Data Transformation by Calculation

José N. Oliveira

Dep. Informatica, Universidade do Minho, 4700-320 Bragartugal,
jno@di.uminho.pt

Abstract. This tutorial addresses the foundations of data-modestoamation.
A catalog of transformations is presented which includesrabtion and repre-
sentation relations and associated constraints, all egecein an algebraic style
via the pointfree-transform, a technique resembling thpld@e transform in
mathematics: predicates are converted to binary relagiong (of the algebra of
programming) in a 2-level style encompassing both data @edations. Data-
calculation, which also includes transformation of re&rdata models into
“flat” database schemes, has been in use at Minho as alterratistandard
database design and is the foundation of the “2LT bundledalstavailable from
the UMinho Haskell libraries.

Keywords: Theoretical foundations ; refinement ; model driven engdinge;
reusable theories.

1 Introduction

Watch yourself using a pocket calculator: once a digit keyréssed, the corresponding
digit is displayed on the LCD display:

digits
display keyin

binary

This simple situation illustrates the main ingredients\argday interaction with ma-
chines: the abstract objects we have in mind (eg. digits bars) etc) need to krepre-
sentednside machines, before these can perform calculationssf¢eg. square root):

digits digits
display keyin
binary binary
_/

v

2 J.N. Oliveira

To be useful, a calculator should behave properly: if th& digplayed is not always
the one whose key was just pressednothingat all is displayed; or even the required
operation (such as triggered by square root key) is not plppaiculated, the calculator
is faulty and cannot be trusted.

When using machines such as computers or calculators, subdé®ntractingne-
chanical services. Inside the machine, the same subctingaocess happens again
and again: complex routines accomplish their tasks by sutbacting (simpler) rou-
tines, and so and so forth. So, the data representationgwdiestrated above for the
(interaction with a) pocket calculator happens inside nrahevery time a routine is
called: input data are to be made available in the apprafioamat to the subcontracted
routine, the result of which may need to change format agefiork it reaches its caller.

Such datarepresentlretrieve processes (analogue to theyin/display process
above) happen an uncountable number of times even in sirofilease systemsSub-
contractingthus being the essence of computing (as it is of any orgarseeitty),
much trouble is to be expected once one or mage-esent/retricve processes fail:
the whole service as subcontracted from outside is liketoltapse.

Three kinds of fault have been identified above: loss of daafusion among data
and wrong calculation. The first two have to do withta representatioand the third
with data calculation Preventing them from happening and disturbing the prodigi
number of software subcontracts code designers are askagleEment is the main aim
of this tutorial.

We will see that most of the work has to do witlata transformationa technique
which the average programmer is not aware of being using whigng, in an ‘ad hoc’
way, cumbersome middleware code to “bridge the gap” betwserdifferent technol-
ogy layers. The other part of the story — ensuring the ovexallectness of software
subcontracts — has to do wittata refinement well established branch of the software
sciences which is concerned with the relationship betwstpyise) specification and
implementation of software.

This tutorial notes are organized as follows. Sections 2 Zpdesent the overall
spirit of our approach and introduce a simple case studyhitt be taken as running
example. Section 4 is a review of the binary relation notaiad calculus (referred
to as thepointfree (PF) transform Section 5 shows how to denote the meaning of
data in terms of such a unified notation. Section 6 expressesmpedance mismatch
in the PF-style. Sections 7 to 9 illustrate the approach edbntext of (database)
relational modeling. Recursive data modeling is addrefsed section 10 onwards.
Once impedance of recursive data is dealt with, we show hdwanalle cross-paradigm
impedance by calculation (section 11) and how to transajisations from recursive
to flat data models (section 12). Section 13 and appendix A@meerned with tools
and practical issues. Finally, section 14 concludes anatpout a number of research
directions in the field.

2 On data representation

The theoretical foundation afata representatioan be written in few words: what
matters is theno loss / no confusioprinciple hinted above. Let us explain what this

Data Transformation by Calculation 3

means by writingh R a to denote the fact thatatumb represents datum, and the
converse fact R° b to denote that is the datum represented byThe use of definite
article “the’ instead of ‘a” in the previous sentence is already a symptom ofrthe
confusionprinciple: we wanb to represenbnly onedatum of interest. S& should be
injective

a,a,b : a N\ a =>a=a
Va,a,b: bR bRd ! (1)

Theno lossprinciple means that no data is lost in the representatioogss or, in
other words, that every datum of interess representable by sonhe

Ma = (3b :: bRa)) 2

In discrete maths this means tifashould be totally defined, @ntirein our terminol-
ogy?l.
It follows that the retrieval relatiof®° is surjective(as converses of entire relations
always are) angimple (as converses of injective relations always are). By a smpl
relation we mean what is normally referred to gsaatial function?.

In general, it is useful to give some freedom to the retriegkdtion, provided that

it bears the desired properties (simplicity and surjectb# and that representation and

retrieval areconnectedo each other. This last property is written as

(Va,b :: bRa = aFb) 3)

whereF' denotes the chosen retrieval relation. This enforcesxetrrelations always
larger than the converses of their chosen representations,

R°CF (4)

thus establishind?® as theleastretrieval relation associated with representafibr{in
our starting scenaridi’ was chosen to bexactly R°.) Note that we could also have
expressed implication (3) as

RC F° (5)

which is equivalent to (4), meaning th&f is the largest representation one can connect
to a given retrieval relatiof’.

To express the fact th&iR, I') is aconnectedepresentation/retrieve pair we will
draw a diagram of the form

c (6)

1 Qur choice of terminology is that of [10], a well-known tegtik in programming using cal-
culational techniques.

2 The two rules of thumb “converse bfiectiveis simpl¢ and “converse oéntireis surjectivé
will be studied in section 4.

4 J.N. Oliveira

where A is the datatype of datto be representednd C is the chosen datatype of
representations. In the data refinement literatdrés often referred to athe abstract
typeandC' asthe concrete ondecaus€’ contains more information thas, which is
ignoredby F' (a non-injective relation in general). This explains whys also referred
to as theabstraction relatiorin a (R, F') pair.

In general, it will make sense to connect more than one lafyabstraction as in,
for instance,

R R’
I/<\M/\D
__/ \/
F F’

where letterd, M and D have been judiciously chosen so as to suggest the viords
terface middlewareanddataware respectively. In fact, data become “more concrete”
as they go down the traditional layers of software architectthe contents of inter-
active, handy objects at the interface level (often pictuae trees, combo boxes and
the like) become pointer structures (eg. in C++/C#) as tlesgeind to the middleware,
from where they are channeled to the data level, where thieyab persistent database
records. A popular picture of the diagram above is

R R’
— — T
—_— _—
F F’
wherel, M and D can be seen as communicating processes, represented leg.circ
The layered-architecture depicted in

{9

is also popular. Despite the different geometry, the mapafrihe two drawings is the
same.

(7)

Data Transformation by Calculation 5

. Margaret

1923

NIL

NIL

Mary

1956 [ID] Name][Birth |
NIL 1| Joseph| 1955
NIL 2| Luigi | 1920

Joseph 3 |Margaret 1923

4| Mary | 1956

1955 5| Peter | 1991
[]

.
Peter 5 [Father |1
1991 5 [Mother | 4
o 1 |Father 2
. 1 |Mother |3

Luigi

1920

NIL

NIL

(@) (b)

Fig. 1. Middleware (a) and dataware (b) formats for family tree siendata (8)

As an example, consider an interfade froviding direct manipulation of pedigree
trees, so common nowadays in genealogy websites:

Margaret, b. 1923 Luigi, b. 1920 (8)
\ /
Mary, b. 1956 Joseph, b. 1955
\ /

Peter, b. 1991

Trees — which are the users’ mental model of inductive stmest— become pointer
structures (Fig. 1a) once channeled to the middlew&fg For archival purposes, such
structures are eventually buried into the dataware levgir§ the form of very concrete,
persistent records (rows) of database files (tables), cfigglb.

6 J.N. Oliveira

3 Context and Motivation

Once materialized in some technology (eg. XML, C/C++/J&QL, etc), the layers
of (7) stay apart of each other in different programmpagadigms(eg. markup lan-
guages, object-orientation, relational databases, atf) sequiring its own skills and
programming techniques.

As we have seen above, different data models can be comperebstraction/
representation pairs. These are expected to be more commptexthe two models un-
der comparison belong to different paradigms. This kindafiplexity is a measure
of theimpedance mismatches between the various data-modelthdata-processing
paradigms in the words of reference [35] where a thorough accountusrgpf the
many problems which hinder software technology in this eespQuoting [35]:

Whatever programming paradigm for data processing we chodeta has the
tendency to live on the other side or to eventually end ugethier) This myriad
of inter- and intra-paradigm data models calls for a good arstanding of
techniques for mappings between data models, actual dathpperations on
data. (...)

Given the fact that IT industry is fighting with various impede mismatches
and data-model evolution problems for decades, it seeme &afe to start a
research career that specifically addresses these problems

Reference [35] goes further in identifying three main imeats (levels) ilfmapping
scenarios

— thetype-leveimapping of a source data model to a target data model;
— two maps (“map forward” and “map backward”) between souteeget data;
— thetranscription levelmapping of source operations into target operations.

Clearly, inequation (6) can be seen as a succinct presemtatihe two first ingre-
dients, the former being captured be theordering on data models and the latter by
the (F, R) pair of relations. The third can easily be captured by pgttimo instances
of (6) together, in a way such that the input and output tygesgiven operation, say
O, arewrappedby forward and backward data maps:

R
/\
A < C 9
_/
/\
B < D
\/

F’

The (safe) transcription @ into P can be formally stated by ensuring that the picture
is a commutative diagram. A typical situation arises wheandC' are the same, and
O is regarded as a state-transforming operation in a softe@rgponent, eg. one of its
CRUD (“Create, Read, Update and Delete”) operations. Therdiagram will ensure
correct refinement of such an operation across the changatefrepresentation.

Data Transformation by Calculation 7

The theory behind diagrams such as (9) is knowticda refinemenand itis among
the most studied formalisms in software design theory, daiailable from several
textbooks’.

The fact that state-of-the-art software technologiestnforce such formal design
principles in general leads to the unsafe technology whiehlive on today, which
is hindered by permanent cross-paradigm impedance mibmattse (untyped) data
mappings, unsafe CRUD operation transcription, etc. Whhis so? Why isn’t data
refinement widespread? Perhaps because it is hard to uswutestd apply in practice.
This is true: refinement is far too complex a discipline forstrgoftware practitioners, a
fact which is mirrored on its prolific terminology — aflownward upwardrefinement
[25], forwards backwardsefinement [25, 62, 41]5,SP,S@efinement [19] and so on.
Another defect of these theories is their reliancénwent & verify (proofdevelopment
strategies which are hard to master and get involved onaegfaeal-sized” problems.
What can we do about this?

The approach we propose to follow in this tutorial is diffgrérom the standard
in two respects: first, we adoptteansformationalstrategy as opposed to invention-
followed-by-verification; second, we adoptcalculationalapproach throughout our
data transformation steps. What do we mean by “calculatidna

Let us briefly review some background. The idea of using nmatiies to reason
about and transform programs is an old one and can be tracddtdahe times of
McCarthy’s work on the foundations of computer programniB®j, of Floyd’s work
on program meaning [22] and of Paterson and Hewgtiimparative schematologfy5s].

A so-calledprogram transformatioschool was already active in the mid 1970s, see for
instance references [14,17]. But program transformatexomescalculationalonly
after the inspiring work of J. Backus in hédgebra of (functional) programg6] where

the emphasis is put on the algebra of language combinatbes than on the-notation
and its variables, or points. This is why this calculus islsaibepoint-free

Intensive research on the (pointfree) program calculati@pproach in the last
thirty years has led to the discipline afgebra of programming10, 4]. The priority
of this discipline has been, however, mostly on reasonimgieddgorithmsrather than
data structuresOur own attempts to set upcalculus of data structuredate back to
[44—46] where the<-ordering and associated calculus are defined. The approawh
ever, was not agile enough. It is only after its foundatiores stated in the pointfree
style [47, 48] that elegant calculations can be performechtoulate data representa-
tions. References [2, 15] describe tools which have beeeldped to (partly) automate
this kind of data-level calculation.

The purpose of this tutorial is to provide the reader witlatstgies and tools for
smoothing data impedance mismatch by calculation. Bef@gaevinto describing the
rules of the calculus, we will present (in the section whichofvs) some background
on the pointfree transform, while settling basic notationventions. (Readers familiar
with the binary relation calculus, as presented for ingtainc[10], will want to skip
the section which follows; readers completely unfamilidthwhese matters may want
to skim through it in a first reading and to revisit it more thoghly every time it's
needed.)

8 See eg. [31,42,18].

8 J.N. Oliveira

4 Introducing the Pointfree Transform

By pointfree transforni54] (“PF-transform” for short) we essentially mean the con
version of predicate logic formulee into binary relationsrbynoving bound variables
and quantifiers — a technique which, initiated by De Morgathan1860s [56], even-
tually lead to what is known today as thkyebra of programminglL0, 4]. As explained
in [54], the PF-transform is analogous to a reasoning gjyakmown as the.aplace
transformapplicable to integral / differential equations [34].

Theories “refactored” via the PF-transform become moresggnmore structured
and simpler [52-54]. Elegant expressions replace lengtimilee and easy-to-follow
calculations replace pointwise proofs with lots of ” notation, case analyses and nat-
ural language explanations for “obvious” steps.

The main principle of the PF-transform is tHaverything is a binary relation”
once logical expressions are PF-transformed; one thereasorts to the powerful
calculus of binary relations [10, 4] until a solution for tpeoblem is found, which
is mapped back to logics if required.

Relations.Let B<2— A denote a binary relation on datatyp&gsource) and3 (tar-
get). We will say thatB<—— A is thetypeof R and writeb R a to mean that paifb, a)

is in R. Of course, relation type declaratiofs<"— A and A—2 =B are equivalent.
The underlying partial order on relations is writtBnC S (read:" R is at mostS™),
meaning thafS is either more defined or less deterministic thian

RCS=(Vba:bRa=bSa) (20)

for R, S of the same type.

