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Abstract. Strafunski is a Haskell-centred software bundle for implementing
language processing components — most notably program analyses and trans-
formations. Typical application areas include program optimisation, refactoring,
software metrics, software re- and reverse engineering.

Strafunski started out as generic programming library complemented by genera-
tive tool support to address the concern of generic traversal over typed represen-
tations of parse trees in a scalable manner. Meanwhile, Strafunski also encom-
passes means of integrating external components such as parsers, pretty printers,
and graph visualisation tools.

In a selection of case studies, we demonstrate that typed functional programming
in Haskell, augmented with Strafunski’s support for generic traversal and exter-
nal components, is very appropriate for the development of practical language
processors. In particular, we discuss using Haskell for Cobol reverse engineering,
Java code metrics, and Haskell re-engineering.

Keywords: Strafunski, Program transformation, Program analysis, Language
processing, Generic traversal, External components, Interchange formats, Func-
tional programming

1 Haskell meets Cobol

Consider the following software reverse engineering problem in the context of re-
documentation of Cobol software. Given a Cobol program, we want to synthesise and
view the so-called perform graph. It is called ‘perform graph’ because of Cobol’s verb
PERFORM for procedure invocation. Such a graph helps maintenance programmers to
understand the control flow of Cobol programs of non-trivial size: typical Cobol pro-
grams are about 1500 lines, but individual programs of 25,000 lines are not uncommon.
A perform graph contains nodes for each procedure, and edges for each procedure in-
vocation. The perform graph of a simple Cobol program is shown in Fig. 1. Roughly, a
perform graph is computed as follows:

1. Find all PERFORMs to reconstruct what labelled code blocks represent procedures.
2. Reconstruct the main procedure of the program by a kind of control-flow analysis.
3. Find all PERFORMs per procedure to determine outgoing procedure invocations.
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There are no language constructs for procedure declarations in
Cobol. Instead, labelled sections and paragraphs are the targets
of both PERFORM and GOTO statements. In fact, PERFORM state-
ments may also invoke ranges of sections and paragraphs. Hence,
the entry and exit points of performed blocks of code are de-
fined indirectly. In the sample program, the paragraphs READ-
FILE, UPDATE-RECORD, and WRITE-FILE form a procedure
because of the PERFORM ... THRU ... statement in the DATA-
PROCESSING paragraph. The reconstruction of a Cobol pro-
gram’s main procedure requires a decent control-flow analysis be-
cause one had to observe GOTOs and other control-flow patterns.

Fig. 1. A Cobol program and the corresponding perform graph.

In addition to the specific problem of defining precisely how to compute a perform
graph, there are more general complications that surround the implementation of a
perform-graph extractor in a practical setting. These include the extraordinary size of
the Cobol language, the proliferation of its dialects, the size of the typical code base to
be processed, and the realities of limited budgets and time frames.

In this paper, we report on using typed functional programming in Haskell to imple-
ment problems like the one above. Haskell seems to be suited for language processing:
meta-programs in Haskell operate on representations of object-programs based on al-
gebraic datatypes. However, in the typical textbook approach, two bits are missing,
namely support for generic traversal, and integration of external components:

Generic traversal We must be able to employ generic programming techniques. That
is, we want to deal generically with all language constructs that are not immediately
relevant to our problem. As for the discussed perform-graph extractor, we do not
want to take all of the several hundred syntactic elements of Cobol into account,
but only PERFORMs and code blocks. Also, every time a new dialect or language
cocktail pops up (think of embedded SQL or CICS, in-house preprocessors, OO
Cobol), we want to adapt the tool with minimal effort.

External components We must be able to integrate external components on the ba-
sis of suitable interchange formats. As for the perform-graph extractor, we want to
reuse an existing Cobol parser. Note that the development of an industrial-strength
Cobol parser from scratch takes at least a few months, and choosing the right
parsing technology is crucial for scalability. Other typical external components are
graph visualisers, browsers, pretty printers, and databases.
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Fig. 2. Haskell-centred language processing with Strafunski.

The Haskell-centred software bundle Strafunski 1 addresses these two concerns as il-
lustrated in Fig. 2. The block labelled ‘language processing application’ emphasises
that Haskell-based and external components coexist in an application. The components
communicate on the basis of the interchange formats XML and ATerms [2], or they
access a repository with source programs and XML documents. Haskell-based com-
ponents take advantage of generic programming with ‘functional strategies’ [12, 11,
8] based on Strafunski’s Haskell library StrategyLib. Functional strategies are generic
functions that can traverse into terms of any type while mixing type-specific and uni-
form behaviour. Here we assume that algebraic datatypes serve for the typed representa-
tion of parse trees. Strategic programming in Haskell relies on supportive code per term
type. The corresponding instances of a Term class can be generated using the DrIFT
preprocessing technology [17]. The algebraic datatypes might be derived from XML
schemas (or DTDs) and syntax definitions in SDF [5]; see the generators Sdf2Haskell
and Dtd2Haskell. There are further Haskell libraries: XmlLib for XML document pro-
cessing (contributed by HaXML [16]) and ATermLib for data interchange. DrIFT is
also used to generate XML instances and ATerm instances needed as mediators between
Haskell terms and the interchange formats. The collection of libraries also encompasses
themes for language processing such as name analyses and refactorings [9].

Road-map This application letter reports on the use of the Strafunski bundle for the
implementation of language processing tools. We discuss three case studies: reverse
engineering (Sec. 4), software metrics (Sec 5), and re-engineering (Sec. 6). The object
languages involved are Cobol, Java, and Haskell, respectively. Before we embark on
the case studies, we explain Strafunski’s two contributions to language processing in
Haskell: generic traversal (Sec. 2) and external components (Sec. 3).

