
Coupled Schema Transformation and Data
Conversion for XML and SQL

Pablo Berdaguer, Alcino Cunha?, Hugo Pacheco, and Joost Visser?

DI-CCTC, Universidade do Minho, Portugal
joost.visser@di.uminho.pt

Abstract. A two-level data transformation consists of a type-level trans-
formation of a data format coupled with value-level transformations of
data instances corresponding to that format. We have implemented a sys-
tem for performing two-level transformations on XML schemas and their
corresponding documents, and on SQL schemas and the databases that
they describe. The core of the system consists of a combinator library
for composing type-changing rewrite rules that preserve structural infor-
mation and referential constraints. We discuss the implementation of the
system’s core library, and of its SQL and XML front-ends in the func-
tional language Haskell. We show how the system can be used to tackle
various two-level transformation scenarios, such as XML schema evolu-
tion coupled with document migration, and hierarchical-relational data
mappings that convert between XML documents and SQL databases.

Key words: Haskell, Transformation, SQL, XML

1 Introduction

Coupled software transformation involves the modification of multiple software
artifacts such that they remain consistent with each other [12,8]. Two-level data
transformation is a particular instance of coupled transformation, where the
coupled artifacts are a data format on the one hand, and the data instances
that conform to that format on the other hand [7]. In this paper we will focus
on the transformation of data formats described in the XML Schema or in the
SQL language, coupled with the conversion of the corresponding data captured
in XML documents or stored in SQL databases.

The phenomenon of two-level data transformation occurs in a variety of con-
texts. For example, software maintenance commonly involves enhancement of
the data formats employed for storing or exporting an application’s data. Typi-
cally such enhancements are fairly conservative, such as adding new fields to the
format. When the enhanced format only serves internal data storage, a one-off
conversion of old data into new data may be sufficient to restore conformance.
When the format concerns data exported to other applications, or shared with
older versions of the same application, old-to-new as well as new-to-old data
conversions may be needed on a repetitive or continuous basis.
? Work funded by Fundação para a Ciência e a Tecnologia, POSI/ICHS/44304/2002.

2 Berdaguer, Cunha, Pacheco, Visser

Two-level data transformation also encompasses less conservative format
changes, such as data mappings between programming paradigms. For exam-
ple, the logic of an application may be programmed against an XML schema,
while for efficient storage of its persistent data a relational database is employed.
The required data mapping involves a format transformation from an XML
schema to an SQL schema, as well as forward and backward data conversions
between XML documents and an SQL database. Unlike format enhancements in
the maintenance context, data mappings typically involve profound structural
modifications.

Other contexts in which two-level data transformations may play a role
include: system integration, where data needs to be exchanged between inde-
pendently developed applications; evolution of programming languages, where
grammar modifications between versions spark the need for migration of source
programs; and model-driven engineering where high-level (meta-)model trans-
formations give rise to conversion of their instances.

Previously, we have shown how data refinement theory can be employed to
formalize two-level data transformation, and how the functional programming
language Haskell can be employed to capture this formalization in a type-safe
manner [7]. We also provided suites of rule combinators as well as basic rules for
format evolution and hierarchical-relational data mappings from which two-level
data transformation pipelines are built in compositional fashion.

In the present paper, we discuss practical application of our Haskell-based
two-level transformation support. In particular, we make these contributions:

1. We elaborate the rule combinators and basic rules to take into account not
only structural information, but also constraint information, such as primary
keys and foreign keys (Section 4).

2. We embed the general transformation kernel into a language-specific trans-
formation framework, including front-ends for SQL (schemas and data) and
for XML Schema and XML documents (Section 5).

3. We illustrate by example how the XML/SQL transformation framework is
used to handle various two-level transformation scenarios, including XML-
to-SQL data mappings, XML schema evolution, and SQL database migration
(Section 6).

Before discussing these contributions, we will present a motivating example (Sec-
tion 2) and briefly recapitulate our previous work on two-level data transfor-
mation (Section 3). We end with a discussion of related work (Section 7) and
concluding remarks (Section 8).

2 Motivating example

The tree in Figure 1 represents an XML movie database schema, before and
after evolution. Before evolution, the database holds information for movies and
actors only. The evolution steps aims to add information for TV series to the
database. This is done through the following changes:

Coupled Schema Transformation and Data Conversion for XML and SQL 3

imdb

movie show

review

*
box office

*

country value

*
actor

*

name played

year title role award

*

*
+

movie series

season

yr episode

nm director

?

