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Abstract

This report describes the development of an industrial strength grammar
for the VDM specification language. We present both the development
process and its result. The employed methodology can be described as
iterative grammar engineering and includes the application of techniques
such as grammar metrication, unit testing, and test coverage analysis.
The result is a VDM grammar of industrial strength, in the sense that
it is well-tested, it can be used for fast parsing of high volumes of VDM
specifications, and it allows automatic generation of support for syntax
tree representation, traversal, and interchange.
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1 Introduction

Formal specifications are software artifacts. Some specifications are small,
scribbled on paper, and thrown away when coding starts. However, when
used as integral part of software development, specifications, like pro-
grams, go through a long-term evolution process involving initial devel-
opment and prolonged maintenance. As a result, specifications are vul-
nerable to legacy problems, just as programs are.

In this report, we approach the VDM specification language (VDM-
SL) from a software legacy perspective. This is justified because:

– VDM-SL specifications have been developed in industrial context and
are relied upon by companies to ensure the quality of their software
systems.

– Tool support for VDM-SL developed in the past is no longer available
or actively maintained (Adellard’s SpecBox, which is still available,
was originally released in 1988 and the latest version is from 1996;
IFAD’s VDMTools are no longer available and the lastest release was
in 2000).

As is the case with legacy programming languages, additional tool sup-
port can alleviate such legacy problems. In particular, the specification
analogues of program understanding, reverse engineering, and migration
could benefit from appropriate tool support.

For the development of such tool support, we advocate a grammar-
centered approach. In such an approach, the grammar of the language
in question is used for much more than single-platform parser genera-
tion. The grammar is used to generate parsers for different platforms (i.e.
programming languages), but also pretty-printers, abstract and concrete
syntax tree representations, serialization and interchange components,
and syntax tree traversal support.

Unlike traditional Yacc-style parser specifications, grammars that are
used in such a central role need to be semantics-free, and they must be
neutral with respect to target platform. Also, since any grammar change
potentially leads to changes in many tools that depend on it, these gram-
mars must reach a high level of maturity before tool development starts.
We contend that for the development of grammars with such characteris-
tics the use of advanced grammar engineering techniques such as grammar
metrics, grammar unit testing, and coverage analysis are essential.

In this report, we describe the development of a high-quality gram-
mar of the VDM-SL language. In Section 2 we describe the tool-based



Tiago Alves and Joost Visser 3

grammar engineering methodology that we employed. In Section 3 we
describe the actual development process and its intermediate and final
deliverables. In Section 4 the metric values for the VDM grammar are
compared with the values for a series of other grammars. Finally, the re-
port is concluded in Section 5. The full SDF grammar of the ISO VDM-SL
language is included in an appendix.

2 Grammar Engineering

Grammar engineering is an emerging field of software engineering that
aims to apply solid software engineering techniques to grammars, just
as they are applied to other software artifacts. Such techniques include
version control, static analysis, and testing. In this section we discuss the
grammar engineering techniques that we adopted, and how we adapted
them to the specific process of developing an SDF grammar for VDM-SL.
In Section 5.2, a more general discussion of related grammar engineering
work is provided.

2.1 Grammar-centered tool development

In traditional approaches to language tool development, the grammar of
the language is encoded in a parser specification. Commonly used parser
generators include Yacc, Antlr, and JavaCC. The parser specifications
consumed by such tools are not general context-free grammars. Rather,
they are grammars within a proper subset of the class of context-free
grammars, such as LL(1), or LALR. Entangled into the syntax defini-
tions are semantic actions in a particular target programming language,
such as C, C++ or Java. As a consequence, the grammar can serve only
a single purpose: generate a parser in a single programming language,
with a singly type of associated semantic functionality (e.g. compilation,
tree building, metrics computation). For a more in-depth discussion of
the disadvantages of traditional approaches to language tool development
see [21].

For the development of language tool support, we advocate a grammar-
centered approach [10]. In such an approach, the grammar of a given
language takes a central role in the development of a wide variety of
tools or tool components for that language. For instance, the grammar
may be used to generate parsing components to be used in combination
with several different programming languages. In addition, the grammar
serves as basis for the generation of support for representation of abstract
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Fig. 1. Grammar-centered approach to language tool development.

syntax, serialization and de-serialization in various formats, customizable
pretty-printers, and support for syntax tree traversal. This approach is
illustrated by the diagram in Figure 1.

For the description of grammars that play such central roles, it is es-
sential to employ a grammar description language that meets certain cri-
teria. It must be neutral with respect to target implementation language,
it must not impose restrictions on the set of context-free languages that
can be described, and it should allow specification not of semantics, but
of syntax only. Possible candidates are BNF or EBNF, or our grammar
description of choice: SDF [7, 22].

The syntax definition formalism SDF allows description of both lex-
ical and context-free syntax. It adds even more regular expression-style
construct to BNF than EBNF does, such as separated lists. It offers a flex-
ible modularization mechanism that allows modules to be mutually de-
pendent, and distribution of alternatives of the same non-terminal across
multiple modules. Various kinds of tool support are available for SDF,
such as a well-formedness checker, a GLR parser generator, generators
of abstract syntax support for various programming languages, among
which Java, Haskell, and Stratego, and customizable pretty-printer gen-
erators [3, 23, 14, 12, 9].

2.2 Grammar evolution

Grammars for sizeable languages are not created instantaneously, but
through a prolonged, resource consuming process. After an initial version
of a grammar has been created, it goes through an evolutionary process,
where piece-meal modifications are made at each step. After delivery of
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the grammar, evolution may continue in the form of corrective and adap-
tive maintenance.

A basic instrument in making such evolutionary processes tractable is
version control. We have chosen the Concurrent Versions System (CVS)
as the tool to support such version control [5].

In grammar evolution, different kinds of transformation steps occur:

Recovery: An initial version of the grammar may be retrieved by reverse
engineering an existing parser into a grammar description format, or
by converting a language reference manual, available as Word or PDF
document, or perhaps only in hardcopy, into such format.

Error correction: Making the grammar complete, fully connected, and
correct by supplying missing production rules, or adapting existing
ones.

Extension or restriction: Adding rules to cover the constructs of an
extended language, or removing rules to limit the grammar to some
core language.

Refactoring: changing the shape of the grammar, without changing its
semantics, i.e. without changing the language that is generated by it.
Such shape changes may be motivated by different reasons. For in-
stance, changing the shape may make the description more concise,
easier to understand, or it may enable subsequent correction, exten-
sions, or restrictions.

In our case, grammar descriptions will include disambiguation informa-
tion, so adding disambiguation information is yet another kind of trans-
formation step present in our evolution process.

2.3 Grammar testing

In software testing, a global distinction can be made between white box
testing and black box testing. In black box testing, also called functional
or behavioural testing, only the external interface of the subject system
is available. In white box testing, also called unit testing, the internal
composition of the subject system is taken into consideration, and the
individual units of this composition can be tested separately.

In grammar testing, we make a similar distinction between functional
tests and unit tests. A functional grammar test will use complete VDM-SL
specifications as test data. The grammar is tested by generating a parser
from it and running this parser on such specifications. Test observations
are the success or failure of the parser on a specification, and perhaps
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its time and space consumption. A unit test will use fragments of VDM-
SL specifications as test data. Typically, such fragments are composed
by the grammar developer to help him detect and solve specific errors
in the grammar, and to protect himself from reintroducing the error in
subsequent development iterations. In addition to success and failure ob-
servations, unit tests may observe the number of ambiguities that occur
during parsing, or the shape of the parse trees that are produced.

2.4 Grammar metrics

Quantification is an important instrument in understanding and control-
ling grammar evolution, just as it is for software evolution in general.
We have adopted, adapted, and extended the suite of metrics defined for
BNF in [18] and implemented a tool, called SdfMetz, to collect grammar
metrics for SDF grammars. Here, we will provide a brief description of
the metrics we used during the development of the VDM grammar. Full
details about the definition and the implementation of these SDF metrics
are provided in [1].

