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Abstract. Binary relational algebra provides semantic foundations for
major areas of computing, such as database design, state-based specifica-
tion, and functional programming. Remarkably, static checking support
in these areas fails to exploit the full semantic content of relations. In
particular, properties such as the simplicity or injectivity of relations are
not statically enforced in operations that manipulate relations, such as
database queries, state transitions, or composition of functional compo-
nents.
We describe how a pointfree treatment of relations, their properties,
their operators, and the laws that govern them can be captured in a
type-directed strategic rewriting system for transformation of relational
expressions. This rewriting tool can be used to simplify relational proof
obligations and ultimately reduce them to tautologies. We demonstrate
how such reductions provide extended static checking (ESC) for design
contraints commonly found in software modeling and development.

Key words: Binary relations, Strategic term rewriting, Theorem prov-
ing, Extended static checking, Pointfree program transformation

1 Introduction

Software design is error-prone. The negative impact of programming errors on
software productivity can be limited by catching them early. Static checkers
(eg. syntax and type checkers) are tools which catch errors at compile-time, ie.
before running the program. Examples of such errors are unmatched parentheses
(wrong syntax) and adding integers to booleans (wrong types). Errors such as
null dereferencing, division by 0, and array bound overflow, are not caught by
standard static checking; detecting their presence requires extensive testing, and
if their presence can not be excluded with certainty, they must be handled at
run-time via exception mechanisms.

Software formalists will argue that error checking in the coding phase is too
late: first a formal model should be written, queried, reasoned about, and pos-
sibly animated (using eg. a symbolic interpreter). Formal modeling relies on
“rich” datatypes such as finite mappings, finite sequences, and recursive data
structures, which abstract from much of the complexity found in common im-
perative programming languages (eg. pointers, loop boundaries). However, such
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rich structures are not able to capture all properties, meaning that additional
constraints need to be added to models such as invariants (attached to types)
and pre-conditions (attached to operations). Checking such constraints is once
again a process which falls outside standard static type-checking, leading to a
so-called dynamic type checking process, typical of model animation tools such
as the VDMTools system [7].

Static checking of formal models involving such constraints is a complex
process, relying on generation and discharge of proof obligations [11]. While
proof obligations can be generated mechanically, their discharge is in general
above the decidability ceiling in requiring full-fledged formal verification (the-
orem proving) [17]. Between these two extremes of standard, cheap, decidable
static checking and costly theorem proving, extended static checking (ESC) [18,
8] aims to catch more errors at compile-time at the relatively moderate cost of
adding annotations to the code which record design decisions which were lost
throughout the programming process (if ever explicitly recorded).

Extended static checking tools have been developed for imperative program-
ming languages such as Modula-3 (ESC/Modula-3 [18]) and Java (ESC/Java [8]).
At the heart of these tools we find a verification condition generator and the Sim-
plify theorem prover [6]. Verification conditions are predicates in first-order logic
which are computed in weakest precondition style. Theorem proving is performed
by a combination of techniques, including SAT solvers, matching algorithms, and
heuristics to guide proof search.

In the current paper we follow the spirit of this approach but intend to apply
it much earlier in the design process: we wish to perform extended static checking
for formal modeling languages such as VDM, Z, and Alloy. Since the rich data
structures of these modeling languages already preclude by construction the
occurrence of errors such as null pointers and array bound overflow, we will
aim to catch errors higher on the semantic scale. A pertinent example is the
finite mapping data type (also called finite partial function), which covers a
number of interesting situations in both formal modeling (eg. Z and VDM) and
programming (eg. SQL). For instance, relational tables with a primary key can
be modeled as finite mappings. UPDATE and INSERT are examples of operations
which in general put primary keys at risk, something that model animation tools
and database systems can only check at run-time. The preservation of primary
key relationships by these operations will be one of the targets of our extended
static checks.

