An Introduction to Algorithmic
Refinement

J.N. Oliveira

Formal Methods II, 2002-06
June 17, 2007

Implicit/explicit refinement

Given VDM-SL implicit specification

S(a:A) r:B
pre ...
post ...

function B =—— A is said to satisfy, to refine, or to implement S,
written

iff, for every a,

Ya € A. pre-S a = post-S(f a,a)

In pointfree notation

ac€dS=(fa)Sa

{ rule (f b)Ra=b(f° - R)a }
§5SCf°-8S

{ shunting }
f-65CS

Summary: explicit specification (= implementation) f is thus more defined
and more deterministic than implicit specification S:

SFf = f-6SCS (1)

Example

Recall

IsPermutation: seq of int * seq of int -> bool
IsPermutation(11,12) ==
forall e in set (elems 11 union elems 12) &
card {i | i in set inds 11 & 11(i) = e} =
card {i | i in set inds 12 & 12(i) = e};

We want to find f such that
IsPermutationt f

Recall that IsPermutation = ker seq2bag, where. . .

About seg2bag

VDM-SL definition:

seq2bag(s) ==
cases s:
0 > {I->}
others -> { hd s |-> 1 } bunion seq2bag(tl s)
end;

Definition of gene g of the seq2bag catamorphism:

g = [{—},®- (singb x id)]

where singb a = {a +— 1} and @ denotes bag union (bunion is not standard
VDM-SL: define it).

Implementing [sPermutation

IsPermutation - f
= { definition }

f - 0 IsPermutation C IsPermutation

{ definition }

f - & (ker seq2bag) C ker seq2bag

{ kernel of a function }

f - id C seq2bag® - seq2bag

{ shunting rule }

seq2bag - f C seq2bag

{ equality of functions }

seq2bag - f = seq2bag

Handling refinement equations

f is the "unknown” of refinement equation
seq2bag - f = seq2bag
Since seq2bag and f are list catamorphisms, one can resort to cata-fusion,

seq2bag - f = seq2bag
{let f = («f and seq2bag = (9|}

seq2bag - (o) = (g)
= { cata-fusion }

seq2bag - o = g - (id + id X seq2bag)

Solving refinement equations

By decomposing « := [,~], we obtain equations
g =1
seq2bag -y = @ - (singb X seq2bag)

e Cata-cancellation yields solution v = cons, leading to a = in and
f=1id.
e @ is commutative, thus solution v(a,l) =1 " [a] leading to f = invl.

Guessing further solutions: any list sorting function will solve the equation!
(More about this later. ..)

Properties of

Basic:
1l+=f , TEf (2)
(SNR)Ff <« SEf AN RESf (3)
(SUR)Hf <« SEHf ANREYf (4)
(kerg) - f 9-f=g (5)
gr-f = f=y (6)
Monotonicity:
SEf = FSFFf (7)
Proof of monotonicity
FSHFf
= { definition}

(Ff)-6(FS)CFS

{ property 6 (FS)=F(R) }

(Ff)-F(6S)CFS

F(f-§S)CFS

= { relators commute with composition }

<« { relators are monotone }

f-8scCs

SkEf

{ definition }

Stepwise refinement

Extend f in S+ f to a relation
SFR = R-65CS ANJSCIOR (8)

Obs.:

e clause § S C § R ensures that implementations can only be more
defined

e clause R- S C S ensures that implementations can only be more
deterministic

e Note that L - R still holds but, in general, T - R requires R to be
entire, since § T = id.

Example

Let spec S, ¢ be

sqrt (x: real) r: real
pre abs(x) <= nu
post abs(r*r-x) <= epsilon

Then, wherever 11 < 15 and €1 > €9,
Sl/lyEl l_ SV?yEZ

In the “limit", -+ -+ Se0 = s¢° F f where f x = +\/z or f . = —/x.