R U S denotes the union of two relations aridis the largest relation of its type.
Its dual is_L, the smallest such relation (the empty one). Equality oatiets can be
established by -antisymmetry:

R=S=RCSASCR (11)

Relations can be combined by three basic operators: cotipogR - .S), converse
(R°) and meetR N S). R°, theconversef R is such that(R°)b iff bRa holds. Meet
corresponds to set-theoretical intersection and conipos# defined in the usual way:
b(R - S)c holds wherever there exists some mediatirggich thabRa A aSc. Thus we
get another basic rule of the PF-transform:

b(R-S)c=(3a :: bRa A aSc) (12)
Note how converse commutes with composition
(R-S)°=8°-R° (13)
and with itself:

(R°)° =R (14)

Data Transformation by Calculation 9

All these basic operators afemonotonic. Composition is the basis of (sequential)
factorization. Everywher€ = R-S holds, the replacement @fby R-S will be referred

to as a “factorization” and that a® - S by T as “fusion”. Every relationB<—-— A
allows for two trivial factorizationskR = R - id4 andR = idp - R where, for every
X, idx is the identity relation mapping every element¥fonto itself. (As a rule,
subscripts will be dropped wherever types are implicit ayea infer.)

Coreflexives and ordersSome standard terminology arises from tlerelation: a

(endo) relationA<—"—A (often called arorder) will be referred to ageflexiveiff
id C R holds and asoreflexiveff R C id holds.

Coreflexive relations are fragments of the identity relatichich model predicates
or sets. The PF-transform of a (unapygdicatep is the coreflexivgp] such that

blpla=(b=a) A (pa) (15)

that is, the relation that maps everywhich satisfieg (and only suchy) onto itself.
The PF-meaning of a sétis [Aa.a € ST, thatis,b[SJa = (b=1a) A a € S.(The[]
brackets will be omitted wherever clear from the context.)

Preorders are reflexive, transitive relations, wheie transitive iff R- R C R holds.
Partial orders are anti-symmetric preorders, wheigeing anti-symmetric means N
R° C id. A preorderR is anequivalencsf it is symmetric, that is, ifR = R°.

Taxonomy.Converse is of paramount importance in establishing a wademomy of

binary relations. Let us first define two important notiore kernelof a relationR,

kerR & R°. Randits dual, thémageof R: img R < R.R°. From (13, 14) one

immediately draws

ker(R°) =img R (16)
img (R°) = kerR a7)

Kernel and image lead to some useful terminology:

| | Reflexive | Coreflexive|

kerR|[entireR | injective R (18)
img R|| surjectiveR | simpleR

In words: a relationR is said to beentire (or total) iff its kernel is reflexive; andimple
(or functional) iff its image is coreflexive. Duallyg is surjectiveiff R° is entire, andr
is injectiveiff R° is simple.

Recall that these four classes have already been mentiorseatiion 2. So it may
be useful to check formulee (1,2) against the definitionswaptby (18). We shall do it
for (2) as warming-up exercise in pointfree-to-pointwiseersion:

R is entire
{1’}

ker R is reflexive

10 J.N. Oliveira

{ definitions }
idC R°-R
{ going pointwise, for alt, a }

c=a = (3b :: ¢R°D A bRa)

{ substitutionc := a ; converse }
(3b :: bRa A b Ra)
{prp=p}
(3b :: bRa)

Exercise 1.Derive (1) from (18).
]

Exercise 2.Resort to (16,17,18) and (18) to prove the following fouresubf thumb:

converse ofnjectiveis simple(and vice-versa)
converse oentireis surjective(and vice-versa)
smaller than injective (simple) is injective (simple)
larger than entire (surjective) is entire (surjective)

(Recall that two of these have been already used in sectjon 2.
O

A relation is said to be dunctioniff it is both simple and entire. Following a
widespread convention, functions will be denoted by loweeccharacters (ed, g,
¢) or identifiers starting with lowercase characters, andtion application will be de-
noted by juxtaposition, egf. a instead off(a). Thusbfa means the same as= f a.
Another means of denoting functions is the use of sect{afi and (9b) of a binary
operatol, whose meaning is as follows:

f=(@l) = fb=abbd (29)
g=(0b) = ga=abb (20)

The overall taxonomy of binary relations is pictured in Rigvhere, further to the
standard classification, we adepresentationandabstractionsThese are the relation
classes involved irc-rules (6), as we have seen already. Becausg-ahtisymmetry,
img F' = id whereverF' is anabstractionandker R = id whereverR is arepresenta-
tion.

Bijections (also referred to as isomorphisms) are funstiafstractions and repre-
sentations at the same time. A particular isomorphisid,isvhich also is the smallest
equivalence relation on a particular data domain.bSd,a means the same as-= a.

Functions and relations.The interplay between functions and relations is a rich part
of the binary relation calculus [10]. For instance, the RErsform rule which follows,
involving two functions {, g) and an arbitrary relatio®

b(f°- R-gla=(fb)R(ga) (21)

Data Transformation by Calculation 11

binary relation

—~ ~
injective entire simple surjective
~ ~ ~ — ~ ~
representation function abstraction
~ —~ ~ ~
injection surjection
~ —

bijection

Fig. 2. Binary relation taxonomy

plays a prominent rble in the PF-transform [3]. For ins&rtbe pointwise definition
of the kernel of a functiorf, b(kerf)a = fb = fa, stems from (21), whereby

it is easy to see that is the kernel of every constant functioh,<!—A included.
(Function! — read “I” as “bang” — is the unique function of its type, whdrdenotes
the singleton type.)

Given two preorders andC, one may relate arguments and results of pairs of
functionsf andg in, essentially, two ways:

f-
fe

N
IAIA

g (22)
g (23)

1 1M

As we shall see shortly, (22) is equivalentfo C f°-<.g. Forf = g, this es-
tablishes— to < monotonicity, thanks to (21). Botfi g in pattern (23) are monotone
and said to b&alois connectedf (resp.g) being referred to as tHewer (resp.uppen
adjoint of the connection. By introducing variables in beities of (23) via (21), we
obtain (for alla andbd)

(fO)Ea = b<(ga) (24)

For further details on the rich theory of Galois connecti(@€s) with examples and
applications see [1, 3].

Galois connections in which the two preorders are relatiausion £, C :=
C, Q) are particularly interesting because the two adjointsrala&ional combinators
and the connection itself is their universal property. Tbkofving table lists connec-
tions which are relevant for this tutorial, using sectiomation (19,20) to denote upper
and lower adjoints:

12 J.N. Oliveira

\ (fR)CS=RC(g5) \

| Description | f | g | Obs. |
Converse (0)° ()°
Shuntingrule (he) | (R®9) NB: h is a function
“Converse”shuntingrule| (-h°) | (-h) NB: h is a function (25)
Left-division (R) |(R\) read “Runder...”
Right-division (‘R) |(/R) read “...overR"
range p -T) lower C restricted to coreflexives
domain) (T4 lower C restricted to coreflexives
difference (-—R)|(RU)

Itis instructive to recover properties of the relation céis from (25). For instance,
the entry markedShuntingule” leads to

h-RCS=RCh®-S (26)
for all A, R andS. By taking converses, one gets another entry, namely
R-hCS=RCS-h (27)

These equivalences are popularly known as “shunting r{il€y” The fact thatt most
and equality coincide in the case of functions

fCg=f=9g=1f2g (28)

is among many beneficial consequences of these rules.

It should be mentioned that some rules in (25) appear intdm@ture under different
guises and usually not identified as GG&or a thorough presentation of the relational
calculus in terms of GCs see [4]. There an@nyadvantages in such an approach.
Further to the systematic tabulation of operators (of whiwh table above is just a
sample), GCs have a rich algebra of properties. For instance

— the two adjointsf andg in a GC are monotonic;

— lower adjoint f commutes with join and upper-adjoiptcommutes with meet,
wherever these exist;

— two cancellation laws holdeft-cancellation

b<g(fb) (29)
andright-cancellation
flga)Ea (30)
It may happen that a cancellation law holds up to equality, eg
flga)=a (31)

In this case the connection is said togerfecton the particular side [1].

Exercise 3.Prove that relational composition presenadisrelational classes in the taxonomy
of Fig. 2.
ad

4 For instance, thehuntingrule is calledcancellation lawin [62].

Data Transformation by Calculation 13

Simplicity. Simple relations (vulg. partial functions) will be partiatly relevant in
the sequel because of their ubiquity in software modelingpdrticular, they will be
used to model datadentity and any kind of data structure “embodying a functional
dependency” [52] such as eg. relational database tablespmyesegments (both static
and dynamic) and so on.

In the same way simple relations generalize functions @jigshuntingrules (26,
27) generalize to

S-RCT=(5S)-RCS°-T (32)
R-S°CT=R-§SCT-S (33)

for S simple. These rules involve tlwmainoperator §) whose GC
SRCP=RCT- (34)

is also listed in table (25), fab coreflexive.

We will draw B=—"—4 (or A R B) to indicate thatR is simple. Later on we
will need to describe finite simple relations at pointwiseele The notation we shall
adopt for this purpose is borrowed from VDM [31], where it isdkvn asmapping
comprehensiorThis notation exploits the applicative nature of a simglationS by
writing bSa asa € dom S A b= S a, where A should be understood non-strict
on the right argumerttanddom S is the set-theoretic version of coreflexivé above,
that is,

§S = [dom S] (35)

holds (cf. the isomorphism between sets and coreflexivdgnTelationS itself is
written

{a— SalaedomS}
and projectionf - S - g° as
{gar f(Sa)|aecdomS} (36)
providedy is injective (thus ensuring simplicity).

Exercise 4.Show that the union of two simple relatiod$ and N is simpleiff the following
condition holds:

M- N° Cid (37)
Suggestion: resort to universal property
(RUS)CX=(RCX)AN(SCX) (38)
Furthermore show that (37) converts to pointwise notatefolows,
(Va = a€(domMndom N)= (M a)= (N a))

— a condition known as (magpmpatibilityin VDM terminology [21].
O

5 VDM embodies a logic of partial functions (LPF) which takbistinto account [31].

14 J.N. Oliveira

Coreflexives again.The domainof a relation is an example of coreflexive relation. It
will be useful to order relations with respect to how defineeytare:

R<XS=6RC6S (39)

FromT = ker! one draws another version of (39},< S = !- R C!- .S, whichin
turn leads to:

RUSXT=R=TANSXT (40)

R-f°S8=R=<S-f (42)

Among many other useful properties of coreflexives we simgiethe following,
which prove very useful in calculations:

PV =NV = V- (42)
P° = (43)

Summary.The material in this section is drawn from similar sectianf5i3, 54], which
introduce the reader to the essentials of the PF-transifile the notation adopted
is that of a reference textbook on the subject [10], the mtasien of the associated
calculus is shorter and enhanced via the use of Galois ctionsga strategy inspired
by two (still unpublished) textbooks [1,4]. There is a stiglifference, perhaps: by
regarding the underlying mathematics as that afamsformto be actually used by
software engineers in model reasoning, the overall flawwquite practical and not that
of afine artonly accessible to the initiated — an aspect of the recertigea of the
calculus already stressed in [33].

The table below provides a summary of the PT-transform rgikeen so far, where
left-hand sides are logical formulag)and right-hand sides are the corresponding PF
equivalents[]).

(G | [

Va,b : bRa=bSa)) RCS

(Va :: fa=ga) fCy

Ma = aRa) idC R

(3a = bRa ANaSc)| bR-95)c (44)

bRa ANbSa b(RNS)a
bRaVbSa b(RUS)a
(fb) R(ga) b(f°-R-g)a

TRUE bTa

FALSE bla

Operator precedencen order to save parentheses in relational expressionsefireed
the following precedence ordering on the relational opesadeen so far:

>0, p>()>n>U
Example:R - 0.5° NT UV abbreviate§(R - (6 (S°)))NT)UV.

Data Transformation by Calculation 15

Parent

(®) e

s 02— Individual
Individual ID:_String

— Name: String

of —0m i i Birth: Date

(a) (b)

Fig. 3. ER and UML diagrams proposed fgenealogies

5 Data structures

One of the main difficulties in studying data structuring i thumber of disparate
(graphic) notations, programming languages and paradigimbas to deal with. Which
should one adopt? While graphical notations (such as the [1]) are gaining adepts
everyday, it is difficult to be accurate in such notationsauese their semantics are, as
a rule, not formally defined.

Our approach will be rather minimalist: we withap such notations to the PF-
notation whose rudiments have just been presented. By the Ymmap” we mean a
light-weight approach in this tutorial: presenting a fuibrmal semantics for the data
structuring facilities offered by any commercial languagaotation would be a tutorial
in itself!

Let us illustrate our approach by resorting to the familgtexample given earlier
on —recall (8) and Fig. 1. Suppose requirements are to ped®RUD operations on a
genealogy database collecting such family trees. How doeego about describing the
data model underlying such operations?

The average database designer will approach the modentitg-relationshidER)
diagrams. Using the graphical notation proposed by [7]irietance, one could draw
the diagram of figure 3(a). But many others will regard thitation too old-fashioned
and will propose the UML of figure 3(b) instead.

Uncertain of what such drawingstually meanmany a programmer will prefer to
go straight into code, eg. C

typedef struct Gen {

char *name /+*+ name is a string */

int birth / * hirth year is a number * [

struct Gen *mother; / * genealogy of mother (if known) */
struct Gen «father; / * genealogy of father (if known) */
b

— which matches with Fig. 1a — or XML, eg.

