
Source Model Analysis using the
JJTraveler Visitor Combinator
Framework

Arie van Deursen∗,‡

Joost Visser¶

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

SUMMARY

Program understanding tools manipulate program representations, such as abstract syntax trees, control-
flow graphs, or data-flow graphs. This paper deals with the use of visitor combinators to conduct such
manipulations. Visitor combinators are an extension of the well-known visitor design pattern. They are
small, reusable classes that carry out specific visiting steps. They can be composed in different constellations
to build more complex visitors. We evaluate the expressiveness, reusability, ease of development, and
applicability of visitor combinators to the construction of program understanding tools. To that end, we
conduct a case study in the use of visitor combinators for control-flow analysis and visualization as used in
a commercial Cobol program understanding tool.

KEY WORDS: Program analysis, program comprehension, visitor design pattern, software visualization.

1. Introduction

Source Models Many reverse engineering, program understanding and reengineering tools operate
by constructing so-called source models from the program source text, followed by an appropriate

∗Correspondence to: CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
†This is a substantially revised version of our earlier paper: A. van Deursen and J. Visser. Building Program Understanding
Tools Using Visitor Combinators. In Proceedings 10th International Workshop on Program Comprehension (IWPC’02), pages
137-146, IEEE Computer Society, 2002.
‡E-mail: Arie.van.Deursen@cwi.nl. Also affiliated with Delft University of Technology, Faculty of Electrical Engineering,
Mathematics and Computer Science, Software Evolution Research Laboratory (SWERL), Mekelweg 4, 2628 CD Delft, The
Netherlands
¶Departamento de Informática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail:
Joost.Visser@di.uminho.pt

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 1

analysis of these models. Different source models can vary in their abstraction level, involving, for
example, a representation relatively close to an abstract syntax tree, or, alternatively, consisting of
high-level architectural structures such as package containment and module dependencies. Depending
on the analysis problem, these source models can be represented by tables, trees, or graphs. Typically,
the models are obtained through a sequence of steps. Each step can construct new models or refine
existing ones. Usually, the first model is an (abstract) syntax tree constructed during parsing, which is
then used to derive graphs representing, for example, control or data flow.

Object-Oriented Source Model Analysis Objects form a natural way for representing such source
models, offering appropriate abstraction mechanisms, classes for organizing model elements, and
object manipulation and navigation for operating on the model. In order to implement a range of
operations on an object-oriented source model, the Visitor design pattern can be used. The intent of
the visitor design pattern is to “represent an operation to be performed on the elements of an object
structure. A visitor lets you define a new operation without changing the classes of the elements on
which it operates” [1]. Often, visitors are constructed to traverse an object structure according to a
particular built-in strategy, such as top-down, bottom-up, or breadth-first.

A typical example of the use of the visitor pattern in program understanding tools involves the
traversal of abstract syntax trees. The pattern offers an abstract class Visitor, which defines a series of
methods that are invoked when nodes of a particular type (expressions, statements, etc.) are visited.
A concrete Visitor subclass refines these methods in order to perform specific actions when it gets
accepted by a given syntax tree.

Visitors are useful for analysis and manipulation of source models for several reasons. Using visitors
makes it easy to traverse structures that consist of many different kinds of nodes, while conducting
actions on only a selected number of them. Moreover, visitors make it possible to add new forms of
analysis easily, without modifying the class hierarchy representing node types. The implementation of
these different analysis can be isolated in individual classes, rather than being scattered over the various
node types.

Visitor Combinators Recently, visitor combinators have been proposed as an extension of the regular
visitor design pattern [2]. These visitor combinators offer an explicit separation between traversal
(object navigation) strategies, and the actual operations performed on each object. The aim of visitor
combinators is to compose complex visitors from elementary ones. This is done by simply passing
them as arguments to each other. Furthermore, visitor combinators offer full control over the traversal
strategy and applicability conditions of the constructed visitors.

The use of visitor combinators leads to small, reusable classes, that have little dependence on the
actual structure of the concrete objects being traversed. Thus, they are less brittle with respect to
changes in the class hierarchy on which they operate. In fact, many combinators (such as the top-down
or breadth-first combinators) are completely generic, relying only on a minimal Visitable interface. As
a result, they can be reused for any concrete visitor instantiation.

Goals of the Paper The concept of visitor combinators is based on the theoretical grounds of strategic
programming, and it promises to be a powerful implementation technique for processing source models
in the context of program analysis and understanding. Now this concept needs to be put to the test of
practice.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

2 A. VAN DEURSEN AND J. VISSER

A B

v.accept(

fwd

Library

Hierarchy

Instantation

Framework

visit(a)
fwd.

accept(HVisitor)

 this)

Operations

Fwd

VisitorVisitable
getChildCount

setChildAt

visit(Visitable)
getChildAt

HVisitable HVisitor

visitA(A)
visitB(B)

visitA(A a)
visit(v)

Figure 1. The architecture of JJTraveler. Rounded boxes indicate interfaces, square boxes are classes. Inheritance
is indicated by lines with triangular connectors. These are dashed if the inheritance relation is implementation of
an interface rather than specialization of a class. Dashed boxes indicate implementation notes.

To that end, we have implemented ControlCruiser, a tool for analyzing and visualizing intra-program
control flow for Cobol. In this paper, we explain by reference to ControlCruiser how visitor combinators
can be used to construct and manipulate source models as used in program understanding and reverse
engineering tools. We discuss design tactics, programming techniques, unit testing, implementation
trade-offs, and other engineering practices related to visitor combinator development. Finally, we asses
the risks and benefits of adopting visitor combinators for building program understanding tools.

2. Visitor Combinators

Visitor combinator programming was introduced in [2] and is supported by JJTraveler: a combination
of a framework and library that provides generic visitor combinators for Java. This section provides
a completely updated account of JJTraveler, and discusses several library extensions that were made
during the development of ControlCruiser.

2.1. The JJTraveler Architecture

Figure 1 shows the architecture of JJTraveler (upper half) and its relationship with an application that
uses it (lower half). JJTraveler consists of a framework and a library. The application consists of a
class hierarchy, an instantiation of JJTraveler’s framework for this hierarchy, and the operations on the
hierarchy implemented as visitors.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 3

Name Args Description
Identity Do nothing
Fail Raise VisitFailure exception
Not v Fail if v succeeds, and v.v.
Sequence v1,v2 Do v1, then v2
Choice v1,v2 Do v1, if it fails, do v2
All v Apply v sequentially to all immediate children until it fails
One v Apply v sequentially to all immediate children until it succeeds
IfThenElse c,t, f If c succeeds, do t, otherwise do f
Try v Choice(v,Identity)
TopDown v Sequence(v,All(TopDown(v)))
BottomUp v Sequence(All(BottomUp(v)),v)
OnceTopDown v Choice(v,One(OnceTopDown(v)))
OnceBottomUp v Choice(One(OnceBottomUp(v)),v)
AllTopDown v Choice(v,All(AllTopDown(v)))
AllBottomUp v Choice(All(AllBottomUp(v)),v)

Figure 2. JJTraveler’s library (excerpt).

The JJTraveler framework offers two generic interfaces, Visitor and Visitable. The latter provides the
minimal interface for nodes that can be visited. Visitable nodes should offer three methods: to get the
number of child nodes, to get a child given an index, and to modify a given child. The Visitor interface
provides a single visit method that takes any visitable node as argument. Each visit can succeed or
fail, which can be used to control traversal behavior. Failure is indicated by a VisitFailure exception.

The library consists of a number of predefined visitor combinators. These rely only on the generic
Visitor and Visitable interfaces, not on any specific underlying class hierarchy. An overview of the
library combinators is shown in Figure 2. They will be explained in more detail below.

To use JJTraveler, one needs to instantiate the framework for the class hierarchy of a particular
application. This first of all requires specializing the visitor and visitable interfaces to hierarchy-specific
ones, called HVisitor and HVisitable in Figure 1. In particular, the HVisitor interface contains distinct
visit methods for each class in the hierarchy.

Secondly, a default implementation of the extended visitor interface is provided in the form of a
visitor combinator Fwd. This combinator forwards every specific visit call to a generic default visitor
given to it at construction time. Concrete visitors are built by providing Fwd with the proper default
visitor – typically Identity if for most nodes nothing needs to be done – and overriding some of the
specific Fwd methods to obtain the required behavior for selected node types.

Finally, the class-hierarchy must be made visitable. To turn a class into a visitable class, it must
implement the hierarchy-specific HVisitable interface. In addition to the generic visitable methods,
this interface provides an accept method, which calls the appropriate visit method in the hierarchy-
specific HVisitor. The accept method realizes the so-called double-dispatch functionality of the
Visitor pattern: it selects a visit method to be executed, based both on the visitor object and the object
being visited.

For more details about instantiation of the JJTraveler framework we refer the reader to Appendix 9
where the full Java code is provided for an example instantiation involving a toy hierarchy.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

4 A. VAN DEURSEN AND J. VISSER

public class Sequence implements Visitor {
Visitor v1;
Visitor v2;
public Sequence(Visitor v1, Visitor v2) {

this.v1 = v1;
this.v2 = v2;

}
public void visit(Visitable x) throws VisitFailure {

v1.visit(x);
v2.visit(x);

} }

Figure 3. The Sequence combinator.