SDF differs from (E)BNF in more than syntax. For instance, it allows
several productions for the same non-terminal. This forced us to choose
between using the number of productions or the number of non-terminals
in some metrics definitions. Furthermore, SDF grammars contain more
than just context-free syntax. They also contain lexical syntax and disam-
biguation information. We decided to apply the metrics originally defined
for BNF only to the context-free syntax, to make comparisons possible
with the results of others. For the disambiguation information a dedi-
cated set of metrics was defined. Thus, we will discuss several categories
of metrics: size, complexity, and structure metrics, Halstead metrics, and
disambiguation metrics.

Size, complexity, and structure metrics Figure 2 lists a number of size,
complexity, and structure metrics for grammars. These metrics are defined
for BNF in [18]. The number of terminals (TERM) and non-terminals
(VAR) are simple metrics applicable equally to BNF and SDF. McCabe’s
cyclometric complexity (MCC), originally defined for program complex-
ity, was adapted for BNF grammars, based on an analogy between gram-
mar production rules and program procedures. Using the same analogy,
MCC can be extended easily to cover the operators that SDF adds to
BNF.

The average size of right-hand sides (AVS) needs to be adapted to
SDF with more care. In (E)BNF the definition of AVS is trivial: count
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Size and complexity metrics

TERM Number of terminals
VAR Number of non-terminals
MCC McCabe’s cyclometric complexity
AVS Average size of RHS

Structure metrics

TIMP Tree impurity (%)
CLEV Normalized count of levels (%)
NSLEV Number of non-singleton levels
DEP Size of largest level
HEI Maximum height

Fig. 2. Size and complexity metrics for grammars.

Halstead metrics

n1 Number of distinct operators
n2 Number of distinct opreands
N1 Total number of operators
N2 Total number of operands
n Program vocabulary
N Program length
V Program volume
D Program difficulty
E Program effort
L Program level
T Program time

Fig. 3. Halstead metrics for grammars

the number of terminals and non-terminals on the right-hand side of each
grammar rule, sum these numbers, and divide them by the number of
rules. In SDF, this definition can be interpreted in two ways, because each
non-terminal can have several productions associated to it. Therefore, we
decided to split AVS into two separate metrics: average size of right-hand
sides per production (AVS-P) and average size of right-hand sides per
non-terminal (AVS-N).

Halstead metrics The Halstead Effort metric [6] has also been adapted for
BNF grammars [18]. We will show values not only for Halstead’s effort
metric but also for some of its ingredient metrics and related metrics.
Figure 3 shows a full list. The essential step in adapting Halstead’s metrics
to grammars is to interpret the notions of operand and operator in the
context of grammars. For details of how we extended this interpretation
from BNF to SDF we refer again to [1].
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Ambiguity metrics

FRST Number of follow restrictions
ASSOC Number of associativity attributes
REJP Number of reject productions
UPP Number of unique productions in priorities

TUPG Total number of unique productions per group
TNPC Total number of priority chains
TNG Total number of priority groups

Fig. 4. Ambiguity metrics for grammars

Ambiguity metrics In SDF, disambiguation constructs are provided in
the same formalism as the syntax description itself. To quantify this part
of SDF grammars, we defined a series of metrics, which are shown in
Figure 4.

2.5 Coverage metrics

To determine how well a given grammar has been tested, a commonly
used indicator is the number of non-empty lines in the test suites. We
computed these numbers for our functional test suite and unit test suite.

A more reliable instrument to determine grammar test quality is cov-
erage analysis. We have adopted the rule coverage (RC) metric [19] for
this purpose. The RC metric simply counts the number of production
rules used during parsing of a test suite, and expresses it as a percentage
of the total number of production rules of the grammar.

In the case of SDF, several interpretations of RC are possible, due to
the fact that a single non-terminal may be defined by multiple produc-
tions. One possibility is to count each of these alternative productions
separately. Another possibility is to count different productions of the
same non-terminal as one. For comparison with rule coverage for BNF
grammars, the latter is more appropriate. However, the former gives a
more accurate indication of how extensively a grammar is covered by
the given test suite. Below we report both under the names of RC (rule
coverage) and NC (non-terminal coverage), respectively.

An even more accurate indication can be obtained with context-depen-
dent rule coverage [15]. This metric takes into account not just whether
a given production is used, but also whether it has been used in each
context (use site) where it can actually occur. However, implementation
and computation of this metric is more involved.
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3 Development of the VDM grammar

In this section we describe the evolution of the VDM-SL grammar. We
describe the release plan and its execution. We provide measurement data
on the evolution process and interpretations of the measured values. We
describe the test suites used, and the evolution of the unit tests during
development.

3.1 Scope and priorities

Language Though we are interested in developing grammars for various
existing VDM dialects, such as IFAD VDM and VDM++, we limited the
scope of the initial project to the VDM-SL language as describe in the
ISO VDM-SL standard [8].

Grammar shape Not only should the parser generate the VDM-SL
language exactly as defined in the standard, we also want the shape of
the grammar, the names of the non-terminals, and the module structure
to correspond closely to the grammar. We want to take advantage of
SDF’s advanced regular expression-style constructs wherever this leads
to additional conciseness and understandability.

Parsing and parse trees Though the grammar should be suitable for
generation of a wide range of tool components and tools, we limited the
scope of the initial project to development of a grammar from which
a GLR parser can be generated. The generated parser should be well-
tested, exhibit acceptable time and space consumption, parse without
ambiguities, and build abstract syntax trees that correspond as close as
possible to the abstract syntax defined in the ISO standard.

3.2 Release plan

Based on the defined scope and priorities, a release plan was drawn up
with three releases within the scope of the initial project:

Initial grammar Straightforward transcription of the concrete syntax
BNF specification of the ISO standard into SDF notation. Introduc-
tion of extended SDF constructs.

Disambiguated grammar Addition of disambiguation information to
the grammar, to obtain a grammar from which a non-ambiguous GLR
parser can be generated.
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Refactored grammar Addition of constructor attributes to context-
free productions to allow generated parsers to automatically build
ASTs with constructor names corresponding to abstract syntax of
the standard. Changes in the grammar shape to better reflect the tree
shape as intended by the abstract syntax in the standard.

The following functionalities have explicitly been kept outside the scope
of the initial project, and are planned to be added in follow-up projects:

– Haskell front-end1. Including generated support for parsing, pretty-
printing, AST representation, AST traversal, marshalling ASTs to
XML format and back, marshalling of ASTs to ATerm format and
back.

– Java front-end. Including similar generated support.
– IFAD VDM-SL extensions, including module syntax.
– VDM object-orientation extension (VDM++).
– Higher test coverage (through test suite development and/or genera-

tion).

3.3 Grammar creation and transformation

To accurately keep track of all grammar changes, for each transforma-
tion a new revision was created. This led to the creation of a total of 48
development versions. While the first and the latest release versions (ini-
tial and refactored) correspond to development versions 1 and 48 of the
grammar, respectively, the intermediate release version (disambiguated)
corresponds to development version 32.

The initial grammar The grammar was typed from the hardcopy of
the ISO Standard [8]. Apart from changing syntax from BNF to SDF,
the following was involved in this transcription.

Added SDF constructs Although a direct transcription from EBNF
specification was possible, we preferred to use SDF specific constructs.
For instance consider the following excerpt from the ISO VDM-SL
BNF grammar:

product type = type, "*", type, { "*", type} ;

During transcription this was converted to:
1 At the time of writing, a release with this functionality has been completed.
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{ Type "*" }2+ -> ProductType

Both excerpts define the same language. Apart from the syntactic
differences from BNF to SDF, the difference is that SDF has special
constructs that allows definition of the repetition of a non-terminal
separated by a terminal. In this case, the non-terminal Type appears
at least two times and is always separated by the terminal "*".

Detected top and bottom sorts To help the manual process of typ-
ing the grammar a small tool was developed to detect top and bottom
sorts. This tool helped to indicate typos required to restore connect-
edness. More than one top sort, or a bottom sort that is not a lexical
(regular-expressions) indicates that a part of the grammar is not con-
nected. This tool provided a valuable help not only in this phase but
also during the overall development of the grammar.