16 J.N. Oliveira

<l-- DTD for genealogical trees -->
<I[ELEMENT tree (node+)>
<IELEMENT node (name, birth, mother?, father?)>
<IELEMENT name (#PCDATA)>
<IELEMENT birth (#PCDATA)>
<IELEMENT mother EMPTY>
<I[ELEMENT father EMPTY>
<IATTLIST tree

ident ID #REQUIRED>
<IATTLIST mother

refid IDREF #REQUIRED>
<IATTLIST father

refid IDREF #REQUIRED>

— or SQL, eg. (fixing some arbitrary sizes for datatypes)

CREATE TABLE INDIVIDUAL (
ID NUMBER (10) NOT NULL,
Name VARCHAR (80) NOT NULL,
Birth NUMBER (8) NOT NULL,
CONSTRAINT INDIVIDUAL_pk PRIMARY KEY(ID)
);

CREATE TABLE ANCESTORS (

ID VARCHAR (8) NOT NULL,
Ancestor VARCHAR (8) NOT NULL,
PID NUMBER (10) NOT NULL,

CONSTRAINT ANCESTORS_pk PRIMARY KEY (ID,Ancestor)
);

— which matches with Fig. 1b.

What about functional programmers? By looking at the pedigree where we
started from (8), an inductive data type inhabited by suebgrcan be defined, eg. in
Haskell,

data PTree = Node {
name [Char],
birth :: Int ,
mother :: Maybe PTree,
father :: Maybe PTree

}

whereby (8) would be encoded as data value

(45)

Node
{name = "Peter", birth = 1991,
mother = Just (Node
{name = "Mary", birth = 1956,
mother = Nothing,
father = Nothing}),
father = Just (Node

Data Transformation by Calculation 17

{name = "Joseph", birth = 1955,
mother = Just (Node
{name = "Margaret", birth = 1923,
mother = Nothing, father = Nothing}),
father = Just (Node
{name = "Luigi", birth = 1920,
mother = Nothing, father = Nothing})})}

Of course, the same tree can be encoded in XML notation ugintpe DTD which
follows

<l-- DTD for genealogical trees -->
<IELEMENT tree (name, birth, tree?, tree?)>
<IELEMENT name (#PCDATA)>
<IELEMENT birth (#PCDATA)>

As well-founded structures, these trees can be prettytgatias in (8). However,
how can one ensure that the sapmmt-family-treeoperation won't loop forever while
retrieving data from eg. Fig. 1b? This would clearly happerby mistake, record
in Fig. 1b were updated tp1 | Father | 5]: Peter would become
a descendant of himself!

Several questions are on demand: are all the above datasrfedeivalent”? If so,
in what sense? If not, how can they be ranked in terms of “gd@lHow can we tell
apart theessencef a data model from its technology wrapping?

To answer these questions we need to put some effort in daggithe notations
involved in terms of a single, simple (ie. technology frerjfying notation. But nota-
tion alone (syntax) is not enough: the abilityreasonin such a notation is essential,
otherwise different data models won't be comparable.

These requirements explain why, in what follows, we chobseRF-notation for
such a purpose.

Recordsareinhabitants of products.Broadly speaking, a database is that part of an
information systemwhich collectsfacts or recordsof particular situations, which are
under permanent retrieval and analytical processing. élheay bemillions of such
records archived in a database and so efficiency is an issiewBatis a record?

Any row in the tables of Fig. 1b is a record, recordsafact For instance, record
| 5 [Peter | 1991 | meansPeter, whose ID number is 5, was born in 19¢tbwever,
a mathematician would have writtdfi, Peter,1991) instead ofdrawing the tabular
stuff; clearly, she/he would have inferred

5€ IN,
Peter € String,
1991 ¢ IV
(5, Peter,1991) € N x String x IN

So records can be regardedtagleswhich inhabitproductsof types. Given two types

A andB, their (Cartesian) product is defined Byx B ef {(a,b) |a € ANDb € B}.

18 J.N. Oliveira

Product datatypel x B is essential to information processing and is available in
virtually every programming language. In Haskell one v&{#&,B) to denoted x B,
for A and B two predefined datatypes. This syntax can be decorated waities, eg.

data C = C { first :: A, second :: B }
as was the case &fTree introduced earlier on. In the C programming language, the
A x B datatype is realized using “struct™s, eg.

struct {
A first;
B second;
b
The meaning of a product can be captured by the followingrdimgwhereR and
S are relations

A<=—" AxB—2= - (46)
R <R"S>T S

and where the two projections, w5 are such that
mi(a,b) =a A ma(a,b) =b (47)

GivenR, S, (R, S) — read:“split of R and.S” — is a binary relation relating three
objectsa, b, c:

(a,b){R,S)¢ = aRc ANbSc (48)
A special case ddplit will be referred to aselational product
RxSY (R 7,8 m) (49)
So we can add two more entries to table (44):
v [/]
aRc ANbSc| (a,b){(R,S)c (50)

bRa A dSc|(b,d)(R x S)(a,c)
As simple example of PF-transformation, we calculate the/@&®ion of (48):
(48)
{ projections (47)}

(a,b)(R,S)c = m(a,b) Re A ma(a,b) Sc
{ @y}
(a,b)(R, S)c = (a,b)(n5 - R)e A (a,b)(ns - S)c

= { introducen (44) ; remove variableg

(R,S)=m° RN -8 (51)

Data Transformation by Calculation 19

Note that binary product can be generalized tary product4; x As x ... x A,
involving projections{wi}izlm such thatr; (a1, ..., a,) = a;.

Exercise 5.Identify which types are isomorphic under the followingggijions:
flatr(a, (b,c)) = (a,b,c) (52)
flatl((b,c),d) = (b,c,d) (53)
O
Exercise 6.Show that the side condition of the followirsglit-fusionlaw ©
(R,S) T=(R-T,S-T) « R-(imgT)CRVS-(imgT)CS (54)

can be dispensed with (at least) in the following situatiq@g 7" is simple; (b)R or S are
functions.
O

Exercise 7.Write the following cancellation law with less symbols asséog thatR < S and
S < R hold:

m(R,S)=R-6S A m-(R,S)=S-6R (55)

O

Summing up typesThe following is a declaration of a type in Haskell which ii-
ited byeitherBooleans or error strings:

data X = Boo Bool | Err String

If one queries a Haskell interpreter for the types of Bo® andErr constructors, one
gets two functions which fit in the following diagram

i1

Bool + String LA String (56)

[Boo ,Err
Boo Err

X

Bool

whereBool + String denotes the sum (disjoint union) of typBsol andString, func-
tionsiy, io are the necessargjectionsand|[Boo , Err] is an instance of théeither”
relational combinator :

[R,S]=(R-i¢)U(S-i3) cf. diagram A — = A+ B<2 B (57)
» l[R »S]
C
In pointwise notation|R , S| means
¢[R,SJlx = (Ja = cRa AN x=1d1a)V(Ib : cSa N x=izb)
"6 Theorem 12.30 in [1].

20 J.N. Oliveira

In the same wagplit was used above to define relational prodict .S, eithercan
be used to defineelational sums

R+S=li1-R,is- S| (58)

As happens with productd, + B can be generalized to-ary sumA; + As+...+ A,
involving n injections{i;},_, ..

In most programming languages, sums are not primitive ard teebe programed
on purpose, eg. in C (using unions)

struct {
int tag; / * eg. 1,2 =/
union {
A ifA;
B ifB;
} data;
h

where explicit integer tags are made available to modetiigesi , i-.

(Abstract) pointers.A particular example of a datatype sumlis- A, whereA is an
arbitrary type and is the singleton type. The “amount of information” in thisHiof
structure is that of a pointer in C/C++: one “pulls a rope” amither gets nothingl{

or something useful of typd. In such a programming context “nothing” above means
a predefined value N. This analogy supports our preference in the sequel fordg
canonical inhabitant of datatype In fact, we will refer tol + A (or A + 1) as the
“pointer to A” datatype’. This corresponds to tHdaybe type constructor in Haskell.

Polynomial types, grammars and languag@&gpes involving arbitrary nesting of prod-
ucts and sums are callggblynomialtypes, eg.l + A x B (the “pointer to struct”
type). These types are useful in describing the abstra¢entsof generative grammars
(expressed in BNF notation) once non-terminal symbols deatified with types and
terminal symbols are filtered. The conversion is synthdtiaethe following table,

BNF NOTATION POLYNOMIAL NOTATION

alp — a+ 3

af — ax (59)
€ — 1

a — 1

applicable to the right hand side of BNF-productions, wher@ range over sequences
of terminal or non-terminal symbols, stands foremptyand a ranges over terminal
symbols. For instance, production

X —e|laAX

" Note that we are abstracting from the reference/derefersamantics of gointer as under-
stood in C-like programming languages. This is why we reder + A as anabstractpointer.
The explicit introduction of references (pointers, kegeritities) is deferred to section 10.

Data Transformation by Calculation 21

(whereX, A are non-terminals andis terminal) leads to equation
X=1+4AxX (60)

which hasA* — the “sequence ofi” datatype — as (least) solution. Sinte- A x X
can also be regarded as instance of the “pointer to strutt&npa once can encode the
same equation as the following (suitably sugared) typeadatibn in C:

typedef struct x {
A data;
struct x *next;
} Node;

typedef Node *X;

Recursive typesBoth the interpretation of grammars [60] and the analystkadétypes
with pointers lead to systems of polynomial equations, thato mutually recursive
datatypes [61]. For instance, the tiypedef above lead to

Node = A x X
X =14+ Node

Itis the substitution ofVode by A x X in the second equation which gives raise to (60).
There is a slight detail, though: in dealing with recursiypes one needs to replace
equalityof types byisomorphisnof types, a concept to to be dealt with later on (see
section 6). So, for instance, tRdreedatatype illustrated above in the XML and Haskell
syntaxes is captured by the equation

PTree = Ind x (PTree 4+ 1) x (PTree+ 1) (61)

wherelnd = Name x Birth packages the information relative to the name and birth
year datatypes, which don't participate in the recursivemreery and are, in a sense,
parameterf the model. Thus one may write

PTree = G(Ind, PTree) (62)

whereG captures the particular pattern of recursion chosen to hiadhly trees

GXY)E X x(Y+1)x (Y +1)
(X refers to the parametric information aldto the inductive part.)
All the examples given so far illustrate the role of abstidata patterns in bridg-
ing over two different programming paradigms and notatidiss will be particularly
apparent from what follows.

Membership. The idea of typing data structures is that of controlling hdata are
stored in a computer so as to be properly fetched. Everyrinstaf a datatype is thus
adata containeiof some type and the typing mechanism should help in retrigstata
from containers using some form wfembershipelation.

22 J.N. Oliveira

Sets are perhaps the best known data containers and purgst stuitive notion
of membership: everybody knows whate S means, wherevet is of type A and
S of type P A (read: “the powerset ofi”). Sentencer € S already tells us that (set)

membership has typﬂ<€—PA. Now, the “linked list” model presented above is also
acontainer typethe intuition being that belongs (or occurs) in ligte A* iff it can be
foundin the set of all its elements € elems [, whereelems is the obvious “list setify”

function. In the case of lists, membership has typee—A* (note the overloading of
symbol€). But even producd x A has membership: is a member of a paifz, y)
of type A x A iff it can be found in either sides of that pair, thatiss (x,y) means
a = x Va = y. So it makes sense to defingganericnotion of membership, able to
fully explain the overloading of symbal above.

Datatype membership has been extensively studied [263).@B8&low we deal with
polynomial type membership, which is what it required irsthitorial. A polynomial
type expression may involve the composition, product, on @i other polynomial
types, plus the identityd X = X) and constant type$ (X = K), whereK is any ba-
sic datatype, eg. the Booleans, the natural numbers, etergenembership is defined,
in the PF-style, over the structure of polynomial types éds\ics:

def

ek = L (63)
cuw id (64)
Erxc = (€F 'm) U (€) (65)
eric = [er , € (66)
cre Y eg-er (67)

Exercise 8.Calculate the membership of typeX = X x X and convert it to pointwise nota-
tion, so as to confirm the intuition above that (z,y) holds iffa =z Va =y.
O

Generic membership will be of help in specifying data stuues which depend on
each other by some form oé&ferential integrityconstraint. Before showing this, we
need to introduce the important notionreference or identity.

Identity. Base clause (64) above clearly indicates that, soonereast Equality plays its
role when checking for polynomial membership. And eqyaiditcomplex objects may
be cumbersome to express and expensive to calculate. Maretecking two objects
for equality based on their properties alone may not worknay happen that two
physically different objects have the same propertiesfveg.employees with exactly
the same age, name, born in the same place, etc.

This identificationproblem has a standard solution: one associates to thetebjec
in a particular collectiondentifierswhich are unique in that particular context, cf. eg.
identifier ID in Fig. 1b. So, instead of storing a collection of objectssay, typeA
in a set of typeP A, one stores an association of unique names to the origifjettsh
usually thought of in tabular format — as is the case in Fig. 1b

However, thinking in terms ofabular relationsexpressed by sets of tuples where
particular attributes ensure unique identification (videy3, as is typical of database

Data Transformation by Calculation 23

theory [38], is not sufficiently general and actually quitemtbersome for reasoning
purposes. References [50, 52] show that relatisimaplicity® is what matters in unique
identification. So it suffices to regard collections of uréfyuidentified objectsA as
simple relations of type

K—A (68)

where K is a nonempty datatype dkys or identifiers. For the moment, no special
requirements are put did. Later on,K will be asked to provide for a countably infinite
supply of identifiers, that is, to behave suchnasural number objectdo in category
theory [40].

Below we show that simplicity and membership are what is ireguof our PF-
notation to capture the semantics of data modeling (graphiotations such a&ntity-
Relationshipdiagrams and UML class diagrams.

Entity-relationship diagrams.As the name tells, Entity-Relationship data modeling
involves two basic conceptentitiesandrelationships Entities correspond toounsin
natural language descriptions: they describe classesjeétstwhich have identity and
exhibit a number of properties or attributes. Relationsltgn be thought of agerbs
they record (the outcome of) actions which engage diffezatities.