*

*
director

year title

Fig. 1. Evolution of a movie database schema, inspired by IMDb (http://www.
imdb.com/). The circled area points out the introduced structure.

1. The movie element is renamed to show.
2. Some information specific to movies is factored out into a new movie element.
3. An element series with information specific to TV series is introduced as

an alternative to the movie element.

In the original schema, the following constraints should hold:

1. A movie is identified by its year and title.
2. An actor is identified by his/her name.
3. The year and title of a played element refers to the year and title of a

movie.

The evolution step introduces the following additional constraint:

4. A season is identified by its yr.

When an XML-to-SQL data mapping is applied to the original and the evolved
schema, different SQL databases with different constraints will result. For ex-
ample, the original schema is mapped to the following database (this example
will be revisted and continued in Section 6):

movies(year,title,director)

reviews(id,year,title,review)

foreign key (year,title) references movies(year,title)

boxoffices(id,year,title,country,value)

foreign key (year,title) references movies(year,title)

actors(name)

playeds(id,name,year,title,role)

foreign key (year,title) references movies(year,title)

foreign key (name) references actors(name)

awards(id,name,playedid,award)

foreign key (playedid,name) references playeds(id,name)

http://www.imdb.com/
http://www.imdb.com/

4 Berdaguer, Cunha, Pacheco, Visser

In the sequel we will show how both evolution and mapping can be specified
by composing library combinators. The backward and forward data conversions
induced by these schema transformations will come for free. The properties of the
combinators guarantee that the conversions are invertible, i.e. that no data gets
lost. The propagation and generation of constraints support the preservation of
not only structural, but also semantic information.

3 Two-level data transformation

Two-level data transformation can be formalized in terms of data refinement the-
ory, and can be modeled in Haskell as systems of type-changing rewrite rules [7].
These rewrite rules operate on Haskell types. In Section 5, we will discuss how
XML and SQL schemas are represented by such types.

Data refinements A datatype A can be refined to a datatype B, usually denoted
by the inequation A 6 B, if there is an injective, total function to : A→ B (the
representation function) and a surjective, possibly partial function from : B → A
(the abstraction function) such that from · to = idA, where idA is the identity
function on datatype A.

The inequations of data refinement theory can be used as rewrite rules that
replace one datatype by another. When applied left-to-right, an inequation A 6
B will preserve or enrich information content, while applied right-to-left it will
preserve or restrict information content. The (potential) partiality of the from
function implies that left-to-right application is only valid if the invariant to ·
from = idB can be shown to hold.

In fact, when used as a left-to-right rewrite rule, a data refinement inequation
A 6 B, witnessed by functions to and from, can be interpreted as a two-level data
transformation step that takes its input datatype A into the triple (B, to, from).

Representation of types and rules The core of the model of two-level data trans-
formations in Haskell are the following declarations:

type Rule = ∀a . Type a → Maybe (View (Type a))
data Type a where

Int :: Type Int
Prod :: Type a → Type b → Type (a, b)
Either :: Type a → Type b → Type (Either a b)
Map :: Type a → Type b → Type (Map a b)
...

data View a where View :: Rep a b → Type b → View (Type a)
data Rep a b = Rep{to :: a → b, from :: b → a }

Note that Type and View are generalized algebraic data types (GADTs) [19],
an extension to the Haskell type system that allows (partially) instantiated type
parameters in the result type of data constructors.

The Rule type expresses that a two-level transformation step is a partial
function that takes a type into a view of that type. Here we use a value-level

Coupled Schema Transformation and Data Conversion for XML and SQL 5

representation of datatypes [11], where a value of Type a is the representation
of type a. For instance, the value Prod Int Int represents type (Int , Int).

The View constructor expresses that a type a can be transformed into a
type b, if there are functions to :: a → b and from :: b → a, bundled in the
Rep constructor, that allow data conversion between a and b. Note that only
the source type a escapes from the View constructor, while the target type b
remains encapsulated — it is implicitly existentially quantified.