Though instantiation of JJTraveler’s framework can be done manually, automated support for this
is provided by a generator, called JJForester [3]. This generator takes a grammar as input. From this
grammar, it generates a class hierarchy to represent the parse trees corresponding to the grammar,
the hierarchy-specific HVisitor and HVisitable interfaces, and the Fwd combinator. In addition to
framework instantiation, JJForester provides connectivity to a generalized LR parser [4].

After instantiation, the application programmer can implement operations on the class hierarchy by
specializing, composing, and applying visitors.

The starting point of hierarchy-specific visitors is Fwd. Typical default visitors provided to Fwd are
Identity and Fail. Furthermore, Fwd contains a method visitA for every class A in the hierarchy,
which can be overridden in order to construct specific visitors. As an example, an A-recognizer IsA
(which only does not fail on A-nodes) can be obtained by an appropriate specialization of method
visitA of Fwd(Fail).

Visitors are combined by passing them as (constructor) arguments. For example, All(IsA) is a visitor
which checks whether all of the direct child nodes are of class A, and OnceTopDown(IsA) is a visitor
checking whether a tree contains any A-node. Visitors are applied to visitable objects through the
visit method, such as IsA.visit(myA) (which does nothing), or IsA.visit(myB) (which fails).

2.2. A library of generic visitor combinators

Figure 2 shows high-level descriptions for an excerpt of JJTraveler’s library of generic visitor
combinators. A full overview of the library can be found in the online documentation of JJTraveler.
Two sets of combinators can be distinguished: basic combinators and defined combinators, which can
be described in terms of the basic ones as indicated in the overview. Note that some of these definitions
are recursive.

Basic combinators provide the primitive buliding blocks for visitor combination. They include unary
combinators Identity and Fail, as well as binary operators such as Sequence and Choice. The full
implementation for Sequence is shown in Figure 3; the body of the visit method for selected other
basic combinators is shown in Figure 4.

The implementation of a basic combinator follows a few simple guidelines. Firstly, each argument
of a basic combinator is modeled by a field of type Visitor. For Sequence there are two such fields.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 5

Identity() ; // skip

Fail() throw new VisitFailure();

Sequence(v1, v2) v1.visit(x); v2.visit(x);

Choice(v1, v2)

try { v1.visit(x); }
catch (VisitFailure vf) {
v2.visit(x);

}

All(v)
for (int i=0; i<x.getChildCount(); i++) {
x.getChildAt(i).visit(v);

}

Figure 4. Implementations for Selected Basic Visitors

public class Try extends Choice {
public Try(Visitor v) {
super(v, new Identity());

} }

Figure 5. The Try combinator.

Secondly, a constructor method is provided to initialize these fields. Finally, the generic visitmethod
is implemented in terms of invocations of the visit method of each Visitor field. In case of Sequence,
these invocations are simply performed in sequence.

The guidelines for implementing a defined combinator are as follows. Firstly, the superclass of a
defined combinator corresponds to the outermost combinator in its definition (see Figure 2). Thus, for
the Try combinator, the superclass is Choice. Secondly, a constructor method is provided that supplies
the arguments of the outermost constructor in the definition as arguments to the superclass constructor
method (super). For Try, the first superclass constructor argument is the argument of Try itself, and
the second is Identity. The visit method is simply inherited from the superclass.

An example of a recursively defined visitor is TopDown(v), which in Figure 2 is defined as

TopDown(v) = Sequence(v, All(TopDown(v)))

Thus, TopDown first applies v to the current node, and then recursively applies the top down strategy
to each of the children of the current node, yielding a depth-first traversal of a tree visited.

Visitor combinators can be used to build recursive visitors with all sorts of sophisticated traversal
behavior. As an example, during our work on ControlCruiser, we encountered the need for a variant of

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

6 A. VAN DEURSEN AND J. VISSER

public class DoWhileSuccess implements Visitor {
private Visitor dws;
public DoWhileSuccess(Visitor cond,

Visitor action,
Visitor atBorder) {

dws = new IfThenElse(cond,
new Sequence(action, new All(this)),
atBorder);

}
public void visit(Visitable x) throws VisitFailure {

dws.visit(x);
} }

Figure 6. The DoWhileSuccess combinator.

top down which only traverses downwards as long as a the nodes visited meet certain criteria. Thus,
we extended JJTravelers library with the generic visitor DoWhileSuccess, defined as

DoWhileSuccess(cond, action, atBorder) =

IfThenElse(cond,

Sequence(action, All(DoWhileSuccess(cond, action, atBorder))),
atBorder)

The first argument of this visitor is a condition, the second the action to be performed as long as the
condition holds, and the third the action to be performed on the border nodes at which the traversal
stops going downward. This behavior is recursively repeated top down for all nodes, as long as the
condition holds, as expressed in the Sequence expression.

The encoding in Java of this visitor is shown in Figure 6. It makes use of an instance variable to
store the combinator expression, which includes the recursion via the reference to this. Alternatively,
the inheritance guideline discussed above can be adopted, in which case DoWhileSuccess extends
IfThenElse. This requires an extra method to circumvent the fact that Java cannot access this in
calls to the super constructor.

Given this visitor, we can define the following convenient shorthands which we will use later in the
paper:

DoWhileSuccess(c, a) = DoWhileSuccess(c, a, Identity)
TopDownWhile(c, b) = DoWhileSuccess(c, Identity, b)
TopDownUntil(c, b) = DoWhileSuccess(Not(c), Identity, b)
TopDown(a) = DoWhileSuccess(Identity, a, Identity)

Observe that the notion of failure can be used in various ways. In the examples above, failure is
used as a Boolean flag, failure meaning false and success meaning true. Another use of fail is for the
termination of a full traversal. In the example above this would happen if the action would fail at some
point. If one wants to be sure that the action doesn’t fail, it can be surrounded by a Try combinator
— which never fails. Observe that the fact that failure is implemented as an exception is hidden in

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 7

the basic combinators. Thus, defined combinators need not consist of try ... catch clauses, but can be
composed from the basic combinators.

2.3. Extensions

The library of JJTraveler is still evolving. Any combinator that can be expressed just in terms of the
generic Visitable and Visitor interfaces, is a candiate for inclusion in the JJTraveler library. During the
development of ControlCruiser, we constructed a number combinators that are now part of the library.
One example is the DoWhileSuccess combinator discussed above.

Another combinator we added encapsulates the VisitFailure exception. This exception plays an
essential role to control traversal behavior. In many cases, however, we can predict that such an
exception will never escape the outermost visit method call. For example, the expression Not(Fail)
will never fail, nor will TopDown(Identity). To document such cases, and in order to avoid unnecessary
try-catch statements and throw-declarations, we introduced the GuaranteeSuccess combinator. This
combinator catches any VisitFailure exception, and turns it into a Java RunTimeException, which
should never occur and hence need not be declared. Judicious placement of this combinator reduces
code cluttering and makes code more self-documenting.

Furthermore, we extended JJTraveler with a test sub-package, providing support for testing generic
visitor combinators. This package includes the simplest possible instantation of the generic visitable
interface, a LogVisitor(v) combinator which maintains a trace of all nodes visited by v, and an extension
of the JUnit TestCase class (see [5]) in order to provide dedicated support for constructing, running,
tracing, and checking visitor combinators. This makes it possible to adopt a systematic unit testing
approach when developing generic visitor combinators.

3. Cobol Control Flow
The example we use to study the application of visitor combinators to the construction of program
understanding tools deals with Cobol control flow. Cobol has some special control-flow features,
making analysis and visualization an interesting and non-trivial task. The analysis we describe is
taken from DocGen (see [6]), an industrial documentation generator for a range of languages including
Cobol, which has been applied to millions of lines of code.

Control flow in Cobol takes place at two different levels. A Cobol system consists of a series of
programs. These programs can invoke each other using CALL statements. A Cobol system typically
consists of several hundreds of programs.

In this paper, we focus on control flow within a program, for which the PERFORM statement is
used. This perform statement is like a procedure call, except that no parameters can be passed (global
variables have to be used for that). Typical programs are 1500 lines large, but is not uncommon to have
individual programs of more than 25,000 lines of code, resulting in significant program comprehension
challenges.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

8 A. VAN DEURSEN AND J. VISSER

PROCEDURE DIVISION.
P1. ACCEPT X

IF X = "1"
PERFORM P2 THRU P3

ELSE
PERFORM S4.

STOP RUN.
P2. DISPLAY "HELLO".
P3. PERFORM S5.
S4 SECTION.
P4. DISPLAY "HI".
P5. PERFORM S5.
S5 SECTION.

DISPLAY "WORLD".
(a) Cobol source

P1

3

T F

P2 ..
P3

S4

S5

(b) Corresponding conditional call graph. Note that the conditional
node shows that the condition occurs at line number 3.

Figure 7. Example Cobol source and graph

3.1. Cobol Procedures

Cobol does not have explicit language constructs for procedure calls and declarations. Instead, it has
labeled sections and paragraphs, which are the targets of PERFORM and GOTO statements. Perform
statements may invoke individual sections and paragraphs, or ranges of them. A section can group a
number of paragraphs, but this is not necessary.

