
An Introduction to Data Refinement

J.N. Oliveira
DIUM March 19, 2007

Formal Methods II, 2002-06,

March 19, 2007

FM software design process

• Formal specification — “what” the intended software system
should do

• Implementation — machine code produced instructing the
hardware about “how” to do it

In general, there is more than one way in which a particular machine
can accomplish “what” the specifier bore in mind:

• Relationship between specifications and implementations is
one-to-many

• Specifications are more abstract than implementations.

Overall idea

• Calculate implementations from specifications

Spec = X

≤ X ′

≤ X ′′

≤ · · ·

≤ Imp

by adding details in a controlled manner.

• Define a suitable ordering ≤ on datatypes and develop corresponding
data refinement theory

1

Example of data refinement

Finite sets represented by finite lists:

F = elems
[1, 2]

{1, 2} [2, 1]

[1, 2, 1]

Refinement inequation

Pf A ≤ A⋆

elems

meaning that

- sets are “implemented” by lists

- A⋆ is able to “represent” Pf A

- A⋆ is “abstracted” by Pf A

- A⋆ is a refinement (“refines”) Pf A

2

Refinement inequations

A is implemented by B, as witnessed by pair f, r, iff

A ≤ B

r

f

such that

• representation r is injective

• abstraction f is surjective

• that is,

f · r = id

Recall. . .

relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection
(isomorphism)

Recall. . .

Taxonomy

Reflexive Coreflexive

kerR entire R injective R

img R surjective R simple R

Kernel

ker R
def
= R◦ · R

Image (its dual)

img R
def
= ker (R◦)

3

Not general enough (I)

In the following inequation

A ≤ A + 1

i1

i◦1
expressing the fact that every element of datatype A can be represented by a
“pointer”,

- r = i1 is injective, but

- its converse i◦1 is partial (=not entirely defined)

Not general enough (II)

Representations r need not be functions. Back to

Pf A ≤ A⋆

R

elems
relation R = elems◦ will be perfectly acceptable as a representation since

elems · elems◦ = id

because elems is a surjection.

Data refinement

Principle of data abstraction: A abstracts B wherever

• A surjective abstraction A B
F

can be found:

imgF = id (1)

F is thus simple but possibly partial.

• Any entire subrelation R of F ◦ is said to be a representation for
F . So R ⊆ F ◦.

4

Representation relations

• It follows that R is injective, since ker R ⊆ kerF ◦ and
kerF ◦ = img F = id.

• So, no two different abstract values a, a′ ∈ A get mixed up along the
representation process.

• Altogether, kerR = id because id ⊆ ker R ⊆ id (R is entire).

• It follows that R is a right-inverse of F , that is

F · R = id (2)

This is proved by circular inclusion

F · R ⊆ id ⊆ F · R

in the next slide.

Right invertibility

F · R ⊆ id ∧ id ⊆ F · R

≡ { img F = id and ker R = id}

F · R ⊆ F · F ◦ ∧ R◦ · R ⊆ F · R

≡ { converses }

F · R ⊆ F · F ◦ ∧ R◦ · R ⊆ R◦ · F ◦

⇐ { (F ·) and (R◦·) are monotone }

R ⊆ F ◦ ∧ R ⊆ F ◦

≡ { R ⊆ F ◦ is assumed }

true

5

Refinement inequations

A ≤ B

R

F

such that F · R = idA

This inequation has several informal interpretations:

- A is “smaller” than B

- B is able to “represent” A

- B is “abstracted” by A

- A is “implemented” by B

- B is a refinement (“refines”) A

Refinement equations

Isomorphisms: A =̃ B

r

f

such that r = f◦

r = f◦

≡ { add variables }

b r a ≡ bf◦a

≡ { functions and converses }

b = r a ≡ f b = a

6

Example

Back to representing finite sets by finite lists:

F = elems
[1, 2]

{1, 2} [2, 1]

[1, 2, 1]

Among the many R ⊆ F ◦, we may choose the following:

Relational representation

Listify : set of nat -> seq of nat

Listify(s) ==

if s = {} then []

else let e in set s

in [e] ^ Listify(s \ {e});

Intuitively,

ρListify = [[noRepeats]]

where

noRepeats(s) == card elems s = len s

Functional representation

listify : set of nat -> seq of nat

listify(s) ==

if s = {} then []

else let e = minset(s)

in [e] ^ listify(s \ {e});

Intuitively,

ρ listify = [[IsOrdered]] · [[noRepeats]]

7

Concrete invariants

• Wherever

A ≤ B

R

F

such that R ⊆ F ◦ and ρR = [[φ]]

we say that φ is the concrete invariant induced by R.