1 Strafunski home page: http://www.cs.vu.nl/Strafunski/ — Stra refers to
strategies, fun refers to functional programming, and their harmonious composition is a
homage to the music of Igor Stravinsky.



full td:
Process all nodes.

once td:
Process one subtree.
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stop td:
Descend into failing subtrees.
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Typically, a traversal scheme takes one argument strategy for node processing. The above
schemes all stick to a top-down, left-to-right order of node processing but they vary as for the
coverage of nodes (indicated by bullets; black nodes denote success; dashed nodes denote fail-
ure). In the case of full td, node processing is assumed to succeed for all nodes while success and
failure behaviour controls descent for once td and stop td.

Fig. 3. Full traversal vs. single-hit traversal vs. cut-off traversal.

2 Generic traversal

Strategic programming The key idea underlying the Strafunski-style of generic pro-
gramming is to view traversals as a kind of generic functions that can traverse into terms
while mixing uniform and type-specific behaviour. In [12], we defined functional strate-
gies accordingly. Strategies are composed via function combinators. Strafunski sup-
ports ‘strategic programming’ via the library StrategyLib of reusable strategy combina-
tors, and the DrIFT generator for supportive code for user-supplied Haskell datatypes.
Recall that the Haskell datatypes are typically generated from SDF grammars or XML
DTDs. Hence, functional strategies allow us to process parse trees and XML documents
in both typed-based and generic manner. By contrast, the HaXML [16] combinator li-
brary for generic XML processing is DTD-unaware.

Strategy combinators We qualify combinators by a postfix TP vs. TU for ‘type preser-
vation’ or ‘type unification’ resp. to point out if they deal with transformation or analy-
sis. The originality of strategic programming arises from the following concepts:

– Update strategies by type-specific cases (denoted by adhocTP and adhocTU).
– One-layer traversal that acts on immediate subterms (e.g., allTU for reduction).

Using strategy update, ingredients for actual traversals can be composed. Using one-
layer traversal combinators, all kinds of traversal schemes can be assembled as recursive
functions (see [8] for the design space). Three frequently used schemes are illustrated
in Fig. 3. The first one can be defined as follows for the TU case:

full_tdTU s x =
(s x) ‘mappend‘ (allTU mappend mempty (full_tdTU s) x)

This reads as “apply � to the term � , and then recurse into all immediate subterms
of � while combining the intermediate results with the binary operation mappend of
a monoid using the ‘unit’ mempty as initial value”. Assembling traversal schemes is
actually a rather rare activity. Mostly, one reuses schemes defined in StrategyLib.



– – Synthesis of the traversal

findPerforms = applyTU ( full_tdTU step)

where step = constTU [] ‘adhocTU‘ matchPerform

– – Type-specific case
matchPerform (Perform Nothing _ _ _ _ ) = return []
matchPerform (Perform (Just (Perform_procedure p thru)) _ _ _ _)
= return [(procedure_name2string p,

case thru of
Nothing -> Nothing
(Just (Through_label _ p’)) -> Just (procedure_name2string p’))]

The function findPerforms performs a pattern match according to matchPerform all over
the place, and it accumulates the identified invocations as a list using the full tdTU traversal
scheme. The function matchPerform extracts the referenced labels from a given PERFORM
statement. The first equation covers an ‘inline’ PERFORM statement which does not refer to any
label. Hence, the empty list [] is returned. The second equation deals with PERFORMs that
actually invoke labelled code blocks. There is an extra case discrimination for the optional end
label (see patterns Nothing and Just . . . ). So it returns a singleton list with a pair of the type
(String, Maybe String) corresponding to the start label and an optional end label.

Fig. 4. Find all PERFORMs in Cobol program.

Traversal design The most frequently used design patterns for strategic program-
ming [11] are to define ‘rewrite steps’ and to synthesise actual ‘traversals’. A type-
specific rewrite step is a monomorphic function that cares about problem-specific pat-
terns. One obtains a generic rewrite step by ‘lifting’ one or more type-specific rewrite
steps to the strategy level. That is, the steps are used to update a default strategy (re-
call adhocTP and adhocTU). An actual traversal is synthesised by simply passing a
(generic) rewrite step as a parameter to the suitable traversal scheme. This is illustrated
in the following Haskell code skeleton:
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Here, apply is a place holder for an explicit application combinator applyTP or ap-
plyTU (needed for technical reasons). The place holder scheme can be resolved to a
traversal scheme such as full tdTU from above. The infix operator adhoc is a place
holder for either adhocTP or adhocTU. The

��3�6�3 � , . . . ,
� 3�6�3;:

are type-specific
rewrite steps. Common defaults are the following:

– the identity strategy idTP,
– a constant strategy of the form constTU < , or
– the always failing strategy failTP or failTU.

In Fig. 4, the code skeleton is illustrated for our running example of a Cobol perform-
graph extractor. The shown traversal findPerforms implements the first step of the
extraction process: it collects all procedure invocations via the full tdTU scheme.
The generic rewrite step returns the empty list by default (cf. constTU []), and
the single type-specific rewrite step matchPerform destructs actual PERFORM state-
ments to retrieve the relevant labels. To summarise, this very concise and adaptive style
of programming effectively focuses on the patterns that are relevant for a given problem.



– – The abstract syntax of ATerms

data ATerm = AAppl String [ATerm] -- Application
| AList [ATerm] -- Lists
| AInt Integer -- Integers
deriving (Read,Show,Eq,Ord)

– – Mediation between ATerms and algebraic datatypes

class ATermConvertible t where
toATerm :: t -> ATerm
fromATerm :: ATerm -> t

While ATerms are suitable for import, export, run-time representation, and external storage, they
are not directly suited for programming on syntaxes or formats because of the lack of typing. Due
to the provisions of the Strafunski architecture, one can turn terms of any algebraic datatype into
an ATerm (cf. member toATerm) and vice versa (cf. member fromATerm).

Fig. 5. ATerm support in Haskell.