Figure 7(a) shows an example program in which sections, paragraphs, and ranges are performed.
Paragraph P1 acts as the main block, which reads an input value X. If it is “1”, the program invokes
the range of paragraphs P2 through P3. This range first prints HELLO, and then performs section S5,
which prints WORLD. If the value read is not “1”, the main program invokes just the section S4. After
performing each section, paragraph, or range of them, control is returned to the statement after the
perform that invoked them. In the example, this means that control will finally return to the STOP
RUN statement at the end of paragraph P1. This section consists of two paragraphs, of which P4
displays HI, and P5 invokes S5 to display WORLD.

This example illustrates an important program understanding challenge for Cobol systems. Viewed
at an abstract level the program involves four procedures: P1, the range P2..P3, S4, and S5.
Paragraphs P3, P4 and P5 are not intended as procedures. This abstract view needs to be reconstructed
by analysis, because the entry and exit points of performed blocks of code is determined not by their

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

dummy_urldocgen?class=ProgramSource&arg=dummy_db&arg=example& #P1
dummy_urldocgen?class=ProgramSource&arg=dummy_db&arg=example& #3
dummy_urldocgen?class=ProgramSource&arg=dummy_db&arg=example& #P2
dummy_urldocgen?class=ProgramSource&arg=dummy_db&arg=example& #S4
dummy_urldocgen?class=ProgramSource&arg=dummy_db&arg=example& #S5

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 9

declaration, but by the way they are invoked in other parts of the program. In general, this makes it
hard to grasp the control flow of a Cobol program, especially if it is of non-trivial size.

Typically, Cobol programmers try to deal with this issue by following a particular coding standard.
Such a standard prescribes that, for example, only sections can be performed, or only ranges, or that
perform...thru can only be used for paragraphs with names that explicitly indicate that they are the start
or end-label of a range. Such standards, however, are not enforced. Moreover, especially older systems
may have been subjected to multiple standards, leaving a mixed style for performing procedures. Again,
it takes analysis in order to find out which styles are actually being used at each point.

The formal semantics of “perform P1 thru Pn” is that paragraphs are executed starting with P1 until
control reaches Pn. In principle, this makes determining which paragraphs are actually spanned by a
range an undecidable problem. In this paper, we will assume that ranges are syntactically sequenced,
which corresponds to the way Cobol programmers generally understand and apply this construct, and
which has grown into a widely accepted Cobol programming convention. If this assumption does not
hold, paragraph Pn will be reached from P1 in another way than via fall through. In that case, our
approach will infer a procedure that is too large (containing too many paragraphs). Our approach could
be easily extended to issue warnings for some (though not all) situations in which this can happen.
We refer to [7] for ways of dealing with dynamic ranges. We conjecture that visitor combinators can
applied successfully to implement the algorithms described by [7].

3.2. Analysis and visualization

To help maintenance programmers understand the control flow of individual Cobol programs, a tool is
needed for analysis and visualization of a program’s perform dependencies. From such a call graph,
one could instantly glean which perform style is predominant, which sections, paragraphs or ranges
make up procedures, and how control is passed between these procedures.

When discussing these procedure-based call graphs with maintenance programmers, they indicated
that they would also like to know under what conditions a procedure gets performed. This gave
raise to the so-called Conditional Call Graph (CCG), an example of which is shown in Figures 7(b)
and 17. These graphs contain nodes for procedures and conditionals (if-then-else, iteration, and case
statements), which are connected by edges that represent call relations and nesting relations. Return of
control is not modeled by an explicit edge, but subsumed in the edge that represents a call. In essence, a
CCG summarizes the control-dependencies of procedure calls. The visualization of these graphs is such
that only control statements that affect calls are shown, leading to a compact representation suitable for
large Cobol programs as well. The details of the CCG format will be presented in Section 4.3. CCGs
are part of the DocGen redocumentation system, in which these graphs are hyperlinked to both the
sources and to documentation at higher levels of abstraction [6].

Conditional call graphs can also be used as part of a systematic quality assurance (QA) effort, for
example for computing quality related metrics at the system, program, and procedure level. Example
QA metrics include McCabe’s cyclomatic complexity, fan-in, fan-out, and the deepest conditional
nesting level. Moreover, they can be used to detect certain coding style violations, such as the use
of goto’s across section boundaries, or the mixed use of both sections and paragraphs as perform target
— both of which are forbidden in current Cobol programming methodologies.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

10 A. VAN DEURSEN AND J. VISSER

PARA 2 P1
IF 3

THRU 4 P2 P3
ELSE 5

PERFORM 6 S4
END-IF 7

END-PARA 9 P1
PARA 9 P2
END-PARA 10 P2
PARA 10 P3
PERFORM 10 S5

END-PARA 11 P3
SECTION 11 S4
PARA 12 P4
END-PARA 13 P4
PARA 13 P5

PERFORM 13 S5
END-PARA 14 P5

END-SECTION 14 S4
SECTION 14 S5
END-SECTION 15 S5

(a) CPF for Fig 7

Block

Paragraph

* *
1..2

Section

Stmt

*

Program
CPF

perform

section

ParagraphList

block

SectionList

StmtList

program

para

thru ifiteration

(b) The generated CPF class hierarchy. Square boxes with italicized text indicate
abstract classes.

Figure 8. Conditional Perform Format (CPF)

4. Visitable Program Representations

We have used visitor combinators to implement the analysis and visualization requirements just
described. The result is ControlCruiser, a program analysis tool that can provide insight into the
intra-program call structure of Cobol programs. The tool employs several visitable source models,
and performs various visitor-based traversals over them. This section discusses the visitable program
representations used in ControlCruiser; the next sections covers in detail how visitor combinators have
been used for the purpose of graph construction and analysis.

4.1. Initial Tree Representation

The starting point for ControlCruiser is a simple language containing just the statements representing
Cobol sections, paragraphs, perform statements, and conditional constructs. An example of this
Conditional Perform Format (CPF) is shown in Figure 8(a). This representation can be thought of as a
simplified Cobol abstract syntax tree, stripped to include only statements relevant for the intra-program
control flow.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 11

StatList

JJTraveler

graph

CCG

EdgeNode

Conditional

Nesting

Graph

VisitableVisitor

GraphVisitor

CCGVisitor

Procedure

CallProgramPointCCGFwd

GraphFwd

CCGVisitable

GraphVisitable

CallGraph

Figure 9. Class hierarchy for graph representations.

We obtain CPF from Cobol sources using a Perl script written according to the principles discussed
in [8]. This script takes care of handling the tricky details of the Cobol syntax, such as scope termination
of nested if- and loop-constructs.

The result is an easy to parse CPF file. We have written a grammar for the CPF format, and used
JJForester to derive a class hierarchy for representing the corresponding trees. All nodes in such trees
are of one of the types shown in Figure 8(b). Since these all realize the Visitable interface, we can
implement all subsequent steps with visitor combinators.

An alternative way to obtain CPF from Cobol sources would be to employ a full-blown Cobol parser.
The syntax tree produced by this parser could be traversed by a visitor to construct the CPF trees.
Visitor combinators could be employed to constuct this CPF constructing visitor. The difficulty of this
approach is the lack of availability of Cobol parsers, and the wide variety of existing Cobol dialects.
The Perl script is tolerant with respect to differences between dialects, but parsers generally need to be
explicitly tuned for each dialect. The use of island grammars to remediate such intolerance is subject
of ongoing investigation [9, 6]. For languages that are more rigorously standardized, this alternative
avenue for obtaining CPF is not problemetic, and we have actually done so for extraction of CPF-like
structures from Java.

4.2. Visitable Graphs

To analyze Cobol’s control flow in an easy way, we have to create a graph out of the tree representation
corresponding to Cobol statements. For this, we use an additional visitable source model which consists
of two layers (see Figure 9).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

12 A. VAN DEURSEN AND J. VISSER

The first layer is a generic graph model, with explicit classes for nodes, edges, and the overall
graph providing entry points into the graph. Each of these classes implements the hierarchy-specific
GraphVisitable interface, which is an extension of generic visitables. The classes are implemented such
that

• the children of a node are defined as its outgoing edges,
• the child of an edge is its outgoing node,
• and the children of a graph consists of the collection of all nodes.

This makes it possible to traverse a graph using visitor combinators. Furthermore, a hierarchy-specific
GraphVisitor interface (not shown) is provided, as well as the default forwarding implementation
GraphFwd. These can be used to implement various general graph algorithms, such as determining
root nodes, connectivity, etc.

4.3. Conditional Call Graphs

The generic graph layer is specialized to represent control and call dependencies giving rise to
Conditional Call Graphs (CCGs). The nodes in a CCG represent procedures, statement lists, and
control statements, as illustrated in Figure 9. Procedures and statement lists both can have any number
of outgoing edges, which can be of two types. Call edges represent a call from a statement list to
a procedure. Nesting edges represent a syntactic containment between a statement list and a control
statement. Control statements represent statements that transfer control, such as if-then-else, case, and
iteration. These statements have a fixed number of outgoing nesting edges to statement lists, one for
each branch.

Procedures are statement lists that can be retrieved by name. All nodes are program points, and can
have a pointer back to their originating construct in the CPF tree.

The forwarding combinator of CCG (not shown) provides the default behavior of a CCG visitor.
This involves three levels of forwarding, capturing the interplay between the various representations,
starting at the CCG format and ending at the generic visitable perspective.