Two-level transformation combinators To construct complex two-level transfor-
mations from basic ones, combinators are defined for identity, sequential com-
position, left-biased choice, repetition, and generic traversal:

nop :: Rule
nop x = Just (View (Rep id id) x)
(.) :: Rule → Rule → Rule
(f . g) a = do View (Rep t1 f1) b ← f a

View (Rep t2 f2) c ← g b
return (View (Rep (t2 · t1) (f1 · f2)) c)

(�) :: Rule → Rule → Rule everywhere :: Rule → Rule
many :: Rule → Rule somewhere :: Rule → Rule

These combinators are common for typed strategic rewriting libraries [16,15]. For
conciseness, we show definitions of the first two only. These combinators allow us
to combine local, single-step transformations into a single global transformation.

Several local, single-step transformation rules are shown in Figure 2. These
rules are implemented in Haskell in a straightforward way. For example, the rule
for adding alternatives is implemented as follows:

addalt :: Type b → Rule
addalt b a = Just (View (Rep Left (λ(Left x)→ x)) (Either a b))

Using these basic rules and the rule combinators, we can compose sophisticated
strategies for two-level transformation. For example, a hierarchical-relational
mapping can be defined along the following lines (details in [7]):

toRDB :: Rule
toRDB = many (somewhere (listelim � setelim � ...� flatmap))

Such compositions are guaranteed to be refinements again, i.e. they induce in-
vertible data conversion function. The combinators give full control over the
order and conditions under which rules are applied.

4 Constraint Preserving Transformation

The type representation and the two-level transformation rules from [7], reca-
pitulated above, fail to take into account constraint information. In particular,
foreign key relationships play an important role in relational database modeling
and querying. A similar concept is present in XML Schema, though its usage is
limited [13]. In this section we discuss how the type representation and trans-
formation rules can be augmented to take constraint information into account.

6 Berdaguer, Cunha, Pacheco, Visser

Hierarchical-to-relational data mapping

[A] 6 IN ⇀ A List elimination
2A ∼= A ⇀ 1 Set elimination
A? ∼= 1 ⇀ A Optional elimination

A + B 6 A?×B? Sum elimination
A× (B + C) ∼= (A×B) + (A× C) Distribute product over sum

A ⇀ (B + C) 6 (A ⇀ B)× (A ⇀ C) Distribute map over sum (range)
(B + C) ⇀ A ∼= (B ⇀ A)× (C ⇀ A) Distribute map over sum (domain)

A ⇀ (B × (C ⇀ D)) 6 (A ⇀ B)× (A× C ⇀ D) Flatten nested map

Format evolution

A 6 A×B Add field A+ 6 [A] Allow empty list
A 6 A + B Add alternative A? 6 [A] Allow repetition

A 6 A? Make optional A 6 A+ Allow non-empty repetition

Fig. 2. One-step rules for two-level transformation systems. More details can be
found elsewhere [7].

Representation of field names and referential constraints To represent field names
and references, we introduce an annotation mechanism on data types. We will
write kAn

r to denote a datatype A with name n, key k, and key references r.

– The name annotation n is either empty, or contains a single name.
– The key annotation k is either empty, or contains a globally unique identifier.
– The key references annotation r is a list of zero or more identifiers.

With such annotations, we can represent the first two tables of our example as:

(1(Intyear × Strtitle) ⇀ Strdirector)movies ×
((Intid × (Intyear × Strtitle)1) ⇀ Strreview)reviews

Note that we represent tables with finite maps, where the map’s domain is the
primary key of the table. The compound foreign key relationship is represented
by the annotation 1 on the year-title pair inside each map.

Constraint-preserving transformation rules Using our datatype annotation mech-
anism, we can enhance some of our two-level transformation rules to manipulate
constraint and name information in addition to structural information. Concate-
nation of reference lists is denoted by juxtaposition.

For example, the introduction of a new key reference when flattening nested
maps is captured by the following:

(kAr ⇀ (B × (C ⇀ D)o))m ∼= (kAr ⇀ B)m × (∅Akr × C ⇀ D)o

Here we use ∅ to denote absence of keys. Where annotations on types are omit-
ted, we assume that the annotations get copied over from left to right without
modifications. The first map on the right-hand side inherits its key k from the
outer map on the left-hand side. If no key is present on A, a new key is gen-
erated. The second map on the right-hand side contains a datatype A that is

Coupled Schema Transformation and Data Conversion for XML and SQL 7

XSD

XML

Type a

a

type2xsd
xsd2type

value2xml
xml2value

DDL

DML

Type b

b

type2ddl
ddl2type

value2dml
dml2value

Fig. 3. Overview of the XML and SQL front ends.

annotated with a reference to that key k . Note also that the rule is no longer an
inequation, but an isomorphism, because the referential constraint ensures that
the flat maps can always be nested again.