• In case R is a function, and because it always is injective, one has

A =̃ Bφ

where Bφ denotes the subset of B which satisfies concrete-invariant φ.

Example of a partial abstraction

Every element of datatype A can be represented by a “pointer”:

A ≤ A + 1

i1

i◦1
• Simplicity of the abstraction is ensured by a known fact: the converse

of an injective relation is simple.

• Concrete invariant: φ = [true , false]

Another partial abstraction

Finite mappings “are” (simple) finite relations:

map A toB ≤ set of (A ∗ B)

mkr

mkf = mkr◦Vdm-sl:

mkr : map A to B -> set of (A * B)

mkr(f) == { mk_(a,f(a)) | a in set dom f };

mkf : set of (A * B) -> map A to B

mkf(r) == { p.#1 |-> p.#2 | p in set r }

pre isSimple(r);

(Guess the concrete invariant.)

8

Properties of ≤:

Reflexivity

A ≤ A

id

id

cf. id · id = id

Transitivity

A ≤ B

R

F

∧ B ≤ C

S

G

⇒ A ≤ C

S · R

F · G

Proof of transitivity

• First show that composition preserves simplicity and surjectiveness:

img (F · G) = id

≡ { expanding and converses}

F · (img G) · F ◦ = id

≡ { G is simple and surjective}

img F = id

≡ { F is simple and surjective}

id = id

• Then note that S · R ⊆ (F · G)◦ by monotonicity.

9

Structural data refinement

A ≤ B

R

F

⇒ F A ≤ F B

F R

FF
where F is an arbitrary relator (functor):

(F F) · (F R)

= { relators commute with composition}

F (F · R)

= { R is right-inverse of F}

F id

= { relators commute with id}

id

therefore F R is right-inverse of F f . Of course, this result extends to bifunctors.

Relators

A relator is a functor on relations

A FA

B

X

FB

F X

which is monotonic and commutes with converse:

R ⊆ S ⇒ (F R) ⊆ (FS)

F (R◦) = (F R)◦

Relators

Recall that F will commute with composition and identity too:

F (R · S) = (FR) · (FS) (3)

F id = id (4)

Example: X⋆ will be such that

l(X⋆)l′ ≡ len l = len l′ ∧ ∀i ∈ inds l.(l i)X(l′ i)

10

Polynomial relators

Identity: Id R = R
Constant: K R = idK

Product: R × S = 〈R · π1, S · π2〉
Sum: R + S = [i1 · R , i2 · S]

where

〈R,S〉 = π◦

1 · R ∩ π◦

2 · S

[R , S] = (R · i◦1) ∪ (S · i◦2)

For instance,

Maybe A =̃ (Id + 1)A = A + 1

“Maybe” transpose

Useful isomorphism for conversion of simple relations into a Maybe-valued
functions

(B + 1)A =̃ A ⇀ B

untot = (i◦1 ·)

tot
where A ⇀ B denotes the set of all simple relations from A to B:

f = tot R ≡ (b R a ≡ (f a = i1 b))

“Maybe” transpose — VDM-SL

A ⇀ B =̃ (B + 1)A

tot

untot

(5)

where, for types A, B and JustB::value:B,

tot: map A to B -> A -> [JustB]

tot(sigma)(a) ==

if a in set dom(sigma) then mk_JustB(sigma(a)) else nil;

untot: (A -> [JustB]) -> map A to B

untot(f) == { a |-> b | a: A, b: B & f(a) = mk_JustB(b) };

11

Pointwise untot = (i◦1·)