1. First, visit methods of classes that have a superclass within the visitable hierarchy invoke the
visit method of their immediate superclass.

2. Second, visit methods for top-level CCG classes forward to visit methods in a GraphVisitor at
the generic graph level.

3. Finally, graph-specific visitors forward to their generic visitors provided to them at constructor
time.

This layered design makes it possible to reuse GraphVisitors when building a CCGVisitor by
forwarding to the graph visitor. This will be illustrated in Section 6.3 where we build a CCG visualizer
that delegates default behavior to a graph visualizer.

Observe that conditional call graphs are language-independent: we are using them for Java as well as
Cobol analysis. If language-specific issues are to be taken into account an additional bottom layer can
be created. As an example, our ControlCruiser implementation currently has a small Cobol-specific
layer to cater for the particularities of sections, paragraphs, and ranges.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 13

public class PerformedLabels extends cpf.Fwd {
Set performedLabels = ...;
Set performedRanges = ...;
public PerformedLabels() {

super(new Identity());
}
public void visit_perform(perform p) {

performedLabels.add(p.getcallee());
}
public void visit_thru(thru x) {

performedRanges.add(
new Range(x.getstartlabel(), x.getendlabel()));

}
public void apply(Program p) {

(new GuaranteeSuccess (new TopDown(this))).visit(p);
} }

Figure 10. Collect performed labels.

5. Graph Construction

We will first explore how to use visitor combinators for the purpose of constructing the conditional
call graph. This phase involves the application of visitor combinators to abstract syntax trees in CPF
format. Our treatment covers visitor combinator programming basics (to familiarize the reader with the
concepts) as well as more advanced techniques (such as restarting visitors). In the next section we will
then explore how visitor combinators can be applied to graph traversals as well.

Observe that the graph construction itself is non-trivial: it involves the reconstruction of the
procedural structure of the Cobol program. For this, the labels that are actually performed need to
be selected and turned into graph nodes. Moreover, conditional structures should be organized in a
part-of relationship with those recovered procedures instead of with the existing labels.

5.1. Tree Construction

To parse a CPF file into a corresponding syntax tree with root node of type Program, we simply call a
factory method Program.parseFile() generated by JJForester. All nodes in this tree are of one
of the types shown in Figure 8(b). Since these all implement the Visitable interface, we can build all
subsequent steps with visitor combinators.

5.2. Label Collection

The visitor for collecting labels that are used as target in PERFORM statements is shown in Figure 10.
This is a visitor for the CPF hierarchy, and as such it extends the CPF forwarding visitor cpf.Fwd. The
PerformedLabels constructor invokes the cpf.Fwd constructor with Identity as argument, indicating that
by default nothing needs to be done.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

14 A. VAN DEURSEN AND J. VISSER

public class CreateProcedures extends cpf.Fwd {
CallGraph callGraph;
Set performedLabels;
public CreateProcedures(CallGraph g, Set labels){

super(new Identity());
...

}
public void visit_section(section s) {

addProc(s.getlabel(), s);
}
public void visit_para(para p) {

addProc(p.getlabel(), p)
}
void addProc(String name, Visitable v) {

if (performedLabels.contains(name)) {
callGraph.addProcedure(new Procedure(name,v));

} } }

Figure 11. Create procedures for individual labels.

Recall that perform statements come in two flavors: with and without THRU clause. Consequently,
there are two cases for which dedicated behavior is required, corresponding to two method definitions
in Figure 10. The method bodies simply update the corresponding collection of labels or ranges.

To actually collect the labels from the input program p, we need to pass the PerformedLabels
visitor to the generic TopDown combinator, and visit p with it. The method taking care of this is
called apply. It makes use of the GuaranteeSuccess combinator to emphasize that this traversal can
never fail. Observe that in principle, the PerformedLabels visitor can be combined with any (generic)
combinator. We recommend to include an apply method for the typical way of invocation when
assembling functionality from combinators which is not intended to be reusable in other contexts.

Note that there are no dependencies between the code in this visitor pertaining to pairs of labels and
the code pertaining to individual labels. If desired, we could refactor this visitor into two even smaller
ones, PerformedIndividuals and PerformedRanges, and obtain the combined behavior via

Sequence(PerformedRanges, PerformedIndividuals)

5.3. Procedure Reconstruction

Every performed label corresponds to either a section or a paragraph. In order to create a procedure
node with the proper link back to the CPF tree representing the procedure body, we use a visitor that
triggers at individual sections and paragraphs (see Figure 11). It only actually creates a procedure node
if the given label is one of the performed labels, which it receives at construction time. The created
procedure nodes are added to a call graph, which is also provided at construction time. Recall from
Section 4.2 that the nodes comprise the children of a graph, so that we indeed will be able to retrieve
the added nodes at a later stage via a traversal over the graph object.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 15

public class SpannedASTs extends cpf.Fwd {
VisitableList spannedASTs = new VisitableList();
boolean withinRange = false;
public SpannedASTs(Range range)

super(new Identity());
...

}
public void visit_para(para p) {

addIfWithinRange(p.getlabel(), p);
}
public void visit_section(section s) {

addIfWithinRange(s.getlabel(), s);
}
void addIfWithinRange(String label, Visitable x) {

if (label.equals(range.start)) { withinRange = true; }
if (withinRange) {
spannedASTs.add(x);
if (label.equals(range.end)) {

throw new VisitFailure("Range Found");
} } }
public SpannedASTs apply(Visitable list) {

(new GuaranteeSuccess(new Try(new All(this)))).visit(list);
return this;

} }

Figure 12. Collect section and paragraph nodes spanned by a given pair of labels.

Again, this visitor can be passed to the TopDown combinator, in order to traverse the tree and collect
the procedures. Below, however, we will see how we can make better use of combinators in order to
avoid visiting too many nodes.

To construct procedure nodes for perform ranges, we need to collect the section or paragraph
between the start and end label. For this purpose we have developed an auxiliary visitor (see Figure 12)
which triggers at each section or paragraph. When the given start label is encountered, paragraphs or
sections visited are added to the list. At the end label, a failure is generated to indicate that further
traversal is not necessary. This visitor is typically combined with All, in order to check all elements of
a paragraph or section list.

Given this auxiliary visitor, a visitor can be developed that constructs procedure nodes for pairs of
labels (see Figure 13). This visitor triggers at ParagraphList and SectionList nodes. This is appropriate,
since it follows from our assumption that ranges are syntacticly recognizable that sections and
paragraphs spanned by a pair of labels must always occur in the same list. When such a list is
encountered, the method addSpannedASTs is invoked to perform an iteration over the collection
of label pairs. At each iteration, the SpannedASTs combinator is activated to collect the corresponding
paragraphs or sections. If this yields a non-empty result, a new procedure node is created and added to
the graph. If the closing paragraph of a range is not found, we could easily generate a warning, but this
has not been implemented.

Finally, we can apply the developed visitors to the input program. This could be done with a simple
top-down traversal. However, any nodes at the block level and lower would be visited superfluously,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

16 A. VAN DEURSEN AND J. VISSER

public class CreateRanges extends cpf.Fwd {
public CreateRanges(CallGraph graph, Set todoRanges) {
super(new Identity());
...

}
public void visit_ParaList(ParaList pl) {
addSpannedASTs(pl);

}
public void visit_SectionList(SectionList sl) {
addSpannedASTs(sl);

}
void addSpannedASTs(Visitable list) {
Iterator ranges = todoRanges.iterator();
while (ranges.hasNext()) {

Range range = (Range) ranges.next();
VisitableList body = getBody(list, range);
if (! body.isEmpty()) {

addProc(range, body);
} } }
public VisitableList getBody(list, range) {
return (new SpannedASTs(range)).apply(list).spannedASTs;

}
void addProc(Range p, VisitableList ast) {
...

} }

Figure 13. Create procedure for ranges

because our visitors for procedure creation have effect only on sections, paragraphs, and lists of these.
To gain efficiency, we will use the DoWhileSuccess combinator instead. To detect blocks, we first
define the following visitor (using an anonymous class):

Visitor isBlock
= new Fwd(new Fail())

{ public void visit_block(block x) {} };

This visitor fails for all nodes, except blocks. We compose it with our procedure creation visitors to do
a partial traversal:

cp = new CreateProcedures(graph,labels);
cr = new CreateRanges(graph,ranges);
(new DoWhileSuccess(

(new Not(isBlock)),
(new Sequence(cp, cr))

)) . visit(program);

Thus, both separate combinators are combined in a sequence, and applied as long as we did not enter a
block. After this traversal, the graph contains a node for every procedure reconstructed from the CPF
tree. Each such procedure node contains a reference to the CPF subtrees that gave rise to it.

The visitors for constructing the program entry point are similar to the creation of performed
procedure nodes and are not shown. An auxiliary visitor collects ASTs, starting from the top of the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 17

public class RefineProcedure extends cpf.Fwd {
public RefineProcedure(CallGraph graph, ProgramPoint caller) {

super(new Fail());
...