Modularized the grammar BNF does not support modularization. The
ISO Standard separate concerns by dividing the BNF rules over sec-
tions. SDF does support modules, which allowed us to modularize the
grammar following the sectioning of the ISO standard.

Added lexical syntax In SDF, lexical syntax can be defined in the
same grammar as context-free syntax, using the same notation. In
the ISO standard, lexical syntax is described in an adhoc notation
resembling BNF, without clear semantics. We interpreted this lexical
syntax description and converted it into SDF. Obtaining a complete
and correct definition required renaming some lexical non-terminals
and providing additionl definitions.

Disambiguation In SDF, disambiguation is specified by means of ded-
icated disambiguation constructs [20]. These are specified more or less
independently from the context-free grammar rules. The constructs are
associativity attributes, priorities, reject productions and lookahead re-
strictions.

In the ISO standard, disambiguation is described in detail by means
of tables and a semi-formal textual notation. We interpreted these de-
scriptions and expressed them with SDF disambiguation constructs. This
was not a completely straightforward process, in the sense that it is not
possible to simply translate the information of the standard document to
SDF notation. In some cases, the grammar must respect specific patterns
in order enable disambiguation. For each disambiguation specified, a unit
test was created.
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Origin LOC RC NC

Specification of the MAA standard (Graeme Parkin) 269 19% 30%
Abstract data types (Matthew Suderman and Rick Sutcliffe) 1287 37% 53%
A crosswords assistant (Yves Ledru) 144 28% 43%
Modelling of Realms in (Peter Gorm Larsen) 380 26% 38%
Exercises formal methods course Univ. do Minho (Tiago Alves) 500 35% 48%

Total 2580 50% 70%

Table 1. Integration test suite. The second column gives the number of code lines.
The third and fourth columns gives coverage values for the final grammar.

Refactoring As already mentioned, the purpose of this release was to
automatically generate ASTs following the ISO standard as close as pos-
sible. Two operations were performed:

– added constructor attributes to the contex-free rules
– removed injections to make the AST nicer

The removal of the injections needs further explanation. We call a pro-
duction rule an injection when it is the only defining production of its
non-terminal, and its right-hand side contains exactly one (different) non-
terminal. Such injections were actively removed from the grammar, be-
cause they needlessly increase the size of the grammar and reduce its
readability.

3.4 Test suites

Integration test suite The body of VDM-SL code that strictly adheres
to the ISO standard is rather small. Most industrial applications have
been developed with tools that support some superset or other deviation
from the standard, such as VDM++. We have constructed an integration
test suite by collecting specifications from the internet2. A preprocessing
step was done to extract VDM-SL specification code from literate speci-
fications. We manually adapted specifications that did not adhere to the
ISO standard.

Table 1 lists the suite of integration tests that we obtained in this way.
The table also shows the lines of code (excluding blank lines) that each
test specification contains, as well as the rule coverage (RC) and non-
terminal coverage (NC) metrics for each. The coverage metrics shown
were obtained with the final, refactored grammar.
2 A collection of specifications is available from http://www.csr.ncl.ac.uk/vdm/.
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Fig. 5. The evolution of unit tests during development. The x-axis represents the 48
development versions. The three release versions among these are 1, 32, and 48. The
left y-axis corresponds to lines of unit test code. Rule coverage (RC) and non-terminal
coverage (NC) are shown as well.

Version term var mcc avs-n avs-p hal timp clev nslev dep hei

initial 138 161 234 4.4 2.3 55.4 1% 34.9 4 69 16
disambiguated 138 118 232 6.4 2.8 61.1 1.5% 43.9 4 39 16
refactored 138 71 232 10.4 3.3 68.2 3% 52.6 3 27 14

Table 2. Grammar metrics for the three release versions.

Note that in spite of the small size of the integration test suite in terms
of lines of code, the test coverage it offers for the grammar is satisfactory.
Still, since test coverage is not 100%, a follow-up project specifically aimed
at enlarging the integration test suite would be justified.

Unit tests During development, unit tests were created incrementally.
For every problem encountered, one or more unit tests were created to
isolate the problem.

We measured unit tests development during grammar evolution in
terms of lines of unit test code, and coverage by unit tests in terms of rules
(RC) and non-terminals (NC). This development is shown graphically in
Figure 5. As the chart indicates, all unit tests were developed during the
disambiguation phase, i.e. between development versions 1 and 32. There
is a small fluctuation in the beginning of the disambiguation process that
is due to unit-test strategy changes. Also, between version 23 and 32 unit
tests were not added, because the shape of the tree was being tested and
this is not covered by our unit-test.

During the refactoring phase, the previously developed unit tests were
used to prevent introducing errors unwittingly. Small fluctuations of cov-
erage metrics during this phases are strictly due to variations in the total
numbers of production rules and non-terminals.
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Fig. 6. The evolution of grammar metrics during development. The x-axis represents
the 48 development versions.

3.5 Grammar evolution

We measured grammar evolution in terms of the size, complexity, and
structure metrics introduced above. This development is summarized in
Table 2. This table shows the values of all metrics for the three released
versions. In addition, Figure 6 graphically plots the evolution of a selection
of the metrics for all 48 development versions.

Size and complexity metrics A first important observation to make
is that the number of terminals is constant throughout grammar devel-
opment. This is conform to expectation, since all keywords and symbols
of the language are present from the first grammar version onward.

The initial number of 161 non-terminals decreases via 118 after dis-
ambiguation to 71 after refactoring. These numbers are the consequence
of changes in grammar shape where non-terminals are replaced by their
definition. In the disambiguation phase (43 non-terminals removed), such
non-terminal inlining (unfolding) was performed to make formulation of
the disambiguation information possible, or easier. For instance, after in-
lining, simple associativity attributes would suffice to specify disambigua-
tion, while without inlining more elaborate reject productions might have
been necessary. In the refactoring phase (47 non-terminals removed), the
inlinings performed were mainly removals of injections. These were per-
formed to make the grammar easier to read, more concise, and suitable
for creation of ASTs closer to the abstract syntax specification in the
standard.

The value of the McCabe cyclometric complexity metric decreases by
2 during disambiguation, meaning that we eliminated two paths in the
flow graph of the grammar. This was caused by refactoring the syntax of



Tiago Alves and Joost Visser 15

product types and union types in similar ways. In case of product types,
the following two production rules:

ProductType -> Type
{ Type "*" }2+ -> ProductType

were replaced by a single one:

Type "*" Type -> Type

For union types, the same replacement was performed. The language gen-
erated by the grammar remained the same after these refactorings, but
disambiguation became possible.

The average rules size metrics, AVS-N and AVS-P increase signifi-
cantly. These increases are also due to inlining of non-terminals. Natu-
rally, when a non-terminal with a right-hand size of more than 1 is inlined,
the number of non-terminals decreases by 1, and the right-hand sides of
the productions in which the non-terminal was used goes up. The increase
of AVS-N is roughly by a factor of 2.4, while the increase of AVS-P is by a
factor of 1.4. Both the absolute values and the increase of AVS-P are more
in accordance with numbers reported in the literature for AVS defined for
BNF.

The value of the Halstead Effort metric (HAL) fluctuates during de-
velopment. It starts at 228K in the initial grammar, and immediately
rises to 255K. This initial rise is directly related to the removal of 32 non-
terminals. The value then rises more calmly to 265K, but drops again
abruptly towards the end of the disambiguation phase, to the level of
236K. During refactoring, the value rises again to 255K, drops briefly to
224K, and finally stabilizes at 256K.

Tree impurity (TIMP) measures how much the grammar’s flow graph
resembles a tree, expressed as a percentage. The low values for this mea-
sure indicates that our grammar is almost a tree, and the dependency
complexity is low. As the grammar evolves, the tree impurity increases
steadily, from little more than 1%, to little over 3%. This development
can be attributed directly to the non-terminal inling that was performed.
When a non-terminal is inlined, the flow graph becomes smaller, but the
number of cycles remains equal, i.e. the ratio of the latter becomes higher.