Refinement is a partial order

Reflexivity: id C |, that is
SES
Transitivity: -+ C, thatis
SFR ANREFT = SET
Antisymmetry: FNF° Cid
SFR ANRES = S=R
F-monotonicity:

SFR = FSFFR

Stepwise refinement

The laws of - make it possible to refine a starting spec S along several
steps,

SESIFESF...

each one introducing more and more definition and/or determinism,
and very often leading into a function (totally defined deterministic
algorithm):

SESiFSob...FSykf

What do we do after f7

Back to g f

e Formally, g f =g = f, that is, spec g is extensionally
equivalent to implementation f.

e But there is more to it: in general, we think of f as being “more
efficient” than g.

e Efficiency can only be formalized in the discipline of algorithmic
complexity (out of scope here)

e We will study functional laws which add to efficiency and
generalize well-known (while) loop generation and
intercombination rules.

Main refinement strategies

e Refinement by “sequential loop” inter-combination: fusion and
absorption laws:

“Deforestation” — removal of intermediate
data-structures

e Refinement by “parallel loop” inter-combination: mutual
recursion elimination:

On this purpose we will see Fokkinga's law and its
well-known corollary, the “banana-split” law.

Mutual recursion elimination

Consider the following pair of mutually dependent functions:

f(n) == if n
g(n) == if n

0 then n else g(n - 1);
0 then 1 else f(n - 1) + g(n - 1);

Can any of these functions — say g — be converted into a while loop?
In pointfree notation:

f-0,suc] = [id,g]
g'[stuc] = [lv+<f7g>]

Mutual dependence made explicit

f~[Q,S7.LC] = [id,ﬂ'2~<f,g>] of INg /i\l 1+ INg
g'[stuc] = [lv+<f7g>] ’ \/ F INg

Lo . . vin=[id , suc]
which is such that F f =id + f. So (4-absorption) we can write

frin = [id,ﬂ'z]~F<f,g>
g'in - [lv+]F<fvg>

The mutual-recursion law

This situation is handled by the so-called mutual-recursion law, also called
“Fokkinga law":

frin=h-F(f,g) _ _
{ Ty elha = o =unm

that is, in general
firin=h1-F{f1,..., fn)

: = (fi,- o fa) = ({1, .. b))

Proof

<fvg> = (|<h7k>|)
{ cata-universal }
<fvg> i = <h7k>) F<fvg>
{ x-fusion twice (lhs and rhs)}

{ “split” structural equality }

g-in=k-F(f g)

Example

Let h = [id ,m2] and k = [1 ,+] in the example above:

(f,9)

{ Fokkinga law}
(l([ld 7772]7 [l 7+]>D

{ exchange law}

ind7l>7<W27+ﬁ]D

fg(n) == if n = 0 then mk_(0,1)
else let p=fg(n-1)
in mk_(p.#2,p.#1 + p.#2);

Example

Since fg = (f, g), we obtain g = 2 - fg. On the other hand, it is easy to
extract g from

f) == if n
g) == if n

0 then n else g(n - 1);
0 then 1 else f(n - 1) + g(n - 1);

as the standard Fibonacci function:

g(n) == if n = 0 then 1
else if n = 1 then 1
else g(n - 2) + gln - 1);

Summary: we have calculated 72 - fg as a linear version of Fibonacci
(g=m2-fg).

Corollary: “banana-split” (1)

Consider the function which computes the average of a non-empty list of
natural numbers:

average et (/) - (sum,length)
Both sum and length are INT catamorphisms:

sum = ([id , +])
length = ([1 , succ - m2]))
Function average performs two independent traversals of the argument list

before division (/) takes place. Can we avoid this? “Banana-split” will fuse
such two traversals.