}
public void visit_perform(perform perform) {

String label = perform.getcallee();
Procedure callee = graph.getProcedure(label);
caller.addCallEdgeTo(callee);

}
public void visit_thru(thru x) {

...
}
public void visit_if$(if$ x) {

Conditional cond = graph.addConditional(x);
caller.addNestingEdgeTo(cond);
restart(cond.getThenPart());
restart(cond.getElsePart());

}
public RefineProcedure apply() {

Visitable body = caller.getAST();
(new GuaranteeSuccess(new TopDownUntil(this))).visit(body);
return this;

}
public void restart(ProgramPoint newCaller) {

(new RefineProcedure(graph, newCaller)).apply();
} }

Figure 14. Refine the CCG for a given procedure. Note that the symbol $ has been appended to if, because it is
a reserved keyword in Java.

program, and stopping at the first STOP RUN statement or the first performed label. This implements
the heuristic that performed sections and paragraphs are never part of the main procedure.

5.4. Constructing Conditionals and Edges

Our next visitor analyzes the various procedure bodies, and constructs the appropriate conditional
structures together with call edges to other performed procedures (see Figure 14). This visitor provides
interesting behavior in that it needs to construct a recursive structure, which requires a restarting visitor
at every recursive call.

The RefineProcedure visitor itself fires at perform statements and conditional nodes such as if-then-
else statements. For perform statements it simply creates a call edge to the performed procedure. For
conditional statements, it creates the appropriate node and edge, and then restarts, creating a new visitor
incarnation for the true and the false branches in order to find outgoing edges of these branches.

This visitor is intended for combination with TopDownUntil, which traverses downward until
success. For that reason, RefineProcedure fails by default (it inherits from Fwd(Fail)): the only nodes
that succeed are the perform and conditional nodes, which should stop current top down traversal.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

18 A. VAN DEURSEN AND J. VISSER

public class Visited implements Visitor {
Set visited = new HashSet();
public void visit(Visitable x) throws VisitFailure {

if (!visited.contains(x)) {
visited.add(x);
throw new VisitFailure("First visit");

} } }

Figure 15. The Visited combinator.

The RefineProcedure visitor itself must be invoked for each procedure. Since the visitable graph
model chosen (see Section 4) ensures that the All combinator just visits each node in the graph, this
can be achieved via:

Visitor refine = new ccg.Fwd(new Identity()){
public void visitProcedure(Procedure p) {

(new RefineProcedure(graph, p).apply();
} };
(new All(refine)).visit(graph);

Note that we use an anonymous extension of the Identity visitor to invoke the apply method of the
RefineProcedure visitor that does the actual refinement.

6. Graph Analysis

In the previous sections, we have seen how to apply traversals over trees in order to construct a graph.
In this section, we take this constructed graph as starting point, and use visitors in order to traverse the
graph. Our examples are concerned with metrics collection and graph visualization.

6.1. Graph Combinators

From a visitor combinator perspective, graph traversals offer a number of interesting issues. For one
thing, graph nodes may have multiple incoming edges. Thus, directly applying the regular TopDown
combinator to a graph will have the effect that a single node may be visited more than once. Therefore,
we introduce the (fully generic) Visited() combinator (see Figure 15) which indicates (via success)
whether a node has been visited before.

This combinator is also helpful when traversing cyclic graphs. It is typically used in the following
context, which applies the action visitor exactly once to every node. Observe that we operate on the
generic visitable level, independent of any specific graph representation.

WhileNotVisited(action) = DoWhileSuccess(Not(Visited), action)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 19

6.2. Collecting Metrics

To collect control flow related metrics from our graphs, we can again benefit from a number of fully
generic visitors. To illustrate this, we will construct a visitor for computing McCabe’s cyclomatic
complexity. In the “simplified complexity calculation” as discussed by Watson and McCabe [10], this
amounts to counting binary decision predicates.† This involves the following visitors:

• SuccessCounter(v)
Whenever v succeeds, increment an internal counter.

• IfRecognizer()
Succeed on an CCG conditional statement, and fail on all other statements

• McCabeCounter() = WhileNotVisited(SuccessCounter(IfRecognizer()))
Compute the number of if statements in the graph visited. To obtain a language-independent
McCabe counter, we can turn the specific IfRecognizer into a parameter.

This McCabeCounter computes the cyclomatic complexity for a full graph: the WhileNotVisited
combinator traverses every edge it encounters. For reporting and quality assurance, we will typically
be interested in metrics per procedure rather than aggregated for the full program. This involves the
following visitors:

• WithinScope()
Fail on call edges, and succeed on the (remaining) nesting edges or conditional nodes, which do
not exit the scope of the current procedure.

This combinator can then be used in the following expression, which counts conditionals within the
scope of a particular procedure.

McCabeCounter() =

DoWhileSuccess(

Sequence(Not(Visited), WithinScope()),
SuccessCounter(IfRecognizer))

This visitor should then be activated for all procedures in the graph, for example via the All
combinator.

In a similar manner we can collect the maximum nesting depth of conditional statements. In legacy
systems if-then-else structures with a nesting level higher than 10 are not uncommon, and can be a
major source of errors. To identify them, we use a fully generic NestingDepth(r) visitor, which is
parameterized by a visitor r to recognize relevant nesting constructs. In our case, r will typically be the
IfRecognizer we encountered before. The NestingDepth(r) visitor counts nested occurrences of nodes
on which r succeeds, and returns the maximum nesting level. Since this involves recursive behavior,
this combinator is based on restarts as discussed in Section 5.4. In order to provide distinct counts per
procedure, the combinator can be given a second argument indicating when to stop, similar to the way
in which the WithinScope visitor is used in the McCabe computation.

†For ease of exposition, we follow the simplified computation in this paper: the actual implementation of ControlCruiser adopts
the complete computation also covering multi-branch statements and loops.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

20 A. VAN DEURSEN AND J. VISSER

public class GraphToDot extends graph.Fwd {
...
public GraphToDot(DotFile dotFile) {

super(new Identity());
}
public void visitNode(GraphNode n) {

dotFile.add(n+";")
}
public void visitEdge(DirectedEdge e) {

dotFile.add(e.inNode() + "->" + e.outNode() + ";");
}
public void apply(Graph g) {

(new GuaranteeSuccess(new WhileNotVisited(this))).visit(g);
}

}

Figure 16. Graph visualization.

6.3. Graph Visualization

We conclude our presentation ControlCruiser by discussing different ways in which our graphs can be
visualized. Again, this introduces interesting new visitor combinator programming techniques.

Visualizing a graph involves a simple mapping from the Graph object structures to the textual
representation of dot that is part of the GraphViz suite offered by AT&T [11]. To facilitate this,
we extend GraphFwd(Identity), and redefine the methods visitNode and visitEdge to emit the
appropriate lines to a DotFile object. Combining this visitor with WhileNotVisited, and applying it to a
Graph object yields the dot representation, as shown in Figure 16.

If we want to generate specialized visual clues for certain CCG elements, we can reuse this
GraphToDot via forwarding. Thus, a CcgToDot combinator implements a refinement of ccg.Fwd to
offer specific visualizations of, for example, procedures and conditional statements. In all other cases,
the default behavior of ccg.Fwd is used, which is to forward to the GraphToDot visitor provided, which
takes care of visualizing remaining nodes and edges in a standard way.

An example of the resulting conditional call graph for an existing Cobol program is shown in
Figure 17. The EVAL nodes represent case statements (called “evaluate” statements in Cobol), which
occur in our full implementation as subclass of the Conditional class. Recall that only perform edges
and conditional statements are shown in the graph: this explains why some of the if-then-else statements
have no outgoing edges (their then- or else-part probably just consist of assignments, not of calls or
extra conditional logic).

For large programs, a graph including all conditionals may be come too cluttered for understanding
purposes. Thus, we would like to provide an alternative visualization without the conditions. The visitor
combinator programming technique to achieve this is to apply a filter on the graph before we visualize
it. Such a filter does not reconstruct a graph, but forwards only selected visit events to another action
visitor. In our case, the required CallFilter only forwards visits to procedure nodes and call edges.
Since existing call edges can depart from a conditional node instead of a procedural node, the filter

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 21

A000-MAIN

EVAL

288 289 292

B100-OPEN R100-VERWERK B200-CLOSE

IF 300

T F

IF 310

T F

IF 334

T F

EVAL

347 354 358 361 364

EVAL

376

R200-TITULATUUR R400-VOORLT R220-VOORVG R230-NAAMR210-VOORLT

IF 385

T F

IF 402

T F

IF 412

T F
R300-SAMENSTELLEN-NAAM

LOOP
455

LOOP
466

IF 476

T F

IF 456

T F

IF 469

T F

IF 478

T F

LOOP
493

IF 497

T F

X999-ABORT

IF 548

T F

R995-CLOSE-FILES

DECLA-CLS-000..DECLA-CLS-999

IF 527

T F

Figure 17. Example real life Conditional Call Graph

keeps track of the local scope, creates a new call edge having that procedure as departing point, and
tells the action visitor that this new edge was visited.

We can reuse this filter for different purposes, such as computing the fan-in (number of different
callers of a procedure) and fan-out (number of different calls made in a procedure) metrics, which
also requires call edges between procedures rather than between statements and procedures. The
actual computation can be simplified by introducing yet another filter which takes care of filtering
out duplicated edges in (arbitrary) graphs. The resulting fan-in and fan-out computation operates on
arbitrary graphs as well, and is independent of the CCG structure.