As checked next:

untot f = i◦1 · f

≡ { relations as set comprehensions}

untot f = {(b, a) | a ∈ A, b ∈ B : b(i◦1 · f)a}

≡ { using rule b(f◦ · R · g)a ≡ (f b)R(g a) }

untot f = {(b, a) | a ∈ A, b ∈ B : i1 b = f a}

≡ { Vdm-sl notation}

untot f = {a|->b|a:A,b:B & f(a)=mk_JustB(b)}

Corol. of “Maybe” transpose (I)

Isomorphism

A1 =̃ A

extends to partial functions as follows:

1 ⇀ A =̃ A + 1

f◦

f

(guess f and f◦).

That is, the “singleton” finite map is a disguise of a “pointer”.

Corol. of “Maybe” transpose (II)

Sets are degenerated maps:

PA =̃ A ⇀ 1

Calculation:

A ⇀ 1

=̃ { tot representation }

(1 + 1)
A

=̃ { basic}

2
A

=̃ { 2A is isomorphic to PA }

PA

12

Corol. of “Maybe” transpose (IIa)

PA =̃ A ⇀ 1

set2fm

dom
Vdm-sl

set2fm : set of A -> map A to Nil

set2fm(s) == { a |-> nil | a in set s };

Pointfree

set2fm
def
= (!·)

Right-invertibility

Calculation:

δ · set2fm = id

≡ { }

δ (set2fm s) = s

≡ { }

δ (! · s) = s

≡ { ! is a function, δ (f · R) = δ R}

δ s = s

≡ { s is coreflexive}

s = s

13

Corol. of “Maybe” transpose (III)

Isomorphism

B × C ⇀ A =̃ (C ⇀ A)B

scurry

extends currying

BC×A =̃ (BA)
C

curry

to simple relations, as calculated in the next slide.

Corol. of “Maybe” transpose (III)

B × C ⇀ A

=̃ { tot/untot }

(A + 1)B×C

=̃ { curry/uncurry }

((A + 1)C)
B

=̃ { (i◦1·)
B }

(C ⇀ A)B

This is referred to as the multiple-key decomposition / synthesis
isomorphism.

Corol. of “Maybe” transpose (III)

The scurry isomorphism is as follows, where we abbreviate scurry R to R:

f = R ≡ 〈∀ a, b, c : : c (f a) b ≡ c R (a, b)〉

Its VDM-SL equivalent for finite mappings is

scurry : map A*B to C -> (A -> map B to C)

scurry(M)(a) == { b |-> M(mk_(a’,b))

| mk_(a’,b) in set dom M

& a’=a };

14

Corol. of “Maybe” transpose (IV)

Refinement of nested simplicity by decomposition:

A ⇀ (D × (B ⇀ C)) ≤ (A ⇀ D) × ((A × B) ⇀ C)

unnjoin

1n

where R 1n S = 〈R, S〉

and unnjoin R = (π1 · R,unpcurry(π2 · R)) (see definition of
unpcurry in the sequel.)

Calculation

A ⇀ (D × (B ⇀ C))

=̃ { Maybe transpose }

((D × (B ⇀ C)) + 1)A

≤ { Maybe-(right)strength is involved in the abstraction }

((D + 1) × (B ⇀ C))A

=̃ { splitting }

(D + 1)A × (B ⇀ C)A

=̃ { Maybe transpose and multiple-key synthesis }

(A ⇀ D) × (A × B ⇀ C)

15

Details on the 1n abstraction

Pointwise:

(d, M)(R 1n S)a ≡ d R a ∧ M = (S)a

≡ { scurry }

d R a ∧ (c M b ≡ c S (a, b))

VDM-SL equivalent for finite mappings:

njoin : (map A to D)*(map A*B to C)
-> map A to (D* (map B to C))

njoin(M,N) ==
{ a |-> mk_(M(a), { b |-> N(mk_(a,b))

| mk_(a,b) in set dom N })
| a in set dom M };

Its representation is

unnjoin : map A to (D* map B to C) ->

(map A to D)*(map A*B to C)

unnjoin(M) ==

mk_({ a |-> M(a).#1 | a in set dom M },

merge {{ mk_(a,b) |-> M(a).#2(b)

| b in set dom M(a).#2 }

| a in set dom M }

);