3 External components

Complementary interchange formats The Strafunski architecture features integra-
tion of external components on the basis of the interchange formats XML and ATerms.
For short, the low-level ATerm format is particularly suited for the integration of lan-
guage processing components, whereas XML is favoured when we deal with application-
specific data models (say, import / export formats). For XML, we rely on the type-
based translation facilities of HaXML [16]. Given an XML document type definition
(DTD), the HaXML tool Dtd2Haskell generates a corresponding system of Haskell
datatypes, and instances of the XmlContent class. These instances, in combination with
the HaXML library XmlLib, allow translation of terms over the generated datatypes to
XML documents that adhere to the input DTD, and vice versa. The ATerm format for
annotated terms [2] is a very simple, untyped interchange format that was designed
specifically for component-based development of language tools. It is used in other
language processing environments, too [1, 6]. The ATerm format supports data com-
pression through maximal subterm sharing. The Strafunski architecture features two
elements for ATerm support. Firstly, the Haskell ATerm library ATermLib provides a
datatype for the representation of ATerms together with a class ATermConvertible for
conversion between ATerms and algebraic datatypes (see Fig. 5). Secondly, the DrIFT
preprocessor can be used to generate instances of the ATermConvertible class for any
given Haskell datatype.

Parser integration A typical kind of external components that we need to integrate
with Haskell components are parsers. In the Strafunski architecture, we provide sup-
port for one specific syntax definition formalism, namely SDF [5]. This is a suitable
candidate for extending the capabilities of an otherwise Haskell-centred architecture for
language processing. Firstly, SDF provides a very general grammar format. Secondly,
SDF is supported by powerful parsing technology, namely (scannerless) generalised
LR parsing with an implementation that matured inside the Meta-Environment [1].



– – SDF grammar fragment dealing with code blocks in Cobol
Paragraphs Section-with-header* -> Sections {cons("Sections")}
Section-header "." Paragraphs -> Headed-section {cons("Headed-section")}
Section-name "SECTION" Priority-number? -> Section-header {cons("Section-header")}
Sentence* Paragraph* -> Paragraphs {cons("Paragraphs")}
Paragraph-1 -> Paragraph {cons("Paragraph-1")}
Altered-goto -> Paragraph {cons("Altered-goto")}
Paragraph-name "." Sentence* -> Paragraph-1 {cons("Paragraph-11")}
Paragraph-name "." "GO" "TO"? "." -> Altered-goto {cons("Altered-goto1")}
Statement-list "."+ -> Sentence {cons("Sentence")}

– – Haskell counterpart (generated algebraic datatypes)
data Sections = Sections Paragraphs [Headed_section]
data Headed_section = Section_with_header Section_header Paragraphs
data Section_header = Section_header Section_name (Maybe Priority_number)
data Paragraphs = Paragraphs [Sentence] [Paragraph]
data Paragraph = Paragraph_1 Paragraph_1

| Altered_goto Altered_goto
data Paragraph_1 = Paragraph_11 Paragraph_name [Sentence]
data Altered_goto = Altered_goto1 Paragraph_name (Maybe ())
data Sentence = Sentence Statement_list [()]

The derivation of algebraic datatypes from context-free grammars (EBNF, YACC, SDF, etc.)
is largely straightforward. The above snippets illustrate the following techniques. The alterna-
tive productions that define a nonterminal amount to the different constructors of an algebraic
datatype. Constructor annotations (cons(...)) in the grammar are used as proposals for con-
structor names in the algebraic datatypes. There are direct mappings for EBNF operators � , � ,�

in Haskell, namely the List and the Maybe datatype. Keywords can be omitted from the
algebraic representation.

Fig. 6. Fragment of the VS COBOL II grammar [10] and its Haskell counterpart.

Thirdly, we have access to an SDF-based grammar base2 with grammars for several
languages. Fourthly, SDF is supported by the Grammar Deployment Kit3 (GDK) [7].
This kit can generate parsers for different parsing technologies, e.g., for YACC with
backtracking [13], C-based combinator parsing as supported by GDK itself, generalised
LR parsing, and Haskell-based combinator parsing.

In the Strafunski architecture, the tool Sdf2Haskell supports the derivation of algebraic
Haskell datatypes from an SDF grammar. For a Cobol fragment, this correspondence is
illustrated in Fig. 6. We assume that the external parsers emit parse trees in the ATerm
format. Then, Haskell components can read in the parse trees relying on the ATermCon-
vertible instances for the Haskell datatypes that correspond to the grammar. We dwell
upon the fact that parser reuse is crucial by referring to Cobol again. A plain Cobol
grammar has about 1000 productions (assuming EBNF operators for lists and option-
als), not talking about extensions for SQL, CICS and others. Just this size rules out a
manual approach to parser development – using maybe Haskell parser combinators. In
fact, implementing a Cobol grammar specification is a challenge for any technology.
To implement a scalable Cobol parser, one needs to resolve grammar conflicts or ambi-
guities, provide provision for error recovery and parse tree construction, and tweak for
non-context-free constructs and performance.

2 http://www.program-transformation.org/gb/
3 http://gdk.sourceforge.net/



1 main = do prg <- parseCobol -- Parsing
2 dotGraph <- toPerformGraph prg -- Graph synthesis
3 putStrLn dotGraph -- Output
4

5 toPerformGraph prg
6 = do name <- getProgramName prg
7 procs <- findPerforms prg -- see Fig. 4
8 main <- findMain prg
9 perproc <- findPerformsPerProc procs prg

10 inmain <- findPerformsInMain main
11 return (mkGraph (name++" Perform Graph") (perproc++inmain))

We obtain the parse tree of the Cobol source program by the invocation of the external parser
and converting its untyped ATerm output into a heterogeneously typed Haskell representation of
the parse tree (line 1). The perform-graph generation synthesises the perform graph as a valid
input string for the visualisation tool based on a simple API (line 2). The perform graph is then
just written to the stdout (line 3). The actual synthesis of the perform graph consists of a number
of steps (lines 6–11) as outlined on the paper’s first page. The steps are arranged in a monadic
do-sequence to be prepared for aspects such as I/O, failure or debugging.