A few notation variants and graphical conventions existifi@se diagrams. For its
flexibility, we stick to thegeneric entity-relationshifGER) proposal of [24]. Figure 4
depicts a GER diagram involving two entitiBook andBorrower. The latter pos-
sesses attributddame Address Phoneand identityPID. As anticipated above where
discussing how to model object identity, the semantic moti&lorrower is a simple
relation of type

TPID - TName X TAddress X TPhone

where byT,, we mean the type where attributdakes values from. For notation econ-
omy, we will drop thel’ . notation and refer to the type of attributdoy mentioninga
alone:

Borrowers = PID — Name x Address x Phone

Entity Book has a multivalued attributé\(ithor) imposing at most 5 authors. The
semantics of such attributes can be also captured by (Nessteple relations:

Books = ISBN — Title x (5 — Author) x Publisher (69)

Note the use of numbérto denote the initial segment of the natural numbévg (p
to 5, that s, sef1, 2, ..., 5}.

Books can be reserved by borrowers and there is no limit tantimber of books
the latter can reserve. The outcome of a reservation at @ylartdate is captured by
relationshifReservedRelationship formal semantics are also simple relatithistime
involving the identities of the entities engaged. In thiseca

Reserved = ISBN x PID — Date

8 Recall that a relation is simple wherever its image is coxifée(18).

24 J.N. Oliveira

Book Borrower
ISBN PID
Title) Reserved ~ | Name
Author[0-5] [Date V| Address
Publisher Phone
id: ISBN id: PID

Fig. 4. Sample of GER diagram (adapted from [24]).

Altogether, the diagram specifies the following datatygealrited by triples of simple
relations:

Db = Books x Borrowers x Reserved

In summary, Entity-Relationship diagrams describe dataetsowhich are con-
cisely captured by simple binary relations. But we are noiedget: the semantics of the
problem include the fact that onéxkistingbooks can be borrowed iynownborrowers.
So one needs to impose a semantic constraint (invarian@atygeDb which, written
pointwise, goes as follows

o(M, N, R) &
(Vi,p,d : dR (i,p)= 3z = a M) A (Jy =2 y M p)) (70)

wherei, p, d range oved SBN, PID andDate, respectively.

Constraints of this kind, which are implicitly assumed wlieterpretingrelation-
shipsin these diagrams, are known iagegrity constraintsBeing invariants at the se-
mantic level, they bring along with them the problem of eirsyitheir preservation by
the corresponding CRUD operations. Worse than that, thedinition in the predicate
calculus is not agile enough for calculation purposes.dsalany alternative?

Space constraints preclude presenting the calculatiochwtduld show (70gquiv-
alentto the following, much more concise PF-definition:

SM,NR)E R <M AR-€° <N (71)

cf. diagram

ISBN ~—"_ [SBN x PID ~—"% pID

M R N
Tltle X (5 — Namex
Author) x Date Addressx
Publisher Phone

To understand (71) and the diagram, the reader must re@alii¢finition of the<
ordering (39) — which compares the domains of two relationsard inspect the

Data Transformation by Calculation 25

types of the two membershipﬁSBNf:JISBN x PID in the first instance and

€=

PID<——ISBN x PID inthe second. We check the firstinstance, the second being
similar:

ISBN<=—ISBN x PID
= { polynomial decomposition, membership of product (§5)
(€1 *m1) U (Epip *2)
= { (63) and (64) }
id-m UL-mo
= { trivia }
1

Multiplicity labels 0:N in the diagram of Fig. 4 indicate ththere is no limit to the
number of books a borrower can reserve. Now suppose theyibezrees the following
rule: borrowers can have at most one reservation actinehis case, label 0:N on the
Books side must be restricted to 0:1. These so-called naoy relationships are
once again captured by simple relations, this time of a diffeshape:

Reserved = PID — ISBN x Date (72)

Note how clever use of simple relations dispenses with elardinality invariants,
which would put spurious weight on the data model. Howewsferential integrity is
still to be maintained. The required pattern is once agaielnibuilt up around mem-
bership,

S(M,N,R) & (¢ R°P=<M ANR=N (73)
cf.

ISBN x Date =2 pPID

€eE=m ‘ lE—ld
Tltle X (5 — M N Namex
Author) x ISBN PID ——Addressx
Publisher Phone

Note the similarity in shape between these diagrams and divesponding Entity-
Relationship diagrams. The main advantage of the formates i the richer semantics
which enables formal reasoning, as we shall see in the sequel

UML class diagramsUML class diagrams and GERs are very similar. Entities becom
known asclassesandrelationshipsasassociationsMoreover, class boxes publish the
types of the attributes (including default values, if pdedl), and the signatures of the
methods local to each class. Although these extensionesept a step forward, they
don’t change the relational semantics we presented abo@HRs, as far as data mod-
eling is concerned. So we move on.

26 J.N. Oliveira

Name spaces and “heapsRelational database referential integrity can be showrto b
an instance of a more general issue which traverses congdutim end to endname
spacereferential integrity (NSRI). The are so many instances 8RNthatgenericity
is the only effective way to address the topigor this onehas to resorto membership
is its full genericity.

The issue is that, whatever programming language is adpptexlis faced with
some ubiquitous syntactic ingredients: (a) source codeaenof units; (b) units refer
to other units; (c) units need to be named.

For instance, a software package is a (named) collectionoofuhes, each module
being made of (named) collections of data type declaratiohgariable declarations,
function declarations etc. Moreover, the package won't giterin case name spaces
don'’t integrate with each other. Other examples of hameespasquiring NSRI are
XML DTDs, grammars (where nonterminals play the rdle of eainetc.

In general, one is lead to heterogeneous (typed) collestb(mutually dependent)
name spacesicely modeled as simple relations again

NiéFi(T%,Nla---,Nj,---,Nn)

whereF; is a parametric type describing the particular pattern tvigkpresses how
names of typeV; depend on names of typ@§; (j = 1, »n) and wherel; aggregates all
types which don'’t participate in NSRI.

Assuming that all such; have membership, we can draw diagram

Si
N;

Fi(Ti, N1,..., Niy...,Np)

Ci,j
€i,5°Si l !
N

J

whereeg; ; - S; is a name-to-name relation, dependence grapiOverall NSRI will
hold iff

<Vi,j i (E@j . Si)o = Sj> (74)

Of course, this includes self referential integrity as ac&dease { = j).

NSRI also shows up at low level, where data structures sudaasesandheaps
can also be thought of as name spaces: at such a low levelsrmammemory addresses
(natural numbers). For instance,

N —2~F(T,IN)

models a heap “of shap&'whereT is some datatype of interest. A heap satisfies NSRI
iff it has no dangling pointers. We shall be back to this marddleaps when discussing
how to deal with recursive data models (section 10).

®For further dimensions and implications afaming see eg. Robin Milner’s inter-
esting essayWhat's in a name? (in honour of Roger Needhamwailable from
http://www.cl.cam.ac.uk/ fm135.

Data Transformation by Calculation 27
6 Dataimpedance mismatch expressed in the PF-style

Now that both the PF-notation has been presented and tlagupteation to describing
the semantics of data structures has been illustrated, eMeedter positioned to restate
and study diagram (6):

This expresses thdata impedance mismatdietween two data model4 and B as
witnessed by @onnectedepresentation/abstraction paR, F'). Formally, this means
that:

— Ris arepresentatiorkér R = id)
— Fis an abstractionifig F' = id)
— R andS are connected? C F°.

The least impedance mismatch possible happens betweeatgmeand itself,

A (75)

a situation in which there iso impedancat all. Another way to read (75) is to say that
the <-ordering on data igeflexive It turns up thak is alsotransitive

R S SR
A/;\B A B/;\c:»A/;\C (76)
F G F-G

that is, data impedances compose. The calculation of (7i&)rigediate: composition
respects abstractions and representations (recall sgg8rand F' - G, S - R) are con-
nected:
S-RC (F-G)°
= { converses (13)}
S-RCG°-F°
<= { monotonicity }
SCG° N RCF°

{ sinceS, G andR, F are assumed connect¢d

TRUE

28 J.N. Oliveira
Right-invertibility. A most beneficial consequence of (6) is tight-invertibility prop-
erty, written
F-R=id (77)
Written in predicate logic, (77) expands to
(Va'ya = (3b :d Fb AbRa) = d =a) (78)
The PF-calculation of (77) is easy:
F-R=1id
= { equality of relations (11)}
F-RCidNidCF-R
{ img F =id andker R = id }
F-RCF-F° ANR°-RCF-R
{ converses}
F-RCF-F°ANR°-RCR°-F°
= { (F-) and(R°-) are monotone (25}
RCF° ANRCF°
= { trivia }
RCF°

{ (6) ensuresk andF' connected}

TRUE

Clearly, thisright-invertibility property is what matters in data representatioh:C
F' - R ensures theo lossprinciple andF' - R C id ensures thao confusionprinciple.

Exercise 9.The reader may be interested to compare the calculatiomlaste with the corre-
sponding proof carried out at pointwise level using quagdifogic expressions. This will amount
to showing that (78) is entailed by tip@intwisestatement of F, R) as a connected abstraction/
representation pair. (Good luck!)

a

While (as we have seerf) - R = id is entailed by (6), the converse entailment
does not holdF' - R = id ensuresk a representation anél surjective, but simple. It
may be also the case that- R = id and R C F° does not hold, as the following
counter-example show® = !°andL c I C .

Exercise 10.Consider two data structuring patterrippinter to struct” (A x B + 1) and
“pointer in struct” ((A + 1) x B). The question is: which of these data patterns represents
the other? We suggest the reader to check the validity of

R
—_— T
AxB+1 < (A+1)x B (79)
_/
f

Data Transformation by Calculation 29

where
R Y [iy xid , (i2,!°)] (80)
andf = R°, thatis
f(i1 a,b) = i1(a,b) (81)
iz NIL,b) = iz NIL (82)

where NL denotes the unique inhabitant of type 1.
O

A particular case where right-invertibility isquivalentto (6) happens wherever
both the abstraction and the representation are funcsayg, r:

A < ¢
\7/

for=id (83)

That f - r = id equivalesr C f° and entailsf surjective and- injective is easy to
calculate:

f-r=1id
= {@}
f-rCid
{ shunting (26)}
rCfe

= { composition is monotonic

f-rCf-foNr°-rCre.f°

{ fr=id; converseg

idC f-f° A r°rCid

{ definitions }
f surjective A r injective

The right invertibility property can be a handy way of spuoftk rules. For instance,
the following cancellation properties of product and surtdtnO]:

m-(f,9)=Ff.m-(f,9)=g (84)
lg.f] i1=9.l9.fl i2=f (85)
Suitable instantiation of, g to the identity function in both lines above lead to
m1 - (id, g) = id , mo - (f,id) = id

30 J.N. Oliveira

Thus we get — via (83) — the following-rules for free:

(id,g) (f.id)
/\ /_\
A < Ax B B < AxB (86)
_/ _/
/\ /\
A < A+B B < A+B (87)
_/ _/
[id ,f] lg ,id]

The rules above tell the two projections surjective and W ihjections injective
(as expected). At programming level, they ensure that adelintries to astruct or
(disjoint)union is a valid representation strategy, provided functigngare supplied
by default [15]. Alternatively, they can be replaced by tbp telationT (meaning a
don'’t carerepresentation strategy). In the case of (87), elavill work instead off, g,
leading, forA = 1, to the standard representation of datatyipey a “pointerto A™:

Exercise 11.Show thatid , 1] = 45 and thaf L , id] = i5. (Easy.)
O

Isomorphic data typesAs instance of (83) consider the casefaindr such that both

r f
47 < ¢ oA a7 < g (88)
\7/ \7/

hold. This equivales
rC A fert
= { converses ; (11)}
r=f° (89)

Sor (a function) is the converse of another functipnThis means that both are bijec-
tions (isomorphisms) — recall recalling Fig. 2 — since

fis anisomorphisne f° is a function (90)
In a diagram:
r=f°
A @ C (91)

Data Transformation by Calculation 31

IsomorphismA = C corresponds toninimalimpedance mismatch between types
A andC in the sense that, although the format of data changes, dat@ision in both
ways is wholly recoverable. That is, the isomorphic tydesndC' are “abstractly” the
same. Here is a trivial example
swap
T T

Ax B Bx A (92)

swap

where swap is the name given to polymorphic functidms, 7r1). This isomorphism
establishes theommutativityof x, whose translation into practice is obvious: one can
change the order in which the entries isteuct (eg. in C) are listed; swap the order
of two columns in a spreadsheet, etc.

Naturally, the question arises: how can onebgainthatswap is an isomorphism?
A constructive, rather elegant way is to follow the advic€98), which invites one to
calculate the converse efvap,

swap®
= {6D}

(w] - ma Ny - mp)°

{ converses}
g+ w1 N] - T

{ (51) again}
swap

which isswap again. Seswap is its own inverse and therefore an isomorphism.

Exercise 12.The calculation just above was too simple. To recognize teep of (90), prove
the associative property of disjoint union,

T

— T
A+ (B+C) = (A+B)+C (93)
~ -
f=lid+iq ig-ig]
by calculatingthe functionr which is the converse of.

Appreciate the elegance of this strategy when compared &t isftonventional in discrete
maths: to provef bijective, one would have to either proyeinjective and surjective, dnvent
its conversef° and prove the two cancellatiorfs f° = id andf° - f = id. (A lot of work!)

O

Exercise 13.The following are known facts involving sums and products:

Ax(Bx(C) 2 (AxB)xC (94)
A > Ax1 (95)

A 2 1xA (96)

A+B = B+ A 97)

Il

Cx(A+B) 2% CxA+CxB (98)

32 J.N. Oliveira

Guess the relevant isomorphism pairs.
O

Exercise 14.Show that (90) holds, fof a function (of course).
O

Relation transposesOnce again let us have a look at isomorphism pAir) in (89),
this time to introduce variables in the equality:

r=f°
= { introduce variables}
Va,e :: cra=c(f°)a)
{ @}
NVa,c =z c=ra=(fc)=a)

This is a pattern shared by many (pairs of) operators in tldioeal calculus, as is
the case of eg. (omitting the universal quantifier)

k=AR = R= € -k (99)
where/ converts a binary relation intthe correspondinget-valued function [10], of
k=totS = S=4-k (200)

wheretot totalizesa simple relatior into the correspondingMaybe-function™, and
of

k=curry f = f=ap-(kxid) (101)
—_——

uncurry k

wherecurry converts a two-argument functighinto the correspondinginary func-
tion, forap(g, z) = g x.