Corollary: “banana-split” (2)

Let h=1¢-Fm and kK = j - F w2 in the mutual recursion law. Then

frin=(-Fm)-F{f,9)

{ composition is associative and F is a functor}
frin=i-F(m-(f,g))

{ by x-cancellation }

frin=i-Ff

{ by cata-cancellation}

f= i

Corollary: “banana-split” (3)

Similarly, g = (| will follow from k& = j - F w2 Then, from the mutual
recursion law we get

(2D, (5D) = (i - Fru, 5 - Frz))

that is

(02D, (5D) = (G x 4) - (Fm1, Fma))

This law provides us with a very useful tool for “parallel” loop
inter-combination: “loops” (%)) and (j]) are fused together into a single
“loop” ((i X j) - (Fm1, Fma)).

Genericity of “banana-split”

Banana-split fuses two data-structure traversals (“loops”) in the
generic sense. For instance,

average (/) - (sum,length)
still makes sense in the case of binary leaf trees, for

sum = (|[id ,+])
length = ([1, +])

Again sum and length can be fused together (bi-recursively).

Recursion elimination

Very common pattern in functional hylomorphisms:

f : A—C
fo= p—=b,0-(df e
Diagram:
p? id +(d,e)
A A+ A A+Bx A
fl | id +id x f
C A+BxC
[b,6]
That is,

(wf :: [b,6](id+idx f)- (id+ (d,e)) - p?)

10

More general intermediate type

By splitting b = b2 - b1 we obtain a more general intermediate type

f A—C
f = p—bbi,0:(df ¢
Diagram:
p? b1 + (d, €)
A A+ A D+BxA
fl | id+id x f
C D+ BxC

[b2) 6]

Associative ¢

The extra requirement (required by calculations to follow) that 6 to be
assciative, ie for all 4, j, k,

9'<9'<i7j>7k> :9'<i70'<j7k>>

leads us finally to the type scheme

p? by + (d,e)
A A+ A D+CxA
fl | id+id x f
C D+CxC
[b279]

Can we eliminate recursion from this hylomorphism, eg. convert it to a
while loop?

What is a while loop

A while loop
while pdol = (—-p)—id, (while pdol) -l

is a very special case of hylomorphism [R, S | where S does all the work
and R does nothing:

(id+1) - (=-p)?
A A+ A

while p do 1 | | id + (while p do 1)
A A+ A

[id , id]

11

Calculation plan

We want to convert the given hylo

f = p—b,0-(df ¢
into

f = p—>b,w-<d,e>

w o= rToyY,w-z

the latter being the obvious while-loop
w = y-(while (- z) do z)

The unknowns of the problem are z,y and z.

Calculation

Clearly, finding w such that
w = 6 -(dxf)
is enough. We recall McCarthy-fusion laws

f-(p—g,h) = p—=Ff9fh
(p—f,9)-h (p-h)—=(f-h),(g-h)

and calculate:
(Wf::p—b,0-(df-e)
Ff
= {squarerule, (u f :: FfY={(uf :: F(F[))}

12

Calculation (contd.)

(wf::p=b,0-(d(p—=b,0-(df-e)e€))

{ McCarthy-fusion laws }
(Wf::p—=b,pe—0-(db-e), 0-(d0-(df e -e)
= { x-fusion and McCarthy-fusion again}

(wf:: p—b,)
(pom2— 0. (idxb), 0-(idx (0-(d,f-e)))- {de)

= { 0 is associative}

(wf:: p—b,)
P — 0. (idxb), 0-(0-(idxd),f e m)-(de)

Calculation (contd.)

We now focus on the inner conditional:

pema—0-(idxb), 0-(0-(idxd), fe-m)

{ x-absorption }
poma—0-(idxb), 0-(idx f)-(0-(idx d), e)
= { pattern matching (recall assumption w =0 - (id x f)) }

p-m2—0-(idxb), 0-(idx f)-(0-(id x d),e - m2)
—_ —

T Yy w z

w

So we've found tail-recursive solution

w = p-ma—0-(idxb), w-{(0-(id x d),e-m)

Calculation (contd.)

