
An Introduction to Algorithmic

Refinement

J.N. Oliveira

Formal Methods II, 2002-06

June 17, 2007

Implicit/explicit refinement

Given Vdm-sl implicit specification

S(a:A) r:B
pre ...

post ...

function B A
f

is said to satisfy, to refine, or to implement S,
written

S ⊢ f

iff, for every a,

∀a ∈ A. pre-S a ⇒ post-S(f a, a)

In pointfree notation

a ∈ δ S ⇒ (f a)Sa

≡ { rule (f b)Ra ≡ b(f◦ · R)a }

δ S ⊆ f◦ · S

≡ { shunting }

f · δ S ⊆ S

Summary: explicit specification (= implementation) f is thus more defined
and more deterministic than implicit specification S:

S ⊢ f ≡ f · δ S ⊆ S (1)

1

Example

Recall

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) ==
forall e in set (elems l1 union elems l2) &

card {i | i in set inds l1 & l1(i) = e} =

card {i | i in set inds l2 & l2(i) = e};

We want to find f such that

IsPermutation ⊢ f

Recall that IsPermutation = ker seq2bag, where. . .

About seq2bag

Vdm-sl definition:

seq2bag(s) ==

cases s:

[] -> {|->}

others -> { hd s |-> 1 } bunion seq2bag(tl s)

end;

Definition of gene g of the seq2bag catamorphism:

g = [{7→} ,⊕ · (singb × id)]

where singb a = {a 7→ 1} and ⊕ denotes bag union (bunion is not standard
Vdm-sl: define it).

2

Implementing IsPermutation

IsPermutation ⊢ f

≡ { definition }

f · δ IsPermutation ⊆ IsPermutation

≡ { definition }

f · δ (ker seq2bag) ⊆ ker seq2bag

≡ { kernel of a function }

f · id ⊆ seq2bag
◦ · seq2bag

≡ { shunting rule }

seq2bag · f ⊆ seq2bag

≡ { equality of functions }

seq2bag · f = seq2bag

Handling refinement equations

f is the “unknown” of refinement equation

seq2bag · f = seq2bag

Since seq2bag and f are list catamorphisms, one can resort to cata-fusion,

seq2bag · f = seq2bag

≡ { let f = (|α|) and seq2bag = (|g|)}

seq2bag · (|α|) = (|g|)

⇐ { cata-fusion }

seq2bag · α = g · (id + id × seq2bag)

Solving refinement equations

By decomposing α := [β , γ], we obtain equations

β = []

seq2bag · γ = ⊕ · (singb × seq2bag)

• Cata-cancellation yields solution γ = cons, leading to α = in and
f = id.

• ⊕ is commutative, thus solution γ(a, l) = l ˆ [a] leading to f = invl.

Guessing further solutions: any list sorting function will solve the equation!
(More about this later. . .)

3

Properties of ⊢

Basic:

⊥ ⊢ f , ⊤ ⊢ f (2)

(S ∩ R) ⊢ f ⇐ S ⊢ f ∧ R ⊢ f (3)

(S ∪ R) ⊢ f ⇐ S ⊢ f ∧ R ⊢ f (4)

(ker g) ⊢ f ≡ g · f = g (5)

g ⊢ f ≡ f = g (6)

Monotonicity:

S ⊢ f ⇒ FS ⊢ F f (7)

Proof of monotonicity

F S ⊢ F f

≡ { definition}

(F f) · δ (F S) ⊆ F S

≡ { property δ (F S) = F(δ R) }

(F f) · F(δ S) ⊆ F S

≡ { relators commute with composition }

F(f · δ S) ⊆ F S

⇐ { relators are monotone }

f · δ S ⊆ S

≡ { definition }

S ⊢ f

4

Stepwise refinement

Extend f in S ⊢ f to a relation

S ⊢ R ≡ R · δ S ⊆ S ∧ δ S ⊆ δ R (8)

Obs.:

• clause δ S ⊆ δ R ensures that implementations can only be more
defined

• clause R · δ S ⊆ S ensures that implementations can only be more
deterministic

• Note that ⊥ ⊢ R still holds but, in general, ⊤ ⊢ R requires R to be
entire, since δ ⊤ = id.

Example

Let spec Sν,ǫ be

sqrt (x: real) r: real
pre abs(x) <= nu
post abs(r*r-x) <= epsilon

Then, wherever ν1 ≤ ν2 and ǫ1 ≥ ǫ2,

Sν1,ǫ1 ⊢ Sν2,ǫ2

In the “limit”, · · · ⊢ S∞,0 = sq◦ ⊢ f where f x = +
√

x or f x = −√
x.

