UMinho Haskell Libraries (2006.06.14)ContentsIndex
Data.Relation.FunctionalDependencies
Synopsis
data FunDep a b c d = FunDep {
antecedent :: (Rel b d)
consequent :: (Rel a c)
}
mkFunDep :: (Ord a, Ord b, Ord c, Ord d) => (b -> d) -> (a -> c) -> Rel b a -> FunDep a b c d
satisfiesFunDep :: (Ord a, Ord b, Ord c, Ord d) => FunDep a b c d -> Rel b a -> Bool
satisfiesFunDep' :: (Ord a, Ord b, Ord c, Ord d) => FunDep a b c d -> Rel b a -> Bool
satisfiesFunDep''' :: (Ord a, Ord b, Ord c, Ord d) => FunDep a b c d -> Rel b a -> Bool
isSuperKey :: (Ord a, Ord b, Ord d) => Rel b d -> Rel b a -> Bool
projection :: (Ord a, Ord b, Ord c, Ord d) => Rel a c -> Rel b d -> Rel b a -> Rel d c
proj :: (Ord a, Ord b) => Rel a b -> Rel a a -> Rel b b
Documentation
data FunDep a b c d
Type of functional dependencies.
Constructors
FunDep
antecedent :: (Rel b d)
consequent :: (Rel a c)
mkFunDep :: (Ord a, Ord b, Ord c, Ord d) => (b -> d) -> (a -> c) -> Rel b a -> FunDep a b c d
Create a functional dependency from two functions and a relation.
satisfiesFunDep :: (Ord a, Ord b, Ord c, Ord d) => FunDep a b c d -> Rel b a -> Bool
Test satisfaction of a functional dependency by a relation.
satisfiesFunDep' :: (Ord a, Ord b, Ord c, Ord d) => FunDep a b c d -> Rel b a -> Bool
Test satisfaction of a functional dependency by a relation (alternative formulation).
satisfiesFunDep''' :: (Ord a, Ord b, Ord c, Ord d) => FunDep a b c d -> Rel b a -> Bool
Test satisfaction of a functional dependency by a relation (yet another alternative formulation).
isSuperKey :: (Ord a, Ord b, Ord d) => Rel b d -> Rel b a -> Bool
Test whether a given projection is a super key for a given relation.
projection :: (Ord a, Ord b, Ord c, Ord d) => Rel a c -> Rel b d -> Rel b a -> Rel d c
f,g-Projection of relation R
proj :: (Ord a, Ord b) => Rel a b -> Rel a a -> Rel b b
Standard Projection
Produced by Haddock version 0.7