But the main novelty of our approach resides in the chosen method of proof
construction. In our approach, first-order proof obligations are subject to the
PF-transform [24] before they are reasoned about. This transformation elimi-
nates quantifiers and bound variables and reduces complex formulæ to algebraic
expressions which are more agile to calculate with (see Fig. 1 for details). In fact,
as we will show in this paper, proof calculation can be carried out on pointfree
relational algebra expressions by strategic term rewriting [26, 15, 16, 14] .

In Section 2 we will motivate our extended static checking approach with
a small modeling example. In Section 3 we recapitulate binary relation theory
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φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S

〈∀ a : : a R a〉 id ⊆ R
〈∀ x : : x R b⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R, S〉a
b R a ∧ d S c (b, d)(R× S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦ ·R · g)a

b = a b id a
True b > a
False b ⊥ a

In analogy to the well-known Laplace
transform [12], the PF-transform takes
expressions from a mathematical prob-
lem space, in this case first order logic
formulæ, into a mathematical solution
space, in this case relational algebra ex-
pressions [2]. The PF-transform elimi-
nates quantifiers and bound variables
(so-called points), resulting in a point-
free notation which is more agile to cal-
culate with.

Fig. 1. The PF-transform.

which can be used to capture the semantics of models with rich data structures
and their operations. In Sections 4 and 5 we will demonstrate how the algebraic
laws of the theory can be harnessed in a strategic term rewriting system, imple-
mented in the functional programming language Haskell. In Section 6 we revisit
the model operations of our example to show how our rewriting system is ca-
pable of generating the appropriate proof obligations and simplify or discharge
them. Section 7 discusses related work and Section 8 concludes.

2 Motivating example

The UML class diagram in Fig. 2 depicts a simplified model of a system for
trading non-consumable (uniquely identifiable) items. A user can put an item
for sale for a given price, and other users can express their interest in these items
for a price they are willing to pay. If a match between a seller and a buyer is
established, this leads to a deal with an agreed price.

The specification of queries, predicates, and transformations on this model
may present some pitfalls. Suppose the following operations are desired:

listWantedItems :: Wanted → Map Iid Price
wantedItemsAreForSale :: Wanted → ForSale → Bool
putBatchForSale :: (Uid ,Map Iid Price)→ ForSale → ForSale
settleDeal :: (Iid ,Uid ,Price)→ Deal → Deal

The listWantedItems query produces a map of item identifiers together with the
price that has been offered for them. The wantedItemsAreForSale predicate tests
whether each item listed in Wanted is actually for sale, thus testing referential
integrity. The transformation putBatchForSale adds a batch of items belonging
to a given user to the ForSale relation. The settleDeal transformation adds an
entry to the Deal collection.
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Name × Balance Uid
Useroo

Uid × Price Iid
ForSaleoo

Price Iid ×Uid
Wantedoo

Uid × Price Iid
Dealoo

Description Iid
Itemoo

Fig. 2. Simplified UML model of a trading system and the corresponding binary rela-
tional model (explained in Section 3). This model is loosely based on a formal specifica-
tion for a real estate exchange market, which has been developed for the PortoDigital
Consortium.

When specifying these operations, the designer could benefit from the feed-
back of an extended static checker. For example, the checker should tell him
that listWantedItems should only return a map if the Wanted collection con-
tains no two offers for the same item with different prices. Rather than adding
a precondition to that effect, he will likely decide to change the return type to a
general relation Rel Iid Price or, equivalently, to Set (Iid ,Price). In case of the
settleDeal operation, to ensure that pre-existing deals do not get lost the checker
should indicate that a precondition is needed that either no deal yet exists for
the given item, or that it exists with the same buyer identifier and price.

3 Overview of relation theory

In this section we provide a brief introduction to the theory of binary relations [2].