Normalized count of levels (CLEV) indicates roughly the percentage
of modularizability, if grammar levels (strongly connected components in
the flow graph) are considered as modules. Throughout development, the
number of levels goes down (from 58 to 40; values are not shown), but the
potential number of levels, i.e. the number of non-terminals, goes down
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Grammar term var mcc avs-n avs-p hal timp clev nslev dep hei

Fortran 77 21 16 32 8.8 3.4 26 11.7 95.0 1 2 7
ISO C 86 65 149 5.9 5.9 51 64.1 33.8 3 38 13
Java v1.1 100 149 213 4.1 4.1 95 32.7 59.7 4 33 23
AT&T SDL 83 91 170 5.0 2.6 138 1.7 84.8 2 13 15
ISO C++ 116 141 368 6.1 6.1 173 85.8 14.9 1 121 4

ECMA Standard C# 138 145 466 4.7 4.7 228 29.7 64.9 5 44 28
ISO VDM-SL 138 71 232 10.4 3.3 256 3.0 52.6 3 27 14
VS Cobol II 333 493 739 3.2 1.9 306 0.24 94.4 3 20 27
VS Cobol II (alt) 364 185 1158 10.4 8.3 678 1.18 82.6 5 21 15
PL/SQL 440 499 888 4.5 2.1 715 0.3 87.4 2 38 29

Table 3. Grammar metrics for VDM and other grammars. The italicized grammars are
in BNF, and their metrics are reproduced from [18]. The remaining grammars are in
SDF. Rows have been sorted by Halstead effort (HAL), which is reported in thousands.

more drastically (from 161 to 71). As a result, CLEV rises from 34% to
53%, meaning that the percentage of modularizability increases.

The number of non-singleton levels (NSLEV) of the grammar is 4
throughout most of its development, except at the end, where it goes down
to 3. Inspection of the grammar learns us that these 4 levels roughly corre-
spond to Expressions, Statement, Type and StateDesignators. The latter
becomes a singleton level towards the end of development due inlining.

The size of the largest grammer level (DEP) starts initially very high
at 69 non-terminals, but drops immediately to only 39. Towards the end
of development, this number drops further to 27 non-terminals in the
largest level.

The height of the level graph (HEI) is 16 throughout most of the
evolution of the grammar, but sinks slightly to 14 versus the end of de-
velopment.

4 Grammar comparisons

In this section we compare our grammar, in terms of metrics, to those
developed by others in SDF, and in Yacc-style BNF. The relevant numbers
are listed in Table 3, sorted by the value of the Haltstead metric (HAL).

The numbers for the grammars of C, Java, C++, and C# are repro-
duced from the same paper from which we adopted the various grammar
metrics [18]. These grammars were specified in BNF, or Yacc-like BNF
dialects. Note that for these grammars, the AVS-N and AVS-P metrics
are always equal, since the number of productions and non-terminals is
always equal in BNF grammars.



Tiago Alves and Joost Visser 17

The numbers for the remaining grammars were computed by us. These
grammars were all specified in SDF by various authors. Two versions of
the VS Cobol II grammar are listed: the one marked alt makes heavy use
of nested alternatives, while in the other one, such nested alternatives
have been folded into new non-terminals.

Note that the tree impurity (TIMP) values for the SDF grammar
are much smaller (between 0.2% and 12%) than for the BNF grammars
(between 29% and 86%). This can be attributed to SDF’s extended set of
regular expression-style constructs, which allow more kinds of iterations
to be specified without (mutually) recursive production rules.

In terms of Halstead effort, our VDM-SL grammar ranks quite high,
only behind the grammars of the giant Cobol and PL/SQL languages.

5 Concluding remarks

5.1 Contributions

This report documents the process of developing an industrial-strength
grammar for the VDM-SL language, taking its ISO standard as starting
point. We have monitored the development process with various grammar
metrics, and developed unit tests to guide the process of its disambigua-
tion. Apart from the grammar itself, the following contributions were
made:

– We extended the collection of metric reference data of [18] with values
for 6 additional grammars of widely used languages.

– We collected data for additional grammar metrics defined by us in [1].
– We showed how grammar testing, grammar metrication, and cover-

age analysis can be combined in systematic grammar development
process.

The resulting grammar is readily available from the authors web pages
under an open source license. Further development of the grammar takes
place in an open, collaborative fashion in the form of a SourceForge
project.3 It is already being used for development of new VDM tools
in the context of Formal Methods research [2]. We hope it will be of equal
utility to formal method tool initiatives such as the Overture project.4

3 See http://voodoom.sourceforge.net/.
4 See http://www.overturetool.org/.
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5.2 Related work

Malloy and Power have applied various software engineering techniques
during the development of a LALR parser for C# [17]. Their techniques
include versioning, testing, and the grammar size, complexity, and struc-
ture metrics that we adopted ([18], see Table 2). They do not measure
coverage, nor do they develop unit tests.

Lämmel et. al. have advocated derivation of grammars from lan-
guage reference documents through a semi-automatic transformational
process [13, 16]. In particular, they have applied their techniques to re-
cover the VS COBOL II grammar from railroad diagrams in an IBM
reference manual. They use metrication on grammars, though less exten-
sive than we. Coverage measurement nor unit tests are reported.

Klint et. al. provide an survey over grammar engineering techniques
and a agenda for grammar engineering research [11]. In the area of nat-
ural language processing, the need for an engineering appraoch and tool
support for grammar development has also been recognized [4, 24].

5.3 Future work

Lämmel generalized the notion of rule coverage and advocates the uses of
coverage analysis in grammar development [15]. When adopting a trans-
formational approach to grammar completion and correction, coverage
analysis can be used to improve grammar testing, and test set genera-
tion can be used to increase coverage. SDF tool support for such test set
generation and context-dependent rule coverage analysis has yet to be
developed.

We plan to extend the grammar in a modular way to cover other
dialects of the VDM-SL language, such as IFAD VDM and VDM++.
We have already generated Haskell support for VDM processing for the
grammar, and are planning to provide generate Java support as well.
The integration test suite deserves further extension in order to increase
coverage.

5.4 Availability

The final version of the ISO VDM-SL grammar in SDF (development
version 48, release version 0.0.3) is included in the appendix below. In
addition, this version is available as browseable hyperdocument from
http://voodoom.sourceforge.net/iso-vdm.html. All intermediate versions
can be obtained from the CVS repository at the project web site at
http://voodoom.sourceforge.net/.
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Appendix: ISO VDM-SL Grammar in SDF (final version)

definition

module Main
imports Document

module Document
imports Definitions
exports

sorts Document
context-free syntax

DefinitionBlock+ → Document {cons(“Document”)}

module Definitions
imports TypeDefinitions StateDefinition ValueDefinitions FunctionDefinitions

OperationDefinitions
exports

sorts DefinitionBlock
context-free syntax

TypeDefinitions → DefinitionBlock {cons(“DB-TypeDefinitions”)}
StateDefinition → DefinitionBlock {cons(“DB-StateDefinition”)}
ValueDefinitions → DefinitionBlock {cons(“DB-ValueDefinitions”)}
FunctionDefinitions → DefinitionBlock {cons(“DB-FunctionDefinitions”)}
OperationDefinitions → DefinitionBlock {cons(“DB-OperationDefinitions”)}

module TypeDefinitions
imports InvariantDefinition Expressions VDM-Syntax
exports

sorts TypeDefinitions FieldList Type FunctionType TypeVariableIdentifier
DiscretionaryType

context-free syntax
”types” { TypeDefinition ”;”}+ → TypeDefinitions {cons(“TypeDefinitions”)}
Identifier ”=” Type Invariant? → TypeDefinition {cons(“UnTaggedTypeDef”)}
Identifier ”::” FieldList Invariant? → TypeDefinition {cons(“TaggedTypeDef”)}
”(” Type ”)” → Type {bracket}
”bool” → Type {cons(“BOOL”)}
”nat” → Type {cons(“NAT”)}
”nat1” → Type {cons(“NATONE”)}
”int” → Type {cons(“INTEGER”)}
”rat” → Type {cons(“RAT”)}
”real” → Type {cons(“REAL”)}
”char” → Type {cons(“CHAR”)}
”token” → Type {cons(“TOKEN”)}
QuoteLiteral → Type {cons(“QuoteType”)}
”compose” Identifier ”of” FieldList ”end”

