
CSK
C

S
K

VDMTools
The VDM++ Language



How to contact CSK:

http://www.csk.co.jp/index e.html Web

@ VDM SP@cii.csk.co.jp General information

The VDM++ Language — Revised for V6.8.1

c© COPYRIGHT 2005 by CSK CORPORATION

The software described in this document is furnished under a license agreement.
The software may be used or copied only under the terms of the license agreement.

This document is subject to change without notice



The VDM++ Language

Contents

1 Introduction 1
1.1 Purpose of The Document . . . . . . . . . . . . . . . . . . . 1
1.2 History of The Language . . . . . . . . . . . . . . . . . . . . 1
1.3 Structure of the Document . . . . . . . . . . . . . . . . . . . 2

2 Conformance Issues 2

3 Concrete Syntax Notation 3

4 Data Type Definitions 4
4.1 Basic Data Types . . . . . . . . . . . . . . . . . . . . . . . . 4

4.1.1 The Boolean Type . . . . . . . . . . . . . . . . . . . . 5
4.1.2 The Numeric Types . . . . . . . . . . . . . . . . . . . . 7
4.1.3 The Character Type . . . . . . . . . . . . . . . . . . . 10
4.1.4 The Quote Type . . . . . . . . . . . . . . . . . . . . . 11
4.1.5 The Token Type . . . . . . . . . . . . . . . . . . . . . 11

4.2 Compound Types . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 Set Types . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Sequence Types . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Map Types . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.4 Product Types . . . . . . . . . . . . . . . . . . . . . . 22
4.2.5 Composite Types . . . . . . . . . . . . . . . . . . . . . 23
4.2.6 Union and Optional Types . . . . . . . . . . . . . . . . 26
4.2.7 The Object Reference Type . . . . . . . . . . . . . . . 28
4.2.8 Function Types . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Algorithm Definitions 32

6 Function Definitions 33
6.1 Polymorphic Functions . . . . . . . . . . . . . . . . . . . . . 37
6.2 Higher Order Functions . . . . . . . . . . . . . . . . . . . . . 38

7 Expressions 39
7.1 Let Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 The Define Expression . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Unary and Binary Expressions . . . . . . . . . . . . . . . . . 44
7.4 Conditional Expressions . . . . . . . . . . . . . . . . . . . . . 45
7.5 Quantified Expressions . . . . . . . . . . . . . . . . . . . . . 47
7.6 The Iota Expression . . . . . . . . . . . . . . . . . . . . . . . 49

i



The VDM++ Language

7.7 Set Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.8 Sequence Expressions . . . . . . . . . . . . . . . . . . . . . . 52
7.9 Map Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.10 Tuple Constructor Expressions . . . . . . . . . . . . . . . . . 55
7.11 Record Expressions . . . . . . . . . . . . . . . . . . . . . . . 55
7.12 Apply Expressions . . . . . . . . . . . . . . . . . . . . . . . . 57
7.13 The New Expression . . . . . . . . . . . . . . . . . . . . . . . 58
7.14 The Self Expression . . . . . . . . . . . . . . . . . . . . . . . 59
7.15 The Threadid Expression . . . . . . . . . . . . . . . . . . . . 60
7.16 The Lambda Expression . . . . . . . . . . . . . . . . . . . . . 62
7.17 Is Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.18 Base Class Membership . . . . . . . . . . . . . . . . . . . . . 64
7.19 Class Membership . . . . . . . . . . . . . . . . . . . . . . . . 64
7.20 Same Base Class Membership . . . . . . . . . . . . . . . . . . 65
7.21 Same Class Membership . . . . . . . . . . . . . . . . . . . . . 66
7.22 History Expressions . . . . . . . . . . . . . . . . . . . . . . . 66
7.23 Literals and Names . . . . . . . . . . . . . . . . . . . . . . . 68
7.24 The Undefined Expression . . . . . . . . . . . . . . . . . . . 70
7.25 The Precondition Expression . . . . . . . . . . . . . . . . . . 70

8 Patterns 71

9 Bindings 76

10 Value (Constant) Definitions 77

11 Instance Variables 78

12 Operation Definitions 80
12.1 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

13 Statements 84
13.1 Let Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.2 The Define Statement . . . . . . . . . . . . . . . . . . . . . . 86
13.3 The Block Statement . . . . . . . . . . . . . . . . . . . . . . 88
13.4 The Assignment Statement . . . . . . . . . . . . . . . . . . . 89
13.5 Conditional Statements . . . . . . . . . . . . . . . . . . . . . 92
13.6 For-Loop Statements . . . . . . . . . . . . . . . . . . . . . . 94
13.7 The While-Loop Statement . . . . . . . . . . . . . . . . . . . 96
13.8 The Nondeterministic Statement . . . . . . . . . . . . . . . . 97
13.9 The Call Statement . . . . . . . . . . . . . . . . . . . . . . . 99
13.10 The Return Statement . . . . . . . . . . . . . . . . . . . . . 101

ii



The VDM++ Language

13.11 Exception Handling Statements . . . . . . . . . . . . . . . . 102
13.12 The Error Statement . . . . . . . . . . . . . . . . . . . . . . 105
13.13 The Identity Statement . . . . . . . . . . . . . . . . . . . . . 106
13.14 Start and Start List Statements . . . . . . . . . . . . . . . . 107
13.15 The Specification Statement . . . . . . . . . . . . . . . . . . 109

14 Top-level Specification 110
14.1 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
14.2 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
14.3 Interface and Availability of Class Members . . . . . . . . . . 115

15 Synchronization Constraints 119
15.1 Permission Predicates . . . . . . . . . . . . . . . . . . . . . . 120

15.1.1 History guards . . . . . . . . . . . . . . . . . . . . . . 122
15.1.2 The object state guard . . . . . . . . . . . . . . . . . . 123
15.1.3 Queue condition guards . . . . . . . . . . . . . . . . . 123
15.1.4 Evaluation of Guards . . . . . . . . . . . . . . . . . . . 124

15.2 Inheritance of Synchronization Constraints . . . . . . . . . . 125
15.2.1 Mutex constraints . . . . . . . . . . . . . . . . . . . . . 125

16 Threads 127
16.1 Periodic Thread Definitions . . . . . . . . . . . . . . . . . . . 127
16.2 Procedural Thread Definitions . . . . . . . . . . . . . . . . . 129

17 Differences between VDM++ and ISO /VDM-SL 131

18 Static Semantics 133

19 Scope Conflicts 134

A The VDM++ Syntax 137
A.1 Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.3.1 Type Definitions . . . . . . . . . . . . . . . . . . . . . 137
A.3.2 Value Definitions . . . . . . . . . . . . . . . . . . . . . 140
A.3.3 Function Definitions . . . . . . . . . . . . . . . . . . . 140
A.3.4 Operation Definitions . . . . . . . . . . . . . . . . . . . 141
A.3.5 Instance Variable Definitions . . . . . . . . . . . . . . . 143
A.3.6 Synchronization Definitions . . . . . . . . . . . . . . . 143
A.3.7 Thread Definitions . . . . . . . . . . . . . . . . . . . . 144

A.4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

iii



The VDM++ Language

A.4.1 Bracketed Expressions . . . . . . . . . . . . . . . . . . 145
A.4.2 Local Binding Expressions . . . . . . . . . . . . . . . . 145
A.4.3 Conditional Expressions . . . . . . . . . . . . . . . . . 146
A.4.4 Unary Expressions . . . . . . . . . . . . . . . . . . . . 146
A.4.5 Binary Expressions . . . . . . . . . . . . . . . . . . . . 148
A.4.6 Quantified Expressions . . . . . . . . . . . . . . . . . . 151
A.4.7 The Iota Expression . . . . . . . . . . . . . . . . . . . 151
A.4.8 Set Expressions . . . . . . . . . . . . . . . . . . . . . . 151
A.4.9 Sequence Expressions . . . . . . . . . . . . . . . . . . . 152
A.4.10 Map Expressions . . . . . . . . . . . . . . . . . . . . . 152
A.4.11 The Tuple Constructor Expression . . . . . . . . . . . 152
A.4.12 Record Expressions . . . . . . . . . . . . . . . . . . . . 152
A.4.13 Apply Expressions . . . . . . . . . . . . . . . . . . . . 153
A.4.14 The Lambda Expression . . . . . . . . . . . . . . . . . 153
A.4.15 The New Expression . . . . . . . . . . . . . . . . . . . 153
A.4.16 The Self Expression . . . . . . . . . . . . . . . . . . . . 153
A.4.17 The Threadid Expression . . . . . . . . . . . . . . . . . 153
A.4.18 The Is Expression . . . . . . . . . . . . . . . . . . . . . 153
A.4.19 The Undefined Expression . . . . . . . . . . . . . . . . 154
A.4.20 The Precondition Expression . . . . . . . . . . . . . . . 154
A.4.21 Base Class Membership . . . . . . . . . . . . . . . . . 154
A.4.22 Class Membership . . . . . . . . . . . . . . . . . . . . 154
A.4.23 Same Base Class Membership . . . . . . . . . . . . . . 154
A.4.24 Same Class Membership . . . . . . . . . . . . . . . . . 154
A.4.25 History Expressions . . . . . . . . . . . . . . . . . . . . 154
A.4.26 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.5 State Designators . . . . . . . . . . . . . . . . . . . . . . . . 155
A.6 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.6.1 Local Binding Statements . . . . . . . . . . . . . . . . 156
A.6.2 Block and Assignment Statements . . . . . . . . . . . . 156
A.6.3 Conditional Statements . . . . . . . . . . . . . . . . . . 157
A.6.4 Loop Statements . . . . . . . . . . . . . . . . . . . . . 157
A.6.5 The Nondeterministic Statement . . . . . . . . . . . . 158
A.6.6 Call and Return Statements . . . . . . . . . . . . . . . 158
A.6.7 The Specification Statement . . . . . . . . . . . . . . . 158
A.6.8 Start and Start List Statements . . . . . . . . . . . . . 159
A.6.9 Exception Handling Statements . . . . . . . . . . . . . 159
A.6.10 The Error Statement . . . . . . . . . . . . . . . . . . . 159
A.6.11 The Identity Statement . . . . . . . . . . . . . . . . . . 159

A.7 Patterns and Bindings . . . . . . . . . . . . . . . . . . . . . . 159
A.7.1 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 159

iv



The VDM++ Language

A.7.2 Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B Lexical Specification 161
B.1 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B.2 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C Operator Precedence 167
C.1 The Family of Combinators . . . . . . . . . . . . . . . . . . . 168
C.2 The Family of Applicators . . . . . . . . . . . . . . . . . . . 168
C.3 The Family of Evaluators . . . . . . . . . . . . . . . . . . . . 169
C.4 The Family of Relations . . . . . . . . . . . . . . . . . . . . . 170
C.5 The Family of Connectives . . . . . . . . . . . . . . . . . . . 171
C.6 The Family of Constructors . . . . . . . . . . . . . . . . . . . 171
C.7 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
C.8 The Type Operators . . . . . . . . . . . . . . . . . . . . . . . 172

D Differences between the two Concrete Syntaxes 172

E Standard Libraries 174
E.1 Math Library . . . . . . . . . . . . . . . . . . . . . . . . . . 174
E.2 IO Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Index 178

v



The VDM++ Language

vi



The VDM++ Language

1 Introduction

VDM++ is a formal specification language intended to specify object oriented
systems with parallel behaviour, typically in technical environments. The lan-
guage is based on VDM-SL [6], and has been extended with class and object
concepts, which are also present in languages like Smalltalk-80 and Java. This
combination facilitates the development of object oriented formal specifications.

1.1 Purpose of The Document

This document is the language reference manual for VDM++. The syntax of
VDM++ language constructs is defined using grammar rules. The meaning of
each language construct is explained in an informal manner and some small ex-
amples are given. The description is supposed to be suited for ‘looking up’ infor-
mation rather than for ‘sequential reading’; it is a manual rather than a tutorial.
The reader is expected be familiar with the concepts of object oriented program-
ming/design.

We will use the ASCII (also called the interchange) concrete syntax but we will
display all reserved words in a special keyword font. This is done because the
document works as a language manual to the VDM++ Toolbox where the ASCII
notation is used as input. The mathematical concrete syntax can be generated
automatically by the Toolbox so a nicer looking syntax can be produced.

1.2 History of The Language

VDM++ has been under development since 1992; see [3] for its original de-
scription. Since then, the language has been further developed as part of the
AFRODITE1 project. VDM++ is based on the development in the AFRODITE
project. In the process of language development, feedback and evaluation of the
language from a number of larger case studies has been used.