Relations. Let B A
Roo denote a binary relation R on datatypes A (source)

and B (target). We write bRa to mean that pair (b, a) is in R. The underlying
partial order on relations is written R ⊆ S, meaning that S is more defined or less
deterministic than R, that is, R ⊆ S ≡ bRa⇒ bSa for all a, b. R∪S denotes the
union of two relations and > is the largest relation of its type. Its dual is ⊥, the
smallest such relation. The identity id relates every element to itself. Equality
on relations can be established by ⊆-antisymmetry: R = S ≡ R ⊆ S ∧ S ⊆ R.

Relations are combined by three basic operators: composition (R·S), converse
(R◦) and meet (R∩S). R◦ is such that a(R◦)b iff bRa holds. Meet corresponds to
set-theoretical intersection and composition is defined in the usual way: b(R ·S)c
holds wherever there exists some mediating a such that bRa ∧ aSc.

Coreflexives. An endo-relation A A
Roo is referred to as reflexive iff id ⊆

R holds, and as coreflexive iff R ⊆ id holds. Coreflexive relations, which we
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relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection
(isomorphism)

Reflexive Coreflexive
kerR entire R injective R
img R surjective R simple R

Figure 1: Binary relation taxonomy

1

Fig. 3. Binary relation taxonomy

denote by Greek letters (Φ, Ψ , etc.), are fragments of the identity relation that
model predicates or sets. A predicate p is modeled by the coreflexive [[p]] with
b[[p]]a ≡ (b = a) ∧ (p a), that is, the relation that maps every a which satisfies
p onto itself. Negation is modeled by ¬Φ = id − Φ. A set S ⊆ A is modeled by
[[λa.a ∈ S]], that is b[[S]]a ≡ (b = a) ∧ a ∈ S .

Taxonomy. To establish a fundamental taxonomy of relations (illustrated in
Fig. 3), let us first define the kernel of a relation, kerR = R◦ · R and its dual,
img R = ker (R◦) = R · R◦, called the image of R. A relation R is said to be
entire (or total) iff its kernel is reflexive; and simple (or functional) iff its image is
coreflexive. Simple relations are denoted with capital letters M , N , etc. Dually,
R is surjective iff img R is reflexive, and R is injective iff ker R is coreflexive.

Functions. As the taxonomy indicates, a relation is a function iff it is both
simple and entire. Functions will be denoted by lowercase letters (f , g, etc.) and
are such that bfa means b = f a. The constant function which maps every value
of its domain to the value k is denoted by k . We write ! (read “bang”) for the
constant function that targets the unit domain 1.

Algebraic properties. A rich set of algebraic properties is available for the various
operators of relational algebra [2], of which a small sample is listed in Table 1.
Of particular interest for the current paper are the various shunting laws. They
allow the ‘shunting’ of relations (functions and simple relations in the listed
cases) from one side of the inclusion to the other, similar to the shunting rules
we learned in high school, such as eg. x − y 6 z ≡ x 6 z + y . The utility of such
laws will become evident below.

4 Rewriting relational expressions and propositions

The various algebraic laws of binary relations presented in Table 1 can be har-
nessed into type-safe, type-directed rewriting systems for normalization of re-
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Table 1. Some laws of the binary relational algebra.

(R · S) · T = R · (S · T ) comp assoc
(R · S)◦ = S◦ · R◦ inv comp

(R◦)◦ = R inv inv
(R ∪ S)◦ = R◦ ∪ S◦ inv union

R · id = R ∧ id · R = R comp id
Φ◦ = Φ corefl symm

R · ⊥ = ⊥ ∧ ⊥ · R = ⊥ comp empty
R · δ R = R dom elim

k · R = k · δ R const fusion
R · ¬ (δ R) = ⊥ not dom cancel

R · f ◦ ⊆ S ≡ R ⊆ S · f shunt fun inv
f · R ⊆ S ≡ R ⊆ f ◦ · S shunt fun

R ·M ◦ ⊆ S ≡ R · δ M ⊆ S ·M shunt map inv
M · R ⊆ S ≡ δ M · R ⊆ M ◦ · S shunt map

imgR = R · R◦ img def
kerR = R◦ · R ker def

lational expressions as well as for derivation of proofs for propositions involv-
ing relational expressions. The functional programming language Haskell allows
a straightforward and type-safe implementation of such rewriting systems, in
particular due to its support for generalized abstract datatypes (GADTs) and
existential types. We will explain these features as we use them.