→ Type {cons(“CompositeType”)}
Type ”|” Type → Type {left,cons(“UnionType”)}
Type ”*” Type → Type {left,cons(”ProductType”)}
”[” Type ”]” → Type {cons(“OptionalType”)}
”set” ”of” Type → Type {cons(“SetType”)}
”seq” ”of” Type → Type {cons(“Seq0Type”)}
”seq1” ”of” Type → Type {cons(“Seq1Type”)}
”map” Type ”to” Type → Type {cons(“GeneralMapType”)}
”inmap” Type ”to” Type → Type {cons(“InjectiveMapType”)}
FunctionType → Type {cons(“FnType”)}
Name → Type {cons(“TypeName”)}
TypeVariableIdentifier → Type {cons(“TypeVar”)}
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Field* → FieldList {cons(“FieldList”)}
(Identifier ”:”)? Type → Field {cons(“Field”)}
DiscretionaryType ”−>” Type → FunctionType {cons(“PartialFnType”)}
DiscretionaryType ”−t>” Type → FunctionType {cons(“TotalFnType”)}
Type | (”(” ”)”) → DiscretionaryType {cons(“DiscretionaryType”)}
”@” Identifier → TypeVariableIdentifier {cons(“TypeVarId”)}

context-free priorities
{

”set” ”of” Type → Type
”seq” ”of” Type → Type
”seq1” ”of” Type → Type
”map” Type ”to” Type → Type
”inmap” Type ”to” Type → Type

} >
{

Type ”*” Type → Type
} >
{

Type ”|” Type → Type
} >
{

FunctionType → Type
}

module InvariantDefinition
imports Expressions PatternsAndBindings
exports

sorts Invariant InvariantInitialFunction
context-free syntax

”inv” InvariantInitialFunction → Invariant {cons(“Invariant”)}
Pattern ”==” Expression → InvariantInitialFunction {cons(“InvInitFn”)}

module StateDefinition
imports TypeDefinitions InvariantDefinition VDM-Syntax
exports

sorts StateDefinition
context-free syntax

”state” Identifier ”of” FieldList Invariant? Initialization? ”end”
→ StateDefinition {cons(“StateDef”)}

”init” InvariantInitialFunction → Initialization {cons(“Initialization”)}

module ValueDefinitions
imports TypeDefinitions Expressions PatternsAndBindings
exports

sorts ValueDefinitions ValueDefinition
context-free syntax

”values” { ValueDefinition ”;” }+ → ValueDefinitions {cons(“ValueDefinitions”)}
Pattern (”:” Type)? ”=” Expression → ValueDefinition {cons(“ValueDef”)}

module FunctionDefinitions
imports TypeDefinitions FunctionDefinitions Expressions PatternsAndBindings

VDM-Syntax
exports

sorts FunctionDefinitions Parameters ParameterTypes IdentifierTypePair
FunctionDefinition

context-free syntax
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”functions” { FunctionDefinition ”;” }+
→ FunctionDefinitions {cons(“FunctionDefinitions”)}

Identifier TypeVariableList? ”:” FunctionType Identifier
ParametersList ”==” Expression (”pre” Expression)?

→ FunctionDefinition {cons(“ExplFnDef”)}
Identifier TypeVariableList? ParameterTypes IdentifierTypePair

(”pre” Expression)? ”post” Expression
→ FunctionDefinition {cons(“ImplFnDef”)}

”[” { TypeVariableIdentifier ”,” }+ ”]”
→ TypeVariableList {cons(“TypeVarList”)}

Identifier ”:” Type → IdentifierTypePair {cons(“IdType”)}
”(” PatternTypePairList? ”)” → ParameterTypes {cons(“ParameterTypes”)}
{ PatternTypePair ”,” }+ → PatternTypePairList {cons(“PatTypePairList”)}
PatternList ”:” Type → PatternTypePair {cons(“PatTypePair”)}
Parameters+ → ParametersList {cons(“ParametersList”)}
”(” PatternList? ”)” → Parameters {cons(“Parameters”)}

module OperationDefinitions
imports TypeDefinitions FunctionDefinitions Expressions Statements VDM-Syntax
exports

sorts OperationDefinitions
context-free syntax

”operations” { OperationDefinition ”;” }+
→ OperationDefinitions {cons(“OperationDefinitions”)}

Identifier ”:” OperationType Identifier
Parameters ”==” Statement (”pre” Expression)?

→ OperationDefinition {cons(“ExplOprtDef”)}
Identifier ParameterTypes IdentifierTypePair? Externals?

(”pre” Expression)? ”post” Expression Exceptions?
→ OperationDefinition {cons(“ImplOprtDef”)}

DiscretionaryType ”==>” DiscretionaryType
→ OperationType {cons(“OpType”)}

”ext” VarInformation+ → Externals {cons(“Externals”)}
Mode NameList (”:” Type)? → VarInformation {cons(“VarInf”)}
”rd” → Mode {cons(“READ”)}
”wr” → Mode {cons(“READWRITE”)}
”errs” Error+ → Exceptions {cons(“Exceptions”)}
Identifier ”:” Expression ”−>” Expression

→ Error {cons(“Error”)}

module Expressions
imports TypeDefinitions Statements PatternsAndBindings VDM-Syntax
exports

sorts ExpressionList Expression NameList Name Maplet
context-free syntax
{ Expression ”,” }+ → ExpressionList {cons(“ExprList”)}
”(” Expression ”)” → Expression {bracket}
”let” { LocalDefinition ”,” }+ ”in” Expression

→ Expression {cons(“LetExpr”)}
”let” Bind (”be” ”st” Expression)? ”in” Expression

→ Expression {cons(“LetBeSTExpr”)}
”def” { DefBind ”;” }+ ”in” Expression → Expression {cons(“DefExpr”)}
PatternBind ”=” Expression → DefBind {cons(“DefBind”)}
”if” Expression ”then” Expression ElseIfExpression* ”else” Expression

→ Expression {cons(“IfExpr”)}
”elseif” Expression ”then” Expression → ElseIfExpression {cons(“ElsifExpr”)}
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”cases” Expression ”:” CasesExpressionAlternatives
(”,” OthersExpression)? ”end”

→ Expression {cons(“CasesExpr”)}
{ CasesExpressionAlternative ”,”}+

→ CasesExpressionAlternatives {cons(“CasesExprAlternatives”)}
PatternList ”−>” Expression

→ CasesExpressionAlternative {cons(“CaseAltn”)}
”others” ”−>” Expression

→ OthersExpression {cons(“OthersExpr”)}
”+” Expression → Expression {cons(“UnaryNumPlusExpr”)}
”−” Expression → Expression {cons(“UnaryNumMinusExpr”)}
”abs” Expression → Expression {cons(“NumAbsExpr”)}
”floor” Expression → Expression {cons(“FloorExpr”)}
”not” Expression → Expression {cons(“NotExpr”)}
”card” Expression → Expression {cons(“SetCardExpr”)}
”power” Expression → Expression {cons(“SetPowerExpr”)}
”dunion” Expression → Expression {cons(“SetDistrUnionExpr”)}
”dinter” Expression → Expression {cons(“SetDistrIntersectExpr”)}
”hd” Expression → Expression {cons(“SeqHeadExpr”)}
”tl” Expression → Expression {cons(“SeqTailExpr”)}
”len” Expression → Expression {cons(“SeqLenExpr”)}
”elems” Expression → Expression {cons(“SeqElemsExpr”)}
”inds” Expression → Expression {cons(“SeqIndicesExpr”)}
”conc” Expression → Expression {cons(“SeqDistrConcExpr”)}
”dom” Expression → Expression {cons(“MapDomExpr”)}
”rng” Expression → Expression {cons(“MapRngExpr”)}
”merge” Expression → Expression {cons(“MapDistrMergeExpr”)}
”inverse” Expression → Expression {cons(“MapInverseExpr”)}
Expression ”+” Expression → Expression {left,cons(“BinaryNumPlusExpr”)}
Expression ”−” Expression → Expression {left,cons(“BinaryNumMinusExpr”)}
Expression ”*” Expression → Expression {left,cons(“NumPlusExpr”)}
Expression ”/” Expression → Expression {left,cons(“NumDivExpr”)}
Expression ”div” Expression → Expression {left,cons(“IntDivExpr”)}
Expression ”rem” Expression → Expression {left,cons(“NumRemExpr”)}
Expression ”mod” Expression → Expression {left,cons(“NumModExpr”)}
Expression ”<” Expression → Expression {left,cons(“NumLtExpr”)}
Expression ”<=” Expression → Expression {left,cons(“NumLeExpr”)}
Expression ”>” Expression → Expression {left,cons(“NumGtExpr”)}
Expression ”>=” Expression → Expression {left,cons(“NumGeExpr”)}
Expression ”=” Expression → Expression {left,cons(“EqExpr”)}
Expression ”<>” Expression → Expression {left,cons(“NeExpr”)}
Expression ”or” Expression → Expression {assoc,cons(“OrExpr”)}
Expression ”and” Expression → Expression {assoc,cons(“AndExpr”)}
Expression ”=>” Expression → Expression {right,cons(“ImplyExpr”)}
Expression ”<=>” Expression → Expression {assoc,cons(“EquivExpr”)}
Expression (”in” ”set”) Expression