The VDM++ language is the language supported by the VDM++ Toolbox. This
Toolbox contains a syntax checker, a static semantics checker, an interpreter2, a
code generator to C++, and a UML link. Because ISO/VDM-SL in general is a

1AFRODITE has been sponsored by the European Union under the ESPRIT programme
(EP6500).

2In addition the Toolbox provides pretty printing facilities, debugging facilities and support
for test coverage, but these are the basic components.

1



The VDM++ Language

non-executable language the interpreter supports only a subset of the language.
This document will focus particularly on the points where the semantics of VDM-
SL differs from the semantics used in the interpreter. In this document we will
use the term “interpreter” whenever we refer to the interpreter from the VDM++
Toolbox.

1.3 Structure of the Document

Section 2 indicates how the language presented here and the corresponding VDM++
Toolbox conform to the VDM-SL standard. Section 3 presents the BNF nota-
tion used for the description of syntactic constructs. The VDM++ notation is
described in section 4 to section 16. Section 17 provides a complete list of the
differences between ISO/VDM-SL and VDM++ while section 18 contains a short
explanation of the static semantics of VDM++. The complete syntax of the lan-
guage is described in Appendix A, the lexical specification in Appendix B and the
operator precedence in Appendix C. Appendix D presents a list of the differences
between symbols in the mathematical syntax and the ASCII concrete syntax. In
Appendex E details of the Standard library and how to use it are given. Finally,
an index of the defining occurrences of all the syntax rules in the document is
given.

2 Conformance Issues

The VDM-SL standard has a conformance clause which specifies a number of lev-
els of conformity. The lowest level of conformity deals with syntax conformance.
The VDM++ Toolbox accepts specifications which follow the syntax description
in the standard with the exceptions described in section 17.

In addition it accepts a number of extensions (see section 17) which should be
rejected according to the conformance clause.

Level one in the conformance clause deals with the static semantics for possible
correctness (see section 18). In this part we have chosen to reject more specifica-
tions than the standard prescribes as being possibly well-formed3.

3For example with a set comprehension where a predicate is present the standard does not
check the element expression at all (in the possibly well-formedness check) because the predicate
could yield false (and thus the whole expression would just be another way to write an empty
set). We believe that a user will be interested in getting such parts tested as well.

2



The VDM++ Language

Level two and the following levels (except the last one) deal with the definite
well-formedness static semantics check and a number of possible extended checks
which can be added to the static semantics. The definitely well-formedness check
is present in the Toolbox. However, we do not consider it to be of major value
for real examples because almost no “real” specifications will be able to pass this
test.

The last conformance level deals with the dynamic semantics. Here it is required
that an accompanying document provides details about the deviations from the
standard dynamic semantics (which is not executable). This is actually done in
this document by explaining which constructs can be interpreted by the Toolbox
and what the deviations are for a few constructs. Thus, this level of conformance
is satisfied by the VDM++ Toolbox.

To sum up, we can say that VDM++ (and its supporting Toolbox) is quite close
conforming to the standard, but we have not yet invested the time in ensuring
this.

3 Concrete Syntax Notation

Wherever the syntax for parts of the language is presented in the document it
will be described in a BNF dialect. The BNF notation used employs the following
special symbols:

, the concatenate symbol
= the define symbol
| the definition separator symbol (alternatives)

[ ] enclose optional syntactic items
{ } enclose syntactic items which may occur zero or more

times
‘ ’ single quotes are used to enclose terminal symbols
meta identifier non-terminal symbols are written in lower-case letters

(possibly including spaces)
; terminator symbol to denote the end of a rule
( ) used for grouping, e.g. “a, (b | c)” is equivalent to “a, b

| a, c”.
– denotes subtraction from a set of terminal symbols (e.g.

“character – (‘"’)” denotes all characters excepting the
double quote character.)

3



The VDM++ Language

4 Data Type Definitions

As in traditional programming languages it is possible to define data types in
VDM++ and give them appropriate names. Such an equation might look like:

Amount = nat

Here we have defined a data type with the name “Amount” and stated that the
values which belong to this type are natural numbers (nat is one of the basic
types described below). One general point about the type system of VDM++
which is worth mentioning at this point is that equality and inequality can be
used between any value. In programming languages it is often required that
the operands have the same type. Because of a construct called a union type
(described below) this is not the case for VDM++.

In this section we will present the syntax of data type definitions. In addition,
we will show how values belonging to a type can be constructed and manipulated
(by means of built-in operators). We will present the basic data types first and
then we will proceed with the compound types.

4.1 Basic Data Types

In the following a number of basic types will be presented. Each of them will
contain:

• Name of the construct.

• Symbol for the construct.

• Special values belonging to the data type.

• Built-in operators for values belonging to the type.

• Semantics of the built-in operators.

• Examples illustrating how the built-in operators can be used.4

4In these examples the Meta symbol ‘≡’ will be used to indicate what the given example is
equivalent to.

4



The VDM++ Language

For each of the built-in operators the name, the symbol used and the type of
the operator will be given together with a description of its semantics (except
that the semantics of Equality and Inequality is not described, since it follows
the usual semantics). In the semantics description identifiers refer to those used
in the corresponding definition of operator type, e.g. a, b, x, y etc.

The basic types are the types defined by the language with distinct values that
cannot be analysed into simpler values. There are five fundamental basic types:
booleans, numeric types, characters, tokens and quote types. The basic types
will be explained one by one in the following.

4.1.1 The Boolean Type

In general VDM++ allows one to specify systems in which computations may
fail to terminate or to deliver a result. To deal with such potential undefinedness,
VDM++ employs a three valued logic: values may be true, false or bottom
(undefined). The semantics of the interpreter differs from VDM-SL in that it
does not have an LPF (Logic of Partial Functions) three valued logic where the
order of the operands is unimportant (see [5]). The and operator, the or operator
and the imply operator, though, have a conditional semantics meaning that if the
first operand is sufficient to determine the final result, the second operand will
not be evaluated. In a sense the semantics of the logic in the interpreter can still
be considered to be three-valued as for VDM-SL. However, bottom values may
either result in infinite computation or a run-time error in the interpreter.

Name: Boolean

Symbol: bool

Values: true, false

Operators: Assume that a and b in the following denote arbitrary boolean ex-
pressions:

Operator Name Type
not b Negation bool → bool
a and b Conjunction bool ∗ bool → bool
a or b Disjunction bool ∗ bool → bool
a => b Implication bool ∗ bool → bool
a <=> b Biimplication bool ∗ bool → bool
a = b Equality bool ∗ bool → bool
a <> b Inequality bool ∗ bool → bool

5



The VDM++ Language

Semantics of Operators: Semantically <=> and = are equivalent when we deal
with boolean values. There is a conditional semantics for and, or and =>.

We denote undefined terms (e.g. applying a map with a key outside its
domain) by ⊥. The truth tables for the boolean operators are then5:

Negation not b
b true false ⊥
not b false true ⊥

Conjunction a and b

a\b true false ⊥
true true false ⊥
false false false false
⊥ ⊥ ⊥ ⊥

Disjunction a or b

a\b true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥

Implication a => b

a\b true false ⊥
true true false ⊥
false true true true
⊥ ⊥ ⊥ ⊥

Biimplication a <=> b

a\b true false ⊥
true true false ⊥
false false true ⊥
⊥ ⊥ ⊥ ⊥

Examples: Let a = true and b = false then:

5Notice that in standard VDM-SL all these truth tables (except =>) would be symmetric.

6



The VDM++ Language

not a ≡ false
a and b ≡ false
b and ⊥ ≡ false
a or b ≡ true
a or ⊥ ≡ true
a => b ≡ false
b => b ≡ true
b => ⊥ ≡ true
a <=> b ≡ false
a = b ≡ false
a <> b ≡ true
⊥ or not ⊥ ≡ ⊥
(b and ⊥) or (⊥ and false) ≡ ⊥

4.1.2 The Numeric Types

There are five basic numeric types: positive naturals, naturals, integers, rationals
and reals. Except for three, all the numerical operators can have mixed operands
of the three types. The exceptions are integer division, modulo and the remainder
operation.

The five numeric types denote a hierarchy where real is the most general type
followed by rat6, int, nat and nat1.

Type Values
nat1 1, 2, 3, ...
nat 0, 1, 2, ...
int ..., -2, -1, 0, 1, ...
real ..., -12.78356, ..., 0, ..., 3, ..., 1726.34, ...

This means that any number of type int is also automatically of type real but not
necessarily of type nat. Another way to illustrate this is to say that the positive
natural numbers are a subset of the natural numbers which again are a subset of
the integers which again are a subset of the rational numbers which finally are a
subset of the real numbers. The following table shows some numbers and their
associated type:

6From the VDM++ Toolbox’s point of view there is no difference between real and rat
because only rational numbers can be represented in a computer.

7



The VDM++ Language

Number Type
3 real, rat, int, nat, nat1
3.0 real, rat, int, nat, nat1
0 real, rat, int, nat
-1 real, rat, int

3.1415 real, rat

Note that all numbers are necessarily of type real (and rat).

Names: real, rational, integer, natural and positive natural numbers.

Symbols: real, rat, int, nat, nat1

Values: ..., -3.89, ..., -2, ..., 0, ..., 4, ..., 1074.345, ...

Operators: Assume in the following that x and y denote numeric expressions.
No assumptions are made regarding their type.

Operator Name Type
-x Unary minus real → real
abs x Absolute value real → real
floor x Floor real → int
x + y Sum real ∗ real → real
x - y Difference real ∗ real → real
x * y Product real ∗ real → real
x / y Division real ∗ real → real
x div y Integer division int ∗ int → int
x rem y Remainder int ∗ int → int
x mod y Modulus int ∗ int → int
x**y Power real ∗ real → real
x < y Less than real ∗ real → bool
x > y Greater than real ∗ real → bool
x <= y Less or equal real ∗ real → bool
x >= y Greater or equal real ∗ real → bool
x = y Equal real ∗ real → bool
x <> y Not equal real ∗ real → bool

The types stated for operands are the most general types allowed. This
means for instance that unary minus works for operands of all five types
(nat1, nat, int rat and real).

Semantics of Operators: The operators Unary minus, Sum, Difference, Prod-
uct, Division, Less than, Greater than, Less or equal, Greater or equal,
Equal and Not equal have the usual semantics of such operators.

8



The VDM++ Language

Operator Name Semantics Description

Floor yields the greatest integer which is equal to or
smaller than x.

Absolute value yields the absolute value of x, i.e. x itself if x >=
0 and -x if x < 0.

Power yields x raised to the y’th power.

There is often confusion on how integer division, remainder and modulus
work on negative numbers. In fact, there are two valid answers to -14 div
3: either (the intuitive) -4 as in the Toolbox, or -5 as in e.g. Standard ML
[7]. It is therefore appropriate to explain these operations in some detail.

Integer division is defined using floor and real number division:

x/y < 0: x div y = -floor(abs(-x/y))
x/y >= 0: x div y = floor(abs(x/y))

Note that the order of floor and abs on the right-hand side makes a differ-
ence, the above example would yield -5 if we changed the order. This is
because floor always yields a smaller (or equal) integer, e.g. floor (14/3) is
4 while floor (-14/3) is -5.

Remainder x rem y and modulus x mod y are the same if the signs of x
and y are the same, otherwise they differ and rem takes the sign of x and
mod takes the sign of y. The formulas for remainder and modulus are:

x rem y = x - y * (x div y)
x mod y = x - y * floor(x/y)

Hence, -14 rem 3 equals -2 and -14 mod 3 equals 1. One can view these
results by walking the real axis, starting at -14 and making jumps of 3.
The remainder will be the last negative number one visits, because the first
argument corresponding to x is negative, while the modulus will be the first
positive number one visit, because the second argument corresponding to y
is positive.

Examples: Let a = 7, b = 3.5, c = 3.1415, d = -3, e = 2 then:

- a ≡ -7
abs a ≡ 7

9



The VDM++ Language

abs d ≡ 3
floor a <= a ≡ true
a + d ≡ 4
a * b ≡ 24.5
a / b ≡ 2
a div e ≡ 3
a div d ≡ -2
a mod e ≡ 1
a mod d ≡ -2
-a mod d ≡ -1
a rem e ≡ 1
a rem d ≡ 1
-a rem d ≡ -1
3**2 + 4**2 = 5**2 ≡ true
b < c ≡ false
b > c ≡ true
a <= d ≡ false
b >= e ≡ true
a = e ≡ false
a = 7.0 ≡ true
c <> d ≡ true
abs c < 0 ≡ false
(a div e) * e ≡ 6

4.1.3 The Character Type

The character type contains all the single character elements of the VDM char-
acter set (see Table 12 on page 163).

Name: Char

Symbol: char

Values: ’a’, ’b’, . . . , ’1’, ’2’, . . . ’+’, ’-’ . . .