Fig. 7. Top-level program structure of the perform-graph extractor for Cobol.

4 Case study I: Cobol reverse engineering

We complete our running example of a perform-graph extractor for Cobol. Its top-
level functionality is shown in Fig. 7. We already described the approach to reusing
an external Cobol parser, and the implementation of the first step in the synthesis of the
perform graph, that is, to extract all PERFORMs. We will skip over the second step, that
is, the identification of the main procedure of a Cobol program. Below we work out
the third step, namely the identification of PERFORMs per procedure. In addition to this
traversal functionality, we will also explain the integration of a graph visualisation tool.

Find all PERFORMs per procedure The simple traversal findPerforms (recall
Fig. 4) provided us with the nodes in the perform graph. We shall now identify the edges
in the graph, that is, we need to determine the outgoing procedure invocations for each
previously identified procedure. The implementation of this idea is complicated by the
fact that we need to deal with procedures spanned over several paragraphs or sections as
triggered by PERFORM . . .THRU . . . statements. We basically have to look up intervals
from lists of paragraphs and sections according to the identified procedure labels. Once
we retrieved a relevant code block, we apply the simply traversal findPerforms to
find all PERFORMs in the block. The corresponding piece of traversal functionality is
found in Fig. 8.

Graph visualisation We integrate the dot tool as an external component for graph
visualisation. We simply export the synthesised perform graph in the dot input format.
We use a rather direct approach, that is, the corresponding API maps the given nodes
(i.e., procedures) and edges (i.e., invocations) to plain strings adhering to the dot input
format. The API is included in Fig. 9. This approach is very lightweight. Recall Fig. 1
where we illustrated the visual output of the extractor. In more demanding contexts,
APIs preferably synthesise a public or opaque intermediate representation as opposed
to plain strings. This adds type safety, and it enables subsequent processing of the in-
termediate representation.



1 findPerformsPerProc procs = applyTU ( full_tdTU step)

2 where
3 step = constTU [] ‘adhocTU‘ matchParagraph ‘adhocTU‘ matchParagraphList

4 ‘adhocTU‘ matchSection ‘adhocTU‘ matchSectionList
5

6 matchParagraph (Paragraph_11 pname sentences)
7 = do name <- return $ paragraph_name2string pname
8 singletonBlock name sentences
9

10 matchParagraphList (paragraphs::[Paragraph])
11 = do results <- mapM (rangeInParagraphs paragraphs) procs
12 return (concat results)
13

14 matchSection ... = ... -- omitted for brevity
15 matchSectionList ... = ... -- omitted for brevity
16

17 singletonBlock name block
18 = if (name,Nothing) ‘elem‘ procs
19 then scanBlock name block else return []
20

21 scanBlock name block
22 = do procs <- findPerforms block -- Find all PERFORMs in code block
23 node <- return $ mkProcedure name
24 edges <- return $ map (mkPerform name) procs
25 return (node:edges)
26

27 rangeInParagraphs _ (_, Nothing) = return [] -- no range but a singleton block
28 rangeInParagraphs paragraphs (start, Just end)
29 = let spanned = fromto ((==) start . getParagraphName)
30 ((==) end . getParagraphName)
31 paragraphs
32 in scanBlock (mkRangeName start end) spanned

The traversal findPerformsPerProc employs the full tdTU traversal scheme (line 1),
and it exhibits type specific behaviour for paragraphs, sections, and lists thereof (lines 3–4). Given
a single paragraph (see matchParagraph; lines 6–8), we investigate whether it constitutes a
procedure (see singletonBlock; lines 17–19). In case it is, we scan this block for edges in the
perform graph (see scanBlock; lines 21–25). The type-specific case for lists of paragraphs (see
matchParagraphList; lines 10–12) maps over procs (line 11) to check for every element
if it happens to refer to a range of paragraphs in the given list (see rangeInParagraphs;
lines 27–32). To this end, we attempt to split up the list using the labels at hand as boundaries.
Here we assume a helper fromto to select an interval of a list via predicates (used in line 29;
definition omitted). Once we retrieved a code block consisting of a number of paragraphs, we
invoke scanBlock (line 32) to scan this block for edges in the perform graph.

Fig. 8. Find PERFORMs per Cobol procedure.

mkGraph name ascii = "digraph "++(quote name)++" {\n"++(concat ascii)++"}\n"
mkProcedure p = (quote p)++" [ shape=box ]\n"
mkPerform f (t,Nothing) = (quote f)++" -> "++(quote t)++"\n"
mkPerform f (t,Just t’) = (quote f)++" -> "++(quote (mkRangeName t t’))++"\n"
mkRangeName t t’ = t ++ ".." ++ t’

mkGraph completes the ASCII content of a dot graph (i.e., a list of strings for nodes and edges)
into a complete dot input with the given name; mkProcedure and mkPerform derive the
nodes and edges in ASCII from procedure names and PERFORM labels; mkRangeName builds
an ASCII representation for labels in a PERFORM . . .THRU . . . statement.

Fig. 9. API for dot-file generation from Cobol perform graphs.