The presence of annotations may also invalidate the applicability of a rule.
For example, the distribution of a map over a sum may only be performed when
the domain of the map is not a key (name annotations omitted for brevity):

∅A ⇀ B + C 6 ∅A ⇀ B × ∅A ⇀ C

The ∅ indicates that the key annotation of A is required to be empty. This
prevents that the target of a reference gets distributed over two different tables,
which would break referential integrity. Our system of rules handles types of the
form kA ⇀ B + C, where k is not empty by first applying the sum elimination
rule, followed by the optional elimination rule (name annotations omitted again):

kA ⇀ B + C 6 kA ⇀ B?× C? ∼= kA ⇀ (1 ⇀ B)× (1 ⇀ C)

After this, the rule for flattening nested maps, given above, can be applied twice
to obtain a relational representation.

We have adapted the datatype Type to accomodate annotations on type
representations, and we have augmented all implementations of two-level rewrite
rules with appropriate annotation handling.

5 XML and SQL front-ends

In order to embed the general transformation kernel presented above into a
language-specific transformation framework, we developed front ends for the
relational database language SQL, and the document markup language XML.
The essential operations offered by these front ends are shown in Figure 3.

Both front-ends perform their work in two phases (first schema conversion,
then value conversion) and in two directions (from external to internal repre-
sentation and vice versa). In the case of XML, schema information and values
are stored separately, using separate languages (XML Schema and XML itself),
while in the case of SQL type and value information are stored together (CREATE
and INSERT statements).

The functions for the first phase of the XML front end have the following
type signatures:

8 Berdaguer, Cunha, Pacheco, Visser

type2xsd :: Type a → Maybe XSD
xsd2type :: XSD → Maybe DynType
data DynType where DynType :: Type a → DynType

The type2xsd function converts a type representation into the abstract syntax
of an XML Schema file, if possible. The xsd2type function performs the oppo-
site conversion, but it returns the computed type representation wrapped in the
DynType constructor. Note that the type variable a does not escape from the
DynType, which means that it is implicitly existentially quantified. This is es-
sential since the xsd2type function is to be applied without knowing the type it
will produce. The Maybe monad indicates the partiality of the conversions.

The second-phase functions of the XML front end have the following type
signatures:

xml2value :: Type a → XML→ Maybe a
value2xml :: Type a → a → Maybe XML

The first argument of both functions is the type representation from the first
phase. Using this type representation, a string representation of an XML doc-
ument gets converted into a value of the represented type, or vice versa. These
functions are partial, since parsing may fail (xml2value) or the type may not
have the appropriate form (value2xml).

These four XML front-end functions are combined with parsers and pretty-
printers for the XSD and XML abstract syntax trees. For XML we use the
HaXml parser and printer [22]. For XSD we use XML Schema support from the
XsdMetz tool [21] which in turn again uses HaXml (schemas in XML Schema
are themselves XML files).

The functions of the SQL front end have very similar signatures:
create2type :: DDL→ Maybe DynType
type2create :: Type a → Maybe DDL
insert2value :: Type a → DML→ Maybe a
value2insert :: Type a → a → Maybe DML

Here, DDL is an abstract syntax for the data definition sublanguage of SQL
(CREATE statements), and DML is an abstract syntax for the data manipulation
sublanguage (INSERT statments). These functions are combined with an SQL
parser that we generated with the Happy parser generator [17], and a hand-
crafted pretty-printer.

The pattern shared by the two front ends is captured in the following class
and corresponding instances:

class FrontEnd t v | t → v , v → t where
parsetype :: t → Maybe DynType
printtype :: Type a → Maybe t
parsevalue :: Type a → v → Maybe a
printvalue :: Type a → a → Maybe v

instance FrontEnd XSD XML where ...
instance FrontEnd DDL DML where ...