Operators: Assume that c1 and c2 in the following denote arbitrary characters:

Operator Name Type
c1 = c2 Equal char ∗ char → bool
c1 <> c2 Not equal char ∗ char → bool

10



The VDM++ Language

Examples:

’a’ = ’b’ ≡ false
’1’ = ’c’ ≡ false
’d’ <> ’7’ ≡ true
’e’ = ’e’ ≡ true

4.1.4 The Quote Type

The quote type corresponds to enumerated types in a programming language like
Pascal. However, instead of writing the different quote literals between curly
brackets in VDM++ it is done by letting a quote type consist of a single quote
literal and then let them be a part of a union type.

Name: Quote

Symbol: e.g. <QuoteLit>

Values: <RED>, <CAR>, <QuoteLit>, . . .

Operators: Assume that q and r in the following denote arbitrary quote values
belonging to an enumerated type T:

Operator Name Type
q = r Equal T ∗ T → bool
q <> r Not equal T ∗ T → bool

Examples: Let T be the type defined as:

T = <France> | <Denmark> | <SouthAfrica> | <SaudiArabia>

If for example a = <France> then:

<France> = <Denmark> ≡ false
<SaudiArabia> <> <SouthAfrica> ≡ true
a <> <France> ≡ false

4.1.5 The Token Type

The token type consists of a countably infinite set of distinct values, called tokens.
The only operations that can be carried out on tokens are equality and inequality.
In VDM++, tokens cannot be individually represented whereas they can be
written with a mk token around an arbitrary expression. This is a way of enabling

11



The VDM++ Language

testing of specifications which contain token types. However, in order to resemble
the VDM-SL standard these token values cannot be decomposed by means of any
pattern matching and they cannot be used for anything other than equality and
inequality comparisons.

Name: Token

Symbol: token

Values: mk token(5), mk token({9, 3}), mk token([true, {}]), . . .

Operators: Assume that s and t in the following denote arbitrary token values:

Operator Name Type
s = t Equal token ∗ token → bool
s <> t Not equal token ∗ token → bool

Examples: Let for example s = mk token(6) and let t = mk token(1) in:

s = t ≡ false
s <> t ≡ true
s = mk token(6) ≡ true

4.2 Compound Types

In the following compound types will be presented. Each of them will contain:

• The syntax for the compound type definition.

• An equation illustrating how to use the construct.

• Examples of how to construct values belonging to the type. In most cases
there will also be given a forward reference to the section where the syntax
of the basic constructor expressions is given.

• Built-in operators for values belonging to the type7.

• Semantics of the built-in operators.

• Examples illustrating how the built-in operators can be used.

7These operators are used in either unary or binary expressions which are given with all the
operators in section 7.3.

12



The VDM++ Language

For each of the built-in operators the name, the symbol used and the type of
the operator will be given together with a description of its semantics (except
that the semantics of Equality and Inequality is not described, since it follows
the usual semantics). In the semantics description identifiers refer to those used
in the corresponding definition of operator type, e.g. m, m1, s, s1 etc.

4.2.1 Set Types

A set is an unordered collection of values, all of the same type8, which is treated
as a whole. All sets in VDM++ are finite, i.e. they contain only a finite number
of elements. The elements of a set type can be arbitrarily complex, they could
for example be sets themselves.

In the following this convention will be used: A is an arbitrary type, S is a set
type, s, s1, s2 are set values, ss is a set of set values, e, e1, e2 and en are
elements from the sets, bd1, bd2, . . . , bdm are bindings of identifiers to sets or
types, and P is a logical predicate.

Syntax: type = set type
| . . . ;

set type = ‘set of’, type ;

Equation: S = set of A

Constructors:

Set enumeration: {e1, e2, ..., en} constructs a set of the enumer-
ated elements. The empty set is denoted by {}.

Set comprehension: {e | bd1, bd2, ..., bdm & P} constructs a set
by evaluating the expression e on all the bindings for which the pred-
icate P evaluates to true. A binding is either a set binding or a type
binding9. A set bind bdn has the form pat1, ..., patp in set s,
where pati is a pattern (normally simply an identifier), and s is a
set constructed by an expression. A type binding is similar, in the
sense that in set is replaced by a colon and s is replaced with a type
expression.

8Note however that it is always possible to find a common type for two values by the use of
a union type (see section 4.2.6.)

9Notice that type bindings cannot be executed by the interpreter because in general they
are not executable (see section 9 for further information about this).

13



The VDM++ Language

The syntax and semantics for all set expressions are given in section 7.7.

Operators:

Operator Name Type
e in set s1 Membership A ∗ set of A→ bool
e not in set s1 Not membership A ∗ set of A→ bool
s1 union s2 Union set of A ∗ set of A→ set of A
s1 inter s2 Intersection set of A ∗ set of A→ set of A
s1 \ s2 Difference set of A ∗ set of A→ set of A
s1 subset s2 Subset set of A ∗ set of A→ bool
s1 psubset s2 Proper subset set of A ∗ set of A→ bool
s1 = s2 Equality set of A ∗ set of A→ bool
s1 <> s2 Inequality set of A ∗ set of A→ bool
card s1 Cardinality set of A→ nat
dunion ss Distributed union set of set of A→ set of A
dinter ss Distributed intersection set of set of A→ set of A
power s1 Finite power set set of A→ set of set of A

Note that the types A, set of A and set of set of A are only meant to illustrate
the structure of the type. For instance it is possible to make a union between
two arbitrary sets s1 and s2 and the type of the resultant set is the union
type of the two set types. Examples of this will be given in section 4.2.6.

Semantics of Operators:

Operator Name Semantics Description

Membership tests if e is a member of the set s1
Not membership tests if e is not a member of the set s1
Union yields the union of the sets s1 and s2, i.e. the set

containing all the elements of both s1 and s2.
Intersection yields the intersection of sets s1 and s2, i.e. the

set containing the elements that are in both s1
and s2.

Difference yields the set containing all the elements from s1
that are not in s2. s2 need not be a subset of s1.

Subset tests if s1 is a subset of s2, i.e. whether all elements
from s1 are also in s2. Notice that any set is a
subset of itself.

Proper subset tests if s1 is a proper subset of s2, i.e. it is a subset
and s2\s1 is non-empty.

Cardinality yields the number of elements in s1.

14



The VDM++ Language

Operator Name Semantics Description

Distributed union the resulting set is the union of all the elements
(these are sets themselves) of ss, i.e. it contains
all the elements of all the elements/sets of ss.

Distributes inter-
section

the resulting set is the intersection of all the ele-
ments (these are sets themselves) of, i.e. it contains
the elements that are in all the elements/sets of ss.
ss must be non-empty.

Finite power set yields the power set of s1, i.e. the set of all subsets
of s1.

Examples: Let s1 = {<France>,<Denmark>,<SouthAfrica>,<SaudiArabia>},
s2 = {2, 4, 6, 8, 11} and s3 = {} then:

<England> in set s1 ≡ false
10 not in set s2 ≡ true
s2 union s3 ≡ {2, 4, 6, 8, 11}
s1 inter s3 ≡ {}
(s2 \ {2,4,8,10}) union {2,4,8,10} = s2 ≡ false
s1 subset s3 ≡ false
s3 subset s1 ≡ true
s2 psubset s2 ≡ false
s2 <> s2 union {2, 4} ≡ false
card s2 union {2, 4} ≡ 5
dunion {s2, {2,4}, {4,5,6}, {0,12}} ≡ {0,2,4,5,6,8,11,12}
dinter {s2, {2,4}, {4,5,6}} ≡ {4}
dunion power {2,4} ≡ {2,4}
dinter power {2,4} ≡ {}

4.2.2 Sequence Types

A sequence value is an ordered collection of elements of some type indexed by 1,
2, ..., n; where n is the length of the sequence. A sequence type is the type
of finite sequences of elements of a type, either including the empty sequence
(seq0 type) or excluding it (seq1 type). The elements of a sequence type can be
arbitrarily complex; they could e.g. be sequences themselves.

In the following this convention will be used: A is an arbitrary type, L is a sequence
type, S is a set type, l, l1, l2 are sequence values, ll is a sequence of sequence
values. e1, e2 and en are elements in these sequences, i will be a natural number,

15



The VDM++ Language

P is a predicate and e is an arbitrary expression.

Syntax: type = seq type
| . . . ;

seq type = seq0 type
| seq1 type ;

seq0 type = ‘seq of’, type ;

seq1 type = ‘seq1 of’, type ;

Equation: L = seq of A or L = seq1 of A

Constructors:

Sequence enumeration: [e1, e2,..., en] constructs a sequence of the
enumerated elements. The empty sequence will be written as []. A
text literal is a shorthand for enumerating a sequence of characters
(e.g. "ifad" = [’i’,’f’,’a’,’d’]).

Sequence comprehension: [e | id in set S & P] constructs a sequence
by evaluating the expression e on all the bindings for which the pred-
icate P evaluates to true. The expression e will use the identifier id.
S is a set of numbers and id will be matched to the numbers in the
normal order (the smallest number first).

The syntax and semantics of all sequence expressions are given in sec-
tion 7.8.

Operators:

Operator Name Type
hd l Head seq1 of A→ A
tl l Tail seq1 of A→ seq of A
len l Length seq of A→ nat
elems l Elements seq of A→ set of A
inds l Indexes seq of A→ set of nat1
l1 ^ l2 Concatenation (seq of A) ∗ (seq of A) → seq of A
conc ll Distributed concatenation seq of seq of A→ seq of A
l ++ m Sequence modification seq of A ∗ map nat1 to A→ seq of A
l(i) Sequence application seq of A ∗ nat1 → A
l1 = l2 Equality (seq of A) ∗ (seq of A) → bool
l1 <> l2 Inequality (seq of A) ∗ (seq of A) → bool

16



The VDM++ Language

The type A is an arbitrary type and the operands for the concatenation and
distributed concatenation operators do not have to be of the same (A) type.
The type of the resultant sequence will be the union type of the types of
the operands. Examples will be given in section 4.2.6.

Semantics of Operators:

Operator Name Semantics Description

Head yields the first element of l. l must be a non-
empty sequence.

Tail yields the subsequence of l where the first element
is removed. l must be a non-empty sequence.

Length yields the length of l.
Elements yields the set containing all the elements of l.
Indexes yields the set of indexes of l, i.e. the set

{1,...,len l}.
Concatenation yields the concatenation of l1 and l2, i.e. the se-

quence consisting of the elements of l1 followed by
those of l2, in order.

Distributed con-
catenation

yields the sequence where the elements (these are
sequences themselves) of ll are concatenated: the
first and the second, and then the third, etc.

Sequence modifica-
tion

the elements of l whose indexes are in the domain
of m are modified to the range value that the index
maps into. dom m must be a subset of inds l

Sequence applica-
tion

yields the element of index from l. i must be in
the indexes of l.

Examples: Let l1 = [3,1,4,1,5,9,2], l2 = [2,7,1,8],
l3 = [<England>, <Rumania>, <Colombia>, <Tunisia>] then:

len l1 ≡ 7
hd (l1^l2) ≡ 3
tl (l1^l2) ≡ [1,4,1,5,9,2,2,7,1,8]
l3(len l3) ≡ <Tunisia>
"England"(2) ≡ ’n’
conc [l1,l2] = l1^l2 ≡ true
conc [l1,l1,l2] = l1^l2 ≡ false
elems l3 ≡ { <England>, <Rumania>,

<Colombia>,<Tunisia>}
(elems l1) inter (elems l2) ≡ {1,2}
inds l1 ≡ {1,2,3,4,5,6,7}

17



The VDM++ Language

(inds l1) inter (inds l2) ≡ {1,2,3,4}
l3 ++ {2 |-> <Germany>,4 |-> <Nigeria>} ≡ [ <England>, <Germany>,

<Colombia>, <Nigeria>]

4.2.3 Map Types

A map type from a type A to a type B is a type that associates with each element
of A (or a subset of A) an element of B. A map value can be thought of as an
unordered collection of pairs. The first element in each pair is called a key,
because it can be used as a key to get the second element (called the information
part) in that pair. All key elements in a map must therefore be unique. The set of
all key elements is called the domain of the map, while the set of all information
values is called the range of the map. All maps in VDM++ are finite. The
domain and range elements of a map type can be arbitrarily complex, they could
e.g. be maps themselves.

A special kind of map is the injective map. An injective map is one for which
no element of the range is associated with more than one element of the domain.
For an injective map it is possible to invert the map.

In the following this convention will be used: m, m1 and m2 are maps from an
arbitrary type A to another arbitrary type B, ms is a set of map values, a, a1, a2
and an are elements from A while b, b1, b2 and bn are elements from B and P is
a logic predicate. e1 and e2 are arbitrary expressions and s is an arbitrary set.