Refinement is a partial order

Reflexivity: id ⊆ ⊢, that is

S ⊢ S

Transitivity: ⊢ · ⊢ ⊆ ⊢, that is

S ⊢ R ∧ R ⊢ T ⇒ S ⊢ T

Antisymmetry: ⊢ ∩ ⊢◦ ⊆ id

S ⊢ R ∧ R ⊢ S ⇒ S = R

F -monotonicity:

S ⊢ R ⇒ F S ⊢ F R

5

Stepwise refinement

The laws of ⊢ make it possible to refine a starting spec S along several
steps,

S ⊢ S1 ⊢ S2 ⊢ . . .

each one introducing more and more definition and/or determinism,
and very often leading into a function (totally defined deterministic
algorithm):

S ⊢ S1 ⊢ S2 ⊢ . . . ⊢ Sn ⊢ f

What do we do after f?

Back to g ⊢ f

• Formally, g ⊢ f ≡ g = f , that is, spec g is extensionally
equivalent to implementation f .

• But there is more to it: in general, we think of f as being “more
efficient” than g.

• Efficiency can only be formalized in the discipline of algorithmic
complexity (out of scope here)

• We will study functional laws which add to efficiency and
generalize well-known (while) loop generation and
intercombination rules.

Main refinement strategies

• Refinement by “sequential loop” inter-combination: fusion and
absorption laws:

“Deforestation” — removal of intermediate
data-structures

• Refinement by “parallel loop” inter-combination: mutual
recursion elimination:

On this purpose we will see Fokkinga’s law and its
well-known corollary, the “banana-split” law.

6

Mutual recursion elimination

Consider the following pair of mutually dependent functions:

f(n) == if n = 0 then n else g(n - 1);
g(n) == if n = 0 then 1 else f(n - 1) + g(n - 1);

Can any of these functions — say g — be converted into a while loop?
In pointfree notation:

f · [0 , suc] = [id , g]

g · [0 , suc] = [1 , + · 〈f, g〉]

Mutual dependence made explicit

f · [0 , suc] = [id , π2 · 〈f, g〉]
g · [0 , suc] = [1 , + · 〈f, g〉]

cf.
IN0 =̃ 1 + IN0

| {z }

F IN0

in = [id , suc]
which is such that F f = id + f . So (+-absorption) we can write

f · in = [id , π2] · F 〈f, g〉

g · in = [1 , +] · F 〈f, g〉

The mutual-recursion law

This situation is handled by the so-called mutual-recursion law, also called
“Fokkinga law”:


f · in = h · F 〈f, g〉
g · in = k · F 〈f, g〉

≡ 〈f, g〉 = (|〈h, k〉|)

that is, in general

8

><

>:

f1 · in = h1 · F 〈f1, . . . , fn〉
...
fn · in = hn · F 〈f1, . . . , fn〉

≡ 〈f1, . . . , fn〉 = (|〈h1, . . . , hn〉|)

7

Proof

〈f, g〉 = (|〈h, k〉|)

≡ { cata-universal }

〈f, g〉 · in = 〈h, k〉 · F 〈f, g〉

≡ { ×-fusion twice (lhs and rhs)}

〈f · in, g · in〉 = 〈h · F 〈f, g〉, k · F 〈f, g〉〉

≡ { “split” structural equality }


f · in = h · F 〈f, g〉
g · in = k · F 〈f, g〉

Example

Let h = [id , π2] and k = [1 , +] in the example above:

〈f, g〉

= { Fokkinga law}

(|〈[id , π2], [1 , +]〉|)

= { exchange law}

(|[〈id, 1〉 , 〈π2, +〉]|)

fg(n) == if n = 0 then mk_(0,1)
else let p=fg(n-1)

in mk_(p.#2,p.#1 + p.#2);

8

Example

Since fg = 〈f, g〉, we obtain g = π2 · fg. On the other hand, it is easy to
extract g from

f(n) == if n = 0 then n else g(n - 1);
g(n) == if n = 0 then 1 else f(n - 1) + g(n - 1);

as the standard Fibonacci function:

g(n) == if n = 0 then 1
else if n = 1 then 1

else g(n - 2) + g(n - 1);

Summary: we have calculated π2 · fg as a linear version of Fibonacci
(g = π2 · fg).

Corollary: “banana-split” (1)

Consider the function which computes the average of a non-empty list of
natural numbers:

average
def
= (/) · 〈sum, length〉

Both sum and length are IN+ catamorphisms:

sum = (|[id , +]|)

length = (|[1 , succ · π2]|)

Function average performs two independent traversals of the argument list
before division (/) takes place. Can we avoid this? “Banana-split” will fuse
such two traversals.