Coupled Schema Transformation and Data Conversion for XML and SQL 9

Type x

x

DDL

DML

Type a

a

XSD

XML

Type b

b

Type y

y

DDL

DML

XSD

XML

evolve

toRDB toRDB

Fig. 4. Overview of the application scenarios.

For brevity, the straightforward instance bodies are not shown. Against the in-
terface of the FrontEnd class, we can program an overloaded function that lifts
a Rule on our internal type representation to a two-level transformation on ex-
ternal abstract syntaxes:

transform :: (FrontEnd t v ,FrontEnd t ′ v ′)
⇒ Rule → t → Maybe (t ′, v → Maybe v ′, v ′ → Maybe v)

transform r t = do
DynT a ← parsetype t
View (Rep to from) a ′ ← r a
t ′ ← printtype a ′

let to′ v = do {x ← parsevalue a v ; printvalue a ′ (to x)}
let from ′ v ′ = do {x ← parsevalue a ′ v ′; printvalue a (from x)}
return (t ′, to′, from ′)

Note that the result type is a triple, where t ′ is the transformed type, and the
partial functions convert v to v ′ and vice versa. In the upcoming sections, we
resolve the overloading of the transform function in different ways to obtain
various concrete two-level transformations for XML and SQL.

6 Application scenarios

We now illustrate by example how the two-level transformation rules can be
combined with the XML and SQL front ends to handle various two-level trans-
formation scenarios. See Figure 4 for an overview.

XML evolution The evolution of Section 2, where TV series are added as an
alternative to movies, can be encoded as follows:

evolve :: Rule
evolve = somewhere (changeName "movie" "show") .

somewhere (when isMovie (putName "movie" . addalt series))

10 Berdaguer, Cunha, Pacheco, Visser

where
isMovie :: Type a → Bool
isMovie (Prod (List a) b) = getName a ≡ Just "boxoffice" ∧

getName b ≡ Just "director"
isMovie = False
series = setName "series" (Map year episodes)
year = setName "yr" Int
episodes = ...

when :: (∀a . Type a → Bool)→ Rule → Rule
getName :: Type a → Maybe String changeName :: String→String→Rule
putName :: String → Rule setName :: String → Type a → Type a

Thus, the movie name is changed into show in a single traversal, using somewhere.
Then, in a second traversal, the schema fragment to be factored out is located
with the isMovie predicate. This predicate tests for the presence of boxoffice
and director. If the predicate is satisfied, at that point in the schema the movie
name is reintroduced, and the addalt rule is triggered to insert the series frag-
ment. Note that this latter fragment is defined by a Map, which encodes that a
season is uniquely identified by its year.

We can now feed the evolve rule to our transform function to perform a data
mapping:

> xsd ← parseXsdFile "imdb.xsd"
> let Just (xsd ′, to, from) = transform evolve xsd
> xml ← parseXmlFile "imdb.xml"
> let Just xml ′ = to xml
> show xml ′

<imdb>

<show><title>Pulp Fiction</title><year>1994</year>

<movie><director>Quentin Tarantino</director></movie>

</show>

<actor><name>John Travolta</name>

<played><title>Pulp Fiction</title><year>1994</year>

<character>Vincent Vega</character>

</played>

</actor>

</imdb>

Thus, we use the resulting to function and apply it to an input document, to
obtain a converted document. Note that the show tag appears in the original
place of the movie tag, which now tags nested information specific to movies.

XML to SQL data mapping We map the original schema to SQL as follows:
> xsd ← parseXsdFile "imdb.xsd"
> let Just (ddl , tosql , fromsql) = transform toRDB xsd
> xml ← parseXmlFile "imdb.xml"
> let Just dml = tosql xml
> show dml

Coupled Schema Transformation and Data Conversion for XML and SQL 11

insert into movies (year,title,director)

values (1994,’Pulp Fiction’,’Quentin Tarantino’);

insert into actors (name)

values (’John Travolta’);

insert into playeds (id,name,year,title,role)

values (0,’John Travolta’,1994,’Pulp Fiction’,’Vincent Vega’);

Here we have supplied the toRDB strategy to the transform function. The re-
sulting ddl corresponds to the pseudo-SQL that we showed in Section 2. Note
that the tosql function would return Nothing if this document does not conform
to the original XML schema. Multiple documents can be converted into SQL
insert statements and loaded into a relational database:

> createDB "imdb" ddl
> loadDB "imdb" dml
> xml ← parseXmlFile "imdb2.xml"
> let Just dml = tosql xml
> loadDB "imdb" dml

With createDB and loadDB we connect to an external DBMS. If the combination
of documents violates the propagated constraints, the DBMS will refuse to load
the data. An XML view of the complete database can be obtained as follows:

> (ddl , dml)← dumpDB "imdb"
> let (Just xml) = fromsql dml
> show xml
<imdb>

<movie><title>Pulp Fiction</title><year>1994</year>

<director>Quentin Tarantino</director>

</movie>

<movie><title>Videodrome</title><year>1983</year>

<director>David Cronenberg</director>

</movie>

<actor><name>John Travolta</name>

...

</actor>

...

</imdb>

Note that we use the fromsql function to do backward conversion.

Data mapping after evolution Like the original XML schema, the evolved schema
can be mapped to a relational database:

> let Just (ddl ′, tosql ′, fromsql ′) = transform toRDB xsd ′

In the pseudo-SQL notation, the relational schema ddl ′ looks as follows:

shows(year,title)

reviews(id,year,title,review)

foreign key (year,title) references shows(year,title)

movies(year,title,director)

foreign key (year,title) references shows(year,title)

12 Berdaguer, Cunha, Pacheco, Visser

boxoffices(id,year,title,country,value)

foreign key (year,title) references movies(year,title)

seriess(year,title)

foreign key (year,title) references shows(year,title)

seasons(year,title,yr)

foreign key (year,title) references seriess(year,title)

episodes(id,year,title,yr,nm,director?)

foreign key (year,title,yr) references seasons(year,title,yr)

actors(name)

playeds(id,name,year,title,role)

foreign key (year,title) references shows(year,title)

foreign key (name) references actors(name)

awards(id,name,playedid,award)

foreign key (playedid,name) references playeds(id,name)

Note that the shows table was called movies before, and that the director field
has moved to the new movies table. New tables for series, seasons, and episodes
have appeared. The generated referential constraints enforce that all movies and
series also appear in the shows table.

Database migration With the composition tosql ′ ·to ·fromsql of various conversion
functions, we can migrate the relational database imdb to an evolved relational
database. However, this pipeline performs various superflous pretty-print and
parse steps, since the intermediate types are XML ASTs. To avoid this, we can
use a dedicated function for migrations:

migrate :: Rule → XSD → Maybe (DML→Maybe DML,DML→Maybe DML)
migrate r t = do

DynT a ← parsetype t
View (Rep to from) b ← toRDB a
View (Rep to′ from ′) b′ ← (r . toRDB) a
let to′ v = do {x ← parsevalue b v ; printvalue b′ (to′ (from x))}
let from ′ v ′ = do {x ← parsevalue b′ v ′; printvalue b (to (from ′ x))}
return (to′, from ′)

The migrate function takes an evolution rule and an initial XML schema, and
produces forward and backward conversion functions between the relational
databases corresponding to the initial and the evolved schema. For example:

> let Just (migrateto,migratefrom) = migrate evolve xsd
> let Just dml ′ = migrateto dml
> createDB "evolvedimdb" ddl ′

> loadDB "evolvedimdb" dml ′

After this, a second movie database has been created and filled with the data
from the old database.

7 Related work

XML-to-relational mappings A large number of approaches has been proposed
for mapping XML to relational databases [1]. Most approaches offer a fixed

Coupled Schema Transformation and Data Conversion for XML and SQL 13

mapping strategy, but some allow manual intervention [3] or automatic cost-
based selection of an optimal target schema [4]. Many approaches only offer
forward data conversion, though some offer backward conversion as well [2]. Our
approach is fully compositional, and allows various mappings known from the
literature to be recomposed in a purely declarative way from basic rules.

XML-to-relational mappings are expected to be information-preserving in
some sense, but few approaches come with a precise definition or formal guar-
antees of such preservation properties. An exception is the use of the notion of
invertibility by Barbosa et al [2], which in turn is based on the classic notion
of relative information capacity in the database context. The same property of
invertibility is satisfied by our two-level data transformation rules, as expressed
by the law from · to = idA. Data refinement theory shows that structural and
sequential composition of our rules maintain invertibility.