Syntax: type = map type
| . . . ;

map type = general map type
| injective map type ;

general map type = ‘map’, type, ‘to’, type ;

injective map type = ‘inmap’, type, ‘to’, type ;

Equation: M = map A to B or M = inmap A to B

Constructors:

Map enumeration: {a1 |-> b1, a2 |-> b2, ..., an |-> bn} constructs
a mapping of the enumerated maplets. The empty map will be written
as {|->}.

18



The VDM++ Language

Map comprehension: {ed |-> er | bd1, ..., bdn & P} constructs a
mapping by evaluating the expressions ed and er on all the possible
bindings for which the predicate P evaluates to true. bd1, ..., bdn
are bindings of free identifiers from the expressions ed and er to sets
or types.

The syntax and semantics of all map expressions are given in section 7.9.

Operators:

Operator Name Type
dom m Domain (map A to B) → set of A
rng m Range (map A to B) → set of B
m1 munion m2 Merge (map A to B) ∗ (map A to B) → map A to B
m1 ++ m2 Override (map A to B) ∗ (map A to B) → map A to B
merge ms Distributed merge set of (map A to B) → map A to B
s <: m Domain restrict to (set of A) ∗ (map A to B) → map A to B
s <-: m Domain restrict by (set of A) ∗ (map A to B) → map A to B
m :> s Range restrict to (map A to B) ∗ (set of B) → map A to B
m :-> s Range restrict by (map A to B) ∗ (set of B) → map A to B
m(d) Map apply (map A to B) ∗ A→ B
m1 comp m2 Map composition (map B to C ) ∗ (map A to B) → map A to C
m ** n Map iteration (map A to A) ∗ nat → map A to A
m1 = m2 Equality (map A to B) ∗ (map A to B) → bool
m1 <> m2 Inequality (map A to B) ∗ (map A to B) → bool
inverse m Map inverse inmap A to B → inmap B to A

Semantics of Operators: Two maps m1 and m2 are compatible if any common
element of dom m1 and dom m2 is mapped to the same value by both maps.

Operator Name Semantics Description

Domain yields the domain (the set of keys) of m.
Range yields the range (the set of information values) of

m.
Merge yields a map combined by m1 and m2 such that

the resulting map maps the elements of dom m1 as
does m1, and the elements of dom m2 as does m2.
The two maps must be compatible.

Override overrides and merges m1 with m2, i.e. it is like a
merge except that m1 and m2 need not be compat-
ible; any common elements are mapped as by m2
(so m2 overrides m1).

19



The VDM++ Language

Operator Name Semantics Description

Distributed merge yields the map that is constructed by merging all
the maps in ms. The maps in ms must be compat-
ible.

Domain restricted
to

creates the map consisting of the elements in m
whose key is in s. s need not be a subset of dom
m.

Domain restricted
by

creates the map consisting of the elements in m
whose key is not in s. s need not be a subset of
dom m.

Range restricted to creates the map consisting of the elements in m
whose information value is in s. s need not be a
subset of rng m.

Range restricted by creates the map consisting of the elements in m
whose information value is not in s. s need not be
a subset of rng m.

Map apply yields the information value whose key is d. d must
be in the domain of m.

Map composition yields the the map that is created by composing m2
elements with m1 elements. The resulting map is a
map with the same domain as m2. The information
value corresponding to a key is the one found by
first applying m2 to the key and then applying m1
to the result. rng m2 must be a subset of dom m1.

Map iteration yields the map where m is composed with itself
n times. n=0 yields the identity map where each
element of dom m is map into itself; n=1 yields m
itself. For n>1, the range of m must be a subset of
dom m.

Map inverse yields the inverse map of m. m must be a 1-to-1
mapping.

Examples: Let

m1 = { <France> |-> 9, <Denmark> |-> 4,
<SouthAfrica> |-> 2, <SaudiArabia> |-> 1},

m2 = { 1 |-> 2, 2 |-> 3, 3 |-> 4, 4 |-> 1 },
Europe = { <France>, <England>, <Denmark>, <Spain> }

then:

20



The VDM++ Language

dom m1 ≡ {<France>, <Denmark>,
<SouthAfrica>,
<SaudiArabia>}

rng m1 ≡ {1,2,4,9}

m1 munion {<England> |-> 3} ≡ {<France> |-> 9,
<Denmark> |-> 4,
<England> |-> 3,
<SaudiArabia> |-> 1,
<SouthAfrica> |-> 2}

m1 ++ {<France> |-> 8,
<England> |-> 4}

≡ {<France> |-> 8,
<Denmark> |-> 4,
<SouthAfrica> |-> 2,
<SaudiArabia> |-> 1,
<England> |-> 4}

merge{ {<France> |-> 9,
<Spain> |-> 4}

{<France> |-> 9,
<England> |-> 3,
<UnitedStates> |-> 1}}

≡ {<France> |-> 9,
<England> |-> 3,
<Spain> |-> 4,
<UnitedStates> |-> 1}

Europe <: m1 ≡ {<France> |-> 9,
<Denmark> |-> 4}

Europe <-: m1 ≡ {<SouthAfrica> |-> 2,
<SaudiArabia> |-> 1}

m1 :> {2,...,10} ≡ {<France> |-> 9,
<Denmark> |-> 4,
<SouthAfrica> |-> 2}

m1 :-> {2,...,10} ≡ {<SaudiArabia> |-> 1}

m1 comp ({"France" |-> <France>}) ≡ {"France" |-> 9}

m2 ** 3 ≡ {1 |-> 4, 2 |-> 1,
3 |-> 2, 4 |-> 3 }

21



The VDM++ Language

inverse m2 ≡ {2 |-> 1, 3 |-> 2,
4 |-> 3, 1 |-> 4 }

m2 comp (inverse m2) ≡ {1 |-> 1, 2 |-> 2,
3 |-> 3, 4 |-> 4 }

4.2.4 Product Types

The values of a product type are called tuples. A tuple is a fixed length list where
the i’th element of the tuple must belong to the i’th element of the product type.

Syntax: type = product type
| . . . ;

product type = type, ‘*’, type, { ‘*’, type } ;

A product type consists of at least two subtypes.

Equation: T = A1 * A2 * ... * An

Constructors: The tuple constructor: mk (a1, a2, ..., an)

The syntax and semantics for the tuple constructor are given in section 7.10.

Operators:

Operator Name Type
t.#n Select T ∗ nat → Ti
t1 = t2 Equality T ∗ T → bool
t1 <> t2 Inequality T ∗ T → bool

The only operators working on tuples are component select, equality and
inequality. Tuple components may be accessed using the select operator or
by matching against a tuple pattern. Details of the semantics of the tuple
select operator and an example of its use are given in section 7.12.

Examples: Let a = mk (1, 4, 8), b = mk (2, 4, 8) then:

a = b ≡ false
a <> b ≡ true
a = mk (2,4) ≡ false

22



The VDM++ Language

4.2.5 Composite Types

Composite types correspond to record types in programming languages. Thus,
elements of this type are somewhat similar to the tuples described in the section
about product types above. The difference between the record type and the
product type is that the different components of a record can be directly selected
by means of corresponding selector functions. In addition records are tagged with
an identifier which must be used when manipulating the record. The only way
to tag a type is by defining it as a record. It is therefore common usage to define
records with only one field in order to give it a tag. This is another difference to
tuples as a tuple must have at least two entries whereas records can be empty.

In VDM++, is is a reserved prefix for names and it is used in an is expression.
This is a built-in operator which is used to determine which record type a record
value belongs to. It is often used to discriminate between the subtypes of a union
type and will therefore be explained further in section 4.2.6. In addition to record
types the is operator can also determine if a value is of one of the basic types.

In the following this convention will be used: A is a record type, A1, ..., Am
are arbitrary types, r, r1, and r2 are record values, i1, ..., im are selectors
from the r record value, e1, ..., em are arbitrary expressions.

Syntax: type = composite type
| . . . ;

composite type = ‘compose’, identifier, ‘of’, field list, ‘end’ ;

field list = { field } ;

field = [ identifier, ‘:’ ], type
| [ identifier, ‘:-’ ], type ;

or the shorthand notation

composite type = identifier, ‘::’, field list ;

where identifier denotes both the type name and the tag name.

Equation:

A :: selfirst : A1
selsec : A2

23



The VDM++ Language

or

A :: selfirst : A1
selsec :- A2

or

A :: A1 A2

In the second notation, an equality abstraction field is used for the second
field selsec. The minus indicates that such a field is ignored when com-
paring records using the equality operator. In the last notation the fields
of A can only be accessed by pattern matching (like it is done for tuples) as
the fields have not been named.

In the last notation the fields of A can only be accessed by pattern matching
(as is done for tuples) since the fields have not been named.

The shorthand notation :: used in the two previous examples where the tag
name equals the type name, is the notation most used. The more general
compose notation is typically used if a composite type has to be specified
directly as a component of a more complex type:

T = map S to compose A of A1 A2 end

It should be noted however that composite types can only be used in type
definitions, and not e.g. in signatures to functions or operations.

Typically composite types are used as alternatives in a union type definition
(see 4.2.6) such as:

MasterA = A | B | ...

where A and B are defined as composite types themselves. In this situation
the is predicate can be used to distingush the alternatives.

Constructors: The record constructor: mk A(a, b) where a belongs to the type
A1 and b belongs to the type A2.

The syntax and semantics for all record expressions are given in section 7.11.

24



The VDM++ Language

Operators:

Operator Name Type
r.i Field select A ∗ Id → Ai
r1 = r2 Equality A ∗ A→ bool
r1 <> r2 Inequality A ∗ A→ bool
is A(r1) Is Id ∗MasterA→ bool

Semantics of Operators:

Operator Name Semantics Description

Field select yields the value of the field with fieldname i in the
record value r. r must have a field with name i.

Examples: Let Score be defined as

Score :: team : Team
won : nat
drawn : nat
lost : nat
points : nat;

Team = <Brazil> | <France> | ...

and let
sc1 = mk Score (<France>, 3, 0, 0, 9),
sc2 = mk Score (<Denmark>, 1, 1, 1, 4),
sc3 = mk Score (<SouthAfrica>, 0, 2, 1, 2) and
sc4 = mk Score (<SaudiArabia>, 0, 1, 2, 1).

Then
sc1.team ≡ <France>
sc4.points ≡ 1
sc2.points > sc3.points ≡ true
is Score(sc4) ≡ true
is bool(sc3) ≡ false
is int(sc1.won) ≡ true
sc4 = sc1 ≡ false
sc4 <> sc2 ≡ true

The equality abstraction field, written using ‘:-’ instead of ‘:’, may be
useful, for example, when working with lower level models of an abstract
syntax of a programming language. For example, one may wish to add a
position information field to a type of identifiers without affecting the true
identity of identifiers:

25



The VDM++ Language

Id :: name : seq of char
pos :- nat

The effect of this will be that the pos field is ignored in equality comparisons,
e.g. the following would evaluate to true:

mk_Id("x",7) = mk_Id("x",9)

In particular this can be useful when looking up in an environment which
is typically modelled as a map of the following form:

Env = map Id to Val

Such a map will contain at most one index for a specific identifier, and a
map lookup will be independent of the pos field.

Moreover, the equality abstraction field will affect set expressions. For
example,

{mk_Id("x",7),mk_Id("y",8),mk_Id("x",9)}

will be equal to

{mk_Id("x",?),mk_Id("y",8)}

where the question mark stands for 7 or 9.

Finally, note that for equality abstraction fields valid patterns are limited
to don’t care and identifier patterns. Since equality abstraction fields are
ignored when comparing two values, it does not make sense to use more
complicated patterns.

4.2.6 Union and Optional Types

The union type corresponds to a set-theoretic union, i.e. the type defined by
means of a union type will contain all the elements from each of the components
of the union type. It is possible to use types that are not disjoint in the union
type, even though such usage would be bad practice. However, the union type is
normally used when something belongs to one type from a set of possible types.
The types which constitute the union type are often composite types. This makes

26



The VDM++ Language

it possible, using the is operator, to decide which of these types a given value of
the union type belongs to.

The optional type [T] is a kind of shorthand for a union type T | nil, where nil
is used to denote the absence of a value. However, it is not possible to use the
set {nil} as a type so the only types nil will belong to will be optional types.

Syntax: type = union type
| optional type
| . . . ;

union type = type, ‘|’, type, { ‘|’, type } ;

optional type = ‘[’, type, ‘]’ ;

Equation: B = A1 | A2 | ... | An

Constructors: None.

Operators:

Operator Name Type
t1 = t2 Equality A ∗ A→ bool
t1 <> t2 Inequality A ∗ A→ bool

Examples: In this example Expr is a union type whereas Const, Var, Infix and
Cond are composite types defined using the shorthand :: notation.