Representation of types. We employ a representation of types which is a classical
example of a GADT [9]:

data Type a where
One :: Type ()
Int :: Type Int
Bool :: Type Bool
String :: Type String
List :: Type a → Type [a ]
Prod :: Type a → Type b → Type (a, b)
Either :: Type a → Type b → Type (Either a b)
Rel :: Type a → Type b → Type (Rel a b)
...

type Rel a b -- abstract
Note that the type a that parameterizes the type-representation Type a is in-
stantiated differently in each constructor. This is precisely the difference between
a GADT and a common parameterized datatype, where the parameters in the
result type are unrestricted in all constructors. In the definition of Type a, the
parameter a of each constructor is restricted exactly to the type that the con-
structor represents. For example, Rel (Prod Int String) One represents the type
Rel (Int ,String) (). Note that the type-constructor for relations can remain
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abstract for the purposes of our paper. It is possible to define a class with rep-
resentable types, with instances trivial to define, eg. for integers and relations:

class Typeable a where typeof :: Type a
instance Typeable Int where typeof = Int
instance (Typeable a,Typeable b)⇒ Typeable (Rel a b)

where typeof = Rel typeof typeof
Below we will use the typeof function to define smart constructors for relational
algebra expressions. Type equality tests are performed by induction on type
representations:

teq :: Type a → Type b → Maybe (Equal a b)
teq Int Int = Just Eq
teq (Rel a b) (Rel c d) = do Eq ← teq a c;Eq ← teq b d ; return Eq
...
teq = Nothing
data Equal a b where Eq :: Equal a a

The constructor Eq of the GADT Equal can be seen as a proof token of the
equality of types a and b [25].

Representation of relational expressions and propositions. A GADT is also used
to represent the entities that will be subjected to rewriting, viz. relational ex-
pressions and propositions.

data R r where
Rvar :: String → Set Prop → R x
Rid :: R (Rel a a)
Rempty :: R (Rel a b)
Rtop :: R (Rel a b)
Rnot :: R (Rel a b)→ R (Rel a b)
Rcomp :: Type b → R (Rel b c)→ R (Rel a b)→ R (Rel a c)
Rker :: Type b → R (Rel a b)→ R (Rel a a)
Rimg :: Type a → R (Rel a b)→ R (Rel b b)
Rdom :: Type b → R (Rel a b)→ R (Rel a a)
Rrng :: Type a → R (Rel a b)→ R (Rel b b)
Rinter :: R (Rel a b)→ R (Rel a b)→ R (Rel a b)
Runion :: R (Rel a b)→ R (Rel a b)→ R (Rel a b)
Rincl :: Type r → R r → R r → R Bool
Rand :: R Bool → R Bool → R Bool

Constructors with (implicitly) existentially quantified type variables, such as b
in Rcomp, receive an additional type representation as argument. These argu-
ments serve to give access to the representation of the type hidden by existential
quantification, such that rewriting can be made sensitive to these types.

Note that the constructor for variables (Rvar) has not only a String as argu-
ment to store the variable name, but also a set of properties of type Prop which
serve to declare the location of the denoted relation in the relational taxonomies.
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data Prop = Simple | Entire | Injective | Surjective | Coreflexive
The last property only makes sense for endorelations, and is simply ignored when
dealing with relations that have different argument and result types.