Concrete invariant induced by unnjoin:

φunnjoin(M, N) = N � M · π1

where R � S ≡ δ R ⊆ δ S

16

Corol. of “Maybe” transpose (V)

(B + C) ⇀ A =̃ (B ⇀ A) × (C ⇀ A)

unpeither

peitherwhere

peither(σ, τ) = [σ , τ]

for [R , S] = (R · i◦1) ∪ (S · i◦2), that is

peither = ∪ · ((·i◦1) × (·i◦2))

Corol.of “Maybe” transpose (Va)

JustB::value:B;

JustC::value:C;

BorC = JustB | JustC ;

map (BorC) toA =̃ (map B toA) × (map C toA)

peither

peither: (map B to A) * (map C to A) -> map BorC to A

peither(m,n) == { mk_JustB(b) |-> m(b) | b in set dom m} munion

{ mk_JustC(c) |-> n(c) | c in set dom n};

NB: a “1st NF” representation rule

17

Relational projection

Given a binary relation R and suitably typed functions f and g,

• the g, f -projection of R is defined as binary relation

πg,fR
def
= g · R · f◦ (6)

• wherever R is simple and g · R · f◦ is also simple, we write f ⇀ g
instead of πg,fR. So,

f ⇀ g
def
= (g·) · (·f◦)

• (f ⇀ g)R is always simple when f is injective.

• So, we could have written e.g.

peither = ∪ · ((i1 ⇀ id) × (i2 ⇀ id))

Refining finite sets (II)

List (cf. example before):

set ofA ≤ seq ofA

elems
Index A:

set ofA ≤ map nat toA

rng

Refining finite sets (III)

Classify A by B (B ⊃ {}):

set ofA ≤ map A toB

dom
Quantify A (“multisets”):

set ofA ≤ map A to nat

dom

18

Refining finite maps (II)

A ⇀ (B + C) ≤ (A ⇀ B) × (A ⇀ C)

uncojoin

cojoinwhere

cojoin = ∪ · ((i1·) × (i2·))

NB: cojoin is partial since the union of two partial functions not
always is a partial function.

Refining finite maps (IIa)

Note the representation function:

uncojoin : map A to BorC -> (map A to B) * (map A to C)
uncojoin(f) ==

mk_({ a |-> f(a).value
| a in set dom f & is_JustB(f(a)) },

{ a |-> f(a).value

| a in set dom f & is_JustC(f(a)) }
);

Refining finite maps (III)

A ⇀ B × C ≤ (A ⇀ B) × (A ⇀ C)

unjoin

1
where

σ 1 τ
def
= 〈σ, τ 〉

where 〈R, S〉
def
= (π◦

1 · R) ∩ (π◦

2 · S). A right-inverse of join is

unjoin
def
= 〈id ⇀ π1, id ⇀ π2〉

19

Refining finite maps (IIIa)

map A toB ∗ C ≤ (map A toB) × (map A toC)

1where (writing join for 1)

join :(map A to B) * (map A to C) -> map A to (B * C)

join(m,n) == { a |-> mk_(m(a),n(a))

| a in set dom m inter dom n };

Refining finite maps (IVa)

In general:

(C × A) ⇀ B ≤ C ⇀ (A ⇀ B)

pcurry

unpcurry

unpcurry : map C to (map A to B) -> map (C * A) to B
unpcurry(f) ==

merge { let g=f(a)

in { mk_(a,b) |-> g(b) | b in set dom g }
| a in set dom f };

Refining finite maps (IVb)

Pointwise

pcurry : map (C * A) to B -> map C to (map A to B)
pcurry(f) ==

let y = { x.#1 | x in set dom f }
in { a |-> { p.#2 |-> f(p)

| p in set dom f & p.#1=a }
| a in set y };

Pointfree

pcurry M = M −⊥

(recall scurry)

20

Transposing relations

Let B := 2 in the curry/uncurry isomorphism and obtain

P(A × C) =̃ (PA)C

Λ

Λ◦

where

f = ΛR ≡ R = ∈ ·f (7)

and A PA
∈

is the membership relation.