These properties of, tot andcurry are normally referred to asiversal proper-
ties because of their particular pattern of universal quasatiiii®. Novice readers will
find them more palatable once further (quantified) variadtesntroduced on their right
hand sides:

k=AR = (Vba : bRa=be (ka))
k=totS = (Vbya : bSa=(i1b)=ka)
k=curry f = (Vb,a = f(b,a) = (kb)a)
10 see [53]. This corresponds to the view that simple relatames“possibly-undefined” func-

tions. Recall thatd + 1< Aisthe membership af/aybe.

Data Transformation by Calculation 33

In summary,A, tot and curry are all isomorphisms. Here they are expressed=by
diagrams,

(B+1)4

)

A
/\
A— B = (PB)A A—B
‘_/

(e) untot=(13-) (102)

curry
— T

BC XA o~ (BA
_/

uncurry

)C

where the exponential notatid®* describes the datatype of all functions frofo B.

Exercise 15.(For Haskell programmers) Inspect the typeflg lookup and relate it to
that oftot. (NB: flip is available fromGHC.Base andlookup from GHC.ListA .)

Exercise 16.The following is a well-known isomorphism involving funetis.
(1), (m2°))
(BxC)" /?BA x CA (103)
\<j/

Write down theuniversal propertycaptured by (103).
O

Exercise 17.Relate the following functiom2p (read:“pair to power”)
(p2pp)b=1if b then (w1 p) else (w2 p) (104)
with isomorphism

Ax A = A? (105)

Since exponentials are inhabited by functions and thesspeial cases of rela-
tions, there must be combinators which express functioterins of relations and vice
versa. Isomorphismd andtot (99, 100) already establish relationships of this kind.
Let us see two more which will prove useful in calculationaitow.

“Relational currying”. Consider isomorphism

ok
— T
(€ — 4)F o BxC—A (106)

and associated universal property,

k=R=(Ya,bc :: a(kb)c=aR(bec)) (107)

34 J.N. Oliveira

where we suggest thdt be read R transposed”R is thus a relation-valued function
which expresses a kind @klection/projectioomechanism: given some particulay,
R by selects the “sub-relation” ak of all pairs(a, c) related tob,.
This extension o€urryingto relations is a direct consequence of (99):
Bx(C—A
{ A/(€)(99,102) }

exp B x C(PA)

1%

1%

{ curry/uncurry }
exp B(exp C(PA))

{ exponentials preserve isomorphisnjs

1%

(C—A)°

The fact that, for simple relations, one could have resabee to théll aybe-transpose
(100) instead of the power transpose (99), leads to the gsiocl that relational “cur-
rying” preserves simplicity:

(C— A)F = BxC—A (108)

Since all relations are simple, we can use notation conmer(86) in the following
pointwise definition of\/:

Mb={c— M(@®,c)|(t,c)€dom M AV =b} (109)
This rule will play its réle in multiple (foreign) key syn#sis.

Sets are fragments dbang”. We have already seen that sets can be modeled by core-
flexive relations, which are simpl€haracteristicfunctions are another way to repre-
sent sets:

Ap.{a€Alp a}

94 PA cf. p=(€S) = S={a|pa} (110)

~_

AS. Aa.a€S

Here we see the correspondence between set comprehendiamearbership testing
expressed bg-valued functions, ie. predicates.
By combining thetot/untotisomorphism (102) with (110) we obtain

PA

s2m
=

= A—1 (111)
_/

dom

Data Transformation by Calculation 35

wheres2m S = !-[S] anddom is defined by (35). This shows that that every fragment
of “bang” (!) models a set'.

Exercise 18.Show that “obvious” facts such &= {a|a € S} andpx = z € {a|p a} stem
from (110). Investigate other properties of set-comprstmennotation which can be drawn from
(110).

O

Relators and<-monotonicity.A lesson learned from (83) is that everywhere one finds

a surjection one finds a particulaf-rule. For instance, predicatgn L #0

over the integers is surjective (onto the Booleans). Thusldams can be represented
by integers,2 < Z — a fact C programmers know very well. Of course, one expects
this“to scale up”: any data structure involving the Booleans (eg. sets of &mud) can
be represented by a similar structure involving integegs gets of integers). However,
what does the word “similar” mean in this context? Typicaliyren building a tree of
integers, a C programmer looks at this tree and “sees” tieantith the same geometry
where the integers have been replaced by tfi@gnages.

In general, letd and B be such thatl < B and letG X denote a type parametric
on X. We want to be able to scale up tHeinto-B representation to structures of type
G:

R GR
/\ /_\
A < B = GA < GB (112)
\/ SN~
F GF

The questions arise: does this hold fary parametric types we can think of? what
do G R andG F' actually mean? Let us check. First of all, we investigatedations for
(G F, G R) to be connected:

GRC(GF)°

= { assume5(X°) C (G X)°, forall X }
GR C G(F°)

= { assume monotonicity ¢ }
RCF°

{ Ris assumed connected o }

TRUE
Next, G R must be injective:

(GR)°-GRC id
= { assumdG X)° C G(X°) }

11 Relations at most!) are referred to asgght-conditionsin [26].

36 J.N. Oliveira

(GR°)-GR Cid

<= { assumdGR) - (GT) CG(R-T) }
G(R°-R) Cid

<= { assumeGid C id and monotonicity oz }
R°-RCid

{ Risinjective }

TRUE

The reader eager to pursue checking the other requireni@etstire, F’ surjective, etc)
will find out that the wish list concerning will end up being as follows:

Gid = id (113)
G(R-S) = (GR)-(GS) (114)
G(R°) = (GR)° (115)
RCS=GRCGS (116)

These turn up being the properties ofedator [5], a concept which extends that of a
functorto relations: a parametric datatyfeis said to be a relator wherever, given a
relation fromA to B, G R extendsR to G-structures. In other words, it is a relation
fromGAtoGB

A GA (117)
Rl lGR
B G B

which obeys the properties above (it commutes with the itfemtith composition and
with converse, and it is monotonic). Onég S above are restricted to functions, the
behaviour ofG in (113, 114) is that of a functor, and (115) and (116) becamit —
the former establishing th& preserves isomorphisms and the latter thaireserves
equality (Leibniz).

It is easy to show that relators preserve all basic promeotieelations as in Fig. 2.
Two trivial relators are th@entityrelatorld, which is such that

IdR=R
and theconstantelatorK (for a given data typé<) which is such that
KR=1idk

Relators can also be multi-parametric and we have alreaatytseo of these: product
R x S (49) and sunR + S (58).

Data Transformation by Calculation 37

The prominence of parametric tygeX = K — X, for K a given datatypé(of
keys leads us to the investigation of its properties as a relator

B KB (118)
-
C K — C’

where we defind(— R as follows:

NK—=RMXsM=6NANN-M°CR (119)

So, wherever simpl&/ andM are(K — R)-related, they are equally defined and their
outputs areR-related. WhereveR is a functionf, K — f is a function too defined by
projection

(K—=f)M=f-M (120)
This can be extended to a bi-relator,
(9= fIM=f-M-g° (121)
providedy is injective (recall (36)).

Exercise 19.Show that instantiatiol® := f in (119) leadstaV C f- M andf - M C N in
the body of (119), and therefore to (120).
O

Exercise 20.Show thatk’ — _) is a relator.
o

Indirection and dereferencinglndirection is a representation technique whereby data
of interest stored in some data structure is replaced byewedées (pointers) to some
global (dynamic) store — recall (68) — where the datadtuallykept. The represen-
tation implicit in this technique involves allocating fresells in the global store; the
abstraction consists in retrieving data by pointer deesfeing.

The motivation for this kind of representation is well-knovthe referent is more
expensive to move around than the reference. Despite baeligiaderstood and very
widely used, dereferencing is a permanent source of emgpsagramming: it is im-
possible to retrieve data from a non-allocated reference.

To see how this strategy arises, consiftén (117) the datatype of interest (archived
in some parametric container of tyge eg. binary trees 0Bs). Let A be the natural
numbers and? be simple. Since relators preserve simplidiyk will be simple too:

38 J.N. Oliveira
The meaning of this diagram is that of declaring a generiction (sayrmap) which,
giving R simple, yieldsG R also simple. Semap has type
(IN—-B)—GIN —~GB (122)
— in the same way thBmapfunction of Haskell clas&unctor has type
fmap :: (a -> b) -> (g a -> g b)

(Recall that, once restricted to functions, relators ddi@evith functors.)
From (108) we infer thatmap can be “uncurried” into a simple relation of type

(N =~ B)x GIN) = GB (123)

which, for finite structures, is surjective. Of course we mglacelN above by any data
domain, sayK (suggestive okey) with the same cardinality, that is, such téat= IV.
Then

R

/N
GB < (K — B) x GK (124)
K/

Dref

holds, where the abstraction relatiéhre f, which is such thaDref = rmap, is de-
fined according to (107)

y Dref (S,z) = y(GS)z

for S astoreandx a data structure of pointers (inhabitant®K).
Consider as example the indirect representation of firste 6f Bs,

" Dref (S,1) =1'(S*)l
where
I'(S*)l = lengthl =lengthl N (Vk : 1<k <lengthl: (I'k)=S(Lk))
So, wherevet’ S*[holds, no referenckin [can live outside the domain of the stfe
kel=(3b: bSk) (125)

wheree denotes finite list membership. This ensures (by constmicthe correctness
of the representatioR = Dref° in (107): all references can be dereferenced.

Exercise 21.Check that (125) is another instance of NSRI (74),
(€-1)° =8

wherel denotes the “everywheié constant function.
O

Exercise 22.Define a representation functionC Dref° (124) forGX = X*.
]

Data Transformation by Calculation 39

7 Calculating database schemes from abstract models

Relational schema modeling is central to the “open-end¢dfimapping issues” iden-
tified in [35]. In this section we develop a number<irules intended for cross-cutting
impedance mismatch with respect to relational modeling.

In other words, we intend to provide a practical method féerinng the schema of
a database which (correctly) implements a given abstrademimcluding the stepwise
synthesis of the associated abstraction and representsta mappings and concrete
invariants. This method will be shown to extend to recursivectures in section 10.

Relational schemes “relationally” Broadly speaking, a relational databaseiistaple
of tables, where each table is a relation involving valueliéuples. Tuples are vectors
of values which inhabit “atomic” data types, that is, whiabichdata with no further
structure. Since many such relations (tables) exlkbyts they can be thought of as
simple relationsIn this context, let

RDBT = ﬁ(ﬁ K; — ﬁ Dy) (126)
k=1

i=1 j=1

denote thegeneric typeof a relational database [2]. EvelyD BT-compliant tupledd
is a collection ofn relational tables (index = 1, n) each of which is a mapping from
a tuple ofkeys(index j) to a tuple of relevantiata (index k). Whereverm; = 0 we
have]_[gz1 Dy = 1, meaning — via (111) — éinite setof tuples of type]_[;‘;1 K;.
(These are callegtlationshipdn the standard terminology.) Wherever= 1 we are in
presence of a singleton relational table. Last but not ledisk’; and D,, are “atomic”
types, otherwisdb would fail first normal form (1NF) compliance [38].

Compared to what we have seen so faf) BT (126) is “flat”: there are no sums,
no exponentials, no room for a single recursive datatypasThe mismatch identified
in [35]: how does one map structured data, eg. encoded in XMla text generated
from some grammar, or a collection of object types, IR0 BT?

We devote the remainder of this section to a numbet wfiles which can be used
to transform arbitrary data models into instances of the™ffaD BT'. Such rules have
the generic patterd < B (of which A = B is a special case) whetg only contains
products and simple relations. So, by successive applitafi such rules, one is lead
— eventually — to an instance ¢t D BT'. Note that (106) and (111) are already rules
of this kind (from left to right), the latter enabling one tetgid of powersets and the
other to get rid of (some forms of) exponentials. Below wespre a few more rules of
this kind.

Getting rid of sums.It can be shown (see eg. [10]) that thither combinator{R , S]
as defined by (57) is an isomorphism. This happens becauseamnalways project

a relation(B + C)—T>A into two components of typeB—R>A andC—5> 4,

40 J.N. Oliveira

such thafl’ = [R, S]. Thus we have

[-,°

B+C)—A = (BoA)x(C—A) (127)
<\[__7_]/
that is, universal property
T=[R,S] = T-ii=RAT-ip=358 (128)

holds.

When applied from left to right, rule (127) can be of help imaving sums from
data models: relations whose input types involve sums aaayal be decomposed into
pairs of relations whose types don’tinvolve (such) sums.

Sums are a main ingredient in describing #imstract syntaxf data. For instance,
in the grammar approach to data modeling, alternative vsof a production (in
extended BNF notation) map to polynomial sums, recall (58 application of rule
(127) removes such sums with no loss of information (it issomiorphism), thus re-
ducing the mismatch between abstract syntax and relatiziabase models.