The various properties declared on relational variables propagate through
relational operators. For example, the composition of two surjective relations is
surjective, and the inverse of an injective relation is simple. This gives rise to
predicates on relations that inductively check their properties. For example:

isSimple :: Type (Rel a b)→ R (Rel a b)→ Bool
isSimple Rid = True
isSimple (Rvar ps) = Set .member Simple ps
isSimple (Rel a b) (Rinv r) = isInjective (Rel b a) r
isSimple (Rel a c) (Rcomp b s r) = isSimple (Rel a b) r ∧ isSimple (Rel b c) s
...
isSimple = False

Similar predicates are supplied for the remaining properties.
Using the typeof function defined above, we can define some smart construc-

tors that allow us to avoid providing type arguments manually (first column):
δ r = Rdom typeof r r ◦ = Rinv r id = Rid
r · s = Rcomp typeof r s r ∪ s = Runion r s > = Rtop
r ⊆ s = Rincl typeof r s p ∧ q = Rand p q ¬ r = Rnot r

The other columns contain further pretty-printed shorthands. Though type-set3

as mathematical symbols, all these are operators in actual Haskell code.

Type-directed and property-aware rewriting rules. We build rewrite systems from
rewrite combinators, following the paradigm of strategic programming [26, 15, 16,
14]. Individual rewrite rules as well as the rewrite systems composed from them,
are represented by monadic functions of the following type:

type Rule = ∀r . Type r → R r → Rewrite (R r)
Thus, a rule takes a relational expression (or proposition) of type r into a new
expression of the same type. The type-representation passed as first argument
allows rules to make type-based rewriting decisions. Rewrite is a backtracking
monad, based on the list monad, that supports the following operations:4

mzero :: Rewrite a -- zero
mplus :: Rewrite a → Rewrite a → Rewrite a -- plus (distributive)
mcatch :: Rewrite a → Rewrite a → Rewrite a -- left-catch

The mplus combinator performs full backtracking search into its two arguments,
while mcatch only explores the second argument if the first one fails. In addition,
our Rewrite monad offers the capability of generating rewrite traces, of which
we will see examples below.

Here is an encoding of the inv comp law, applied in the left-to-right direction:

3 We use the excellent lhs2TeX preprocessor for LATEX by Andres Loeh and Ralf Hinze.
4 See also: http://haskell.org/hawiki/MonadPlus.
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inv comp :: Rule
inv comp (Rinv (Rcomp t r r ′)) = return (Rcomp t (Rinv r ′) (Rinv r))
inv comp = mzero -- catch all

This simple rule is not type-directed, so the first argument is ignored (indicated
by ). Pattern matching is performed on a relational expression and, on suc-
cessful match, a resulting expression is returned. Otherwise failure of the rule is
indicated by mzero. For brevity, we omit such catch-all cases in the rules below.

The const fusion rule provides an example of rewriting directed by proper-
ties:

const fusion :: Rule
const fusion t@(Rel a c) (Rcomp b s@(Rvar n p) r)
| isEntire (Rel b c) s ∧ isConstant s ∧ (¬ (isCoreflexive a b r))
= success "const_fusion" t (Rcomp a (Rvar n p) (Rdom b r))

The rule works on a composition and, if the first argument s is entire and con-
stant as required by the guarding predicate, then it replaces the second argument
r by its domain. When r is coreflexive, the rule does not trigger, because the
domain of a coreflexive is that relation itself.

An example of a rewrite rule on the level of relational propositions is offered
by the shunting rule for functions:

shunt fun inv :: Rule
shunt fun inv (Rincl (Rel a c) (Rcomp b x (Rinv f )) y)
| isEntire (Rel b a) f ∧ isSimple (Rel b a) f
= return (Rincl (Rel b c) x (Rcomp a y f ))

Note the use of a guarding predicate that tests whether the relation f is indeed
a function (entire and simple).