Last but not least, we can combine the visualization and the metrics computations, resulting in a
graph in which the node height indicates a selected metric of interest. As an example, Figure 18 shows
the graph for the same program as used in Figure 17. In this case, we have applied the CallFilter, so
that all call relations are shown at the procedure level. The height of each procedure in the figure is
derived from the fanout value computed for that procedure.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

22 A. VAN DEURSEN AND J. VISSER

A000-MAIN

B100-OPEN R100-VERWERK B200-CLOSE

R200-TITULATUUR R400-VOORLT R220-VOORVG R230-NAAM R210-VOORLT X999-ABORT R995-CLOSE-FILES

R300-SAMENSTELLEN-NAAM DECLA-CLS-000..DECLA-CLS-999

Figure 18. Graph of Figure 17 combined with metrics collection and conditional filtering.

7. Discussion

7.1. Visitor Programming Techniques

In the preceding section, we have applied visitor combinators to the construction of graphs representing
control flow information and to the subsequent analysis of these graphs. In the course of developing
these combinators, we have identified a number of useful techniques for applying visitor combinators
in practice:

apply method A combinator is typically written with a particular application context in mind, such
as a top down traversal. We adopted a convention to provide each combinator with an apply
method reflecting this typical application.

filters Various forms of behavior can be obtained by composing complex combinators from a series
of filters. The visitors involved in such a filter sequence need not be aware of the filtering

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 23

mechanism, and can be developed as if they are directly visiting a graph. If necessary, the filters
can generate new nodes and edges on the fly, providing even more flexibility.

layers If different but related visitable hierarchies are needed, these can be organized as separate
layers. As an example, ControlCruiser includes separate layers for graphs in general and control-
flow specific conditional call graphs. We have illustrated how to setup the inheritance and
forwarding relations between visitors and visitables respectively. As a result, visitors developed
for the higher layer are directly reusable for the lower layers via forwarding.

restarts Passing a visitor over a tree using a traversal combinator hides the recursion inherent in the
traversal. We have shown how to use a restarting visitor for cases where recursion must be
explicit, for example when constructing recursive structures.

7.2. Visitor Programming Benefits

While implementing ControlCruiser, we found the key benefit of programming using visitor
combinators to be in the explicit separation of object navigation strategies (traversal) from object
manipulation. Such a separation of concerns has the following advantages:

• Traversal behavior can be understood, developed, tested, and maintained separately separately
from the actual object manipulation.

• Analysis behavior can be combined with different traversals. As an example, our McCabe
combinator can be applied to a full program or repeatedly for each procedure.

• Traversal behavior can be reused across implementations. For example, we have reused a number
of generic traversal combinators such as TopDownWhile or Try, and we have contributed new
generic combinators such as WhileNotVisited and SuccessCounter.

In our implementation, we extensively used this separation of concerns to include extensive testing.
We have developed the combinators in ControlCruiser in a test-driven manner, resulting in separate
JUnit [5] tests for each combinator. Moreover, we have extended JJTraveler with explicit support for
testing generic combinators.

Other important benefits of visitor combinators include:

• Complex traversal behavior can be composed from simple building blocks, expressing defined
combinators in terms of basic ones.

• Behavior can be expressed at various levels of abstraction, ranging from hierarchy-specific
combinators to fully generic visitors. Levels we encountered include CCG, Graph, and Visitable.
Combinators for the different levels can be seamlessly combined via forwarding.

• Visitor combinators are robust against hierarchy changes.
• Visitor combinators offer refined control over the parts of a tree that should be visited and those

that can be skipped. As an example, in Section 5 we introduced an isBlock visitor to stop a top
down traversal whenever a block was entered.

7.3. Visitor Programming Risks

Making hierarchies visitable may incur some cognitive overhead, in that a larger number of classes
must be understood and maintained. The potential maintenance costs should be balanced by the benefits

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

24 A. VAN DEURSEN AND J. VISSER

gained from using visitors as discussed in the previous section. Turning a class hierarchy H of N classes
into a visitable hierarchy, requires the following additional classes and methods:

• Two extra interfaces HVisitor, HVisitable, and an extra class HFwd implementing the former
interface;

• Four extra methods in each class in H in order to implement the HVisitable interface (consisting
of the methods getChildAt, setChildAt, getChildCount, and accept). Each of
these methods can usually be implemented in a single statement. Observe that the child access
methods in some cases can be obtained via (implementation) inheritance: in our case these
methods are only defined in the Graph hierarchy, and inherited in the CCG refinement.

Note that in many cases, the extra methods and classes can be generated, thus reducing the
maintenance penalties. For example, we have used JJForester [3] to generate the fully visitable CPF
hierarchy of Figure 8.

A second cause of additional classes is the fact that the use of visitor combinators encourages the
developer to split traversals into many small steps. Where appropriate, anonymous inner classes or
member classes can be used to deal with such small classes.

An account of visitor combinator performance risks is presented in the next section. In some
cases, visitor combinators can be optimized by reducing the number of exceptions thrown (which
is a relatively costly operation in Java). For example, forwarding to Fail in a TopDownUntil is more
expensive than forwarding to Identity in a TopDownWhile. Performance can be improved by choosing
an interpretation of VisitFailure such that failure is less common than success. In particular, using a Not
in a traversal condition will cause an exception to be thrown for every visited node. For that reason,
the implementation of the WhileNotVisited in the ControlCruiser libary uses an explicit Unvisited
combinator, instead of the Not(Visited) discussed in Section 6.1.

7.4. Performance Evaluation

In order to analyze the potential performance penalties of using visitor combinators, we set up a simple
experiment concerning the computation of the unscoped McCabe counting as discussed in Section 6.2.
We wrote three different ways to perform this computation, with the following characteristics:

visitor combinators In the combinator implementation, we computed the McCabe index using the
following equation

McCabeCounter() = WhileNotVisited(SuccessCounter(IfRecognizer()))

plain visitor In the plain visitor implementation, we used a traditional visitor as described by [1].
Comparing the combinator and visitor solution provides us with insight in the additional costs
of using a combinator solution.

We implemented this traditional visitor as a refinement of CcgFwd, overriding the forwarding
behavior by recursive calls implementing the (in that case fixed) top down traversal.

direct In the direct implementation, we did not write a visitor at all: instead we directly traversed the
tree in a for loop. Comparing this implementation with the plain visitor, provides us with insight
in the costs of using the visitor design pattern, in particular the cost of the double dispatch
involved.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 25

Our implementation of this direct traversal makes use of the generic Visitable interface, using
Java’s instanceof operator to determine whether an if-then-else node has been found.

These three ways of computing McCabe have been applied to the conditional perform graphs of
87 Cobol programs comprising a system totaling over 100,000 lines of code. The results are shown
in Figure 19. The X-axis shows size in lines of code for each of the 87 programs; the Y axis shows
the visiting time in milliseconds. Per program, the visiting time in the combinator, plain and direct
implementations are provided. In our experiments we used the Java compiler and virtual machine from
Sun’s Java 2 SDK Standard Edition, version 1.4.

When analyzing these figures, the following issues should be considered:

• We expect the combinator approach to be the most expensive one: For each node, a chain of
delegating actions has to be conducted (forwarding, for example, visits from Conditional via
ProgramPoint, Node, GraphVisitable, and Visitable to the default Identity combinator).

• Our primary interest is in the time needed for visiting. Therefore, the data shown does not include
the time needed for parsing and graph construction.

• All three McCabe computations simply do one pass over the full conditional perform graph, and
are of complexity O(|V |+ |E|), where V is the set of vertices in the graph and E the set of nodes.
Thus, as the Cobol programs get larger, we expect a linear growth in visiting time. The figure
shows the linear regression for the three approaches.

• Outliers can be explained by the fact that individual times will depend on factors that differ per
Cobol program, such as the number of conditional statements, the total number of statements,
and the number of (perform) relations between them. Each of these factors is strongly correlated
with program size, making size a natural unit for doing our performance analysis.

Based on these considerations, we can perform a linear regression analysis on the scatter plot in
Figure 19. This shows that the performance differences between the plain and direct visitors are very
small. Moreover, from the derived equations for the combinator and classical visitor performance data,
we can conclude that the combinator overhead is given by 0.0512/0.0068 making combinators roughly
7.5 times as expensive.

7.5. Object-oriented language processing

At first glance, the object-oriented programming paradigm may seem to be ill-suited for language
processing applications. Terms, pattern-matching, algebraic datatypes are typically useful for language
processing, but are not native to an object-oriented language like Java. More generally, the reference
semantics of objects seems to clash with the value semantics of terms in a language. Thus, in spite
of Java’s many advantages with respect to e.g. portability, maintainability, and reuse, its usefulness in
language processing is not evident.

In this paper and in an earlier case study [3], we have shown that, in the presence of visitor
combinators, object-oriented programming can be a powerful instrument when developing language
processing applications. In fact, some specific strengths of object-orientation with regard to declarative
paradigms can be mentioned. For example, graph-shaped (rather than tree-shaped) source models can
be represented directly as object graphs. Stateful traversals can be implemented naturally with object
state rather than resorting to sophisticated encodings such as monads or propagation patterns. And class
hierarchies can be extended or refined more easily than algebraic data types.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

26 A. VAN DEURSEN AND J. VISSER

y = 0.0512x + 14.801

R2 = 0.8586

y = 0.0068x + 17.923

R2 = 0.5232

y = 0.0083x + 5.6076

R2 = 0.5444

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000

Lines of code

V
is

it
o

r
ti

m
e

in
 m

ill
is

ec
o

n
d

s

combinator

classical

direct

Linear (combinator)

Linear (classical)

Linear (direct)

Figure 19. Performance of various visitor forms.