→ Expression {left,cons(“InSetExpr”)}
Expression (”not” ”in” ”set”) Expression

→ Expression {left,cons(“NotInSetExpr”)}
Expression ”subset” Expression → Expression {left,cons(“SubsetExpr”)}
Expression ”psubset” Expression → Expression {left,cons(“ProperSubsetExpr”)}
Expression ”union” Expression → Expression {left,cons(“SetUnionExpr”)}
Expression ”\\” Expression → Expression {left,cons(“SetDifference”)}
Expression ”inter” Expression → Expression {left,cons(“SetIntersect”)}
Expression ”ˆ” Expression → Expression {left,cons(“SeqConc”)}
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Expression ”++” Expression
→ Expression {left,prefer,cons(“MapOrSeqModExpr”)}

Expression ”munion” Expression → Expression {left,cons(“MapMergeExpr”)}
Expression ”<:” Expression → Expression {left,cons(“MapDomRestrToExpr”)}
Expression ”<−:” Expression → Expression {left,cons(“MapDomRestrByExpr”)}
Expression ”:>” Expression → Expression {left,cons(“MapRngRestrToExpr”)}
Expression ”:−>” Expression → Expression {left,cons(“MapRngRestrByExpr”)}
Expression ”comp” Expression → Expression {right,cons(“ComposeExpr”)}
Expression ”**” Expression → Expression {right,cons(“IterateExpr”)}
QuantifiedExpression → Expression {cons(“QuantExpr”)}
”forall” BindList ”&” Expression

→ QuantifiedExpression {cons(“AllExpr”)}
”exists” BindList ”&” Expression

→ QuantifiedExpression {cons(“ExistsExpr”)}
”exists1” BindList ”&” Expression

→ QuantifiedExpression {cons(“ExistsUniqueExpr”)}
”iota” Bind ”&” Expression → Expression {cons(“IotaExpr”)}
”{” ExpressionList? ”}” → Expression {cons(“SetEnumeration”)}
”{” Expression ”|” BindList (”&” Expression)? ”}”

→ Expression {cons(“SetComprehension”)}
”{” Expression ”,” ”...” ”,” Expression ”}”

→ Expression {cons(“SetRange”)}
”[” ExpressionList? ”]” → Expression {cons(“SeqEnumeration”)}
”[” Expression ”|” SetBind (”&” Expression)? ”]”

→ Expression {cons(“SeqComprehension”)}
Expression ”(” Expression ”,” ”...” ”,” Expression ”)”

→ Expression {cons(“SubSequence”)}
(”{” ”|−>” ”}”) | (”{” { Maplet ”,” }+ ”}”)

→ Expression {cons(“MapEnumeration”)}
”{” Maplet ”|” BindList (”&” Expression)? ”}”

→ Expression {cons(“MapComprehension”)}
Expression ”|−>” Expression → Maplet {cons(“Maplet”)}
”mk ” ”(” Expression ”,” ExpressionList ”)”

→ Expression {cons(“TupleConstructor”)}
”mk ” Name ”(” ExpressionList? ”)”

→ Expression {cons(“RecordConstructor”)}
”mu” ”(” Expression ”,” { RecordModification ”,” }+ ”)”

→ Expression {cons(“RecordModifier”)}
Identifier ”|−>” Expression → RecordModification {cons(“RecordModification”)}
Expression ”(” ExpressionList? ”)” → Expression {cons(“Apply”)}
Expression ”.” Identifier → Expression {cons(“FieldSelect”)}
Name ”[” { Type ”,” }+ ”]” → Expression {cons(“FctTypeInst”)}
”lambda” TypeBindList ”&” Expression

→ Expression {cons(“Lambda”)}
”is ” ”bool” ”(” Expression ”)” → Expression {cons(“IsBoolExpr”)}
”is ” ”nat” ”(” Expression ”)” → Expression {cons(“IsNatExpr”)}
”is ” ”nat1” ”(” Expression ”)” → Expression {cons(“IsNatOneExpr”)}
”is ” ”int” ”(” Expression ”)” → Expression {cons(“IsIntegerExpr”)}
”is ” ”rat” ”(” Expression ”)” → Expression {cons(“IsRatExpr”)}
”is ” ”real” ”(” Expression ”)” → Expression {cons(“IsRealExpr”)}
”is ” ”char” ”(” Expression ”)” → Expression {cons(“IsCharExpr”)}
”is ” ”token” ”(” Expression ”)” → Expression {cons(“IsTokenExpr”)}
”is ” Identifier ”(” Expression ”)” → Expression {cons(“IsDefTypeExpr”)}
Name → Expression {cons(“NameExpr”)}
OldName → Expression {cons(“OldNameExpr”)}
SymbolicLiteral → Expression {cons(“LiteralExpr”)}
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Identifier → Name {cons(“Name”)}
{ Name ”,” }+ → NameList {cons(“NameList”)}
Identifier ” ” → OldName {cons(“OldName”)}

context-free priorities
{right:

Expression ”**” Expression → Expression
Expression ”comp” Expression → Expression

}>
{

Expression ”(” Expression ”,” ”...” ”,” Expression ”)” → Expression
Expression ”(” ExpressionList? ”)” → Expression
Expression ”.” Identifier → Expression

}>
{

”+” Expression → Expression
”−” Expression → Expression
”abs” Expression → Expression
”floor” Expression → Expression
”card” Expression → Expression
”power” Expression → Expression
”dunion” Expression → Expression
”dinter” Expression → Expression
”hd” Expression → Expression
”tl” Expression → Expression
”len” Expression → Expression
”elems” Expression → Expression
”inds” Expression → Expression
”conc” Expression → Expression
”dom” Expression → Expression
”rng” Expression → Expression
”merge” Expression → Expression

}>
{left:

Expression ”<:” Expression → Expression
Expression ”<−:” Expression → Expression
Expression ”:>” Expression → Expression
Expression ”:−>” Expression → Expression

}>
{

”inverse” Expression → Expression
}>
{left:

Expression ”*” Expression → Expression
Expression ”/” Expression → Expression
Expression ”div” Expression → Expression
Expression ”rem” Expression → Expression
Expression ”mod” Expression → Expression
Expression ”inter” Expression → Expression

}>
{left:

Expression ”+” Expression → Expression
Expression ”−” Expression → Expression
Expression ”union” Expression → Expression
Expression ”\\” Expression → Expression
Expression ”munion” Expression → Expression
Expression ”++” Expression → Expression
Expression ”ˆ” Expression → Expression
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}>
{left:

Expression ”<” Expression → Expression
Expression ”<=” Expression → Expression
Expression ”>” Expression → Expression
Expression ”>=” Expression → Expression
Expression ”=” Expression → Expression
Expression ”<>” Expression → Expression
Expression (”in” ”set”) Expression → Expression
Expression (”not” ”in” ”set”) Expression → Expression
Expression ”subset” Expression → Expression
Expression ”psubset” Expression → Expression