Constraint preservation Few XML-to-relational mapping approaches take con-
straint information into account. A notion of XML Functional Dependency (XFD)
is introduced by Chen et al [5,6], based on path expression, and mapping algo-
rithms are provided that propagate XFDs to the target relational schema, and
exploit XFDs to arrive at a schema with less redundancy. Davidson et al [9]
and Barbosa et al [2] present alternative constraint-preserving approaches, also
involving constraints based on path expressions.

Our approach, by contrast, employs a type annotation mechanism to capture
constraints, rather than path expressions. As a result, we capture a smaller class
of possible XML constraints. The advantage, however, is that our annotation
mechanism allows a compositional treatment of constraints, which fits better
with our rule-based mapping approach.

XML format evolution Lämmel et al [14] propose a systematic approach to evo-
lution of XML-based formats, where DTDs are transformed in a well-defined,
step-wise fashion, and migration of corresponding documents can largely be in-
duced from the DTD-level transformations. They discuss properties of trans-
formations and identify categories of transformation steps, such as renaming,
introduction and elimination, folding and unfolding, generalization and restric-
tion, enrichment and removal, taking into account many XML-specific issues,
but they stop short of formalization and implementation of two-level transforma-
tions. In fact, they identify the following ‘challenge’: “We have examined typeful
functional XML transformation languages, term rewriting systems, combinator
libraries, and logic programming. However, the coupled treatment of DTD trans-
formations and induced XML transformations in a typeful and generic manner,
poses a challenge for formal reasoning, type systems, and language design.” We
have now met this challenge, albeit for XML Schema rather than DTDs.

Bi-directional programming Foster et al tackle the classical view-update problem
for databases with lenses: combinators for bi-directional programming [10]. Each
lens connects a concrete representation C with an abstract view A on it by means
of two functions get : C→A and put : A×C→C. Thus, get and put are similar

14 Berdaguer, Cunha, Pacheco, Visser

to our from and to, except for put ’s additional argument of type C. Also, an
additional law on these functions guarantees that put can be used to reconstruct
an updated C from an updated A. Hu et al take a smilar approach [20].

We believe that our techniques for coupled transformations can equally be
beneficial for bi-directional programming with lenses. In particular, we are cur-
rently designing an embedding of bi-directional programs in Haskell that provides
strong, inferable types, as well as strategic rewrite systems for lens composition.

8 Concluding remarks

We have shown how XML format evolution, XML-to-SQL mappings, and SQL
migrations can be given a unified declarative treatment as instances of two-level
data transformations. Schema-level transformations produce new schemas, as
well as bi-directional conversion functions between old and new. Name informa-
tion and constraint information can be preserved through transformation steps.
The approach is compositional, in the sense that full transformations are com-
posed from basic transformation rules and rule combinators, and properties such
as invertibility are preserved under composition. The approach can be extended
to cover other hierarchical and relational data languages, by providing more im-
plementations of the FrontEnd class. Source code and examples are available
from the homepages of the authors under the name 2LT.

Future work Though already useful in practise, our approach suffers from various
limitations that we intend to overcome.

In [8] we have shown that two-level data transformation systems can be sup-
plemented with type-directed program transformation systems to perform opti-
mization of the induced conversion functions. Moreover, such combined rewrit-
ing systems can be used to perform migration of queries through evolution. We
would like to extend our XML and SQL front-ends to leverage such program
transformations for corresponding query languages.

So far, all our transformations on the type level are performed in the refine-
ment direction, i.e. from abstract to more concrete types. Constraint handling
opens the door to performing these steps in the opposite direction, i.e. to perform
reverse engineering from low-level data schemas to higher-level ones [18].

Our annotation mechanism is sufficient to capture a large class of common
XML and SQL constraints. We would like to enlarge this class further.

Acknowledgements We thank Flávio Ferreira and Diogo Lapa for their work
on the front ends, and José Nuno Oliveira for inspiring discussions.

References

1. S. Amer-Yahia, F. Du, and J. Freire. A comprehensive solution to the XML-to-
relational mapping problem. In WIDM ’04: Proc. 6th annual ACM Int workshop
on Web Information and Data Management, pages 31–38. ACM Press, 2004.