Corollary: “banana-split” (2)

Let h = i · Fπ1 and k = j · F π2 in the mutual recursion law. Then

f · in = (i · Fπ1) · F 〈f, g〉

≡ { composition is associative and F is a functor}

f · in = i · F (π1 · 〈f, g〉)

≡ { by ×-cancellation }

f · in = i · F f

≡ { by cata-cancellation}

f = (|i|)

9

Corollary: “banana-split” (3)

Similarly, g = (|j|) will follow from k = j · F π2 Then, from the mutual
recursion law we get

〈(|i|), (|j|)〉 = (|〈i · F π1, j · Fπ2〉|)

that is

〈(|i|), (|j|)〉 = (|(i × j) · 〈F π1, F π2〉|) (9)

This law provides us with a very useful tool for “parallel” loop
inter-combination: “loops” (|i|) and (|j|) are fused together into a single
“loop” (|(i × j) · 〈F π1, F π2〉|).

Genericity of “banana-split”

Banana-split fuses two data-structure traversals (“loops”) in the
generic sense. For instance,

average
def
= (/) · 〈sum, length〉

still makes sense in the case of binary leaf trees, for

sum = (|[id , +]|)
length = (|[1 , +]|)

Again sum and length can be fused together (bi-recursively).

Recursion elimination

Very common pattern in functional hylomorphisms:

f : A −→ C
f = p → b , θ · 〈d, f · e〉

Diagram:

A A + A
p?

A + B × A

id + 〈d, e〉

C A + B × C
[b , θ]

f id + id × f

That is,
〈µ f : : [b , θ] · (id + id × f) · (id + 〈d, e〉) · p?〉

10

More general intermediate type

By splitting b = b2 · b1 we obtain a more general intermediate type

f : A −→ C
f = p → b2 · b1 , θ · 〈d, f · e〉

Diagram:

A A + A
p?

D + B × A
b1 + 〈d, e〉

C D + B × C
[b2 , θ]

f id + id × f

Associative θ

The extra requirement (required by calculations to follow) that θ to be
assciative, ie for all i, j, k,

θ · 〈θ · 〈i, j〉, k〉 = θ · 〈i, θ · 〈j, k〉〉

leads us finally to the type scheme

A A + A
p?

D + C × A
b1 + 〈d, e〉

C D + C × C
[b2 , θ]

f id + id × f

Can we eliminate recursion from this hylomorphism, eg. convert it to a
while loop?

What is a while loop

A while loop

while p do l = (¬ · p) → id , (while p do l) · l

is a very special case of hylomorphism [[R,S]] where S does all the work
and R does nothing:

A A + A
(id + l) · (¬ · p)?

A A + A
[id , id]

while p do l id + (while p do l)

11

Calculation plan

We want to convert the given hylo

f = p → b , θ · 〈d, f · e〉

into

f = p → b , w · 〈d, e〉

w = x → y , w · z

the latter being the obvious while-loop

w = y · (while (¬ · x) do z)

The unknowns of the problem are x, y and z.

Calculation

Clearly, finding w such that

w = θ · (id × f)

is enough. We recall McCarthy-fusion laws

f · (p → g , h) = p → f · g, f · h

(p → f, g) · h = (p · h) → (f · h), (g · h)

and calculate:

〈µ f : : p → b , θ · 〈d, f · e〉
| {z }

Ff

〉

= { square rule, 〈µ f : : F f〉 = 〈µ f : : F(F f)〉 }

12

Calculation (contd.)

〈µ f : : p → b , θ · 〈d, (p → b , θ · 〈d, f · e〉) · e〉〉

= { McCarthy-fusion laws }

〈µ f : : p → b , p · e → θ · 〈d, b · e〉 , θ · 〈d, θ · 〈d, f · e〉 · e〉〉

= { ×-fusion and McCarthy-fusion again}

〈µ f : : p → b ,
(p · π2 → θ · (id × b) , θ · (id × (θ · 〈d, f · e〉))) · 〈d, e〉

〉

= { θ is associative}

〈µ f : : p → b ,
p · π2 → θ · (id × b) , θ · 〈θ · (id × d), f · e · π2〉 · 〈d, e〉

〉

Calculation (contd.)

We now focus on the inner conditional:

p · π2 → θ · (id × b) , θ · 〈θ · (id × d), f · e · π2〉

= { ×-absorption }

p · π2 → θ · (id × b) , θ · (id × f) · 〈θ · (id × d), e · π2〉

= { pattern matching (recall assumption w = θ · (id × f)) }

p · π2
| {z }

x

→ θ · (id × b)
| {z }

y

, θ · (id × f)
| {z }

w

· 〈θ · (id × d), e · π2〉
| {z }

z
| {z }

w

So we’ve found tail-recursive solution

w = p · π2 → θ · (id × b) , w · 〈θ · (id × d), e · π2〉

Calculation (contd.)