– – Relevant Java statement syntax in SDF
LabelledStatement -> Statement {cons("LabelledStatement")}
ClassDeclaration -> Statement {cons("ClassDeclaration")}
StatementWithoutTrailingSubstatement -> Statement {cons("WithoutTrailing")}
Block -> StatementWithoutTrailingSubstatement {cons("Block")}
EmptyStatement -> StatementWithoutTrailingSubstatement {cons("EmptyStatement")}
";" -> EmptyStatement {cons("semicolon")}
Identifier ":" Statement -> LabelledStatement {cons("colon")}

– – Counting statements; not counting certain constructors
1 statementCounter :: Term t => t -> Int
2 statementCounter = runIdentity . applyTU (full_tdTU step)
3 where
4 step = constTU 0 ‘adhocTU‘ statement ‘adhocTU‘ localVarDec
5 statement s = case s of
6 (WithoutTrailing (EmptyStatement _)) -> return 0
7 (WithoutTrailing (Block _)) -> return 0
8 (LabelledStatement _) -> return 0
9 (ClassDeclaration _) -> return 0

10 _ -> return 1
11

12 localVarDec (_::LocalVariableDeclaration) = return 1

The type of the statementCounter (line 1) points out that this traversal can be applied to
any term type t, and that the result type is an Integer. The statement count is computed by per-
forming a full tdTU traversal with one ‘tick’ per statement. We do not count empty statements
(return 0 in line 6). We also do not let a block statement, a labelled statement or a class dec-
laration statement contribute to the statement count (lines 7–9), but only the statement(s) nested
inside them. The catch-all case for statement ‘ticks’ for all other statements (return 1 in
line 10). Finally, we want local variable declarations to contribute to the count, and hence an extra
type-specific case for the traversal is needed (line 12).

Fig. 10. Counting Java statements.

5 Case study II: Java code metrics

In this section we discuss the implementation of the calculation of metrics for Java
applications on the basis of source code. Such metrics are useful for determining volume
and quality of Java code as required for the estimation of maintenance costs. We discuss
the implementation of three metrics:

– Statement count: the number of statements.
– Cyclometric complexity: the number of conditionals (McCabe).
– Nesting depth: the maximal depth of nested conditionals.

We want to compute these metrics not only for an entire Java application, but also per
method and per class or interface. Furthermore, we want to export the computed metrics
in XML format for further processing. As in the case of Cobol, we employ an external
parser component. Indeed, Java’s grammar is available in the SDF grammar base.

Metrics computation The number of statements in any fragment of Java code can
basically be computed by counting the number of nodes of type Statement in the
corresponding parse tree. A full traversal is appropriate. A few exceptions are in place
for the sake of precise counting. Fig. 10 shows the relevant productions from the Java
grammar, and the implementation of statement count. The cyclometric complexity (or



1 mcCabeIndex :: Term t => t -> Int
2 mcCabeIndex = unJust . applyTU (full_tdTU step)
3 where
4 step = ifTU isConditional -- potentially failing strategy
5 (const (constTU 1)) -- ‘then’ branch; value consumer
6 (constTU 0) -- ‘else’ branch
7

8 isConditional
9 = failTU -- resolves to: const mzero = const Nothing

10 ‘adhocTU‘ (\(_::IfThenStatement) -> return ())
11 ‘adhocTU‘ (\(_::IfThenElseStatement) -> return ())
12 ‘adhocTU‘ (\(_::WhileStatement) -> return ())
13 ‘adhocTU‘ (\(_::ForStatement) -> return ())
14 ‘adhocTU‘ (\(_::TryStatement) -> return ())

In Java, the statements that contribute to the cyclometric complexity are not only conditionals and
loops, but also the try statement associated to the exception handling mechanism. Recognition of
a relevant statement is modelled via success and failure of the helper strategy isConditional
(lines 8–14). Note that only types are matched but not patterns (see the type annotations ‘::’in
lines 10–14). This is because of the particular format of the Java grammar that defines nontermi-
nals for several statement forms. In the rewrite step for the full traversal (lines 4–6), success
and failure behaviour is mapped to 1 vs. 0 by using a strategy combinator ifTU.

Fig. 11. Computing cyclometric complexity.

– – Java metrics via instantiation of generic metrics
nestingDepth :: Term t => t -> Int
nestingDepth = unJust . applyTU (depthWith isConditional)

– – Generic algorithm for depth of nesting
1 depthWith s
2 = recurse ‘passTU‘ -- Sequential composition
3 \depth_subterms ->
4 let max_subterms = maximum (0:depth_subterms)
5 in (ifTU s
6 (const (constTU (max_subterms + 1)))
7 (constTU max_subterms))
8 where
9 recurse = allTU (++) [] (depthWith s ‘passTU’ \depth -> constTU [depth])

Generic depth calculation works as follows. We first compute a list of depths for the various
subterms (line 2) by recursing into them. The helper recurse does not employ any recursive
traversal scheme, but we use Strafunski’s basic one-layer traversal combinator allTU (line 9) to
apply the strategy for depth calculation to all immediate subterms. This setup for recursion leads
to the needed awareness of nesting. From the list of depths, we compute the maximum depth (line
4), and then we complete this maximum to take the current term into account. If the recogniser
succeeds for the term at hand, then we add 1 to the maximum (lines 5–7).

Fig. 12. Computing nesting depth of conditionals.

McCabe index) of a fragment of Java code can again be computed by a full traversal.
This time we need to count the occurrences of conditional and looping constructs in the
corresponding parse tree. The implementation is shown in Fig. 11. Note that the rewrite
step for the traversal employs a strategy isConditional that merely serves as
a ‘recogniser’ of relevant constructs as opposed to ’ticking’. This is expressed by a
predicate-like result type Maybe (). The actual ticking is done separately on the use
site of isConditional. This style is more suitable for the reuse of the pattern recog-



<!DOCTYPE javaMetrics [
<!ELEMENT javaMetrics (compilationunitMetric*) >
<!ELEMENT compilationunitMetric (interfaceMetric | classMetric)* >
<!ATTLIST compilationunitMetric name CDATA #REQUIRED>

<!ELEMENT interfaceMetric EMPTY >
<!ATTLIST interfaceMetric name CDATA #REQUIRED

methodCount CDATA #REQUIRED
fieldCount CDATA #REQUIRED>

<!ELEMENT classMetric (methodMetric | classMetric)* >
<!ATTLIST classMetric name CDATA #REQUIRED

fieldCount CDATA #REQUIRED>
<!ELEMENT methodMetric (classMetric)* >
<!ATTLIST methodMetric name CDATA #REQUIRED

statementCount CDATA #REQUIRED
mcCabe CDATA #REQUIRED
nestingDepth CDATA #REQUIRED>

]>

The structure of Java metrics documents roughly follows the syntactical structure of Java itself,
but in a highly condensed manner. The attributes of the document elements contain the names of
these elements and the values of various metrics.

