontleders
en pretty-printers kunnen uit dezelfde grammatica’s gegenereerd worden, alsmede

186

Samenvatting

alle code die benodigd is voor het representeren en uitwisselen van syntaxbomen
tussen ontleders, pretty-printers, en de uit combinatoren samengestelde compo-
nenten. In feite worden zo SDF grammatica’s gebruikt als contracten voor alle
uitwisseling, representatie en verwerking van broncode in een algemene, meerta-
lige architectuur voor broncode-analyse en -transformatie.

De praktische toepashaarheid van al deze technieken beproefd in diverse si-
tuaties, variérend van procedure-reconstructie uit Cobol programma’s, via stati-
sche analyse van Toolbus scripts, tot automatische herfactorisatie van Java pro-
gramma’s.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Al-
gebra. Faculty of Mathematics and Computing
Science, TUE. 1996-01

A.M. Geerling. Transformational Development
of Data-Parallel Algorithms. Faculty of Mathe-
matics and Computer Science, KUN. 1996-02

P.M. Achten. Interactive Functional Programs:
Models, Methods, and Implementation. Faculty
of Mathematics and Computer Science, KUN.
1996-03

M.G.A. Verhoeven. Parallel Local Search. Fac-
ulty of Mathematics and Computing Science,
TUE. 1996-04

M.H.G.K. Kesseler. The Implementation of
Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathematics
and Computer Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics and
Computing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchroniza-
tion, and Fault-Tolerance. Faculty of Mathemat-
ics and Computer Science, UVA. 1996-07

H. Doornbos. Reductivity Arguments and Pro-
gram Construction. Faculty of Mathematics and
Computing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and
its Denotational Dual. Faculty of Mathematics
and Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing
Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Specifi-
cation Formalism. Faculty of Mechanical Engi-
neering, TUE. 1996-11

P. Severi de Santiago. Normalisation in Lambda
Calculus and its Relation to Type Inference. Fac-
ulty of Mathematics and Computing Science,
TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Faculty
of Mathematics and Computing Science, TUE.
1996-13

M.M. Bonsangue. Topological Dualities in Se-
mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-
tions in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in
Logic and Mathematics. Faculty of Mathematics
and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-
plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra.
Faculty of Mathematics and Computing Science,
TUE. 1997-06

FA.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Math-
ematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event
Simulator for Systems Engineering. Faculty of
Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for
Multiprocessor Computation. Faculty of Mathe-
matics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-
Power 80C51 Microcontroller. Faculty of Math-
ematics and Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design
with Petri Nets and Process Algebra. Faculty
of Mathematics and Computing Science, TUE.
1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping — A Relational Model. Faculty
of Mathematics and Computing Science, TUE.
1999-01

H. ter Doest. Towards Probabilistic Unification-
based Parsing. Faculty of Computer Science,
UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of
Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolu-
tionary Search. Faculty of Mathematics and Nat-
ural Sciences, UL. 1999-04

E.l. Barakova. Learning Reliability: a Study on
Indecisiveness in Sample Selection. Faculty of
Mathematics and Natural Sciences, RUG. 1999-
05

M.P. Bodlaender. Schedulere Optimization
in Real-Time Distributed Databases. Faculty
of Mathematics and Computing Science, TUE.
1999-06

M.A. Reniers. Message Sequence Chart: Syn-
tax and Semantics. Faculty of Mathematics and
Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics and
Computing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols
with Formal Methods. Faculty of Computer Sci-
ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10

G. Fabian. A Language and Simulator for Hy-
brid Systems. Faculty of Mechanical Engineer-
ing, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts and
Proof Rules. Faculty of Mathematics and Com-
puting Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural
Prediction System. Faculty of Mathematics and
Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation
of Attribute Grammars. Faculty of Mathematics
and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Par-
allel Progam Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft
in the Dutch Republic. Faculty of Mathematics
and Computer Science, UvVA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design
of Delay-Insensitive Communicating Processes.
Faculty of Mathematics and Natural Sciences,
RUG. 2000-03