Expr = Const | Var | Infix | Cond;
Const :: nat | bool;
Var :: id:Id

tp: [<Bool> | <Nat>];
Infix :: Expr * Op * Expr;
Cond :: test : Expr

cons : Expr
altn : Expr

and let expr = mk Cond(mk Var("b",<Bool>),mk Const(3),
mk Var("v",nil)) then:

is Cond(expr) ≡ true
is Const(expr.cons) ≡ true
is Var(expr.altn) ≡ true
is Infix(expr.test) ≡ false

27



The VDM++ Language

Using union types we can extend the use of previously defined operators.
For instance, interpreting = as a test over bool | nat we have

1 = false ≡ false

Similarly we can take use union types for taking unions of sets and concate-
nating sequences:

{1,2} union {false,true} ≡ {1,2, false,true}
[’a’,’b’]^[<c>,<d>] ≡ [’a’,’b’, <c>,<d>]

In the set union, we take the union over sets of type nat | bool; for the
sequence concatenation we are manipulating sequences of type char | <c>
| <d>.

4.2.7 The Object Reference Type

The object reference type has been added as part of the standard VDM-SL types.
Therefore there is no direct way of restricting the use of object reference types
(and thus of objects) in a way that conforms to pure object oriented principles;
no additional structuring mechanisms than classes are foreseen. From these prin-
ciples it follows that the use of an object reference type in combination with a
type constructor (record, map, set, etc.) should be treated with caution.

A value of the object reference type can be regarded as a reference to an object.
If, for example, an instance variable (see section 11) is defined to be of this type,
this makes the class in which that instance variable is defined, a ‘client’ of the
class in the object reference type; a clientship relation is established between the
two classes.

An object reference type is denoted by a class name. The class name in the object
reference type must be the name of a class defined in the specification.

The only operator defined for values of this type is the test for equality (‘=’).
Equality is based on references rather than values. That is, if o1 and o2 are two
distinct objects which happen to have the same contents, o1 = o2 will yield false.

Constructors Object references are constructed using the new expression (see
section 7.13).

Operators

Operator Name Type
t1 = t2 Equality A ∗ A→ bool

28



The VDM++ Language

Examples An example of the use of object references is in the definition of the
class of binary trees:

class Tree

types

protected tree = <Empty> | node;

public node :: lt: Tree
nval : int
rt : Tree

instance variables
protected root: tree := <Empty>;

end Tree

Here we define the type of nodes, which consist of a node value, and ref-
erences to left and right tree objects. Details of access specifiers may be
found in section 14.3.

4.2.8 Function Types

In VDM++ function types can also be used in type definitions. A function
type from a type A (actually a list of types) to a type B is a type that associates
with each element of A an element of B. A function value can be thought of as
a function in a programming language which has no side-effects (i.e. it does not
use any global variables).

Such usage can be considered advanced in the sense that functions are used as
values (thus this section may be skipped during the first reading). Function values
may be created by lambda expressions (see below), or by function definitions,
which are described in section 6. Function values can be of higher order in the
sense that they can take functions as arguments or return functions as results.
In this way functions can be Curried such that a new function is returned when
the first set of parameters are supplied (see the examples below).

Syntax: type = partial function type
| . . . ;

29



The VDM++ Language

function type = partial function type
| total function type ;

partial function type = discretionary type, ‘->’, type ;

total function type = discretionary type, ‘+>’, type ;

discretionary type = type | ‘(’,‘)’ ;

Equation: F = A +> B10 or F = A -> B

Constructors: In addition to the traditional function definitions the only way
to construct functions is by the lambda expression: lambda pat1 : T1,
..., patn : Tn & body where the patj are patterns, the Tj are type
expressions, and body is the body expression which may use the pattern
identifiers from all the patterns.

The syntax and semantics for the lambda expression are given in sec-
tion 7.16.

Operators:

Operator Name Type
f(a1,...,an) Function apply A1 ∗ · · · ∗ An → B
f1 comp f2 Function composition (B → C ) ∗ (A→ B) → (A→ C )
f ** n Function iteration (A→ A) ∗ nat → (A→ A)
t1 = t2 Equality A ∗ A→ bool
t1 <> t2 Inequality A ∗ A→ bool

Note that equality and inequality between type values should be used with
great care. In VDM++ this corresponds to the mathematical equality
(and inequality) which is not computable for infinite values like general
functions. Thus, in the interpreter the equality is on the abstract syntax of
the function value (see inc1 and inc2 below).

Semantics of Operators:

Operator Name Semantics Description

Function apply yields the result of applying the function f to the
values of aj . See the definition of apply expressions
in Section 7.12.

10Note that the total function arrow can only be used in signatures of totally defined functions
and thus not in a type definition.

30



The VDM++ Language

Operator Name Semantics Description

Function composi-
tion

it yields the function equivalent to applying first
f2 and then applying f1 to the result. f1, but not
f2 may be Curried.

Function iteration yields the funciton equivalent to applying f n
times. n=0 yields the identity function which just
returns the value of its parameter; n=1 yields the
function itself. For n>1, the result of f must be
contained in its parameter type.

Examples: Let the following function values be defined:

f1 = lambda x : nat & lambda y : nat & x + y
f2 = lambda x : nat & x + 2
inc1 = lambda x : nat & x + 1
inc2 = lambda y : nat & y + 1

then the following holds:

f1(5) ≡ lambda y :nat & 5 + y
f2(4) ≡ 6
f1 comp f2 ≡ lambda x :nat & lambda y :nat & (x + 2) + y
f2 ** 4 ≡ lambda x :nat & x + 8
inc1 = inc2 ≡ false

Notice that the equality test does not yield the expected result with respect
to the semantics of VDM++ . Thus, one should be very careful with the
usage of equality for infinite values like functions.

4.3 Invariants

If the data types specified by means of equations as described above contain
values which should not be allowed, then it is possible to restrict the values in
a type by means of an invariant. The result is that the type is restricted to a
subset of its original values. Thus, by means of a predicate the acceptable values
of the defined type are limited to those where this expression is true.

The general scheme for using invariants looks like this:

Id = Type
inv pat == expr

31



The VDM++ Language

where pat is a pattern matching the values belonging to the type Id, and expr is
a truth-valued expression, involving some or all of the identifiers from the pattern
pat.

If an invariant is defined, a new (total) function is implicitly created with the
signature:

inv Id : Type +> bool

This function can be used within other invariant, function or operation definitions.

For instance, recall the record type Score defined on page 25. We can ensure
that the number of points awarded is consistent with the number of games won
and drawn using an invariant:

Score :: team : Team
won : nat
drawn : nat
lost : nat
points : nat

inv sc == sc.points = 3 * sc.won + sc.drawn;

The invariant function implicitly created for this type is:

inv Score : Score +> bool
inv Score (sc) ==
sc.points = 3 * sc.won + sc.drawn;

5 Algorithm Definitions

In VDM++ algorithms can be defined by both functions and operations. How-
ever, they do not directly correspond to functions in traditional programming
languages. What separates functions from operations in VDM++ is the use of
local and global variables. Operations can manipulate both the global variables
and any local variables. Both local and global variables will be described later.
Functions are pure in the sense that they cannot access global variables and they
are not allowed to define local variables. Thus, functions are purely applicative
while operations are imperative.

32



The VDM++ Language

Functions and operations can be defined both explicitly (by means of an explicit
algorithm definition) or implicitly (by means of a pre-condition and/or a post
condition). An explicit algorithm definition for a function is called an expression
while for an operation it is called a statement. A pre-condition is a truth-valued
expression which specifies what must hold before the function/operation is evalu-
ated. A pre-condition can only refer to parameter values and global variables (if
it is an operation). A post-condition is also a truth valued expression which spec-
ifies what must hold after the function/operation is evaluated. A post-condition
can refer to the result identifier, the parameter values, the current values of global
variables and the old values of global variables. The old values of global variables
are the values of the variables as they were before the operation was evaluated.
Only operations can refer to the old values of global variables in a post-condition
as functions are not allowed to change the global variables.

However, in order to be able to execute both functions and operations by the
interpreter they must be defined explicitly11. In VDM++ it is also possible for
explicit function and operation definitions to specify an additional pre- and a post-
condition. In the post-condition of explicit function and operation definitions the
result value must be referred to by the reserved word RESULT.

6 Function Definitions

In VDM++ we can define first order and higher order functions. A higher order
function is either a Curried function (a function that returns a function as result),
or a function that takes functions as arguments. Furthermore, both first order
and higher order functions can be polymorphic. In general, the syntax for the
definition of a function is:

function definitions = ‘functions’, [ access function definition,
{ ‘;’, access function definition }, [ ‘;’ ] ] ;

access function definition = ([ access ], [ ‘static’ ]) | ([ ‘static’ ], [ access ]),
function definition ;

access = ‘public’

11Implicitly specified functions and operations cannot in general be executed because their
post-condition does not need to directly relate the output to the input. Often it is done by
specifying the properties the output must satisfy.

33



The VDM++ Language

| ‘private’
| ‘protected’ ;

function definition = explicit function definition
| implicit function definition
| extended explicit function definition ;

explicit function definition = identifier,
[ type variable list ], ‘:’, function type,
identifier, parameters list, ‘==’,
function body,
[ ‘pre’, expression ],
[ ‘post’, expression ] ;

implicit function definition = identifier, [ type variable list ],
parameter types, identifier type pair list,
[ ‘pre’, expression ],
‘post’, expression ;

extended explicit function definition = identifier, [ type variable list ],
parameter types,
identifier type pair list,
‘==’, function body,
[ ‘pre’, expression ],
[ ‘post’, expression ] ;

type variable list = ‘[’, type variable identifier,
{ ‘,’, type variable identifier }, ‘]’ ;

identifier type pair list = identifier, ‘:’, type,
{ ‘,’, identifier, ‘:’, type } ;

parameter types = ‘(’, [ pattern type pair list ], ‘)’ ;

pattern type pair list = pattern list, ‘:’, type,
{ ‘,’, pattern list,‘:’, type } ;

34



The VDM++ Language

function type = partial function type
| total function type ;

partial function type = discretionary type, ‘->’, type ;

total function type = discretionary type, ‘+>’, type ;

discretionary type = type | ‘(’,‘)’ ;

parameters = ‘(’, [ pattern list ], ‘)’ ;

pattern list = pattern,{ ‘,’, pattern } ;

function body = expression
| ‘is not yet specified’
| ‘is subclass responsibility’ ;

Here is not yet specified may be used as the function body during development of
a model; is subclass responsibility indicates that implementation of this body must
be undertaken by any subclasses.

Details of the access and static specifiers can be found in section 14.3. Note
that a static function may not call non-static operations or functions, and self
expressions cannot be used in the definition of a static function.

A simple example of an explicit function definition is the function map inter
which takes two compatible maps over natural numbers and returns those maplets
common to both

map_inter: (map nat to nat) * (map nat to nat) -> map nat to nat
map_inter (m1,m2) ==
(dom m1 inter dom m2) <: m1

pre forall d in set dom m1 inter dom m2 & m1(d) = m2(d)

Note that we could also use the optional post condition to allow assertions about
the result of the function:

35



The VDM++ Language

map_inter: (map nat to nat) * (map nat to nat) -> map nat to nat
map_inter (m1,m2) ==
(dom m1 inter dom m2) <: m1

pre forall d in set dom m1 inter dom m2 & m1(d) = m2(d)
post dom RESULT = dom m1 inter dom m2

The same function can also be defined implicitly:

map_inter2 (m1,m2: map nat to nat) m: map nat to nat
pre forall d in set dom m1 inter dom m2 & m1(d) = m2(d)
post dom m = dom m1 inter dom m2 and

forall d in set dom m & m(d) = m1(d);

A simple example of an extended explicit function definition (non-standard) is the
function map disj which takes a pair of compatible maps over natural numbers
and returns the map consisting of those maplets unique to one or other of the
given maps:

map_disj (m1:map nat to nat,m2:map nat to nat) res : map nat to nat ==
(dom m1 inter dom m2) <-: m1 munion
(dom m1 inter dom m2) <-: m2

pre forall d in set dom m1 inter dom m2 & m1(d) = m2(d)
post dom res = (dom m1 union dom m2) \ (dom m1 inter dom m2)

and
forall d in set dom res & res(d) = m1(d) or res(d) = m2(d)

(Note here that an attempt to interpret the post-condition could potentially result
in a run-time error since m1(d) and m2(d) need not both be defined simultane-
ously.)