Combinators for strategic rewriting. To compose rewriting systems out of indi-
vidual rewrite rules, we employ the following set of rule combinators known from
strategic term rewriting:

nop :: Rule -- identity rule
(.) :: Rule → Rule → Rule -- sequential composition
(⊕) :: Rule → Rule → Rule -- choice (based on mplus)
(�) :: Rule → Rule → Rule -- choice (based on mcatch)
all :: Rule → Rule -- map on all children
one :: Rule → Rule -- map on one child
run :: Rule → R r → (R r ,Derivation) -- top-level application

The implementation of each of these combinators is straightforward, and omit-
ted here for brevity. The top-level application function run takes the result of
rewriting and the derivation (proof trace) out of the Rewrite monad; in case of
failure it returns the original term and an empty derivation.

Using the basic rule combinators, more sophisticated ones can be defined:
many r = (r . (many r))� nop -- repeat until failure
once r = r � one (once r) -- apply once, at any depth
innermost r = all (innermost r) . ((r . innermost r)� nop)
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The derived combinator innermost performs exhaustive rewrite rule application
according to the leftmost innermost rewriting strategy.

5 Rewriting strategies

Having defined individual rules and rule combinators, we can proceed to the
composition of rewrite systems for various purposes.

Normalization of relational expressions. The following definitions express that a
relational expression can be normalized by exhaustive application of individual
association, desugaring, and normalization rules:

normalize :: Rule -- until fixpoint is reached
normalize = innermost (comp assoc � normalize1 )
normalize1 , desugar1 , simplify1 :: Rule -- single step
normalize1 = desugar1 � simplify1
desugar1 = ker def � img def � ...
simplify1 = inv comp � inv inv � comp id � comp empty � dom elim �

corefl symm � const fusion � not dom cancel � ...

We use the convention of postfixing the names of single-step rule combinations
with 1 in order to distinguish them from rule combinations that rewrite repeti-
tively until a fixpoint is reached. Note that the comp assoc rule is employed to
bring relational compositions into left-associative form. Since the normalization
rules together form a confluent and terminating rewrite system, the left-catching
combinator � is sufficient to combine them — no need for backtracking.

For example, the following derivation is constructed when applying the normalize
strategy to (N · (¬ (δ N ))◦ ·M ◦)◦, where N and M are simple relations:

(N · (¬ (δ N ))◦ ·M ◦)◦

= {corefl symm }
(N · (¬ (δ N )) ·M ◦)◦

= {not dom cancel }
(⊥ ·M ◦)◦

= {comp empty }
⊥◦

= {corefl symm }
⊥

This normalization proof trace demonstrates that the original expression is equal
to ⊥. (Recall that proof traces are generated by our Rewrite monad.)

Deriving proofs and proof obligations. We define a more sophisticated strategy
to simplify or dispatch proof obligations:

simplify = normalize . all and process conjunct . innermost and true
where

process conjunct = (shunt conjunct ⊕ strengthen conjunct)� nop
shunt conjunct = shunt . simplify
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strengthen conjunct = strengthen . simplify . qed
shunt = (shunt fun inv � shunt map inv)⊕ (shunt fun � shunt map)
strengthen = corefl cancel
all and :: Rule → Rule -- apply argument rule on all conjuncts
qed :: Rule -- test whether the current expression is True

The initial application of normalize brings a given proposition into conjunc-
tive normal form, where each conjunct is a normalized relational inclusion. The
all and combinator applies process conjunct to all conjuncts. After processing
each conjunct separately, and true (p ∧ True ≡ True ∧ p ≡ p) is applied to
absorb the propositions that have been rewritten to True. The processing of each
conjunct makes a non-deterministic choice (using the the backtracking operator
⊕) between starting with a shunting step (shunt conjunct) or starting with a
strengthening step (strengthen conjunct); the conjunct is left unchanged if nei-
ther is possible (nop). When starting with shunting, the choice between shunting
a left-composed relation or shunting a right-composed converse of a relation is
again made non-deterministically (shunt). After the shunting step, a recursive
call is made to the overal simplify strategy. When starting with strengthening,
the subsequent recursive call to simplify is required to lead to a full proof (qed),
since we are interested in strengthened propositions only for the purpose of dis-
charging proof obligations.