Fig. 13. A DTD for Java metrics documents.

1 extractClassMetrics :: ClassDeclaration -> Maybe ClassMetric
2 extractClassMetrics (Class1 _ name extends implements body)
3 = do nestedClassMetrics <- mapM extractClassMetrics (getNestedClasses body)
4 methodMetrics <- mapM extractMethodMetrics (getMethods body)
5 return $ ClassMetric
6 ClassMetric_Attrs {
7 classMetricName = str2cdata name,
8 classMetricFieldCount = int2cdata (length (getFields body)) }
9 ((map ClassMetric_ClassMetric nestedClassMetrics)++

10 (map ClassMetric_MethodMetric methodMetrics))
11

12 extractMethodMetrics :: MethodDeclaration -> Maybe MethodMetric
13 extractMethodMetrics (MethodHeader_MethodBody header body)
14 = do name <- getMethodName header
15 statCount <- statementCounter body
16 mcCabe <- mcCabeIndex body
17 nestingDepth <- nestingDepth body
18 nestedClasses <- collectNestedClasses body
19 nestedClassMetrics <- mapM extractClassMetrics nestedClasses
20 return $ MethodMetric
21 MethodMetric_Attrs {
22 methodMetricName = str2cdata name,
23 methodMetricStatementCount = int2cdata statCount,
24 methodMetricMcCabe = int2cdata mcCabe,
25 methodMetricNestingDepth = int2cdata nestingDepth }
26 nestedClassMetrics
27 where
28 collectNestedClasses = applyTU (stop_tdTU getClassDecl)
29 getClassDecl = failTU ‘adhocTU‘ (\(cd::ClassDeclaration) -> return [cd])

The traversal for computing and storing metrics is structured as five cooperating functions, one
for each DTD element. For brevity, we show the most interesting ones for class metrics and for
method metrics. Trivial helper functions are omitted. The shown code performs little traversal
on its own but pattern matching (lines 2 and 13) and list processing (lines 3,4,9,10,19) is usually
sufficient. The only exception is to look up nested classes (line 28). Here we use a traversal with
stop because we only want to gather immediate nested classes and not the transitive closure.

Fig. 14. Computing Java metrics and storing them in XML.



niser in the implementation of other metrics. Indeed, for the nesting-depth metric, the
same statements are relevant as for cyclometric complexity, but the traversal behaviour
is more involved. That is, we need to count levels of nesting rather than simply certain
kinds of nodes. The implementation is shown in Fig. 12. The actual problem of counting
levels of nesting is completely generic, and hence it is captured in a strategy combinator
depthWith that is parameterised by a strategy for pattern recognition. The depth of a
given term is the maximum of the depths of its children, possibly incremented by � if
the term itself is relevant. Nesting depth for Java is then simply computed by passing
isConditional to depthWith.

Exporting to XML To process metrics information by external components such as
viewers, report generators, code browsers, and others, we use XML as interchange for-
mat. A DTD that describes the structure of Java metric documents is shown in Fig. 13.
The Dtd2Haskell tool generates the corresponding system of Haskell datatypes. These
datatypes are then used in our Haskell component to collect the results of our metrics
calculations. The implementation is shown in Fig. 14. After the metrics have been com-
puted, we invoke the conversion provided by Dtd2Haskell to export the metrics to an
XML document that adheres to our metrics DTD.

6 Case study III: Haskell re-engineering

As a third object language for language processing we selected Haskell—not so much
for the size of its grammar but rather because it is a complicated language with modules,
overloading, type inference, nested scopes, and higher-orderness. While the other case
studies concerned analysis problems, the Haskell case study deals with transformation.
Two forms of dead code elimination shall be discussed:

– Elimination of dead local declarations in nested scopes.
– Elimination of dead top-level declarations in a chased module hierarchy.

The first form is a simple ‘clean-up’ refactoring while the second form generalises dead
code elimination to the inter-modular level of a complete application. In fact, these
transformations do not just serve a purpose in software re-engineering (in the sense
of code improvement). They are also valuable for application extraction in software
packaging, or for optimising compilation. Our tooling for the implementations of the
transformations reuse available support for Haskell parsing and pretty printing (for-
merly called hsparser or hssource, now part of the Haskell Core Libraries — in the
haskell-src package).

Elimination of dead local declarations In the given scope of a Haskell pattern match
equation, a local ‘where’ declaration is dead if it is neither used by the right-hand side
expression, nor by other declarations in the same group of bindings. Fig. 15, specifies
the corresponding transformation by a generic traversal. Note that we rely on an anal-
ysis hsFreeAndDeclared for free and declared names in a Haskell program frag-
ment. It is needed to decide whether a given abstraction is used. We also need a variant
hsFreeAndDeclaredGroup that specifically deals with groups of bindings. The
needed name analysis will be explained below.