The functions map inter and map disj can be evaluated by the interpreter, but
the implicit function map inter2 cannot be evaluated. However, in all three cases
the pre- and post-conditions can be used in other functions; for instance from the
definition of map inter2 we get functions pre map inter2 and post map inter2
with the following signatures:

pre map_inter2 : (map nat to nat) * (map nat to nat) +> bool
post map_inter2 : (map nat to nat) * (map nat to nat) *

(map nat to nat) +> bool

36



The VDM++ Language

These kinds of functions are automatically created by the interpreter and they
can be used in other definitions (this technique is called quoting). In general, for
a function f with signature

f : T1 * ... * Tn -> Tr

defining a pre-condition for the function causes creation of a function pre f with
signature

pre f : T1 * ... * Tn +> bool

and defining a post-condition for the function causes creation of a function post f
with signature

post f : T1 * ... * Tn * Tr +> bool

6.1 Polymorphic Functions

Functions can also be polymorphic. This means that we can create generic func-
tions that can be used on values of several different types. For this purpose type
parameters (or type variables which are written like normal identifiers prefixed
with a @ sign) are used. Consider the polymorphic function to create an empty
bag:12

empty_bag[@elem] : () +> (map @elem to nat1)
empty_bag() ==

{ |-> }

Before we can use the above function, we have to instantiate the function empty bag
with a type, for example integers (see also section 7.12):

emptyInt = empty_bag[int]

Now we can use the function emptyInt to create a new bag to store integers.
More examples of polymorphic functions are:

12The examples for polymorphic functions are taken from [2]. Bags are modelled as maps from
the elements to their multiplicity in the bag. The multiplicity is at least 1, i.e. a non-element
is not part of the map, rather than being mapped to 0.

37



The VDM++ Language

num_bag[@elem] : @elem * (map @elem to nat1) +> nat
num_bag(e, m) ==

if e in set dom m
then m(e)
else 0;

plus_bag[@elem] : @elem * (map @elem to nat1) +> (map @elem to nat1)
plus_bag(e, m) ==
m ++ { e |-> num_bag[@elem](e, m) + 1 }

If pre- and or post-conditions are defined for polymorphic functions, the corre-
sponding predicate functions are also polymorphic. For instance if num bag was
defined as

num_bag[@elem] : @elem * (map @elem to nat1) +> nat
num_bag(e, m) ==
m(e)

pre e in set dom m

then the pre-condition function would be

pre num_bag[@elem] :@elem * (map @elem to nat1) +> bool

6.2 Higher Order Functions

Functions are allowed to receive other functions as arguments. A simple example
of this is the function nat filter which takes a sequence of natural numbers,
and a predicate, and returns the subsequence that satisfies this predicate:

nat_filter : (nat -> bool) * seq of nat -> seq of nat
nat_filter (p,ns) ==
[ns(i) | i in set inds ns & p(ns(i))];

Then nat filter (lambda x:nat & x mod 2 = 0, [1,2,3,4,5])≡ [2,4]. In
fact, this algorithm is not specific to natural numbers, so we may define a poly-
morphic version of this function:

38



The VDM++ Language

filter[@elem]: (@elem -> bool) * seq of @elem -> seq of @elem
filter (p,l) ==
[l(i) | i in set inds l & p(l(i))];

so filter[real](lambda x:real & floor x = x, [2.3,0.7,-2.1,3]) ≡ [3].

Functions may also return functions as results. An example of this is the function
fmap:

fmap[@elem]: (@elem -> @elem) -> seq of @elem -> seq of @elem
fmap (f)(l) ==

if l = []
then []
else [f(hd l)]^(fmap[@elem] (f)(tl l));

So fmap[nat](lambda x:nat & x * x)([1,2,3,4,5]) ≡ [ 1,4,9,16,25 ]

7 Expressions

In this subsection we will describe the different kinds of expressions one by one.
Each of them will be described by means of:

• A syntax description in BNF.

• An informal semantics description.

• An example illustrating its usage.

7.1 Let Expressions

Syntax: expression = let expression
| let be expression
| . . . ;

let expression = ‘let’, local definition { ‘,’, local definition },
‘in’, expression ;

39



The VDM++ Language

let be expression = ‘let’, bind, [ ‘be’, ‘st’, expression ], ‘in’,
expression ;

local definition = value definition
| function definition ;

value definition = pattern, [ ‘:’, type ], ‘=’, expression ;

where the “function definition” component is described in section 6.

Semantics: A simple let expression has the form:

let p1 = e1, ..., pn = en in e

where p1, ..., pn are patterns, e1, ..., en are expressions which match
the corresponding pattern pi, and e is an expression, of any type, involving
the pattern identifiers of p1, ..., pn. It denotes the value of the ex-
pression e in the context in which the patterns p1, ..., pn are matched
against the corresponding expressions e1, ..., en.

More advanced let expressions can also be made by using local function
definitions. The semantics of doing so is simply that the scope of such
locally defined functions is restricted to the body of the let expression.

In standard VDM-SL the collection of definitions may be mutually recursive.
However, in VDM++ this is not supported by the interpreter. Further-
more, the definitions must be ordered such that all constructs are defined
before they are used.

A let-be-such-that expression has the form:

let b be st e1 in e2

where b is a binding of a pattern to a set value (or a type), e1 is a boolean
expression, and e2 is an expression, of any type, involving the pattern
identifiers of the pattern in b. The be st e1 part is optional. The expression
denotes the value of the expression e2 in the context in which the pattern
from b has been matched against either an element in the set from b or
against a value from the type in b13. If the st e1 expression is present, only
such bindings where e1 evaluates to true in the matching context are used.

13Remember that only the set bindings can be executed by means of the interpreter.

40



The VDM++ Language

Examples: Let expressions are useful for improving readability especially by
contracting complicated expressions used more than once. For instance, we
can improve the function map disj from page 36:

map_disj : (map nat to nat) * (map nat to nat) -> map nat to nat
map_disj (m1,m2) ==

let inter_dom = dom m1 inter dom m2
in
inter_dom <-: m1 munion
inter_dom <-: m2

pre forall d in set dom m1 inter dom m2 & m1(d) = m2(d)

They are also convenient for decomposing complex structures into their
components. For instance, using the previously defined record type Score
(page 25) we can test whether one score is greater than another:

let mk Score(-,w1,-,-,p1) = sc1,
mk Score(-,w2,-,-,p2) = sc2

in (p1 > p2) or (p1 = p2 and w1 > w2)

In this particular example we extract the second and fifth components of
the two scores. Note that don’t care patterns (page 71) are used to indicate
that the remaining components are irrelevant for the processing done in the
body of this expression.

Let-be-such-that expressions are useful for abstracting away the non-essential
choice of an element from a set, in particular in formulating recursive def-
initions over sets. An example of this is a version of the sequence filter
function (page 38) over sets:

set_filter[@elem] : (@elem -> bool) -> (set of @elem) ->
(set of @elem)

set_filter(p)(s) ==
if s = {}
then {}
else let x in set s

in (if p(x) then {x} else {}) union
set_filter[@elem](p)(s \ {x});

We could alternatively have defined this function using a set comprehension
(described in section 7.7):

41



The VDM++ Language

set_filter[@elem] : (@elem -> bool) -> (set of @elem) ->
(set of @elem)

set_filter(p)(s) ==
{ x | x in set s & p(x)};

The last example shows how the optional “be such that” part (be st) can
be used. This part is especially useful when it is known that an element
with some property exists but an explicit expression for such an element is
not known or difficult to write. For instance we can exploit this expression
to write a selection sort algorithm:

remove : nat * seq of nat -> seq of nat
remove (x,l) ==

let i in set inds l be st l(i) = x
in l(1,...,i-1)^l(i+1,...,len l)

pre x in set elems l;

selection_sort : seq of nat -> seq of nat
selection_sort (l) ==

if l = []
then []
else let m in set elems l be st

forall x in set elems l & m <= x
in [m]^(selection_sort (remove(m,l)))

Here the first function removes a given element from the given list; the sec-
ond function repeatedly removes the least element in the unsorted portion
of the list, and places it at the head of the sorted portion of the list.

7.2 The Define Expression

This expression can only be used inside operations which will be described in
section 12. In order to deal with global variables inside the expression part an
extra expression construct is available inside operations.

Syntax: expression = . . .
| def expression
| . . . ;

42



The VDM++ Language

def expression = ‘def’, pattern bind, ‘=’, expression,
{ ‘;’, pattern bind, ‘=’, expression }, [ ‘;’ ],
‘in’, expression ;

Semantics: A define expression has the form:

def pb1 = e1;
...
pbn = en

in
e

The define expression corresponds to a let expression except that the right
hand side expressions may depend on the value of the local and/or global
variable and that it may not be mutually recursive. It denotes the value of
the expression e in the context in which the patterns (or binds) pb1, ...,
pbn are matched against the corresponding expressions e1, ..., en14.

Examples: The define expression is used in a pragmatic way, in order to make
the reader aware of the fact that the value of the expression depends upon
the global variable.

This can be illustrated by a small example:

def user = lib(copy) in
if user = <OUT>
then true
else false

where copy is defined in the context, lib is global variable (thus lib(copy)
can be considered as looking up the contents of a part of the variable).

The operation GroupRunnerUp expl in section 13.1 also gives an example
of a define expression.

14If binds are used, it simply means that the values which can match the pattern are further
constrained by the type or set expression as explained in section 8.

43



The VDM++ Language

7.3 Unary and Binary Expressions

Syntax: expression = . . .
| unary expression
| binary expression
| . . . ;

unary expression = prefix expression
| map inverse ;

prefix expression = unary operator, expression ;

unary operator = ‘+’ | ‘-’ | ‘abs’ | ‘floor’ | ‘not’
| ‘card’ | ‘power’ | ‘dunion’ | ‘dinter’
| ‘hd’ | ‘tl’ | ‘len’ | ‘elems’ | ‘inds’ | ‘conc’
| ‘dom’ | ‘rng’ | ‘merge’ ;

map inverse = ‘inverse’, expression ;

binary expression = expression, binary operator, expression ;

binary operator = ‘+’ | ‘-’ | ‘*’ | ‘/’
| ‘rem’ | ‘div’ | ‘mod’ | ‘**’
| ‘union’ | ‘inter’ | ‘\’ | ‘subset’
| ‘psubset’ | ‘in set’ | ‘not in set’
| ‘^’
| ‘++’ | ‘munion’ | ‘<:’ | ‘<-:’ | ‘:>’ | ‘:->’
| ‘and’ | ‘or’
| ‘=>’ | ‘<=>’ | ‘=’ | ‘<>’
| ‘<’ | ‘<=’ | ‘>’ | ‘>=’
| ‘comp’ ;

Semantics: Unary and binary expressions are a combination of operands and
operators denoting a value of a specific type. The signature of all these
operators is already given in section 4, so no further explanation will be
provided here. The map inverse unary operator is treated separately be-
cause it is written with postfix notation in the mathematical syntax.

Examples: Examples using these operators were given in section 4, so none will
be provided here.

44



The VDM++ Language

7.4 Conditional Expressions

Syntax: expression = . . .
| if expression
| cases expression
| . . . ;

if expression = ‘if’, expression, ‘then’, expression,
{ elseif expression }, ‘else’, expression ;

elseif expression = ‘elseif’, expression, ‘then’, expression ;

cases expression = ‘cases’, expression, ‘:’,
cases expression alternatives,
[ ‘,’, others expression ], ‘end’ ;

cases expression alternatives = cases expression alternative,
{ ‘,’, cases expression alternative } ;

cases expression alternative = pattern list, ‘->’, expression ;

others expression = ‘others’, ‘->’, expression ;

Semantics: If expressions and cases expressions allow the choice of one from a
number of expressions on the basis of the value of a particular expression.

The if expression has the form:

if e1
then e2
else e3

where e1 is a boolean expression, while e2 and e3 are expressions of any
type. The if expression denotes the value of e2 evaluated in the given con-
text if e1 evaluates to true in the given context. Otherwise the if expression
denotes the value of e3 evaluated in the given context. The use of an elseif
expression is simply a shorthand for a nested if then else expression in the
else part of the expression.

The cases expression has the form

45



The VDM++ Language

cases e :
p11, p12, ..., p1n -> e1,
... -> ...,
pm1, pm2, ..., pmk -> em,
others -> emplus1

end

where e is an expression of any type, all pij’s are patterns which are
matched one by one against the expression e. The ei’s are expressions of
any type, and the keyword others and the corresponding expression emplus1
are optional. The cases expression denotes the value of the ei expression
evaluated in the context in which one of the pij patterns has been matched
against e. The chosen ei is the first entry where it has been possible to
match the expression e against one of the patterns. If none of the patterns
match e an others clause must be present, and then the cases expression
denotes the value of emplus1 evaluated in the given context.