}>
”not” Expression → Expression >
Expression ”and” Expression → Expression >
Expression ”or” Expression → Expression >
Expression ”=>” Expression → Expression >
Expression ”<=>” Expression → Expression >
{

”let” { LocalDefinition ”,” }+ ”in” Expression → Expression
”let” Bind (”be” ”st” Expression)? ”in” Expression → Expression
”if” Expression ”then” Expression ElseIfExpression* ”else” Expression

→ Expression
”def” { DefBind ”;” }+ ”in” Expression → Expression
”forall” BindList ”&” Expression → QuantifiedExpression
”exists” BindList ”&” Expression → QuantifiedExpression
”exists1” BindList ”&” Expression → QuantifiedExpression
”iota” Bind ”&” Expression → Expression
”lambda” TypeBindList ”&” Expression → Expression

}

module StateDesignators
imports Expressions VDM-Syntax
exports

sorts StateDesignator
context-free syntax

Name → StateDesignator {cons(“StDesignatorName”)}
StateDesignator ”.” Identifier → StateDesignator {cons(“FieldRef”)}
StateDesignator ”(” Expression ”)” → StateDesignator {cons(“MapOrSeqRef”)}

module Statements
imports TypeDefinitions ValueDefinitions FunctionDefinitions Expressions StateDesignators
PatternsAndBindings VDM-Syntax
exports

sorts Statement LocalDefinition
context-free syntax

”let” { LocalDefinition ”,” }+ ”in” Statement
→ Statement {cons(“LetStmt”)}

FunctionDefinition | ValueDefinition → LocalDefinition {cons(“LocalDefinition”)}
”let” Bind ( ”be” ”st” Expression )? ”in” Statement

→ Statement {cons(“LetBeSTStmt”)}
”def” { EqualsDefinition ”;” }+ ”in” Statement

→ Statement {cons(“DefStmt”)}
PatternBind ”=” Expression → EqualsDefinition {prefer,cons(“EqualsExprDef”)}
PatternBind ”=” CallStatement → EqualsDefinition {cons(“EqualsCallStmtDef”)}
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”(” DclStatement* { Statement ”;” }+ ”)”
→ Statement {cons(“BlockStmt”)}

”dcl” AssignmentDefinition ”;”
→ DclStatement {cons(“DclStmt”)}

Identifier ”:” Type (”:=” Expression)?
→ AssignmentDefinition {prefer,cons(“AssignDefExpr”)}

Identifier ”:” Type (”:=” CallStatement)?
→ AssignmentDefinition {cons(“AssignDefCallStmt”)}

AssignStatement → Statement {cons(“AssignStmt”)}
StateDesignator ”:=” Expression

→ AssignStatement {prefer,cons(“AssignStmtExpr”)}
StateDesignator ”:=” CallStatement

→ AssignStatement {cons(“AssignStmtCallStmt”)}
”if” Expression ”then” Statement ElseifStatement* (”else” Statement)?

→ Statement {cons(“IfStmt”)}
”elseif” Expression ”then” Statement → ElseifStatement {cons(“ElsifStmt”)}
”cases” Expression ”:” CasesStatementAlternatives (”,” OthersStatement)? ”end”

→ Statement {cons(“CasesStmt”)}
{ CasesStatementAlternative ”,” }+

→ CasesStatementAlternatives {cons(“CasesStmtAlternatives”)}
PatternList ”−>” Statement → CasesStatementAlternative {cons(“CasesStmtAltn”)}
”others” ”−>” Statement → OthersStatement {cons(“OthersStmt”)}
”for” PatternBind ”in” ”reverse”? Expression ”do” Statement

→ Statement {cons(“SeqForLoop”)}
”for” ”all” Pattern ”in” ”set” Expression ”do” Statement

→ Statement {cons(“SetForLoop”)}
”for” Identifier ”=” Expression ”to” Expression (”by” Expression)? ”do” Statement

→ Statement {cons(“IndexForLoop”)}
”while” Expression ”do” Statement → Statement {cons(“WhileLoop”)}
”||” ”(” { Statement ”,” }+ ”)” → Statement {cons(“NonDetStmt”)}
CallStatement → Statement {cons(“CallStmt”)}
Name ”(” ExpressionList? ”)” (”using” StateDesignator)?

→ CallStatement {cons(“Call”)}
”return” Expression? → Statement {cons(“ReturnStmt”)}
”always” Statement ”in” Statement → Statement {cons(“AlwaysStmt”)}
”trap” PatternBind ”with” Statement ”in” Statement

→ Statement {cons(“TrapStmt”)}
”tixe” Traps ”in” Statement → Statement {cons(“RecTrapStmt”)}
”{” {Trap ”,”}+ ”}” → Traps {cons(“Traps”)}
PatternBind ”|−>” Statement → Trap {cons(“Trap”)}
”exit” Expression? → Statement {cons(“ExitStmt”)}
”skip” → Statement {cons(“IdentStmt”)}

module PatternsAndBindings
imports TypeDefinitions Expressions VDM-Syntax
exports

sorts Pattern PatternList Bind PatternBind BindList SetBind TypeBindList
context-free syntax

”−” | Identifier → Pattern {cons(“PatternId”)}
”(” Expression ”)” → Pattern {cons(“MatchValueExpr”)}
SymbolicLiteral → Pattern {cons(“MatchValueSymb”)}
”{” PatternList ”}” → Pattern {cons(“SetEnumPattern”)}
Pattern ”union” Pattern → Pattern {cons(“SetUnionPattern”)}
”[” PatternList ”]” → Pattern {cons(“SeqEnumPattern”)}
Pattern ”ˆ” Pattern → Pattern {cons(“SeqConcPattern”)}
”mk ” ”(” Pattern ”,” PatternList ”)” → Pattern {cons(“TuplePattern”)}
”mk ” Name ”(” PatternList? ”)” → Pattern {cons(“RecordPattern”)}
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{ Pattern ”,” }+ → PatternList {cons(“PatList”)}
Pattern | Bind → PatternBind {cons(“PatternBind”)}
SetBind | TypeBind → Bind {cons(“Bind”)}
Pattern ”in” ”set” Expression → SetBind {cons(“SetBind”)}
Pattern ”:” Type → TypeBind {cons(“TypeBind”)}
{ MultipleBind ”,” }+ → BindList {cons(“BindList”)}
PatternList ”in” ”set” Expression → MultipleBind {cons(“MultSetBind”)}
PatternList ”:” Type → MultipleBind {cons(“MultTypeBind”)}
{ TypeBind ”,” }+ → TypeBindList {cons(“TypeBindList”)}

module VDM-Syntax imports Characters Layout
exports

sorts SymbolicLiteral Identifier QuoteLiteral
context-free syntax

NumericLiteral → SymbolicLiteral {cons(“NumericLiteral”)}
BooleanLiteral → SymbolicLiteral {cons(“BooleanLiteral”)}
”nil” → SymbolicLiteral {cons(“NilLiteral”)}
CharacterLiteral → SymbolicLiteral {cons(“CharacterLiteral”)}
TextLiteral → SymbolicLiteral {cons(“TextLiteral”)}
QuoteLiteral → SymbolicLiteral {cons(“QuoteLiteral”)}
”true” → BooleanLiteral {cons(“TRUE”)}
”false” → BooleanLiteral {cons(“FALSE”)}

lexical syntax
Numeral ( ”.” Digit+)? Exponent? → NumericLiteral
Digit+ → Numeral
”E” (”+” | ”−”)? Numeral → Exponent
”’” Character ”’” → CharacterLiteral
”¨” Character* ”¨” → TextLiteral
”<” PlainLetter (PlainLetter | Digit | ”‘” | ” ”)* ”>” → QuoteLiteral
(PlainLetter | GreekLetter) (PlainLetter | GreekLetter | Digit | ”‘” | ” ”)*