Still, some features of declarative languages remain desirable when applying object-oriented
programming to language processing problems. For instance, the modeling of visitor combinators
could have been more elegant and more concise if in Java we could directly dispose of higher-order
functions and (parametric or rank-2) polymorphism (see also Section 8.2). Also, pattern-matching on
term representations could remove some of the verbosity of our approach.

8. Related work

8.1. Source Model Analysis

Selected source model analysis methods include relational algebra in which relations are combined
using operators such as intersection, transitive closure, and so on [12]; the GUPRO approach based on
extended entity relationships and a Z-like graph specification language [13]; reflection models aimed
at connecting source models with high-level models [14]; Rigi’s Tcl-based command language for
navigating through hierarchical graphs [15]; and meta-model based analysis in GSEE [16]. A recent

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 27

overview is provided in [17]. Observe that in none of these approaches traversals are first-class citizens
that can be explicitly manipulated and combined.

In the context of program transformations and reengineering, abstract syntax tree traversal is
discussed by [18], who provide a top-down traversal for analysis and transformation purposes. Their
traversals have been generalized in the context of ASF+SDF in [19]. Similar traversals are present in
the Refine toolset [20], which contains a pre-order and post-order traversal. In both cases, only a few
traversal strategies are provided, and little support is available for composing complex traversals from
basic building blocks or for controlling the visiting behavior.

8.2. Strategic Programming

The origins of visitor combinators can be traced back to strategic term rewriting, in particular [21].
In this style of programming, tree rewrite rules are provided in combination with explicit strategies
determining the order in which the rewrite rules are applied. The language Stratego‡ can be used
as a dedicated language for strategic programming. This language focuses on tree transformations
rather than just tree analysis. In principle, our visitor combinator approaches can also be used for
transformation, but so far we have used them for analysis only. Observe that our analysis involves
graphs instead of pure trees.

Term rewriting strategies have also been integrated into typed functional programming, where
strategy combinators can be implemented directly as a particular kind of higher-order function [22].
The corresponding Haskell-centered bundle, Strafunski, for generic programming and language
processing has also been applied to re- and reverse engineering problems [23] including a very
restricted form of Cobol control-flow graphs as discussed more generally in the present paper.

Programming with visitor combinators and programming with function combinators for generic
traversal as well as programming with term rewriting strategies can all be seen as an instance of the
same idiom: strategic programming. These instances exhibit different strengths. The visitor combinator
approach is optimally integrated with the object-oriented paradigm which allows among others dealing
with graphs as useful in our problem domain. The functional approach requires encoding effort when
dealing with graphs but is very concise because of pattern matching and true combinator style. The
Stratego approach offers several features that particularly address concerns in a program transformation
context.

8.3. Combinator libraries and generic algorithms

The visitor combinator library of JJTraveler, as discussed and used in the present paper, can
be related to combinator libraries in other languages and paradigms. In functional programming,
combinator libraries have been developed for a wide variety of general-purpose and domain-specific
purposes. Among these are monadic programming [24], parsing [25], pretty-printing [26], document
processing [27], web authoring [28], and robotics [29]. In general, functional languages that support
higher-order functions can be used to create embedded languages as combinator libraries [30].

‡See http://www.stratego-language.org/

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

28 A. VAN DEURSEN AND J. VISSER

The C++ Standard Template Library (STL, [31]) is a library of collections and algorithms for these
collections. It employs some higher-order programming techniques, such as iterators and function
objects. Using these techniques, the STL offers generic container algorithms, which the user can
instantiate for different kinds of containers with different element types. Thus, both JJTraveler’s
visitor combinator library and the STL employ generic programming techniques to offer a library
of composable and extendable generic algorithms.

8.4. Visitor Design Pattern Extensions

The hierarchical visitor pattern [32] employs a visitor interface with two methods per visitable class:
one to be performed upon entering the class, and one to be performed before leaving it. This pattern
allows hierarchical navigation (keeping track of depth) and conditional navigation (cutting off traversal
below a certain point). Visitor combinators can be used to achieve such traversal control, and much
more.

In adaptive programming, and its implementation by the Demeter system [33], a notion is present
of traversal strategies for object structures. These strategies should not be confused with the strategies
and strategy combinators of the Stratego language which inspired our visitor combinators. Demeter’s
strategies are high-level descriptions of paths through object graphs in terms of source node, target
node, intermediate nodes, and predicates on nodes and edges. These high level descriptions are
translated (at compile time) into ‘dynamic roadmaps’: methods that upon invocation traverse the object
structure along a path that satisfies the description. During traversal, a visitor can be applied. The aim
of these strategies is to make classes less dependent on the particular class structure in which they
are embedded, i.e. to make them more robust, or adaptive. Unlike our visitor combinators, Demeter’s
strategies are declarative in nature and can not be executed themselves. Instead, traversal code must be
generated from them by a constraint-solving compiler. On the other hand, while reducing commitment
to the class structure, Demeter’s strategies do not eliminate all references to the class structure. Visitor
combinators allow definition of fully generic traversals. A comparison between adaptive and strategic
programming is provided by [34].

To complement Demeter’s declarative strategies, a domain-specific language (DSL) has been
proposed to express recursive traversals at a lower, more explicit level [35]. This traversal DSL
sacrifices some compactness and adaptiveness in order to gain more control over propagation and
computation of results, and to prevent unexpected traversal paths due to underspecification of
traversals. Being based on code generation, this traversal DSL provides explicit support for recursive
traversals, thus avoiding the need for our restarting visitors. On the other hand, visitor combinators
are more generic, extensible and reusable, and they offer more traversal control. Also, they do not
essentially rely on tool support.

JJTraveler offers a separation between generic and hierarchy-specific operators. This separation is
also addressed by Vlissides’ staggered visitor pattern [36], and the extended visitor pattern supported
by the SableCC tool [37]. The aim of this separation is to allow extension of the syntax without altering
existing (visitor) code. In the extended visitor pattern of SableCC, the generic visitor interface does not
contain any methods. In the staggered pattern, the generic visitor contains a generic visit method,
similar to our visit method. The main difference with our approach is that in these patterns forwarding
from specific to generic visit methods is done in the Visitor class, while we do it in a separate reusable

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 29

combinator Fwd. In the presence of Choice, the Fwd combinator allows not only extension of a syntax,
but also merging of several syntaxes.

The Walkabout class [38] uses reflection to achieve what is called shape polymorphism. The
Walkabout class performs a traversal through an object structure. At each node it reflects on itself to
ascertain whether it contains a visit method for the current node. If not, it uses reflection to determine
the fields of the current node and calls itself on these. The authors report high performance penalties
for the extensive reliance on reflection. The benefit is that no (syntax-specific) accept methods, visitor
interface, or visitor combinators need to be supplied. The Walkabout class implements a fixed top-
down traversal strategy, which is cut off below nodes for which the visitor fires (which corresponds to
DownUp(Identity,v,Identity) in the JJTraveler library).

9. Concluding Remarks

In this paper, we have explored the use of visitor combinators for the purpose of source model analysis
in for example reverse engineering and program comprehension tools. Our main contributions include:

• An up to date account of visitor combinators in general and the JJTraveler framework in
particular.

• A detailed discussion of a visitor combinator case study, instantiating the generic JJTraveler
framework to Cobol program analysis and visualization. The case study includes layered
visitable graph representations, graph construction, analysis, and visualization, and a number
of new generic visitor combinators.

• A description of a range of techniques and guidelines that can be used during visitor combinator
programming.

• An analysis of the risks and benefits of visitor combinator programming, including an experiment
for the specific measurement of potential combinator performance penalties.

The key benefit of applying visitor combinator programming to source model is the treatment of
traversals as first class citizens, and the possibility to create complex traversals simply by combining
basic building blocks.

Future work includes the further expansion of JJTraveler and ControlCruiser. An interesting question
is how data can be passed between combinators in a functional style, as opposed to the referencing of
instance variables as done in the current paper. In the context of reverse engineering, we anticipate to
extend ControlCruiser with hierarchical graphs and graph analyses as required for software architecture
reconstruction (conform, e.g., [39]). In the context of program analysis, we will explore how to extend
ControlCruiser to cater for various algorithms as described by, e.g., [40].

Availability
JJTraveler can be downloaded from http://www.cwi.nl/projects/MetaEnv/. Control-

Cruiser is still expanding, and available for research purposes on request.

Acknowledgements We would like to thank Huub de Hesselle, Paul Klint, Ralf Lämmel, Leon
Moonen, and Jurgen Vinju for reading drafts of our paper, as well as the anonymous Software Practice
& Experience reviewers for their detailed feedback.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

30 A. VAN DEURSEN AND J. VISSER

REFERENCES

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

2. J. Visser. Visitor combination and traversal control. ACM SIGPLAN Notices, 36(11):270–282, November 2001.
OOPSLA 2001 Conference Proceedings.