Selection of results. The use of backtracking entails that several results may be
obtained or the same result through different derivations. Our Rewrite monad
delivers those results and derivations in a lazy stream, due to the underlying
list monad. To float the first successful derivation to the front, we employ the
following helper function:

truthfirst :: [(R Bool ,Derivation)]→ [(R Bool ,Derivation)]
truthfirst results = first true ++ none true

where
(none true,first true) = break isProven results
isProven (Rvar "True" , ) = True
isProven = False

Now, if we select the first element from the stream of reordered results, we will
obtain the first derivation that results in True, if it exists. Otherwise the first
derivation that leads to a simplified proposition is returned. Lazy evaluation
ensures that we will not compute any of the derivations that occurred in the
original stream after the first True result.

6 Application scenarios

We now explain how our rewriting system can be used in concrete scenarios,
such as the ones in our motivation example (Section 2).

List wanted items. The operation listWantedItems can be specified in binary re-
lational terms as listWantedItems = Wanted ·π◦

1 , where π1 is the first projection
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on pairs, ie. π1 (a, b) = a. Since this operation is specified to produce a finite
map (thus simple), it gives rise to proof obligation img (Wanted ·π◦

1) ⊆ id , which
in turn leads to the following derivation when applying our simplify strategy:

img (Wanted · π◦
1) ⊆ id

≡ {img def }
Wanted · π◦

1 · (Wanted · π◦
1)◦ ⊆ id

≡ {inv comp}
Wanted · π◦

1 · (π◦
1)◦ ·Wanted◦ ⊆ id

≡ {inv inv }
Wanted · π◦

1 · π1 ·Wanted◦ ⊆ id
≡ {shunt map inv }

Wanted · π◦
1 · π1 · δ Wanted ⊆ id ·Wanted

≡ {comp id }
Wanted · π◦

1 · π1 · δ Wanted ⊆Wanted
≡ {shunt map}

δ Wanted · π◦
1 · π1 · δ Wanted ⊆Wanted◦ ·Wanted

Using the PF-transform of Fig. 1, the last expression can be written as:
∀x , y . x ∈ δ Wanted ∧ y ∈ δ Wanted ∧ π1 (x ) = π1 (y)

⇒Wanted (x ) = Wanted (y)
This formula expresses that listWantedItems only returns a finite map if the
Wanted collection contains no two offers for the same item with different prices.
This feedback should lead the designer to broaden the output type of the oper-
ation to general binary relations.

Settle deal. We can define settleDeal (i , u, p) = Deal ∪ (u, p) · i ◦. Checking the
simplicity of its output gives rise to the following derivation (condensed):

img (Deal ∪ (u, p) · i ◦) ⊆ id
≡ {img def , various union laws }

Deal ·Deal◦ ⊆ id ∧ Deal · i · (u, p) ◦ ⊆ id ∧ (u, p) · i ◦ ·Deal◦ ⊆ id
∧ (u, p) · > · (u, p) ◦ ⊆ id

≡ {various shunting laws, dom elim }
δ Deal · i ⊆ Deal◦ · (u, p) ∧ i ◦ · δ Deal ⊆ (u, p) ◦ ·Deal

Thus, the simplification of this proof obligation leads to an intermediate con-
junction of four proof obligations, of which two are subsequently discharged.
The remaining two obligations actually express the same property (they can be
converted into each other by taking their inverse). Conversion back to pointwise
notation gives the following precondition:

i ∈ δ Deal ⇒ (u, p) = Deal (i)
Note that the proof obligation we derived is weaker than the over-defensive
precondition that is typically added to an operation such as settleDeal , namely
that i /∈ δ(Deal).