→ Identifier
context-free restrictions

Identifier −/− [a-zA-Z0-9]
NumericLiteral −/− [0-9]

context-free syntax
”abs” → Identifier {reject}
”all” → Identifier {reject}
”always” → Identifier {reject}
”be” → Identifier {reject}
”by” → Identifier {reject}
”card” → Identifier {reject}
”cases” → Identifier {reject}
”char” → Identifier {reject}
”compose” → Identifier {reject}
”conc” → Identifier {reject}
”dcl” → Identifier {reject}
”def” → Identifier {reject}
”div” → Identifier {reject}
”do” → Identifier {reject}
”dom” → Identifier {reject}
”elems” → Identifier {reject}
”else” → Identifier {reject}
”elseif” → Identifier {reject}
”end” → Identifier {reject}
”errs” → Identifier {reject}
”exit” → Identifier {reject}
”ext” → Identifier {reject}
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”false” → Identifier {reject}
”floor” → Identifier {reject}
”for” → Identifier {reject}
”functions” → Identifier {reject}
”hd” → Identifier {reject}
”if” → Identifier {reject}
”in” → Identifier {reject}
”inds” → Identifier {reject}
”init” → Identifier {reject}
”inv” → Identifier {reject}
”len” → Identifier {reject}
”let” → Identifier {reject}
”merge” → Identifier {reject}
”mod” → Identifier {reject}
”nil” → Identifier {reject}
”of” → Identifier {reject}
”operations” → Identifier {reject}
”others” → Identifier {reject}
”post” → Identifier {reject}
”pre” → Identifier {reject}
”rd” → Identifier {reject}
”rem” → Identifier {reject}
”return” → Identifier {reject}
”reverse” → Identifier {reject}
”rng” → Identifier {reject}
”skip” → Identifier {reject}
”st” → Identifier {reject}
”state” → Identifier {reject}
”then” → Identifier {reject}
”tixe” → Identifier {reject}
”token” → Identifier {reject}
”tl” → Identifier {reject}
”to” → Identifier {reject}
”trap” → Identifier {reject}
”true” → Identifier {reject}
”types” → Identifier {reject}
”using” → Identifier {reject}
”values” → Identifier {reject}
”while” → Identifier {reject}
”with” → Identifier {reject}
”wr” → Identifier {reject}
”abs” → Identifier {reject}
”card” → Identifier {reject}
”conc” → Identifier {reject}
”dinter” → Identifier {reject}
”dom” → Identifier {reject}
”dunion” → Identifier {reject}
”elems” → Identifier {reject}
”floor” → Identifier {reject}
”hd” → Identifier {reject}
”inds” → Identifier {reject}
”inverse” → Identifier {reject}
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”len” → Identifier {reject}
”merge” → Identifier {reject}
”not” → Identifier {reject}
”power” → Identifier {reject}
”rng” → Identifier {reject}
”tl” → Identifier {reject}
”mk ” → Identifier {reject}
”mk ” Identifier → Identifier {reject}
”is ” Identifier → Identifier {reject}
”is ” ”bool” → Identifier {reject}
”is ” ”nat” → Identifier {reject}
”is ” ”nat1” → Identifier {reject}
”is ” ”int” → Identifier {reject}
”is ” ”rat” → Identifier {reject}
”is ” ”real” → Identifier {reject}
”is ” ”char” → Identifier {reject}
”is ” ”token” → Identifier {reject}
”bool” → Identifier {reject}
”nat” → Identifier {reject}
”nat1” → Identifier {reject}
”int” → Identifier {reject}
”rat” → Identifier {reject}
”real” → Identifier {reject}
”char” → Identifier {reject}
”token” → Identifier {reject}

restrictions
”abs” ”all” ”always” ”and” ”be” ”bool” ”by” ”card” ”cases” ”char”
”compose” ”conc” ”dcl” ”def” ”div” ”do” ”dom” ”elems” ”else” ”elseif”
”end” ”errs” ”exit” ”ext” ”false” ”floor” ”for” ”functions” ”hd” ”if”
”in” ”inds” ”init” ”inv” ”len” ”let” ”merge” ”mod” ”nil” ”of”
”operations” ”others” ”post” ”pre” ”rd” ”rem” ”return” ”reverse” ”rng”
”skip” ”st” ”state” ”then” ”tixe” ”token” ”tl” ”to” ”trap” ”true” ”types”
”using” ”values” ”while” ”with” ”wr” ”abs” ”card” ”conc” ”dinter” ”dom”
”dunion” ”elems” ”floor” ”hd” ”inds” ”inverse” ”len” ”merge” ”not”
”power” ”rng” ”tl” ”bool” ”nat” ”nat1” ”int” ”rat” ”real” ”char”
”token” −/− [a-zA-Z]

module Characters
exports

sorts Character PlainLetter GreekLetter Digit
lexical syntax

PlainLetter → Character
GreekLetter → Character
Digit → Character
DelimiterCharacter → Character
OtherCharacter → Character
Separator → Character
[a-zA-Z] → PlainLetter
”#” (LowerGreekLetter | UpperGreekLetter) → GreekLetter
[ABGDEZHQIKLMNXOPRSTUFCYW] → UpperGreekLetter
[abgdezhqiklmnxoprstufcyw] → LowerGreekLetter
[0-9] → Digit

”,” → DelimiterCharacter
”:” → DelimiterCharacter
”;” → DelimiterCharacter
”=” → DelimiterCharacter
”(” → DelimiterCharacter
”)” → DelimiterCharacter
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”|” → DelimiterCharacter
”−” → DelimiterCharacter
”[” → DelimiterCharacter
”]” → DelimiterCharacter
”{” → DelimiterCharacter
”}” → DelimiterCharacter

”+” → DelimiterCharacter
”/” → DelimiterCharacter
”<” → DelimiterCharacter
”>” → DelimiterCharacter
”<=” → DelimiterCharacter
”>=” → DelimiterCharacter
”<>” → DelimiterCharacter
”˜” → DelimiterCharacter

”forall” → DelimiterCharacter
”exists” → DelimiterCharacter
”.” → DelimiterCharacter
”seq” ”of” → DelimiterCharacter
”seq1” ”of” → DelimiterCharacter
”inmap” → DelimiterCharacter
”map” → DelimiterCharacter

”−>” → DelimiterCharacter
”−t>” → DelimiterCharacter
”==>” → DelimiterCharacter
”||” → DelimiterCharacter
”=>” → DelimiterCharacter
”<=>” → DelimiterCharacter
”in” ”set” → DelimiterCharacter
”|−>” → DelimiterCharacter

”dinter” → DelimiterCharacter
”dunion” → DelimiterCharacter
”inverse” → DelimiterCharacter
”<:” → DelimiterCharacter
”:>” → DelimiterCharacter
”<−:” → DelimiterCharacter
”:−>” → DelimiterCharacter

”iota” → DelimiterCharacter
”lambda” → DelimiterCharacter
”mu” → DelimiterCharacter
”&” → DelimiterCharacter
”*” → DelimiterCharacter
”==” → DelimiterCharacter
”not” → DelimiterCharacter
”inter” → DelimiterCharacter
”union” → DelimiterCharacter
”munion” → DelimiterCharacter
”**” → DelimiterCharacter
”psubset” → DelimiterCharacter
”subset” → DelimiterCharacter
”power” → DelimiterCharacter
”not” ”in” ”set” → DelimiterCharacter

”ˆ” → DelimiterCharacter
”++” → DelimiterCharacter
”comp” → DelimiterCharacter
”and” → DelimiterCharacter
”or” → DelimiterCharacter
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”bool” → DelimiterCharacter
”nat” → DelimiterCharacter
”nat1” → DelimiterCharacter
”int” → DelimiterCharacter
”rat” → DelimiterCharacter
”real” → DelimiterCharacter

” ” → OtherCharacter
”’” → OtherCharacter
”\”” → OtherCharacter
”@” → OtherCharacter
”!” → OtherCharacter
”‘” → OtherCharacter
”\t” → Separator
”\n” → Separator
” ” → Separator

module Layout
exports

lexical syntax
”--”˜[\n\13]*[\13\n] → LAYOUT
[\ \t\n\13] → LAYOUT

context-free restrictions
LAYOUT? −/− [\ \t\n\13]