Examples: The if expression in VDM++ corresponds to what is used in most
programming languages, while the cases expression in VDM++ is more
general than most programming languages. This is shown by the fact that
real pattern matching is taking place, but also because the patterns do not
have to be constants as in most programming languages.

An example of the use of conditional expressions is provided by the speci-
fication of the mergesort algorithm:

lmerge : seq of nat * seq of nat -> seq of nat
lmerge (s1,s2) ==

if s1 = [] then s2
elseif s2 = [] then s1
elseif (hd s1) < (hd s2)
then [hd s1]^(lmerge (tl s1, s2))
else [hd s2]^(lmerge (s1, tl s2));

mergesort : seq of nat -> seq of nat
mergesort (l) ==

cases l:
[] -> [],
[x] -> [x],
l1^l2 -> lmerge (mergesort(l1), mergesort(l2))

end

46



The VDM++ Language

The pattern matching provided by cases expressions is useful for manipu-
lating members of type unions. For instance, using the type definition Expr
from page 27 we have:

print_Expr : Expr -> seq1 of char
print_Expr (e) ==

cases e:
mk Const(-) -> "Const of"^(print_Const(e)),
mk Var(id,-) -> "Var of"^id,
mk Infix(mk (e1,op,e2)) -> "Infix of"^print_Expr(e1)^","

^print_Op(op)^","
^print_Expr(e2),

mk Cond(t,c,a) -> "Cond of"^print_Expr(t)^","
^print_Expr(c)^","
^print_Expr(a)

end;

print_Const : Const -> seq1 of char
print_Const(mk Const(c)) ==

if is nat(c)
then "nat"
else -- must be bool

"bool";

The function print Op would be defined similarly.

7.5 Quantified Expressions

Syntax: expression = . . .
| quantified expression
| . . . ;

quantified expression = all expression
| exists expression
| exists unique expression ;

all expression = ‘forall’, bind list, ‘&’, expression ;

exists expression = ‘exists’, bind list, ‘&’, expression ;

47



The VDM++ Language

bind list = multiple bind, { ‘,’, multiple bind } ;

exists unique expression = ‘exists1’, bind, ‘&’, expression ;

Semantics: There are three forms of quantified expressions: universal (written
as forall), existential (written as exists), and unique existential (written as
exists1). Each yields a boolean value true or false, as explained in the
following.

The universal quantification has the form:

forall mbd1, mbd2, ..., mbdn & e

where each mbdi is a multiple bind pi in set s (or if it is a type bind pi :
type), and e is a boolean expression involving the pattern identifiers of the
mbdi’s. It has the value true if e is true when evaluated in the context of
every choice of bindings from mbd1, mbd2, ..., mbdn and false otherwise.

The existential quantification has the form:

exists mbd1, mbd2, ..., mbdn & e

where the mbdi’s and the e are as for a universal quantification. It has the
value true if e is true when evaluated in the context of at least one choice
of bindings from mbd1, mbd2, ..., mbdn, and false otherwise.

The unique existential quantification has the form:

exists1 bd & e

where bd is either a set bind or a type bind and e is a boolean expression
involving the pattern identifiers of bd. It has the value true if e is true
when evaluated in the context of exactly one choice of bindings, and false
otherwise.

All quantified expressions have the lowest possible precedence. This means
that the longest possible constituent expression is taken. The expression is
continued to the right as far as it is syntactically possible.

Examples: An example of an existential quantification is given in the function
shown below, QualificationOk. This function, taken from the specifica-
tion of a nuclear tracking system in [4], checks whether a set of experts has
a required qualification.

48



The VDM++ Language

types

ExpertId = token;
Expert :: expertid : ExpertId

quali : set of Qualification
inv ex == ex.quali <> ;
Qualification = <Elec> | <Mech> | <Bio> | <Chem>

functions

QualificationOK: set of Expert * Qualification -> bool
QualificationOK(exs,reqquali) ==

exists ex in set exs & reqquali in set ex.quali

The function min gives us an example of a universal quantification:

min(s:set of nat) x:nat
pre s <> {}
post x in set s and

forall y in set s \ {x} & y < x

We can use unique existential quantification to state the functional property
satisfied by all maps m:

forall d in set dom m &
exists1 r in set rng m & m(d) = r

7.6 The Iota Expression

Syntax: expression = . . .
| iota expression
| . . . ;

iota expression = ‘iota’, bind, ‘&’, expression ;

Semantics: An iota expression has the form:

49



The VDM++ Language

iota bd & e

where bd is either a set bind or a type bind, and e is a boolean expression
involving the pattern identifiers of bd. The iota operator can only be used if
a unique value exists which matches the bind and makes the body expression
e yield true (i.e. exists1 bd & e must be true). The semantics of the iota
expression is such that it returns the unique value which satisfies the body
expression (e).

Examples: Using the values sc1,...,sc4 defined by

sc1 = mk Score (<France>, 3, 0, 0, 9);
sc2 = mk Score (<Denmark>, 1, 1, 1, 4);
sc3 = mk Score (<SouthAfrica>, 0, 2, 1, 2);
sc4 = mk Score (<SaudiArabia>, 0, 1, 2, 1);

we have
iota x in set {sc1,sc2,sc3,sc4} & x.team = <France> ≡ sc1
iota x in set {sc1,sc2,sc3,sc4} & x.points > 3 ≡ ⊥
iota x : Score & x.points < x.won ≡ ⊥

Notice that the last example cannot be executed and that the last two
expressions are undefined - in the former case because there is more than
value satisfying the expression, and in the latter because no value satisfies
the expression.

7.7 Set Expressions

Syntax: expression = . . .
| set enumeration
| set comprehension
| set range expression
| . . . ;

set enumeration = ‘{’, [ expression list ], ‘}’ ;

expression list = expression, { ‘,’, expression } ;

set comprehension = ‘{’, expression, ‘|’, bind list,
[ ‘&’, expression ], ‘}’ ;

50



The VDM++ Language

set range expression = ‘{’, expression, ‘,’, ‘...’, ‘,’,
expression, ‘}’ ;

Semantics: A Set enumeration has the form:

{e1, e2, e3, ..., en}

where e1 up to en are general expressions. It constructs a set of the values
of the enumerated expressions. The empty set must be written as {}.

The set comprehension expression has the form:

{e | mbd1, mbd2, ..., mbdn & P}

It constructs a set by evaluating the expression e on all the bindings for
which the predicate P evaluates to true. A multiple binding can contain
both set bindings and type bindings. Thus mbdn will look like pat1 in set
s1, pat2 : tp1, ...in set s2, where pati is a pattern (normally simply
an identifier), and s1 and s2 are sets constructed by expressions (whereas
tp1 is used to illustrate that type binds can also be used). Notice however
that type binds cannot be executed by the interpreter.

The set range expression is a special case of a set comprehension. It has
the form

{e1, ..., e2}

where e1 and e2 are numeric expressions. The set range expression denotes
the set of integers from e1 to e2 inclusive. If e2 is smaller than e1 the set
range expression denotes the empty set.

Examples: Using the values Europe={<France>,<England>,<Denmark>,<Spain>}
and GroupC = {sc1,sc2,sc3,sc4} (where sc1,...,sc4 are as defined in
the preceding example) we have

51



The VDM++ Language

{<France>, <Spain>} subset Europe ≡ true
{<Brazil>, <Chile>, <England>}

subset Europe
≡ false

{<France>, <Spain>, "France"}
subset Europe

≡ false

{sc.team | sc in set GroupC
& sc.points > 2}

≡ {<France>,
<Denmark>}

{sc.team | sc in set GroupC
& sc.lost > sc.won }

≡ {<SouthAfrica>,
<SaudiArabia>}

{2.718,...,3.141} ≡ {3}
{3.141,...,2.718} ≡ {}
{1,...,5} ≡ {1,2,3,4,5}
{ x | x:nat & x < 10 and x mod 2 = 0} ≡ {2,4,6,8}

7.8 Sequence Expressions

Syntax: expression = . . .
| sequence enumeration
| sequence comprehension
| subsequence
| . . . ;

sequence enumeration = ‘[’, [ expression list ], ‘]’ ;

sequence comprehension = ‘[’, expression, ‘|’, set bind,
[ ‘&’, expression ], ‘]’ ;

subsequence = expression,
‘(’, expression, ‘,’, ‘...’, ‘,’,
expression, ‘)’ ;

Semantics: A sequence enumeration has the form:

[e1, e2, ..., en]

where e1 through en are general expressions. It constructs a sequence of
the enumerated elements. The empty sequence must be written as [].

A sequence comprehension has the form:

[e | pat in set S & P]

52



The VDM++ Language

where the expression e will use the identifiers from the pattern pat (nor-
mally this pattern will simply be an identifier, but the only real requirement
is that exactly one pattern identifier must be present in the pattern). S is
a set of values (normally natural numbers). The bindings of the pattern
identifier must be to some kind of numeric values which then are used to
indicate the ordering of the elements in the resulting sequence. It constructs
a sequence by evaluating the expression e on all the bindings for which the
predicate P evaluates to true.

A subsequence of a sequence l is a sequence formed from consecutive ele-
ments of l; from index n1 up to and including index n2. It has the form:

l(n1, ..., n2)

where n1 and n2 are positive integer expressions. If the lower bound n1 is
smaller than 1 (the first index in a non-empty sequence) the subsequence
expression will start from the first element of the sequence. If the upper
bound n2 is larger than the length of the sequence (the largest index which
can be used for a non-empty sequence) the subsequence expression will end
at the last element of the sequence.

Examples: Given that GroupA is equal to the sequence

[ mk Score(<Brazil>,2,0,1,6),
mk Score(<Norway>,1,2,0,5),
mk Score(<Morocco>,1,1,1,4),
mk Score(<Scotland>,0,1,2,1) ]

then:

[GroupA(i).team
| i in set inds GroupA

& GroupA(i).won <> 0]

≡ [<Brazil>,
<Norway>,
<Morocco>]

[GroupA(i)
| i in set inds GroupA

& GroupA(i).won = 0]

≡ [mk Score(<Scotland>,0,1,2,1)]

GroupA(1,...,2) ≡ [mk Score(<Brazil>,2,0,1,6),
mk Score(<Norway>,1,2,0,5)]

[GroupA(i)
| i in set inds GroupA

& GroupA(i).points = 9]

≡ []

53



The VDM++ Language

7.9 Map Expressions

Syntax: expression = . . .
| map enumeration
| map comprehension
| . . . ;

map enumeration = ‘{’, maplet, { ‘,’, maplet }, ‘}’
| ‘{’, ‘|->’, ‘}’ ;

maplet = expression, ‘|->’, expression ;

map comprehension = ‘{’, maplet, ‘|’, bind list,
[ ‘&’, expression ], ‘}’ ;

Semantics: A map enumeration has the form:

{d1 |-> r1, d2 |-> r2, ..., dn |-> rn}

where all the domain expressions di and range expressions ri are general
expressions. The empty map must be written as {|->}.
A map comprehension has the form:

{ed |-> er | mbd1, ..., mbdn & P}

where constructs mbd1, ..., mbdn are multiple bindings of variables from
the expressions ed and er to sets (or types). The map comprehension
constructs a mapping by evaluating the expressions ed and er on all the
possible bindings for which the predicate P evaluates to true.

Examples: Given that GroupG is equal to the map

{ <Romania> |-> mk_(2,1,0), <England> |-> mk_(2,0,1),
<Colombia> |-> mk_(1,0,2), <Tunisia> |-> mk_(0,1,2) }

then:

54



The VDM++ Language

{ t |-> let mk (w,d,-) = GroupG(t)
in w * 3 + d

| t in set dom GroupG}

≡ {<Romania> |-> 7,
<England> |-> 6,
<Colombia> |-> 3,
<Tunisia> |-> 1}

{ t |-> w * 3 + d
| t in set dom GroupG, w,d,l:nat
& mk (w,d,l) = GroupG(t)

and w > l}

≡ {<Romania> |-> 7,
<England> |-> 6}

7.10 Tuple Constructor Expressions

Syntax: expression = . . .
| tuple constructor
| . . . ;

tuple constructor = ‘mk ’, ‘(’, expression, expression list, ‘)’ ;

Semantics: The tuple constructor expression has the form:

mk (e1, e2, ..., en)

where ei is a general expression. It can only be used by the equality and
inequality operators.

Examples: Using the map GroupG defined in the preceding example, we have:

mk (2,1,0) in set rng GroupG ≡ true
mk ("Romania",2,1,0) not in set rng GroupG ≡ true
mk (<Romania>,2,1,0) <> mk ("Romania",2,1,0) ≡ true

7.11 Record Expressions

Syntax: expression = . . .
| record constructor
| record modifier
| . . . ;

record constructor = ‘mk ’, name, ‘(’, [ expression list ], ‘)’ ;

55



The VDM++ Language

record modifier = ‘mu’, ‘(’, expression, ‘,’, record modification,
{ ‘,’, record modification } ‘)’ ;

record modification = identifier, ‘|->’, expression ;

Semantics: The record constructor has the form:

mk T(e1, e2, ..., en)

where the type of the expressions (e1, e2, ..., en) matches the type of
the corresponding entrances in the composite type T.