1 elimDeadWheres :: Term t => t -> Maybe t
2 elimDeadWheres = applyTP (full_tdTP step)
3 where
4 step = idTP ‘adhocTP‘ match

5 match (HsMatch sl fun pats rhs wheres)

6 = do (pf,pd) <- hsFreeAndDeclared pats
7 (rf,rd) <- hsFreeAndDeclared rhs
8 (df,dd) <- hsFreeAndDeclaredGroup wheres
9 wheres’ <- filterM (hsDeclUsed ((df ‘union‘ rf) \\ pd)) wheres

10 return (HsMatch sl fun pats rhs wheres’)
11

12 hsDeclUsed names decl
13 = do (_,[name]) <- hsFreeAndDeclared decl
14 return $ name ‘elem‘ names

A full traversal is used (line 2) because declarations can be arbitrarily nested in Haskell. The
rewrite step behaves like the identity function by default with a type-specific case for pattern
match equations (line 4). Such equations are treated as follows (lines 5–10). We first destruct the
HsMatch construct (line 5). Then, the free and declared names are determined for the various
fragments in this scope (line 6 for the patterns on the left-hand side; line 7 for the expression on
the right-hand side; line 8 for the local declarations). Then, we filter the declarations to only keep
those that are actually used (line 9). Finally, we return the reconstructed pattern match equation
with the filtered list of local declarations as the result of this rewrite step for transformation (line
10). The helper hsDeclUsed (lines 12–14) is a shorthand for determining the name defined by
a declaration and performing a membership test with respect to a given set of names.

Fig. 15. Elimination of dead local declarations (meta-language = object-language = Haskell).

1 elimDeadTops :: [(ModuleName,[ModuleName],HsModule)]
2 -> Maybe [(ModuleName,[ModuleName],HsModule)]
3

4 elimDeadTops l@(h:t) -- h is the main module
5 = do l’ <- mapM worker t >>= return . (:) h -- elimination per module
6 if l==l’ then return l else elimDeadTops l’ -- fixpoint by equality
7 where
8 worker (n,i,m@(HsModule n’ i’ e’ ds))
9 = do clients <- return $ filter (\e@(_,i’’,_) -> n ‘elem‘ i’’) l

10 (imp,_) <- hsFreeAndDeclared clients
11 ds’ <- filterM (hsDeclUsed imp) ds
12 return (n,i,HsModule n’ i’ e’ ds’)

The elimination function operates on lists of modules which are tupled with, for convenience, the
name of the module, and the imported modules (see the type in lines 1–2). The head of the list is
the main module to be preserved as is. We continuously map a worker transformation over the
chased modules (line 5) until no more top-level declarations are eliminated (line 6). The worker
first determines all clients of the given module (line 9), that is, the modules that happen to
import the given module. Then, we determine all top-level declarations used by these clients (line
10). Then, we filter away all dead top-level declarations of the given module accordingly (line
11). Finally, the module is reconstructed (line 12). The shown implementation only takes simple
Haskell forms of module import into account (i.e., no selection, no re-export, and others).

Fig. 16. Inter-modular dead code elimination (meta-language = object-language = Haskell).

Inter-modular dead code elimination The transformation to eliminate dead top-level
declarations uses the same machinery as above, but it operates on lists of modules.
We eliminate dead top-level declarations with respect to a given main module. Fig. 16,
specifies the corresponding transformation. Note that there is no need for a deep term
traversal because we only deal with top-level declarations of modules.



1 hsFreeAndDeclared :: Term t => t -> Maybe ([HsQName],[HsQName])
2 hsFreeAndDeclared = applyTU (stop_tdTU step)
3 where
4 step = failTU ‘adhocTU‘ exp ‘adhocTU‘ pat ‘adhocTU‘ match ... ‘adhocTU‘ decls
5

6 exp (HsVar qn) = return ([qn],[])
7 exp (HsCon qn) = return ([qn],[])
8 exp (HsLambda pats body) = do (pf,pd) <- hsFreeAndDeclared pats
9 (bf,bd) <- hsFreeAndDeclared body

10 return ((bf ‘union‘ pf) \\ pd,[])
11 ...
12 exp _ = mzero -- fail for all other expression forms
13

14 pat (HsPVar n) = return ([],[UnQual n])
15 pat (HsPApp qn pats) = addFree qn (hsFreeAndDeclared pats)
16 ...
17 pat _ = mzero -- fail for all other forms of patterns
18

19 match (HsMatch _ n pats rhs {-where-} decls)
20 = do (pf,pd) <- hsFreeAndDeclared pats
21 (rf,rd) <- hsFreeAndDeclared rhs
22 (df,dd) <- hsFreeAndDeclared decls
23 return (pf ‘union‘ (((rf \\ (dd ‘union‘ [n]) ‘union‘ df) \\ pd)), [n])
24

25 decls (ds::[HsDecl]) = do (f,d) <- hsFreeAndDeclaredGroup ds
26 return (f \\ d,d)

– – Elaboration for groups of bindings
hsFreeAndDeclaredGroup ds = do names <- mapM hsFreeAndDeclared l

return ( foldr union [] (map fst names),
foldr union [] (map snd names) )

– – Shorthand for adding one free name
addFree free mfd = mfd >>= \(f,d) -> return ([free] ‘union‘ f,d)

The analysis relies on a type-unifying traversal with stop (line 2). This is because we need
to restart the traversal in a pattern-specific fashion (see the various recursive occurrences of
hsFreeAndDeclared). There are type-specific cases for Haskell expressions, patterns (as
in pattern-match equations), and groups of binding (i.e., lists of mutually recursive declarations).
We omit a few cases that were needed for full Haskell. The equations for variables (line 6) and
constructors (line 7) simply return the corresponding names as free. In the case of a lambda ex-
pression (line 8), we compute the free names from the free names of the body by subtracting the
names that were declared (say bound) via the patterns. Note that there are no declared names that
would escape from this scope. Other kinds of scope are illustrated in the functions match for
pattern match equations (lines 19–23) and decls (lines 25–26) for groups of bindings.

Fig. 17. Free and declared names in Haskell program fragments.