Altogether:

f - p—>b7w~<d7e>
w = p-ma—0-(idxb), w-{(0-(idxd),e-m)

Quite often b = u, where u is the unit of 6 (a 6 u = a). We then get a
simpler w:

w = p-m—m, w-(0-(idxd),e-m)

= m - (while —-p-m2 do (0 (id x d),e- m2))

13

Example - factorial

From
fac = (=0)— 1, mul- (id, fac- pred)
we get VDM-SL functions

fac(n) == if n=0 then 1 else w(n,n-1)
w(m,i) == if i=0 then m else w(m * i, i-1)

The next slide shows how the while loop can be made explicit by moving
from funcions to operations.

Example - factorial

fac : nat ==> nat

fac(n) ==
if n=0 then return 1
else (dcl m: nat := n,
i: nat :=n -1;
while (i <> 0) do
(m:=m* 1i; i := i-1);
return m;
);

Other results

For b = u there is another recusion removal law which we could prove
similarly:

f + A—C
f = p—>u,0-(df e
is equivalent to
f = w-(uid)
w = p-me—m, w-(0-(idxd),e-m2)

The corresponding VDM-SL version of factorial is presented in the slide
which follows:

14

Example - “another” factorial

fac : nat ==> nat

fac(n) ==
(dcl m: nat := 1,
i: nat := n;
while (i <> 0) do
(m:=m=*1i; i :=1i - 1);
return m
);

For versus while loops

VDM-SL/VDM++ syntax includes for loops. Therefore, the two while loops
above can be converted into, respectively,

fac(n) ==
if n=0 then return 1
else (dcl m: nat := n;
for i=n-1 to 1 by -1 dom :=m * ij;
return m;

);
and

fac(n) ==
(dcl m: nat := 1;
for i =n tolby-1dom:=m* ij;
return m

);

15

Data refinement in full

Simultaneous algorithm /data refinement: given

e aspec A<—B
R
e abstraction function A (_R c
2
e representation relation D <—— B

I
then C' <—— D will be said to implement S iff

5
A B
SEF -1-Ry it | R (10)
c D
I

Analysis of refinement equation

e The above refinement equation is to be solved for I (the unknown),
and will in general exhibit more than one solution.

e SHIY-1-Rs means
FlfRz(SSgS A 5Sg5(F1]R2)

e Incase F; = R; =id (i = 1,2) — no data refinement involved — it
boils down to algorithmic refinement:

Stid-1I-id
Example
2 2
(>0) [=trRUE] — 1, 0
WQ WO
[(=0]—=>,0

recall

R—S, T ¥ (S 6R)UT-(id-JR)

Note how non-determinism of implementation is coped with by the
target abstraction function.

16

Solving refinement equations

Since 6 (S-R) =6 (65 - R), the second clause above rewrites to
0SCH(OF-(I-R2))
In case Fi (f1) is entire:
0SC6(I-R2)

In case spec S and Fi (f1) are entire and Rz = f3, I will be entire and such
that

I C ff-8f

Functional solutions

Case in which all entities in a refinement equation are total functions (note
the lowercase letters):

firi = s-fo (11)

e Example: i = f* will implement s = Pf under data-refinement
f1 = fa = elems.

e ¢ = f* is not a unique solution. These arise wherever f1 is iso (fT is a
function):

i = fi-s-f

This appeals to calculating ¢ by cata-fusion over inductve
implementation type D.

Example

Set by list refinement:

(a belongs) = (a €)-elems
(fr = id):
(a€)
2 PA
id T f elems
2 A~
a belongs

We know that elems = (jins|). Since target function is a list cata
(a belongs) = (B)), by cata-fusion refinement equation will hold provided
(a€)-ins=0"(id+id x (a €)) holds.

17

Example (cont.)

Let 8= [B1 , B2].
e Since a € () = FALSE, we calculate 3; = FALSE.
e We are left with
a€ ({z}Us) = pa(z,a€s)
Froma € {z}Us = (a € {z}) V(a € s), we infer B2(z,b) =a =2 Vb.
e Allin all:
belongs(a) (1) ==

if 1 = [] then false
else (a = hd 1) or belongs(a)(tl 1)

Bibliografia

18