The calculation of (127), which is easily performed via tlwvpr-transpose [10],
can alternatively be performed via thdaybetranspose [53] — in the case of simple
relations — meaning that relationaither preserves simplicity:

(B+C)— A o (B — A) x (C — A) (129)
A

What about the other (very common) circumstance in whichssaatur at the output
rather than at the input type of a simple relation? The folhgysum-elimination rule is
applicable to such situations,

Ay
A= (B+0) < (A=B)x(A—0) (130)
ﬁ/
where
MUNY MU, N (131)
Ay MY (@8 M,ig- M) (132)

Thati is not entire is easy to check: the union of two simple retetiis not always sim-
ple. Let us thus calculate the (weakest) pre-conditionifap8city to be maintained:

M ¥ Nis simple

Data Transformation by Calculation 41

{ definition (131) }
(i1 - M) U (i2 - N) is simple
{ simplicity of union of simple relations (37}

(iy- M) - (iy- N)° Cid

{ converses ; shunting (26, 27)
M- N°Ci-iy
= { @ in=1;(32,33)}
OM-6NC L
= { coreflexives (42)}
OMNSNC L

Thus,M X N is simple iff M and N are domain-disjoint.
Exercise 23.Show that¥ -A4 = id holds. (NB: property
id+1id = id (133)

can be of help in the calculation.)
O

Getting rid of multivalued typesRecall the Books type (69) defined earlier on. It
deviates fromRD BT in the second factor of its target type,— Author, whereby
book entries are bound to record up to 5 authors. How do we withethis situation?
Books is an instance of the generic relational type

A— (Dx (B—=0C))

for arbitrary A, B, C and D, where entryB — C generalizes the notion of a multival-
ued attribute. Our aim in the calculations which follow issglit this relation type in
two so as to combine the two keys of typésand B:

A—=(Dx(B—0))

= { Maybe transpose (102)}
(Dx (B—C)+1)4

< {@9}
(D+1)x (B—=C)*

o { splitting (103) }
(D+1)A%x (B—=0)4

o { Maybe transpose (102, 106}
(A=D)x (AxB—=0C)

42 J.N. Oliveira

Altogether, we can rely or-rule

A= (Dx(B—=0)) < (A= D)x (AxB—=0C) (134)

where the “nested join” operatot, is defined by
MM, N = (M,N) (135)
—recall (108) — and\,, is
Ny M = (m - M, usc(my - M)) (136)
whereusc (=“undo simple currying”) is defined in comprehension niotatas follows:
usc M = {(a,b) — (M a)b|a € dom M,b € dom(Ma)} (137)
(S(_ae) reference [58] for details about the calculation &f #fistraction / representation
pair.

Example.Let us see the application &f-rule (134) to theBooks data model (69). We
document each step by pointing out the involved abstrattdpnesentation pair:

Books = ISBN — (Title x (5 — Author) x Publisher)

o~

1 { r1 =1id — ({71, 73),m2) , fr = id = (71 - W1, T2, T2 - T1) }
ISBN — (Title x Publisher) x (5 — Author)
<2 { @842 =L, o=, }
(ISBN — Title x Publisher) x (ISBN x 5 — Author)
= Booksa

SinceBooks, belongs to th&k D BT class of types (assumid@ BN, T'itle, Publisher
and Author atomic) it is directly implementable as a relational datsbschema.

Altogether, we have been able to calculatg@e-levelmapping between a source
data model Books) and a target data modeBpokss). To carry on with themapping
scenarioset up in [35], we need to be able to synthesize the two datas rffapap
forward” and “map backward”) betweeBooks and Bookss. We do this below as an
exercise of PF-reasoning followed by pointwise transtatio

Following rule (76), which enables composition of repréagans and abstractions,
we synthesize

r = An . (Zd — <<7T1,7T3>,7T2>)
as overall “map forward” representation, and

f=(d— (m -m,me,m 1)) - N,

Data Transformation by Calculation 43

as overall “map backward” abstraction. Let us transcribe pointwise notation:
r M = An((id — ((m1,73), 72)) M)
= {a}
An(((m1,73),72) - M)
= { (136) }
(1 - ({1, m3), m2) - M, usc(my - ({1, w3), m2) - M))
= { exercise 6 ; projectiong
({m1,7m3) - M, usc(ma - M))
Thanks to (36), the first componentin this pair transformsdimtwise
{isbn — (w1 (M isbn), w3(M isbn)) | isbn € dom M}
and the second to
{(isbn,a) — ((we - M) isbn)a | isbn € dom M, a € dom((mwe - M)isbn)}

using definition (137).
The same kind of reasoning will lead us to overall abstradfimap backward”)/:
f(M,N) = (id = (my - w1, w2, 2 - m1)) (M X, N)
= { (121) and (135)}
(my - my, w2, mo - m) - (M, N)
= { exercise 6 ; projectiong
<7T1 CT <M3N>77T2 ' <M7N>a772 CT <M3N>>
= { exercise 7}
<7T1 . M,N 5M,7T2 . M>
= { (209) }
{isbn — (w1 (M isbn), N', wo(M isbn)) | isbn € dom M}
whereN' abbreviate§n +— N(i,n) | (i,n) € dom N A i = isbn}.
The fact that/V is preconditioned by M in the abstraction is a clear indication
that any addition taV of authors of books whosES BN is not in M is doomed to be

ignored when ‘backward mapping” the data. This explains eigreign key constraint
must be added to any SQL encodingl®dok s, €g.:

CREATE TABLE BOOKS (
ISBN VARCHAR (...) NOT NULL,
Publisher VARCHAR (...) NOT NULL,
Title VARCHAR (...) NOT NULL,

44 J.N. Oliveira

CONSTRAINT BOOKS PRIMARY KEY(ISBN)
);

CREATE TABLE AUTHORS (
ISBN VARCHAR (...) NOT NULL,
Count NUMBER (..) NOT NULL,
Author VARCHAR (...) NOT NULL,
CONSTRAINT AUTHORS_pk PRIMARY KEY (ISBN,Count)

);

ALTER TABLE AUTHORS ADD CONSTRAINT AUTHORS_FK
FOREIGN KEY (ISBN) REFERENCES BOOKS (ISBN);

It can be observed that this constraint is ensured by repiasen » (otherwise
right-invertibility wouldn’t take place). Constraints tfis kind are known asoncrete
invariants We discuss this important notion in the section which foo

8 Concrete invariants

Wherever one hassd-rule (6) one knows thak andF" are connected (5), which in turn
implies that the range aR is at most the domain df':

pRCOF
This means that the space of the representafijrcén be divided in three parts:

— insidep R — data insidep R are referred to asanonical representativethe pred-
icate associated to R, which is the strongest property ensured by the representa-
tion, is referred to as the inducedncrete invariantor representation invariant.

— outside) F' — data outside@ F' areillegal data: there is no way in which they can
be retrieved; we say that the representation modairupted(using the database
terminology) once its CRUD drives data into this zone.

— insided F' and outsidep R — this part contains data values whi¢ghnever gen-
erates but which are retrievable and therefore regardddgas representatives;
however, if the CRUD of the target model lets data go into #oise, the range of
the representation cannot be assumed as concrete invariant

The following properties of range and domain
p(R-S)=p(R-pS) (138)
SJ(R-S)=0(R-S5) (139)

help in calculatingoncrete invariantinduced by<-chaining (76).

Concrete invariant calculation, which is in general naiditj is softened wherever
<-rules are expressed by GGS In this case, the range of the representation (concrete
invariant) can be computed as coreflexive

r- fnid (140)

12 Of course, these have to perfect(75) on the source (abstract) side.

Data Transformation by Calculation 45

that is, predicaté®

qﬁxdgr(fx):x (141)

As illustration of this process, consider law

(1), (m2-))
A—BxC £ (A=B)x(A—0) (142)
Y
which expresses the universal property of $pét operator (a perfect GC):
XC(RS)=m-XCRAmm-XCS (143)
Calculation of the concrete invariant induced by (142)do#:

o(R,S)
= {@y}
(R,S) = (m (R, S), 72 (R,S5))
{ 65) }
R=R-6SANS=S-6R
= {6XCPd=XCX -d}
SRCISANSSCHR
= {qay}
SR=04S

In other words: if equally define® andS are joined and then decomposed again, this
will be a lossless decomposition [52].

Similarly, the following concrete invariant can be showrtid for rule (134)14:

S(M,N) &' N.e° <M (144)
Finally note the very important fact that, in the case<efules supported by perfect
GCs, the source datatype is actualpmorphicto the subset of the target datatype
determined by theoncrete invarian{as range of the representation functién

9 Calculating model transformations

References [24] and [37] postulate a number of model trameftion rules (about
GERs in the first case and UML in the second) which we are intiposio calculate.

13 See Theorem 5.20 in [1].
14 see [58] for details.
15 See theUnity of oppositesheorem of [4].

46 J.N. Oliveira

We illustrate this process with rule 12.2 of [24], the ruleiethconverts a (multivalued)
attribute into an entity type:

L A’ EA3

Al Al K3

A2 s |7 L O:N 1:N— A, (145)
A3[0:N] A2 A3

TAL id: Al id: K3

The PF-semantics of entit% are captured by simple relations from identity to
attributesA, and As, this one represented by a powerset due to being [0:N]:

Al — Ag X PA3

The main step in the calculation is the creation of the newtyeBA3 by indirection —
recall (124) — whereafter we proceed as before:

A — Ay X PAs
<1 {24}
(K3 — Az) x (A1 — Ax x PK3)
= {@n}
(K3 — A3) x (A1 = Ay x (K5 — 1))
<3 { (134) }
(K3 — A3) x ((A; — Ag) x (A1 x K3 — 1))

= { introduce ternary produc}
(Al — Ag) X (Al x K3 — 1) X (Kg — Ag)
A rA EA3

The overall concrete invariant is
¢(M,RRN)=R-€°<M A R-€°=<N (146)
— recall eg. (144) — which can be further transformed into:
¢(M,RRN)=R-€°<M A R-€°=<XN
= { (65,64) }
R-m <M ANR-715 XN

{ @y}
RjM'Tfl /\RjN'ﬂ'Q

Data Transformation by Calculation 47

In words, this means that relationship(rA in the diagram) must be integrate referen-
tially with M (A’ in the diagram) on the first attribute of its compound key aiitth W
(EA3 in the diagram) wrt. the second attribute.

The reader eager to calculate the overall representatibalastraction relations will
realize that the former is a relation, due to the fact thatetlae many ways in which
the keys of the newly created entity can be associated tesaidtithe A3 attribute.
This association cannot be recovered once such keys araebstfrom. So, even re-
stricted by the concrete invariant, the calculated modslisly a valid implementation
of the original, buthotisomorphic to it. Therefore, the rule should not be regaraed
bidirectional.

10 On the impedance of recursive data models

Recursive data structuring is a source of data impedancmaif because it is not
directly supported in every programming environment. While funwigprogrammers
regard recursion athe natural wayto programming, for instance, database program-
mers don’t think in that way: somehow trees have to give romftat data. Somewhere
in between is (pointer-based) imperative programming anjéab oriented program-
ming: direct support for recursive data structures doessxiit, but dynamic memory
management makes it possible to implement them as heapusgsiinvolving pointers
or object identities.

In this section we address representation of recursivestiatetures in terms of non-
recursive ones. In a sense, we want to see how to “get awayewdthsion” [50]. Itis a
standard result (and every a programmer’s experiencejabatsive types using prod-
ucts and sums can be implemented using poifj&ls Our challenge is to generalize
this result and present it in calculational style.

As we have seen already, recursive (finite) data structwedsast solutions to equa-
tions of the formX = G X, whereG is a relator. The standard notation for such a
solution isuG. (This always exists whe@ is regular [10], a class which embodies all
polynomialG.)

Programming languages which implement dataty@ealways do so byrapping
it inside some syntax. For instance, the Haskell declaratiodatatypePTree (45)
involves constructoNode and selectoraame, birth , mother andfather , which
cannot be found in equation (61). But this is precisely why #yuation expresses
isomorphism and not equality: constructor and selectorscijzate in two bijections
which witness the isomorphism and enable one to construictspect inhabitants of
the datatype being declared. In general, we draw

out
=
uG =] GuG
N~—

wherein embodies the chosen syntax for constructing inhabitani&@ndout = in°
embodies the syntax for destructing (inspecting) suchkithats. For instance, the

48 J.N. Oliveira

bijection associated witRTree (45) interpreted as solution to equation (61) is
in((n,b),m, f) = Nodenbm f (147)

Programs handlingG can be of essentially two kinds: either they read (parse, in-
spect)uG-structures (vulg. trees) or they actually build such strees. The former kind
is known asfolding and the latter asinfolding and both can be pictured as diagrams
nicely exhibiting their recursive (inductive) nature:

out n

G ———— = GuG uG <—— GuG
fold Rl lG(fold R) unfold RT TG(unfold R(148)
A GA A — s GA

Both fold andun fold are instances of a more general, binary combinator known
ashylomorphisn10] which is normally expressed using bracketed notatidi] to
save parentheses:

unfold R =[in,R] (149)
fold S =] R,out] (150)

As fixed points (151), hylomorphisms enjoy a number of sdeddlision properties,

two of which are listed below for their relevance in calcidast to follow1®:

c—>1 Ge

v GV
B~—2>—¢nB [S,H]=(uX = S-(GX)-H) (151)
[S,H] G[S,H]

K1 e VSH|C[T,H]«<V-SCT-(GV) (152)
[SSH]-R=[SU]<H-R=(GR)-U (153)

R GR

A———>GA

In (liberal) Haskell syntax we might write the type of the fold combinator as
something like

unfold :: (@ ->ga) ->a->mug

assuming only functions involved. If we generalize thesgitaple relations, we obtain
the following type for functiorun fold

(A — pG)A=GA) (154)
which, thanks to (106), “uncurries” intdA — G A) x A) — uG.

8 These and other properties of hylomorphisms arise from tveefful ;-fusiontheorem [4]
once the relational operators involved are identified agtadjoints in GGs (25).

Data Transformation by Calculation 49

Let us temporarily assume that there exists a datafymeich that simple relation
Unf,of type((K — GK) x K) — uG and such that/nf = unfold, is surjective.
Then we are in condition to establish theequation which follows,

/R—\> (K =~ GK)xK
uG < —_— (155)
_/ uheapu

Unf

whereK is regarded as a data type“dkap addresses’or “pointers”, andK — G K
a datatype ofz-structurecheaps!’. So, assertiont Unf (H, k) means that, if pair
(H, k) is in the domain ofUnf, then the abstract value= (unfold H)k will be
retrieved — recall (107). This corresponds to dereferan&iin A and carrying on
doing so (structurally) while building (vién) the tree which corresponds to such a
walk through the heap.

Termination of this process requirésto be free of dangling references — ie. sat-
isfy the NSRI property (74) — and to be referentially acyclidis second require-
ment can also be expressed via the membership relationiatezbevith G: relation

K<™ K on references must be well-founded.