W.O.D. Griffioen. Studies in Computer Aided
Verification of Protocols. Faculty of Science,
KUN. 2000-04

P.H.FM. Verhoeven. The Design of the Math-
Spad Editor. Faculty of Mathematics and Com-
puting Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant. Faculty of Mechanical Engi-
neering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving
Correct Programs. Faculty of Mathematics and
Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Het-
erogeneous Applications. Faculty of Natural
Sciences, Mathematics and Computer Science,
UVA. 2000-08

E. Saaman. Another Formal Specification Lan-
guage. Faculty of Mathematics and Natural Sci-
ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search
Discovering and Representing Search Space
Structure. Faculty of Mathematics and Natural
Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observation
and communication. Faculty of Mathematics and
Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs
in higher order logic using PVS and Isabelle.
Faculty of Science, KUN. 2001-03

1.M.M.J. Reymen. Improving Design Processes
through Structured Reflection. Faculty of Math-
ematics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax
and semantics. Faculty of Sciences, Division

of Mathematics and Computer Science, VUA.
2001-05

R. van Liere. Studies in Interactive Visualiza-
tion. Faculty of Natural Sciences, Mathematics
and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Test-
ing of Event Sequences. Faculty of Mathematics
and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natural
Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology: A
Case-study into Acute Effects of Air Pollution
Episodes. Faculty of Mathematics and Natural
Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking.
Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concur-
rency control and recovery protocols. Faculty
of Mathematics and Computing Science, TU/e.
2001-11

M.D. Oostdijk. Generation and presentation
of formal mathematical documents. Faculty
of Mathematics and Computing Science, TU/e.
2001-12

A.T. Hofkamp. Reactive machine control: A
simulation approach using x. Faculty of Me-
chanical Engineering, TU/e. 2001-13

D. BoSnacki. Enhancing state space reduction
techniques for model checking. Faculty of Math-
ematics and Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelli-
gent Data Analysis: theoretical and experimen-
tal aspects. Faculty of Mathematics and Natural
Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification
and Analysis of Industrial Systems. Faculty of
Mathematics and Computer Science and Faculty
of Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Natural
Sciences, Mathematics and Computer Science,
UVA. 2002-03

S.P. Luttik. Choice Quantification in Process
Algebra. Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UVA. 2002-04

R.J. Willemen. School Timetable Construction:
Algorithms and Complexity. Faculty of Mathe-
matics and Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: \erification
of Probabilistic, Real-time and Parametric Sys-
tems. Faculty of Science, Mathematics and Com-
puter Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.
Faculty of Mathematics and Natural Sciences,
UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and
Cost-Optimality in Model Checking of Timed and
Hybrid Systems. Faculty of Science, Mathemat-
ics and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Pack-
ing. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-09

D. Tauritz. Adaptive Information Filtering:
Concepts and Algorithms. Faculty of Mathemat-
ics and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics
for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UVA. 2002-11

J.I. den Hartog. Probabilistic Extensions of Se-
mantical Models. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA.
2002-12

L. Moonen. Exploring Software Systems. Fac-
ulty of Natural Sciences, Mathematics, and Com-
puter Science, UVA. 2002-13

J.1. van Hemert. Applying Evolutionary Com-
putation to Constraint Satisfaction and Data
Mining. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-14

S. Andova. Probabilistic Process Algebra. Fac-
ulty of Mathematics and Computer Science,
TUle. 2002-15

Y.S. Usenko. Linearization in pCRL. Faculty
of Mathematics and Computer Science, TU/e.
2002-16

J.J.D. Aerts. Random Redundant Storage for
Video on Demand. Faculty of Mathematics and
Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Tech- J.M.W. Visser. Generic Traversal over Typed
niques for component composition and construc- Source Code Representations. Faculty of Natural
tion. Faculty of Natural Sciences, Mathematics, Sciences, Mathematics, and Computer Science,
and Computer Science, UvA. 2003-02 UvVA. 2003-03