Altogether:

f = p → b , w · 〈d, e〉

w = p · π2 → θ · (id × b) , w · 〈θ · (id × d), e · π2〉

Quite often b = u, where u is the unit of θ (a θ u = a). We then get a
simpler w:

w = p · π2 → π1 , w · 〈θ · (id × d), e · π2〉

= π1 · (while ¬ · p · π2 do 〈θ · (id × d), e · π2〉)

13

Example - factorial

From

fac = (=0) → 1 , mul · 〈id, fac · pred〉

we get VDM-SL functions

fac(n) == if n=0 then 1 else w(n,n-1)

w(m,i) == if i=0 then m else w(m * i, i-1)

The next slide shows how the while loop can be made explicit by moving
from funcions to operations.

Example - factorial

fac : nat ==> nat

fac(n) ==

if n=0 then return 1

else (dcl m: nat := n,

i: nat := n -1;

while (i <> 0) do

(m := m * i; i := i-1);

return m;

);

Other results

For b = u there is another recusion removal law which we could prove
similarly:

f : A −→ C
f = p → u , θ · 〈d, f · e〉

is equivalent to

f = w · 〈u, id〉
w = p · π2 → π1 , w · 〈θ · (id × d), e · π2〉

The corresponding VDM-SL version of factorial is presented in the slide
which follows:

14

Example - “another” factorial

fac : nat ==> nat

fac(n) ==

(dcl m: nat := 1,

i: nat := n;

while (i <> 0) do

(m := m * i; i := i - 1);

return m

);

For versus while loops

VDM-SL/VDM++ syntax includes for loops. Therefore, the two while loops
above can be converted into, respectively,

fac(n) ==

if n=0 then return 1

else (dcl m: nat := n;

for i=n-1 to 1 by -1 do m := m * i;

return m;

);

and

fac(n) ==

(dcl m: nat := 1;

for i = n to 1 by -1 do m := m * i;

return m

);

15

Data refinement in full

Simultaneous algorithm/data refinement: given

• a spec A B
S

• abstraction function A C
F1

• representation relation D B
R2

then C D
I

will be said to implement S iff

S ⊢ F1 · I · R2

A B
S

C

F1

D
I

R2 (10)

Analysis of refinement equation

• The above refinement equation is to be solved for I (the unknown),
and will in general exhibit more than one solution.

• S ⊢ F1 · I · R2 means

F1 · I · R2 · δ S ⊆ S ∧ δ S ⊆ δ (F1 · I · R2)

• In case Fi = Ri = id (i = 1, 2) — no data refinement involved — it
boils down to algorithmic refinement:

S ⊢ id · I · id

Example

2 2
¬

IN0

(> 0)

IN0
[[(= 0)]] →> , 0

[[= true]] → 1 , 0

recall

R → S , T
def
= (S · δ R) ∪ T · (id − δ R)

Note how non-determinism of implementation is coped with by the
target abstraction function.

16

Solving refinement equations

Since δ (S · R) = δ (δ S · R), the second clause above rewrites to

δ S ⊆ δ (δ F1 · (I · R2))

In case F1 (f1) is entire:

δ S ⊆ δ (I · R2)

In case spec S and F1 (f1) are entire and R2 = f◦

2 , I will be entire and such
that

I ⊆ f◦

1 · S · f2

Functional solutions

Case in which all entities in a refinement equation are total functions (note
the lowercase letters):

f1 · i = s · f2 (11)

• Example: i = f⋆ will implement s = Pf under data-refinement
f1 = f2 = elems.

• i = f⋆ is not a unique solution. These arise wherever f1 is iso (f◦

1 is a
function):

i = f◦

1 · s · f2

This appeals to calculating i by cata-fusion over inductve
implementation type D.

Example

Set by list refinement:

(a belongs) = (a ∈) · elems

(f1 = id):

2 PA

(a ∈)

2

id

A⋆

a belongs

elems

We know that elems = (|ins|). Since target function is a list cata
(a belongs) = (|β|), by cata-fusion refinement equation will hold provided
(a ∈) · ins = β · (id + id × (a ∈)) holds.

17

Example (cont.)

Let β = [β1 , β2].

• Since a ∈ ∅ = false, we calculate β1 = false.

• We are left with

a ∈ ({x} ∪ s) = β2(x, a ∈ s)

From a ∈ {x}∪ s = (a ∈ {x})∨ (a ∈ s), we infer β2(x, b) ≡ a = x∨ b.

• All in all:

belongs(a)(l) ==
if l = [] then false
else (a = hd l) or belongs(a)(tl l)

Bibliografia

18