Name analysis The notion of free and declared names as assumed above is essential
for a broad class of language processing problems. Any analysis and transformation that
deals with entities in modules and possibly nested scopes needs to be aware of scopes
with their declared and free names. In Fig. 17, we define such an algorithm for Haskell.
In the shown fragment, we focus on the core patterns such as lambdas, variables, nested
scopes. The full algorithm deals with do-statements, list comprehensions, modules, and
classes in largely the same manner. Note that generic traversal allows us to skip over
many constructs that do not contribute directly to the set of free or declared names.



7 Related language processing setups

Let us leave the scope of functional programming (in Haskell) to compare Strafunski
with other setups for language processing. We only discuss a few examples here while
we are predominantly interested in the ways how these other approaches tackle the
concerns of generic traversal and external components. This will also clarify the roots
of our approach, and it will provide further evidence that functional programming in
Haskell is in need of Strafunski’s contributions.

The ASF+SDF Meta-Environment [1] This is an interactive environment for the de-
velopment of language processing tools. The ATerm format and the SDF formalism
together with supporting tools were developed in the context of this project. A form of
generic traversal has recently been added to the ASF term rewriting language, which is
the central implementation language. The toolbus coordination language is offered for
component integration. It is founded on process algebra, and it uses the ATerm format.

XT [6] This is a package for transformation tools, or more generally, for the develop-
ment of language processors. The Stratego language for term rewriting with strategies
plays a central role in XT’s architecture. Stratego allows untyped generic programming.
In fact, Strafunski’s support for functional strategies is largely inspired by Stratego, but
realizes strategic programming in a statically typed higher-order functional program-
ming context. XT also uses ATerms and SDF.

Eli [3] and Cocktail [4] These are prominent examples of attribute grammar systems.
This paradigm specifically addresses language implementation, in particular seman-
tic analysis, and translation from context-free structure to intermediate representations.
Attribute grammars on their own normally fall short when applied to transformation
tasks. This has been a typical application domain for rewriting technology. The afore-
mentioned systems support integration of external components to some extent, e.g., by
allowing semantic functions to be programmed in a general purpose programming lan-
guage. Several non-trivial extensions of the basic attribute grammar formalism target at
genericity (say, conciseness, and reusability).

SmartTools [14] This system supports language tool development based on two main-
stream technologies, namely XML and Java. From an abstract syntax definition, it gen-
erates a development environment that includes a structure editor and some basic vis-
itors that allow for generic graph traversals. SmartTools’s foundation on XML makes
integration of external components an easy task. If the user specifies additional syn-
tactic sugar, a parser and a pretty printer are generated as well. In a designated simple
language, the user can specify ‘visitor profiles’ to obtain more sophisticated visitors.

JJForester and JJTraveler [15] This is another architecture centred around Java. JJ-
Traveler is basically a visitor framework including a library of reusable visitors. The
specific approach provides full traversal control, basically because visitors can be com-
bined in nearly the same way as Strafunski’s functional strategies. JJForester provides
generative tool support to derive a Java class hierarchy from a given SDF grammar, and
also the interface classes to use the JJTraveler visitor framework. Hence, JJForester cor-
responds to Strafunski’s employment of DrIFT for the generation of Term instances
combined with the capabilities of the generator Sdf2Haskell.



8 The virtue of functional programming

So it is fair to say that generic traversal and external components are ubiquitous con-
cerns in language processing. At the risk of saying the obvious, we want to argue
that functional programming in Haskell has something to add when compared to other
setups of language processing, that is: strong typing, higher-order functions, pattern
matching, and Haskell’s status of a general purpose language.

Lack of typing implies a tiresome amount of debugging when dealing with non-trivial
syntaxes and formats in language processing. This is the case, for instance, for the Strat-
ego language underlying XT [6]. Higher-orderness is basically the key to conciseness,
composability, and reuse in our experience. We realise that certain readers are hard
to convince but we refer to a ‘benchmark’ for genericity and conciseness in language
processing [9]. We do not expect that the Strafunski-based reference solution can be
outperformed by other approaches. To give an example, in a Java-based setting, one nor-
mally uses object composition, inheritance, object construction, and others to encode
the combinator style of functional strategies. The merits of pattern matching in the con-
text of language processing are obvious. The merits of a general purpose language are
that the overhead for integrating external components only arises in the reuse context but
not as an implication of lacking expressiveness. Also, Strafunski is very lightweight
for this reason whereas setups that are based on attribute grammars or rewriting tend
to necessitate a complete language implementation effort with all the known benefits
(e.g., opportunities for designated checks and optimisations) and drawbacks (e.g., the
need for a compiler, debugger, the need to deal with yet another notation, etc.).

9 Concluding remarks

This application letter substantiates that typed functional programming can be made fit
to develop practical language processors in an integrated, concise, and scalable manner.
To this end, we have spelled out the Strafunski architecture for language processing.
This architecture is based on Haskell augmented with libraries and generators that pro-
vide support for generic traversal and the integration of external components. We have
argued that these are the two crucial bits that are missing in plain functional program-
ming. Generic traversal is founded on the StrategyLib library for functional strategies
complemented by generative tool support. Generic traversal is essential to deal with
only those language constructs that are relevant to the problem at hand. The integration
of external components is supported by Strafunski’s ATerm library, by its connectivity
to SDF parser generation, and by HaXML’s support for Haskell-based XML processing.

We have applied this setup in three language processing case studies: reverse engineer-
ing of Cobol systems, computation of metrics for Java systems, and re-engineering of
Haskell systems. Thus, our selection of case studies covers widely used languages from
various paradigms and ages, and recurring problems of diverse algorithmic nature. The
case studies clearly demonstrate that generic traversal is indispensable to achieve con-
cise, scalable, and adaptive implementations. They also also prove that our approach to
the integration of external components allows Haskell to be applied to previously alien
applications: think of analysing and transforming huge Cobol portfolios.
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