3. T. Kuipers and J. Visser. Object-oriented tree traversal with JJForester. Science of Computer Programming, 47(1):59–87,
November 2002.

4. M. G. J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation filters for scannerless generalized LR parsers.
In N. Horspool, editor, Compiler Construction (CC’02), Lecture Notes in Computer Science. Springer-Verlag, 2002.

5. K. Beck and E. Gamma. Test infected: Programmers love writing tests. Java Report, 3(7):51–56, 1998.
6. A. van Deursen and T. Kuipers. Building documentation generators. In International Conference on Software

Maintenance, ICSM’99, pages 40–49. IEEE Computer Society, 1999.
7. J. Field and G. Ramalingam. Identifying procedural structure in cobol programs. In Workshop on Program analysis for

software tools and engineering; PASTE, pages 1–10. ACM Press, 1999.
8. A. van Deursen and T. Kuipers. Rapid system understanding: Two COBOL case studies. In International Workshop on

Program Comprehension, pages 90–97. IEEE, 1998.
9. L. Moonen. Generating robust parsers using island grammars. In Proceedings of the 8th Working Conference on Reverse

Engineering, pages 13–22. IEEE Computer Society Press, 2001.
10. A. H. Watson and T. J. McCabe. Structured testing: A testing methodology using the cyclomatic complexity metric.

Technical Report 500-235, NIST Computer Systems Laboratory, 1996.
11. E. R. Gansner, E. Koutsofios, S. North, and K-P. Vo. A technique for drawing directed graphs. IEEE Transactions on

Software Engineering, 19(3):214–230, 1993.
12. R. Holt. Structural manipulations of software architecture using Tarski relational algebra. In 5th Working Conference on

Reverse Engineering, WCRE’98, pages 210–219. IEEE Computer Society, 1998.
13. B. Kullbach and A. Winter. Querying as an enabling technology in software reengineering. In Proceedings 3d European

Conference on Software Maintenance and Reengineering (CSMR)., pages 42–50. IEEE Computer Society, 1999.
14. G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the gap between source and high-level

models. In Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 18–28.
ACM Press, 1995.

15. K. Wong, S.R. Tilley, H.A. Müller, and M.-A.D. Storey. Structural redocumentation: a case study. IEEE Software,
12(1):46–54, 1995.

16. J.-M. Favre. A new approach to software exploration: Back-packing with gsee . In Proceedings 6th European Conference
on Software Maintenance and Reengineering (CSMR)., pages 251–262. IEEE Computer Society, 2002.

17. R. I. Bull, A. Trevros, A. J. Malton, and M. W. Godfrey. Semantic grep: Regular expressions + relational abstraction. In
A. van Deursen and E. Burd, editors, Proceedings of the 9th Working Conference on Reverse Engineering (WCRE’02).
IEEE Computer Society, 2002.

18. M. G. J. van den Brand, A. Sellink, and C. Verhoef. Generation of components for software renovation factories from
context-free grammars. Sc. of Comp. Progr., 36(2–3), 2000.

19. M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term rewriting with traversal functions. Technical Report SEN-R0121,
CWI, 2001.

20. L. Markosian, P. Newcomb, R. Brand, S. Burson, and T. Kitzmiller. Using an enabling technology to reengineer legacy
systems. Comm. of the ACM, 37(5):58–70, 1994.

21. E. Visser, Z. Benaissa, and A. Tolmach. Building program optimizers with rewriting strategies. ACM SIGPLAN Notices,
34(1):13–26, January 1999. Proceedings of the International Conference on Functional Programming (ICFP’98).

22. R. Lämmel and J. Visser. Typed Combinators for Generic Traversal. In Proc. of Practical Aspects of Declarative
Programming 2002 (PADL’02), volume 2257 of LNCS, pages 137–154. Springer-Verlag, January 2002.

23. R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl and P. Wadler, editors, Proc. of Practical Aspects of
Declarative Programming 2003 (PADL’03), LNCS. Springer-Verlag, January 2003.

24. Philip Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263, 1997.
25. Graham Hutton and Erik Meijer. Monadic parsing in Haskell. Journal of Functional Programming, 8(4), 1998.
26. John Hughes. The Design of a Pretty-printing Library. In J. Jeuring and E. Meijer, editors, Advanced Functional

Programming, volume 925. Springer Verlag, 1995.
27. M. Wallace and C. Runciman. Haskell and XML: Generic combinators or type-based translation? In Proceedings of the

Fourth ACM SIGPLAN International Conference on Functional Programming (ICFP‘99), volume 34–9, pages 148–159,
N.Y., 27–29 1999. ACM Press.

28. P. Thiemann. WASH/CGI: Server-side web scripting with sessions and typed, compositional forms. In Practical Aspects
of Declarative Languages, pages 192–208, 2002.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 31

public interface TreeVisitable extends Visitable {
public void accept(TreeVisitor visitor) throws VisitFailure;

}

public interface TreeVisitor extends Visitor {
public void visitLeaf(Leaf leaf) throws VisitFailure;
public void visitFork(Fork fork) throws VisitFailure;

}

Figure A1. Hierarchy-specific Visitor and Visitable interfaces.

29. P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and functional reactive programming. In Summer
School on Advanced Functional Programming 2002, Oxford University, volume 2638 of Lecture Notes in Computer
Science, pages 159–187. Springer-Verlag, 2003.

30. D. Swierstra, P. Azero, and J. Sariava. Designing and implementing combinator languages. In Advanced Functional
Programming, pages 150–206, 1998.

31. A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report X3J16/94-0095, WG21/N0482, 1994.
32. Portland pattern repository. http://www.c2.com/cgi/wiki.
33. K. J. Lieberherr and B. Patt-Shamir. Traversals of Object Structures: Specification and Efficient Implementation. Technical

Report NU-CCS-97-15, College of Computer Science, Northeastern University, Boston, MA, July 1997.
34. R. Lämmel, E. Visser, and J. Visser. Strategic programming meets adaptive programming. In Proceedings Aspect-Oriented

Software Development (AOSD03). ACM, 2003.
35. J. Ovlinger and M. Wand. A language for specifying recursive traversals of object structures. In Proceeings of the

1999 ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA‘99),
pages 70–81, 1999.

36. John Vlissides. Visitor in frameworks. C++ Report, 11(10), November 1999.
37. E. M. Gagnon and L. J. Hendren. SableCC, an object-oriented compiler framework. In TOOLS USA 98 (Technology of

Object-Oriented Languages and Systems). IEEE, 1998.
38. J. Palsberg and C. B. Jay. The essence of the visitor pattern. In Proceedings of COMPSAC’98, 22nd Annual International

Computer Software and Applications Conference, pages 9–15, Vienna, Austria, August 1998.
39. I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as a case study: Its extracted software architecture. In 21st

International Conference on Software Engineering, ICSE-99, pages 555–563. ACM, 1999.
40. T. Reps. Program analysis via graph reachability. Information and Software Technology, 40(11–12):701–726, 1998.

APPENDIX A. Example instantiation of the JJTraveler framework

In this appendix we provide the full Java code of an instantiation of the JJTraveler framework for a toy
hierarchy. The hierarchy contains a composite interface Tree which is implemented by two concrete
classes Fork and Leaf. The hierarchy-specific extensions of the Visitor and Visitable interfaces
are given in Figure A1. Figure A2 shows the hierarchy-specific forwarding combinator. Finally, the
hierarchy itself is given in Figure A3. Note that the classes in this hierarchy have been made visitable,
in the sense that they implement the Visitable interface, via the TreeVisitable interface.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

32 A. VAN DEURSEN AND J. VISSER

public class TreeFwd implements TreeVisitor {
private Visitor visitor;
public TreeFwd(Visitor visitor) {

this.visitor = visitor;
}
public void visit(Visitable visitable) throws VisitFailure {

if (visitable instanceof TreeVisitable) {
((TreeVisitable) visitable).accept(this);

} else {
throw new VisitFailure();

} }
public void visitLeaf(Leaf leaf) throws VisitFailure {

visitor.visit(leaf);
}
public void visitFork(Fork fork) throws VisitFailure {

visitor.visit(fork);
} }

Figure A2. Forwarding combinator for the Tree hierarchy.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

SOURCE MODEL ANALYSIS USING VISITOR COMBINATORS 33

public interface Tree extends TreeVisitable {
// Composite pattern

}

public class Leaf implements Tree {
public void accept(TreeVisitor visitor) throws VisitFailure {

visitor.visitLeaf(this);
}
public int getChildCount() {

return 0;
}
public Visitable getChildAt(int i) {

return null;
}
public Visitable setChildAt(int i, Visitable child) {

return this;
}

}

public class Fork implements Tree {
private Tree left;
private Tree right;
public Fork(Tree left, Tree right) {

this.left = left;
this.right= right;

}
public void accept(TreeVisitor visitor) throws VisitFailure {

visitor.visitFork(this);
}
public int getChildCount() {

return 2;
}
public Visitable getChildAt(int i) {

switch (i) {
case 0 : return left;
case 1 : return right;
default : return null;

} }
public Visitable setChildAt(int i, Visitable child) {

switch (i) {
case 0 : left = (Tree) child; return this;
case 1 : right = (Tree) child; return this;
default : return this;

} } }

Figure A3. The class-hierarchy, made visitable.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 0000; 00:0–0
Prepared using speauth.cls