Jourdan [32] developed a pointwise proof of the surjectssrofUn f (155) for K
isomorphic to the natural numbers a@golynomial (see more about this in section 14).
The representation relatiaR, which should be chosen among the entire sub-relations
of Unf°, is an injectivefold (since converses of unfolds are folds [10]). Appendix A
illustrates a strategy for encoding such folds, in the cdsé polynomial andK the
natural-numbers.

“De-recursivation” law (155) generalizes, in the generic$tyle, the main result
of [61] and bears some resemblance (at least in spirit) va#fiinctionalization” [29],

a technique which is used in program transformation and datign. The genericity of
this result and the ubiquity of its translation into praetie- cf. name spaces, dynamic
memory management, pointers and heaps, database filest abjetime systems, etc
— turns it into a very useful device for cross-paradigm tfamsations. For instance,
[50] shows how to calculate a universal SQL representatioarbitrary XML data.

The sections which follow will illustrate this potentialhile stressing on genericity
[30]. Operations of thalgebra of heapsuch as egdefragmentgarbage-collecwill
be stated generically and be shown to be correct with respéug abstraction relation.

11 Cross-paradigm impedance handled by calculation

Let us resume work on the case study started in section 2 aadtyfamow how to map
the recursive datatyp@Tree (45) down to a relational model (SQL) via an intermedi-
ate heap/pointer representation.

Note that we shall be crossing over three paradigms — funatjomperative and
database relational — in a single calculation, using thees@mified) notation:

17 Technically, this view corresponds to regarding heaps aiefirelationalG-coalgebras.

50 J.N. Oliveira

PTree
>~ { r=out, fi =in, for GK % Ind x (K +1) x (K + 1) —cf. (61, 147) }

uG
<5 { Ry =Unf°, F» = Unf —cf. (155) }
(K—Indx (K+1)x (K+1))x K
= { rs = (id = flatr®) x id , f3 = (id — flatr) x id —cf. (52) }
(K—=1Indx (K+1)x(K+1)x K
= { ra = (id — id x p2p) x id , f2 = (id — id x p2p°) x id — cf. (105) }
(K —=1Indx (K+1)?)x K
5 { rs = (id — id x tot°) x id , fs = (id — id x tot) x id — cf. (100) }
(K—Indx (2—K))x K
{ ré = A, fo =X, —cf. (134) }
(K—=Ind) x (Kx2—=K))x K
= { r7 = flatl, fr = flatl® —cf. (53) }
(K—Ind) x (Kx2—~K)x K
=g { sincelnd = Name x Birth (61) }
(K — Name x Birth) x (K x2 =~ K)x K (156)

12

IN
[=2]

In summary:

— Step 2 moves from the functional (inductive) to the poiriased representation.
At data level, this corresponds to mapping inductive trgeq8he heap of Fig. 1a.

— Step 5 starts the move from pointer-based to relationaddaspresentation. Iso-
morphism (100) betweekMaybefunctions and simple relations (which is the main
theme of [53]) provides the relevant data-link between wWeeparadigms: pointers
“become” primary/foreign keys.

— Steps 7 and 8 deliver an RDBT structure (illustrated in Fim).rhade up of two ta-
bles, one telling the details of each individual, and theothcording its immediate
ancestors. The 2-valued attribute in the second tableatelovhether the mother
or the father of each individual is to be reached. The thictiigin (156) is the key
which gives access to the root of the original tree.

In practice, a final step is required, translating the refwl data into the syntax of
the target relational engine (eg. a list of SQISERT commands for each relation),
bringing symmetry to the exercise: in either way (forward®ackwards), data map-
pings start byemovingsyntax and close bintroducingsyntax.

Data Transformation by Calculation 51

Exercise 24.Let f1.7 denote the composition of abstraction functigias (- - -) - f7. Show that
(id — m1) - 71 - fa7 is the same a8;.
O

12 On the transcription level

Our final calculations have to do with what [35] identify a® thanscription level
the third ingredient of anapping scenarioThis has to do with diagram (9): once two
pairs of data maps (“map forward” and “map backwarfl;)? and F’, R’ have been
calculated, so as to represent two datatypend B, they can be used to transcribe a

given source operatiOB<O—A into some target operatioB<P—C’.

How do we establish tha® correctly implementsO? Intuitively, P must be such
that the performance @ and that ofP (wrappedwithin the relevant abstraction and
representation relations) cannot be distinguished:

O=F-P-R (157)

Equality is, however, much too strong a requirement. In, féogtre is no disadvantage
in letting the target side of (157) be more defined than thecsooperatior®, provided
both are simplé?:

OCF -P-R (158)
Judicious use of (32, 33) will render (158) equivalent to
O-FCF'.P (159)

providedR is chosen maximalf = F°) andF' < P. This last requirement is obvious:
P must be prepared to cope with all possible representatieiheded byR = F°.

In particular, wherever the source operatioris a query, ie. such thatt” = id,
(159) shrinks to

O-FCP

In words: wherever the source quetydelivers a resulb for some inputa, then the
target queryP must deliver the samiefor any target value which represeits

Suppose that, in the context of our running example (pedityees), one wishes to
transcribe into SQL the query which fetches the name of thegmevhose pedigree tree
is given. In the Haskell data modeTree , this is simply the (selector) functiotume.

We want to investigate how this function gets mapped to Idesszls of abstraction.

The interesting step isl,, whereby trees are represented by pointers to heaps.
The abstraction relatiob/n f associated to this step is (co)inductive. Does this en-
tail (co)inductive reasoning? Let us see. Focusing on thjs alone, we want to solve
equation

name - Unf C Hname

18 Staying within this class of operations is still quite gealeit encompasses all deterministic,
possibly partial computations. Moreover, within this glasiclusion coincides in fact with the
standard definition abperation refinemerb4].

52 J.N. Oliveira

for unknownHname — a query of typg(K — GK) x K) — Name.

Simple relation currying (108) makes this equivalent toifiuigdH name such that,
for every heaf, name-(Unf H) C Hname H holds, thatispame-(unfold H) C
Hname H. Since bothun fold H and Hname H are hylomorphisms, we write them
in that way,

name - [in, H] C [T, H]
so thatl” becomes the unknown. Then we calculate:
name-[in, H]| C [T, H]
<= { fusion (152) }
name - in C T - G(name)
= { name - Node = 71 - m1 (147) ; expansion o6(name) }
m1-m CT - (id x (name + id) x (name + id))
= {m-(fxg=fm}
T=m-m
Thus
Hname H = [, -7, H]
= { (151) }
(X =om-m - (id x (X +id) x (Xid)) - H)
= {m-(fxg=fm}
(WX ::om-mp - H)
= { trivia }
m oo H

Back to uncurried format and introducing variables, we get (the post-coodiif)
Hname

n Hname(H,k) =k € dom H A n=m(m(H k))

which means what one would expect: pointds dereferenced i/, whereby a selec-
tion of the Ind field takes place, from which the name is finally selectedaltebat
Ind = Name x Birth).

The exercise of mappinfname down to the SQL level (156) is similar but less
interesting. It will lead us to

n Rname (M,N,k) =k €dom M N n=m(Mk)

whereM and K are the two relational tables which originated from the hefegiep 2.
SinceRname can be encoded as

Data Transformation by Calculation 53

SELECT Name FROM M WHERE PID = k

under some obvious assumptions concerning the case in Whiahnot be found, we
are done as far as transcribingme is concerned.

The main ingredient of the exercise we've just completetiésuse of fusion prop-
erty (152). But perhaps it all wasuch ado for little queries aren’t very difficult to
transcribe in general. The example we give below is far mguent and has to do
with housekeeping. Suppose one wants to defragment thesthéayel 2 via some real-

location of heap cells. LeK<f—K be the function chosen renamecell addresses.
Recalling (36), defragmentation is easy to model as prigject
defragment : (K — K) — (K =~ GK) — (K = GK)
defragment f H def (Gf)-H- f°

The correctness afe fragment has two facets. Firstf - f° should remain simple;
second, it has to preserve the information storeH inthe pedigree tree recorded in the
heap (and pointer) shouldn’t change in consequence &f fa-agment operation In
symbols:

tUnf (defragment f H, f k) =t Unf (H, k) (160)
Let us check (160):
t Unf(defragment f H, f k) = t Unf(H, k)
{ (155); (149) }
t [in,defragment fH] (f k) = t[in,H] k

{ go pointfree; definition ofle fragment }
[[Zna(Gf)Hfo]]f:[[vaH]]
= { fusion property (153)}

(Gf) - H-f*-f=(Gf)-H

= { Leibniz }
H-f°-f=H

{ sinceH C H - f° - f always holds}
H-f°-fCcH

So, conditionH - f° - f C H (with points:
kedomH AN fk=fk =k ecdomHANHk=HEK

for all heap addressés k') is sufficient forde fragment to preserve the information
stored in the heapndits simplicity 1°. Of course, any injectivg will qualify for safe
defragmentation, for every heap.

¥nfact, H - f°- f C H ensuresH - f° simple, via (33) and monotonicity.

54 J.N. Oliveira

Some comments are on demand. First of all, and unlike whadrismon in data
refinement involving recursive data structures (see ed.ff#0a comprehensive case
study), our calculations above have dispensed with anyddimtuctive or coinductive
argument. (This fact alone should convince the reader ofathentages of the PF-
transform in program reasoning.)

Second, thele fragment operation we've just reasoned about is a so-cakgd
resentation changeg@8]. These operations (which include garbage collecto) are
important because they add to efficiency without disturliimg service delivered to
the user. In thenapping scenariderminology of [35], these correspond to operations
which transcribe backwards to the identity function, atrsedevel.

Finally, a comment on CRUD operation transcription. AltgbtCRUD operations
in general can be arbitrarily complex, in the process ofdcaption they split into sim-
pler and simpler middleware and dataware operations whidhe target (eg. database)
level end up involving standard protocols for data acceS§ [3

The ubiquity ofsimplicityin data modeling, as shown throughout this tutorial, in-
vites one to pay special attention to the CRUD of this kindatdtion. Reference [51]
identifies some “design patterns” for simple relations. dhe we've used throughout
this tutorial is thadentity pattern For this pattern, one may provide a succinct specifi-
cation of the four CRUD operations on a simple relatidras follows:

— Create(N): M — N 1 M, where argumend embodies the new entries to add
to M. The use of the override operatpr31, 53] instead of unionu) ensures
simplicity and prevents from writing over existing entries

— Read(a): deliverb such thab M a, if any.

— Update(f,®): M — M7 f-M-&. This is a selective update: the contents of every
entry whose key is selected Wyget updated by; all the other remain unchanged.

— Delete(®): M — M - (id —), whereR — S means relational difference (25). All
entries whose keys are selecteddbgre removed.

Space constraints preclude addressing this topic in théiall Reference [51]
shows the application of the PF-transform to speed-up réag@bout CRUD preser-
vation of datatype invariants on simple relations. Simgams are expected in doing
the same in the context of CRUD transcription in general.

13 2LT: a two-level data transformation toolset

The data transformation calculus which is the subject afttltiorial is currently (partly)
animated by the 2LT package of the U.Minho Haskell librafles 9, 16] via (typed)
strategic term re-writing using GADTs. More recently, tietational calculus itself has
also been addressed in the same way and shown to be applioadtéended static
checking [43] in a model-driven engineering context.

At the tutorial we shall review these (rather recent) depelents and show how
they can be used to scale-up the data transformation/mgpghniques presented to
real-size case-studies, mainly by mechanizing repetitisks and discharging the (oth-
erwise unmanageable by pen-and-paper) housekeeping.

Data Transformation by Calculation 55

14 Conclusions and future work

This tutorial describes a mathematical approach to theysifidata transformation. As
main advantages of the approach we point out: (a) a unifiecoanerful notation to
describe data-structures across various programmingligana, and its (b) associated
calculus based on elegant rules which are reminiscent afadcligebra; (c) the fact
that data impedance mismatch is easily expressed by ruléeeafalculus which, by
construction, offer type-level transformatiotagjether withwell-typed data mappings;
(d) the properties enjoyed by such rules, which enable #ygsfication in a stepwise,
structured way.

The novelty of this approach when compared to previous git®to lay down the
same theory is the use of binary relations to expbegkalgorithms and data, in a way
which dispenses with inductive proofs and cumbersome reagoln fact, most work
on the pointfree relation calculus has so far been focusedasoning about programs
(ie. algorithms). Advantages of our proposal to uagniformlyfor programsand data
are already apparent at practical level, see eg. on-goimkj rgported in [43].

This style of calculation has been offered to Minho studéntseveral years (in the
context of the local tradition on formal modeling) as altgive to standard database
design techniques. It is the foundation of the “2LT bundlétamls available from the
UMinho Haskell libraries. However, there is still much wddkbe done. Below we list
a number of items which we propose as prompt topics for reBear

Lenses.The similarity between abstraction/representation paipdicit in <-rules and
bi-directional transformations known Eseqd27, 12] (developed in the context of the
classicalview-updatgroblem) calls for a PF-calculational approach to the taEach
lens connects a concrete representadiowith an abstract viewA on it by means of

two functions A x O~ and A<*"_ (. (Note the similarity with(R, F')-pairs,
except forput’s additional argument of typ€'.) The possibility of having to extengl:t
andget to relations is open.

Heaps and pointers at targetVe believe that Jourdan’s long, inductive pointwise argu-
ment [32] for<-law (155) can be supplanted by succint pointfree calcuteifi results
developed meanwhile by Gibbons [23] are taken into accdiateover, the same law
should be put in parallel with other related work on caldaatith pointers (read eg.
[11] and follow the references).

Separation logic.Law (155) has a clear connection to shared-mutable datasepr
tation and thus wittseparation logid57]. We are already working on a PF-relational
model for this logic [59], which we believe will be useful ietber studying and further
extending law (155).