Transposing finite relations

set of (C ∗ A) ≤ map C to set ofA

collect

discollect

collect : set of (C * A) -> map C to set of A

collect(r) == { c |-> { q.#2 | q in set r & c=q.#1 }
| c in set { p.#1 | p in set r } };

discollect : map C to set of A -> set of (C * A)
discollect(f) == dunion { { mk_(c,a) | a in set f(c) }

| c in set dom f };

What about recursive data?

How does one refine recursive Vdm-sl models such as e.g.

FS :: D: map Id to Node; -- FS means file system
Node = File | FS; -- a Node is either a file

-- or a directory

Id = seq of char; -- node identifiers
File :: F: seq of token -- sequential files

that is, FS = µF for F X = Id ⇀ (File + X):

µF =̃ Id ⇀ (File + µF)

out

in

21

The DecTree example

or. . .

DecTree :: question: What

answers: map Answer to DecTree
What = seq of char;
Answer = seq of char;

that is, DecTree = µF in

DecTree =̃ What × (Answer ⇀ DecTree)

for FX = What × (Answer ⇀ X)

The Exp example

or even. . .

Exp = Var | Term ;
Var :: variable: Symbol ;
Term :: operator: Symbol

arguments: seq of Exp
inv t == len t.arguments <= 20 ;

Symbol = seq of char
inv s == len s <= 10 ;

that is, Exp = µF in

Exp =̃ Symbol + Symbol × Exp⋆

for FX = Symbol + Symbol × X⋆

Getting away with recursion

Given

µF =̃ F µF

out

in
one has

µF ≤ (K ⇀ F K)
| {z }

“heap′′

×K

F
for K a data type of “heap addresses”, or “pointers”, such that K =̃ IN .

22

An example to start with

Since

Exp = µX.(Symbol + Symbol × X⋆)

we have:

Exp

≤ { remove recursion }

(K ⇀ (Symbol + Symbol × K⋆)) × K

≤ { remove finite lists }

(K ⇀ (Symbol + Symbol × (IN ⇀ K))) × K

Example continued

≤ { recall A ⇀ (B + C) ≤ (A ⇀ B) × (A ⇀ C) }

(K ⇀ Symbol) × (K ⇀ (Symbol × (IN ⇀ K))) × K

≤ { remove nested ⇀ }

(K ⇀ Symbol) × (K ⇀ Symbol) × ((IN × K) ⇀ K) × K

=̃ { A × A =̃ A2 }

(K ⇀ Symbol)2 × ((IN × K) ⇀ K) × K

=̃ { recall (C ⇀ A)B =̃ B × C ⇀ A}

((2 × K) ⇀ Symbol)
| {z }

SY MBOLS

× ((IN × K) ⇀ K)
| {z }

EXPRESSIONS

×K

SQL encoding

Symbols table:

CREATE TABLE SYMBOLS (

Symbol CHAR (20) NOT NULL,

NodeId NUMERIC (10) NOT NULL,

IfVar BOOLEAN NOT NULL

CONSTRAINT SYMBOLS_pk

PRIMARY KEY(NodeId,IfVar)

);

23

SQL encoding

Expressions table:

CREATE TABLE EXPRESSIONS (

FatherId NUMERIC (10) NOT NULL,

ArgNr NUMERIC (10) NOT NULL,

ChildId NUMERIC (10) NOT NULL

CONSTRAINT EXPRESSIONS_pk

PRIMARY KEY (FatherId,ArgNr)

);

Can you rely on this implementation? Need for an abstraction invariant!

Abstraction function

• Main rôle in representation is played by simple F-coalgebra K ⇀ F K,
understood as a (finite) piece of “linear storage”, a “heap” or a
“database” file.