Batch addition of items to sell. Once PF-transformed, our last function is de-
fined by putBatchForSale (u,m) n = n † x , where x = withUser u m and
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withUser u m = 〈(u),m〉. This model illustrates the use of two other useful bi-
nary operators on relations, split (〈·, ·〉) and override (· † ·) [23]. The former pairs
the outputs of two relations and the latter overrides one relation by another.
Checking the simplicity of the output of putBatchForSale leads to a 32-step
derivation of which we show only the starting and closing steps, the latter con-
densed for space economy:

img (n · † · x ) ⊆ id
≡ {override def }
img (n ∪ x · ¬ (δ x )) ⊆ id
≡ {img def }
(n ∪ (x · ¬ (δ (n)))) · (n ∪ (x · ¬ (δ (n))))◦ ⊆ id
≡ {inv union }
(n ∪ (x · ¬ (δ (n)))) · (n◦ ∪ (x · ¬ (δ (n)))◦) ⊆ id
...
((True ∧ True) ∧ (True ∧ x · ¬ (δ (n)) ⊆ x ))
≡ {and true,monotonicity }
(True ∧ x · id ⊆ x ))
≡ {and true, comp id }
x ⊆ x
≡ {incl refl }
True

Thus the proof obligation is discharged completely. In this case extended static
checking validates the user model and no changes are needed.

7 Related work

Extended static checking. Extensive progress has been achieved on extended
static checking (for review see [17]), resulting in practical tools for imperative
languages [18, 8]. These tools rely on theorem provers to find counter examples
of verification conditions [6], using a combination of techniques such as back-
tracking search, matching algorithms for universally quantified formulæ, and
heuristics. As alternative or supplemental technique, we have explored proof
construction through rewriting of pointfree relational expressions. The absence
of quantifiers and variables in these expressions promises to allow a more effec-
tive proof search and to enlarge the scope of properties that can be practically
checked for, such as those arising in software modeling using rich data structures.

Relational programming (symbolic). MacLennan pioneered relational program-
ming and proposed it as a more general substitute for functional program-
ming [19–21]. He keeps a separation between finite relations representing data
structures, and infinite relations representing operations. Cattrall and Runciman
built on his work to develop compilation support for relational programming,
where finite and infinite relations are mixed, and where relational expressions
are made compilable by rewriting them according to algebraic properties [3].
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Relation-algebraic analysis (finite). Modeling and analysis of systems based on
finite relational representations is supported by systems such as Grok [10] and
RelView [1] which are, however, very different from our approach: Grok is a
calculator for finite relational algebra expressions and RelView uses BDDs to
implement relations in an efficient way.

Typed strategic rewriting. Strategic programming [14] was first supported in
non-typed setting in the Stratego language [26]. A strongly-typed combinator
suite was introduced as a Haskell library by the Strafunski system [15, 16] and
later generalized into the so-called ‘scrap-your-boilerplate’ generic programming
library [13]. We developed GADT-based strategic combinator suites, similar to
the one presented here, for two-level data transformation [4] and transformation
of pointfree and structure-shy functions [5].

8 Concluding remarks

We have implemented a type-directed strategic rewrite system for normalization
of pointfree relational expressions and simplification or discharge of relational
propositions. We have demonstrated the utility of the system in the context of
extended static checking of common model and program properties. We intend
to elaborate our approach in various directions.

So far, we have limited ourselves to rewriting of pointfree expressions, relying
on manual transformation of logic formulæ into relational algebra expressions
and back. We intend to also automate this pointfree transform. The suite of
operators and laws currently implemented in the system can be extended further
as the need arises for more expressiveness. The strategy for proof search is likely
to further evolve as well, for instance to include short cut derivations for special
common cases or to eliminate duplication of proof obligations due to converse
inclusions. A thorough analysis of the formal properties of the rewriting system
we are building is one of our current concerns.

When achieving a good degree of maturity, an assessment will be needed as
to whether this approach can indeed be an alternative or supplement to existing
ESC approaches based on theorem proving. Besides ESC, we envision to apply
our relational algebra rewriting system to areas such as program optimization,
program verification, relational programming, and more. For example we cur-
rently exploring the construction of rewriting strategies for program inversion,
useful in two-level transformation [4] and bidirectional programming [22].
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