Coupled Schema Transformation and Data Conversion for XML and SQL 15

2. D. Barbosa, J. Freire, and A.O. Mendelzon. Designing information-preserving
mapping schemes for XML. In VLDB’05: Proc. 31st Int. Conf. Very Large Data
Bases, pages 109–120. VLDB Endowment, 2005.

3. P. Bohannon et al. LegoDB: Customizing relational storage for XML documents.
In Proc. 28th Int. Conf. on Very Large Data Bases, pages 1091–1094, 2002.

4. P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML schema to relations: A
cost-based approach to XML storage. In ICDE ’02: Proc. 18th Int. Conf. on Data
Engineering, pages 64–. IEEE Computer Society, 2002.

5. Y. Chen, S.B. Davidson, C.S. Hara, and Y. Zheng. RRXS: Redundancy reducing
XML storage in relations. In Proc. 29th VLDB Conference, pages 189–200, 2003.

6. Y. Chen et al. Constraints preserving schema mapping from XML to relations. In
Proc. 5th Int. Workshop Web and Databases (WebDB), pages 7–12, 2002.

7. A. Cunha, J.N. Oliveira, and J. Visser. Type-safe two-level data transformation.
In J. Misra et al., editors, Proc. Int. Symp. of Formal Methods Europe, volume
4085 of LNCS. Springer, 2006.

8. A. Cunha and J. Visser. Strongly typed rewriting for coupled software transfor-
mation. In M. Fernandez and R Lämmel, editors, Proc. 7th Int. Workshop on
Rule-Based Programming (RULE 2006), ENTCS. Elsevier, 2006. To appear.

9. S.B. Davidson et al. Propagating XML constraints to relations. In Proc. 19th Int.
Conf. on Data Engineering, pages 543–. IEEE Computer Society, 2003.

10. J.N. Foster et al. Combinators for bi-directional tree transformations: a linguistic
approach to the view update problem. In Proc. 32nd ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, pages 233–246. ACM Press, 2005.

11. R. Hinze, A. Löh, and B.C.d.S. Oliveira. ”Scrap your boilerplate” reloaded. In
Proc. 8th Int. Symp. on Functional and Logic Programming, volume 3945 of Lecture
Notes in Computer Science, pages 13–29. Springer, 2006.

12. R. Lämmel. Coupled Software Transformations (Extended Abstract). In First
International Workshop on Software Evolution Transformations, November 2004.

13. R. Lämmel, S. Kitsis, and D. Remy. Analysis of XML schema usage. In Conference
Proceedings XML 2005, November 2005.

14. R. Lämmel and W. Lohmann. Format Evolution. In Proc. 7th Int. Conf. on
Reverse Engineering for Information Systems, volume 155 of books@ocg.at, pages
113–134. OCG, 2001.

15. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. ACM SIGPLAN Notices, 38(3):26–37, March 2003.

16. R. Lämmel and J. Visser. Typed Combinators for Generic Traversal. In Proc.
Practical Aspects of Declarative Programming PADL 2002, volume 2257 of LNCS,
pages 137–154. Springer, January 2002.

17. S. Marlow. Happy User Guide. Glasgow University, December 1997.
18. F.L. Neves, J.C. Silva, and J.N. Oliveira. Converting informal meta-data to VDM-

SL: A reverse calculation approach. In VDM in Practice!, September 1999.
19. S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: type inference

for generalised algebraic data types. Technical Report MS-CIS-05-26, Univ. of
Pennsylvania, July 2004.

20. M. Takeichi S.-C. Mu, Z. Hu. Bidirectionalizing tree transformation languages: A
case study. JSSST Computer Software, 23(2):129–141, 2006.

21. J. Visser. Structure metrics for XML Schema. In J.C. Ramalho et al., editors,
XATA2006, XML: Aplicações e Tecnologias Associadas. Univ. of Minho, 2006.

22. M. Wallace and C. Runciman. Haskell and XML: generic combinators or type-based
translation? In Proc. 4th ACM SIGPLAN Int. Conf. on Functional Programming,
pages 148–159. ACM Press, 1999.

	Coupled Schema Transformation and Data Conversion for XML and SQL
	Berdaguer, Cunha, Pacheco, Visser
	Introduction
	Motivating example
	Two-level data transformation
	Constraint Preserving Transformation
	XML and SQL front-ends
	Application scenarios
	Related work
	Concluding remarks