• F (recall F notation from above), of type (K ⇀ µF)(K⇀F K), is
nothing but the F-anamorphism combinator:

µF F(µF)
in

K

FH

F K
H

F(FH)
F = [()]F

F H = µX. in · (F X) · H

Partiality of implementation

F (σ, k) = (Fσ)k will be undefined wherever

• k 6∈ δ σ

• σ is not “closed” over itself (see below)

• σ is non-well-founded (see below)

Thus concrete invariant

φ(σ, k)
def
= k ∈ δ σ ∧ (closed σ) ∧ (wellf σ)

In order to define closed σ and wellf σ we need σ’s accessibility relation ≺σ

(next slide).

24

Accessibility and membership

Accessibility relation for σ:

K K
≺σ

≺σ
def
= ∈F · σ

where K F K
∈F

extends K PK
∈

inductively over polynomial
functors, as follows:

• Constant and identity functors:

∈C
def
= ⊥

∈λX.X
def
= id

Membership (continued)

• Product and coproduct

∈F×G
def
= (∈F ·π1) ∪ (∈G ·π2)

∈F+G
def
= [∈F ,∈G]

• Functor composition

∈F·G
def
= ∈G · ∈F

• Type functors: just an example,

∈X⋆
def
= ∈ · elems

25

Example

Recall F X = Symbol + Symbol × X⋆

∈Symbol+Symbol×X⋆

= { ∈ for coproduct bifunctor }

[∈Symbol ,∈Symbol×X⋆]

= { ∈ for constant and product (bi)functors }

[⊥ , (∈Symbol ·π1) ∪ (∈X⋆ ·π2)]

= { ∈ for constant and identity functor }

[⊥ , (⊥ · π1) ∪ (∈ · elems · π2)]

= { ⊥ and [R , S] = (R · i◦1) ∪ (S · i◦2) }

∈ · elems · π2 · i◦2

Example (pointwise)

k ∈Symbol+Symbol×X⋆ x

≡ { calculation above }

k(∈ · elems · π2 · i◦2)x

≡ { relational composition }

k(∈ · elems · π2)(a, l) ∧ x = i2(a, l)

≡ { trivia }

k ∈ (elems l) ∧ x = i2(a, l)

26

Another example

Let F X = 1 + A × X. Then,

∈1+A×X

= { ∈ for coproduct bifunctor }

[∈1 ,∈A×X]

= { ∈ for constant and product (bi)functors }

[⊥ , (∈A ·π1) ∪ (∈λX.X ·π2)]

= { ∈ for constant and identity functor }

[⊥ , (⊥ · π1) ∪ (id · π2)]

= { ⊥ and [R , S] = (R · i◦1) ∪ (S · i◦2) }

π2 · i◦2

Example (pointwise)

k ∈1+A×X x

≡ { calculation above }

k(π2 · i
◦

2)x

≡ { relational composition }

k(π2)(a, k′) ∧ x = i2(a, k′)

≡ { trivia }

x = i2(a, k′) ∧ k = k′

≡ { trivia }

x = i2(a, k)

27

Accessibility (linear example)

Pointer reachability in case of a “linear” heap (1 + A × K) K
σ

:

k1 ≺σ k2 ≡ k2 ∈ δ σ ∧ (σ k2) = i2(a, k1)

In a drawing:

σ =

K A K

k1 ... k0

k2 a k1

... ...

k1 ≺σ k2

k0 ≺σ k1

Closure and wellfoundedness

Let ≺+
σ denote the transitive closure of ≺σ. Then we define

closed σ = ρ ≺+
σ ⊆ δ σ

that is, all reacheable k are defined, and

wellf σ = (≺+
σ) ∩ id = ⊥

that is, ≺+
σ is irreflexive (no cycles, no looping)

O.O. Data Implementation

UML:

class a
attribA : A

class b
attribB : B

class c
attribC : C

Formal model: K ⇀ Structure where

Structure = A + A × B + A × C

=̃ A × (1 + B + C)

K ⇀ (A + A × B)

28

Multiple inheritance

class a
attribA : A

class b
attribB : B

class c
attribC : C

class d
attribD : D

K ⇀ A × (1 + B + C + B × C × D)

Example

student
name : String

active
course: String

engineering
workstudy : String

special plan
equivalences : E

engineering & special

K ⇀ A × (1 + B + C + B × C)

29