Concrete invariants.Taking concrete invariants into account is useful becabeset
ensure (for free) properties at target-data level whichlmadvantageous in the tran-
scription of source operations. The techniques presentsddtion 8 and further ex-
ploited in [58] need further work. Moreoves-rules should be able to take invariants
into account (a topic suggested but little developed in)[49]

56

J.N. Oliveira

Mapping scenarios for the UMLFollowing the exercise of section 9, a calculational
theory of UML mapping scenarios could be developed staftigp eg. K. Lano’s cat-
alogue [37]. For preliminary work on this subject see eg. [8]

References

1.

10.

11.
12.

13.

14.

15.

16.

17.
18.

Chritiene Aarts, Roland Backhouse, Paul Hoogendijk, Bériians, and Jaap van der
Woude. A relational theory of datatypes, December 1992. ildbe from
www.cs.nott.ac.uk/ rch/papers .

. T.L. Alves, P.F. Silva, J. Visser, and J.N. Oliveira. Stgic term rewriting and its application

to aVDM-SLto SQL conversion. In i 2005 13th International Symposium on Formal
Methods, volume 3582 dfecture Notes in Computer Sciengmges 399-414. Springer-
Verlag, 2005. University of Newcastle upon Tyne, United ¢gdom - July 18-22.

. K. Backhouse and R.C. Backhouse. Safety of abstracipimttions for free, via logical

relations and Galois connectionsScience of Computer Programming5(1-2):153-196,
2004.

. R.C. BackhouseMathematics of Program Constructiobniv. of Nottingham, 2004. Draft

of book in preparation. 608 pages.

. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolns. Moermans, and J. van der

Woude. Polynomial relators. IBnd Int. Conf. Algebraic Methodology and Software Tech-
nology (AMAST’91)pages 303-362. Springer LNCS, 1992.

. J. Backus. Can programming be liberated from the von Neanstyle? a functional style

and its algebra of program€ACM, 21(8):613—-639, August 1978.

. R. Barker.CASE*METHOD — Entity Relationship Modellingddison-Wesley Publishing

Company, Great Britain, 1992.

. P. Berdaguer. Algebraic representation of UML classgh@ims, May 2007. Dept. Informat-

ics of the U.Minho, Technical note.

. Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, and Josstivi Coupled Schema Trans-

formation and Data Conversion For XML and SQL.RADL 2007 volume 4354 oLNCS
pages 290-304. Springer-Verlag, 2007.

R. Bird and O. de Moor. Algebra of Programming. Series@m@uter Science. Prentice-
Hall International, 1997. C.A. R. Hoare, series editor.

Richard S. Bird. Unfolding pointer algorithma. Funct. Program.11(3):347-358, 2001.
Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C.ceieRelational lenses: A lan-
guage for updateable views. Rrinciples of Database Systems (POD&)06.

G. Booch, J. Rumbaugh, and I. Jacobsdie Unified Modeling Language User Guide
Addison Wesley Longman, Inc., 1999. ISBN 0-201-57168-4.

R.M. Burstall and J. Darlington. A transformation syster developing recursive programs.
JACM, 24(1):44-67, January 1977.

Alcino Cunha, J.N. Oliveira, and Joost Visser. Typesgafo-level data transformation. In
FM’'06 , volume 4085 of. NCS pages 284-289. Springer-Verlag, Aug. 2006.

Alcino Cunha and Joost Visser. Transformation of stneeshy programs, applied to XPath
queries and strategic functions, 2007. In Proceedingsed®7 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2@0appear).

J. Darlington. A synthesis of several sorting algorih#cta Informatica 11:1-30, 1978.
W.-P. de Roever, K. Engelhardt with the assistance obé&nén, K.-H. Buth, P. Gardiner,
Y. Lakhnech, and F. Stom@Rata Refinement Model-Oriented Proof methods and their Com-
parison Cambridge University Press, 1999. ISBN 0521641705.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Data Transformation by Calculation 57

M. Deutsch, M. Henson, and S. Reeves. Modular reasonidgscrutinising monotonicity
and refinement, 2006. (To appear).

E. Fielding. The specification of abstract mappings &edt implementation as B-trees.
Technical Report PRG-18, Oxford University, September0198

J. Fitzgerald and P.G. Larsen. Modelling Systems: Raldfools and Techniques for Soft-
ware Development . Cambridge University Press, 1st edifiéa8.

R.W. Floyd. Assigning meanings to programs. In J.T. Sclwy editor Mathematical As-
pects of Computer Scienosmlume 19, pages 19-32. American Mathematical Socie719
Proc. Symposia in Applied Mathematics.

Jeremy Gibbons. When is a function a fold or an unfold®320Working document 833
FAV-12 available from the website of IFIP Working Group 22t meeting, New York City,
USA.

Jean-Luc Hainaut. The transformational approach @b@ae engineering. In Lammel et al.
[36], pages 95-143.

Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data reéinémefined. In Bernard Robinet
and Reinhard Wilhelm, editor§SOP’86 volume 213 0l.LNCS pages 187-196, 1986.
Paul Hoogendijk.A Generic Theory of Data Type$hD thesis, University of Eindhoven,
The Netherlands, 1997.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editardeveloping structured docu-
ments based on bidirectional transformation?ioc. ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulatiages 178-189. ACM Press, 2004.
Graham Hutton and Erik Meijer. Back to basics: Deriviagresentation changers function-
ally. Journal of Functional Programmindl993. (Functional Pearl).

Graham Hutton and Joel Wright. Compiling exceptionsemily. In Dexter Kozen and
Carron Shankland, editorbathematics of Program Construction, 7th Internationalnco
ference, MPC 2004, Stirling, Scotland, UK, July 12-14, 2@®#ceedingsvolume 3125 of
LNCS pages 211-227. Springer, 2004.

J. Jeuring and P. Jansson. Polytypic programmingidiranced Functional Programming
number 1129 in Lecture Notes in Computer Science. Spridgo6.

C.B. Jones.Systematic Software Development Using \\DSkries in Computer Science.
Prentice-Hall International, 1990. 1st edition (1986)d 2rdition (1990). PDF available
from http://www.vdmportal.org/twiki/bin/view/Main/Jonesb ook .

I.S. Jourdan. Reificacao de tipos abstractos de dbiioa:abordagem matematica. Master's
thesis, University of Coimbra, 1992. (In Portuguese).

Wolfram Kahl. Refinement and development of programmfrelational specifications.
ENTCS 44(3):4.1-4.43, 2003.

E. Kreyszig. Advanced Engineering Mathematicdohn Wiley & Sons, Inc., 6th edition,
1988.

Ralf Lammel and Erik Meijer. Mappings make data procesgo round. In Lammel et al.
[36], pages 169-218.

Ralf Lammel, Joao Saraiva, and Joost Visser, edit@snerative and Transformational
Techniques in Software Engineering, International Sum8wrool, GTTSE 2005, Braga,
Portugal, July 4-8, 2005. Revised Papevslume 4143 ofLecture Notes in Computer Sci-
ence Springer, 2006.

K. Lano. Catalogue of model transformations. No date.ailable from
http://www.dcs.kcl.ac.uk/staff/kcl/ .

D. Maier. The Theory of Relational DatabasesComputer Science Press, 1983. ISBN
0-914894-42-0.

J. McCarthy. Towards a mathematical science of computatn C.M. Popplewell, editor,
Proc. ofIFIP 62, pages 21-28, Amsterdam-London, 1963. North-Holland Eompany.

58

40

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

J.N. Oliveira

. C. McLarty.Elementary Categories, Elementary Topos@gford Logic Guides nr.21. Cal-
endron Press, Oxford, 1st edition, 1995.

Sun Meng and L.S. Barbosa. On refinement of generic bteted software components. In
C. Rettray, S. Maharaj, and C. Shankland, edita@th Int. Conf. Algebraic Methods and
Software Technology (AMASPages 506-520, Stirling, August 2004. Springer Lect. Blote
Comp. Sci. (3116). Best student co-authored paper award.

C. Morgan. Programming from SpecificationSeries in Computer Science. Prentice-Hall
International, 1990. C.A. R. Hoare, series editor.

Claudia Necco, J.N. Oliveira, and Joost Visser. Extdratiatic checking by strategic rewrit-
ing of pointfree relational expressions, 2007. DIUM TedahiReport.

J.N. Oliveira. Refinamento transformacional de espegifies (terminais). lActas das XII
Jornadas Luso-Espanholas de Matematica, volume I, peigest17, Maio 1987.

J.N. Oliveira. A Reification Calculus for Model-Oriented Software Spediiion . Formal
Aspects of Computing, 2(1):1-23, April 1990.

J.N. Oliveira. Software Reification using the SETS Calculirs Tim Denvir, Cliff B. Jones,
and Roger C. Shaw, editorByoc. of the BCS FACS 5th Refinement Workshop, Theory and
Practice of Formal Software Development, London,, [g&ges 140-171. ISBN 0387197524,
Springer-Verlag, 810 January 1992. (Invited paper).

J.N. Oliveira. ‘Fractal’ Types: an Attempt to Generalize Hash Table Cadd¢ian. In Work-
shop on Generic ProgrammindMGP’98), Marstrand, SwedenJune 1998.

J.N. Oliveira. Data processing by calculation, 20018 fifiges. Lecture Notes of course
lectured at théth Estonian Winter School in Computer Sciené® March 2001, Palmse,
Estonia.

J.N. Oliveira. Constrained datatypes, invariants arginess rules: a relational approach,
2004. PUReCafe, DI-UM, 2004.5.20 [talk], P @RROJECT(POSI/CHS/44304/2002).

J.N. Oliveira. Calculate databases with ‘simplicitySeptember 2004. Presentation at the
IFIP WG 2.1 #59 MeetingNottingham, UK. (Slides available from the author’'s wéd3i

J.N. Oliveira. Reinvigorating pen-and-paper proofs in VDM: the pointfeggoroach, 2006.
Presentation at theThird OvERTURE Workshop: Newcastle, UK, 27-28 November 2006
Available from the author’s website.

J.N. Oliveira. Pointfree foundations for lossless depgosition, 2007. Draft of paper in
preparation.

J.N. Oliveira and C.J. Rodrigues. Transposing relatifstomMaybefunctions to hash tables.
In MPC’04 : Seventh International Conference on Mathematics of Rmg€onstruction,
12-14 July, 2004, Stirling, Scotland, UK (Organized in aorgtion with AMAST’'04)volume
3125 ofLecture Notes in Computer Scienpages 334-356. Springer, 2004.

J.N. Oliveira and C.J. Rodrigues. Pointfree factoitwadf operation refinement. In FM’'06

, volume 4085 oL NCS pages 236—251. Springer-Verlag, 2006.

M.S. Paterson and C.E. Hewitt. Comparative schematolagProject MAC Conference on
Concurrent Systems and Parallel Computatipages 119-127, August 1970.

V. Pratt. Origins of the calculus of binary relations. RAroc. of the Seventh Annual IEEE
Symposium on Logic in Computer Scienpages 248-254, Santa Cruz, CA, 1992. IEEE
Computer Soc.

J. Reynolds. Separation logic: a logic for shared matdhta structures, 2002. Invited Paper,
LICS'02.

C.J. Rodrigues.Software Refinement by CalculatioPhD thesis, Departamento de In-
formatica, Universidade do Minho, 2007. (Submitted.).

Wang Shuling, L.S. Barbosa, and J.N. Oliveira. A poe#frelational model for confined
separation logic, June 2007. Technical report, DI/UM.

Joost VisselGeneric Traversal over Typed Source Code Representaf®n®. dissertation,
University of Amsterdam, Amsterdam, The Netherlands, 2003

Data Transformation by Calculation 59

61. Eric G. Wagner. All recursive types defined using proslaectd sums can be implemented
using pointers. In Clifford Bergman, Roger D. Maddux, anchRigozzi, editorsAlgebraic
Logic and Universal Algebra in Computer Sciengelume 425 olLNCS Springer, 1990.

62. Jim Woodcock and Jim DaviedJsing Z: Specification, Refinement, and ProBfrentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996.

A PTree example in Haskell

This annex presents the exercise, in Haskell, of repreggmtductive typd”Tree (45) by point-
ers and heaps. For simplicity, the datatypePdfree -shaped heaps is modeled by finite lists of
pairs, together with a pointer telling where to start from:

data Heap a k = Heap [(k,(a,Maybe k, Maybe k))] k
Next, we convert this into a bifunctdP:

instance BiFunctor Heap
where bmap g f
(Heap h k) =
Heap [(f k) |-> (g a, fmap f p, fmap f p’)

| (k(ap;p?)) <- h]
(f k)

The chosen (functional) representation fela overPTree ,

r (Node n b mf) =let x = fmap r m
y = fmap r f
in merge (n,b) x y

wheremerge is the interesting function:

merge a (Just x) (Just y) =
Heap ([1 |-> (a, Just ki1, Just k2)] ++ hl ++ h2) 1
where (Heap hl k1) = bmap id even_ x
(Heap h2 k2) = bmap id odd_ y
merge a Nothing Nothing =
Heap ([1 |-> (a, Nothing, Nothing)]) 1
merge a Nothing (Just x) =
Heap ([1 |-> (a, Nothing, Just k2)] ++ h2) 1
where (Heap h2 k2) = bmap id odd_ x
merge a (Just x) Nothing =
Heap ([1 |-> (a, Just k1, Nothing)] ++ hl) 1
where (Heap hl k1) = bmap id even_ x

Note the use of two functions

even_ k = 2 xk
odd_ k = 2+k+1
20 Note the sugaring of pairing in terms of the infix combinatot-> y = (x,y) , as sug-
gested by (36). ClasBiFunctor is the binary extension to standard cl&sctor offer-
ingbmap :: (@ ->b) > (c >d) > (fac->fbd) , the binary coun-

terpart offmap .

60 J.N. Oliveira

which generate théth even and odd numbers. Functorial renaming of heap address these
functions (whose ranges are disjoint) ensure that the heamse joining (via list concatenation)
areseparatg57, 59] %%

This representation strategy can be generalized to anynpuiial type of degree by build-
ing n-functionsf; k = nk +4,for0 < k < n.

21 This representation technique is reminiscent of that afrejd'binary heaps” (which are not
quite the same as in this tutorial) as arrays without pointeee eg. entrginary _heap in
the Wikipedia.