The record modification has the form:

mu (e, id1 |-> e1, id2 |-> e2, ..., idn |-> en)

where the evaluation of the expression e returns the record value to be
modified. All the identifiers idi must be distinct named entrances in the
record type of e.

Examples: If sc is the value mk Score(<France>,3,0,0,9) then

mu(sc, drawn |-> sc.drawn + 1, points |-> sc.points + 1)
≡ mk Score(<France>,3,1,0,10)

Further examples are demonstrated in the function win. This function takes
two teams and a set of scores. From the set of scores it locates the scores
corresponding to the given teams (wsc and lsc for the winning and losing
team respectively), then updates these using the mu operator. The set of
teams is then updated with the new scores replacing the original ones.

win : Team * Team * set of Score -> set of Score
win (wt,lt,gp) ==

let wsc = iota sc in set gp & sc.team = wt,
lsc = iota sc in set gp & sc.team = lt

in let new_wsc = mu(wsc, won |-> wsc.won + 1,
points |-> wsc.points + 3),

new_lsc = mu(lsc, lost |-> lsc.lost + 1)
in (gp \ {wsc,lsc}) union {new_wsc, new_lsc}

pre forall sc1, sc2 in set gp &
sc1 <> sc2 <=> sc1.team <> sc2.team
and {wt,lt} subset {sc.team | sc in set gp}

56



The VDM++ Language

7.12 Apply Expressions

Syntax: expression = . . .
| apply
| field select
| tuple select
| function type instantiation
| . . . ;

apply = expression, ‘(’, [ expression list ], ‘)’ ;

field select = expression, ‘.’, identifier ;

tuple select = expression, ‘.#’, numeral ;

function type instantiation = name, ‘[’, type, { ‘,’, type }, ‘]’ ;

Semantics: The field select expression can be used for records and it has already
been explained in section 4.2.5 so no further explanation will be given here.

The apply is used for looking up in a map, indexing in a sequence, and finally
for calling a function. In section 4.2.3 it has already been shown what it
means to look up in a map. Similarly in section 4.2.2 it is illustrated how
indexing in a sequence is performed.

In VDM++ an operation can also be called here. This is not allowed in
standard VDM-SL and because this kind of operation call can modify the
state such usage should be done with care in complex expressions. Note
however that such operation calls are not allowed to throw exceptions.

With such operation calls the order of evaluation can become important.
Therefore the type checker will allow the user to enable or disable operation
calls inside expressions.

The tuple select expression is used to extract a particular component from
a tuple. The meaning of the expression is if e evaluates to some tuple
mk (v1,...,vN) and M is an integer in the range {1,...,N} then e.#M
yields vM. If M lies outside {1,...,N} the expression is undefined.

The function type instantiation is used for instantiating polymorphic func-
tions with the proper types. It has the form:

pf [ t1, ..., tn ]

57



The VDM++ Language

where pf is the name of a polymorphic function, and t1, ..., tn are
types. The resulting function uses the types t1, ..., tn instead of the
variable type names given in the function definition.

Examples: Recall that GroupA is a sequence (page 53), GroupG is a map (page
54) and selection sort is a function (page 42):

GroupA(1) ≡ mk Score(<Brazil>,2,0,1,6)
GroupG(<Romania>) ≡ mk (2,1,0)
GroupG(<Romania>).#2 ≡ 1
selection sort([3,2,9,1,3]) ≡ [1,2,3,3,9]

As an example of the use of polymorphic functions and function type in-
stantiation, we use the example functions from section 6:

let emptyInt = empty_bag[int] in
plus_bag[int](-1, emptyInt())

≡

{ -1 |-> 1 }

7.13 The New Expression

Syntax: expression = . . .
| new expression ;

new expression = ‘new’, name, ‘(’, [ expression list ], ‘)’ ;

Semantics: The new expression has the form:

new classname(e1, e2, ..., en)

An object can be created (also called instantiated) from its class description
using a new expression. The effect of a new expression is that a ‘new’,
unique object as described in class classname is created. The value of the
new expression is a reference to the new object.

If the new expression is invoked with no parameters, an object is created
in which all instance variables take their “default” values (i.e. the values

58



The VDM++ Language

defined by their initialisation conditions). With parameters, the new ex-
pression represents a constructor (see Section 12.1) and creates customised
instances (i.e. where the instance variables may take values which are dif-
ferent from their default values).

Examples: Suppose we have a class called Queue and that default instances of
Queue are empty. Suppose also that this class contains a constructor (which
will also be called Queue) which takes a single parameter which is a list of
values representing an arbitrary starting queue. Then we can create default
instances of Queue in which the actual queue is empty using the expression

new Queue()

and an instance of Queue in which the actual queue is, say, e1, e2, e3
using the expression

new Queue([e1, e2, e3])

Using the class Tree defined on page 29 we create new Tree instances to
construct nodes:

mk node(new Tree(), x, new Tree())

7.14 The Self Expression

Syntax: expression = . . .
| self expression ;

self expression = ‘self’ ;

Semantics: The self expression has the form:

self

The self expression returns a reference to the object currently being exe-
cuted. It can be used to simplify the name space in chains of inheritance.

Examples: Using the class Tree defined on page 29 we can specify a subclass
called BST which stores data using the binary search tree approach. We can
then specify an operation which performs a binary search tree insertion:

59



The VDM++ Language

Insert : int ==> ()
Insert (x) ==
(dcl curr_node : Tree := self;

while not curr_node.isEmpty() do
if curr_node.rootval() < x
then curr_node := curr_node.rightBranch()
else curr_node := curr_node.leftBranch();

curr_node.addRoot(x);
)

This operation uses a self expression to find the root at which to being
traversal prior to insertion. Further examples are given in section 13.9.

7.15 The Threadid Expression

Syntax: expression = . . .
| threadid expression ;

threadid expression = ‘threadid’ ;

Semantics: The threadid expression has the form:

threadid

The threadid expression returns a natural number which uniquely identifies
the thread in which the expression is executed.

Examples: Using threadids it is possible to provide a VDM++ base class that
implements a Java-style wait-notify in VDM++ using permission predi-
cates. Any object that should be available for the wait-notify mechanism
must derive from this base class.

class WaitNotify

instance variables
waitset : set of nat := {};

operations

60



The VDM++ Language

protected wait: () ==> ()
wait() ==

let p = threadid
in (
AddToWaitSet( p );
Awake();
);

AddToWaitSet : nat ==> ()
AddToWaitSet( p ) ==
waitset := waitset union { p };

Awake: () ==> ()
Awake() ==

skip;

protected notify: () ==> ()
notify() ==

if waitset <> {} then
let arbitrary_process in set waitset
in waitset := waitset \ {arbitrary_process};

protected notifyAll: () ==> ()
notifyAll() ==

waitset := {};

sync
mutex(notifyAll, AddToWaitSet, notify);
per Awake => threadid not in set waitset;

end WaitNotify

In this example the threadid expression is used in two places:

• In the Wait operation for threads to register interest in this object.

• In the permission predicate for Awake. An interested thread should call
Awake following registration using Wait. It will then be blocked until
its threadid is removed from the waitset following another thread’s call
to notify.

61



The VDM++ Language

7.16 The Lambda Expression

Syntax: expression = . . .
| lambda expression
| . . . ;

lambda expression = ‘lambda’, type bind list, ‘&’, expression ;

type bind list = type bind, { ‘,’, type bind } ;

type bind = pattern, ‘:’, type ;

Semantics: A lambda expression is of the form:

lambda pat1 : T1, ..., patn : Tn & e

where the pati are patterns, the Ti are type expressions, and e is the body
expression. The scope of the pattern identifiers in the patterns pati is the
body expression. A lambda expression cannot be polymorphic, but apart
from that, it corresponds semantically to an explicit function definition as
explained in section 6. A function defined by a lambda expression can be
Curried by using a new lambda expression in the body of it in a nested way.
When lambda expressions are bound to an identifier they can also define a
recursive function.

Examples: An increment function can be defined by means of a lambda expres-
sion like:

Inc = lambda n : nat & n + 1

and an addition function can be Curried by:

Add = lambda a : nat & lambda b : nat & a + b

which will return a new lambda expression if it is applied to only one argu-
ment:

Add(5) ≡ lambda b : nat & 5 + b

62



The VDM++ Language

Lambda expression can be useful when used in conjunction with higher-
order functions. For instance using the function set filter defined on
page 41:

set_filter[nat](lambda n:nat & n mod 2 = 0)({1,...,10})
≡ {2,4,6,8,10}

7.17 Is Expressions

Syntax: expression = . . .
| general is expression
| . . . ;

general is expression = is expression
| type judgement ;

is expression = ‘is ’, name, ‘(’, expression, ‘)’
| is basic type, ‘(’, expression, ‘)’ ;

is basic type = ‘is ’, ( ‘bool’ | ‘nat’ | ‘nat1’ | ‘int’
| ‘rat’ | ‘real’
| ‘char’ | ‘token’ ) ;

type judgement = ‘is ’, ‘(’, expression, ‘,’, type, ‘)’ ;

Semantics: The is expression can be used with values that are either basic or
record values (tagged values belonging to some composite type). The is
expression yields true if the given value belongs to the basic type indicated
or if the value has the indicated tag. Otherwise it yields false.

A type judgement is a more general form which can be used for expressions
whose types can not be statically determined. The expression is (e,t) is
equal to true if and only if e is of type t.

Examples: Using the record type Score defined on page 25 we have:

is Score(mk Score(<France>,3,0,0,9)) ≡ true
is Score(mk Score(<France>,3,0,0,8)) ≡ false
is bool(mk Score(<France>,3,0,0,9)) ≡ false
is real(0) ≡ true
is nat1(0) ≡ false

An example of a type judgement:

63



The VDM++ Language

Domain : map nat to nat | seq of (nat*nat) -> set of nat
Domain(m) ==

if is (m, map nat to nat)
then dom m
else {d | mk (d,-) in set elems m}

In addition there are examples on page 27.

7.18 Base Class Membership

Syntax: expression = . . .
| isofbaseclass expression
| . . . ;

isofbaseclass expression = ‘isofbaseclass’, ‘(’, name, expression, ‘)’ ;

Semantic: The function isofbaseclass when applied to an object reference
expression and a class name name yields the boolean value true if and only
if name is a root superclass in the inheritance chain of the object referenced
to by expression, and false otherwise.

Examples: Suppose that BinarySearchTree is a subclass of Tree, Tree is not a
subclass of any other class and Queue is not related by inheritance to either
Tree or BinarySearchTree. Let t be an instance of textttTree, b is an
instance of BinarySearchTree and q is an instance of Queue. Then:

isofbaseclass(Tree, t) ≡ true
isofbaseclass(BinarySearchTree, b) ≡ false
isofbaseclass(Queue, q) ≡ true
isofbaseclass(Tree, b) ≡ true
isofbaseclass(Tree, q) ≡ false

7.19 Class Membership

Syntax expression = . . .
| isofclass expression
| . . . ;

isofclass expression = ‘isofclass’, ‘(’, name, expression, ‘)’ ;

64



The VDM++ Language

Semantics: The function isofclass when applied to an object reference expression
and a class name name yields the boolean value true if and only if expression
refers to an object of class name or to an object of any of the subclasses of
name, and false otherwise.

Examples: Assuming the classes Tree, BinarySearchTree, Queue, and identi-
fiers t, b, q as in the previous example, we have:

isofclass(Tree,t) ≡ true
isofclass(Tree,b) ≡ true
isofclass(Tree,q) ≡ false
isofclass(Queue,q) ≡ true
isofclass(BinarySearchTree,t) ≡ false
isofclass(BinarySearchTree,b) ≡ true

7.20 Same Base Class Membership

Syntax: expression = . . .
| samebaseclass expression
| . . . ;

samebaseclass expression = ‘samebaseclass’,
‘(’, expression, expression, ‘)’ ;

Semantics: The function samebaseclass when applied to object references ex-
pression1 and expression2 yields the boolean value true if and only if the
objects denoted by expression1 and expression2 are instances of classes
that can be derived from the same root superclass, and false otherwise.

Examples: Assuming the classes Tree, BinarySearchTree, Queue, and identi-
fiers t, b, q as in the previous example, suppose that AVLTree is another
subclass of Tree, BalancedBST is a subclass of BinarySearchTree, a is an
instance of AVLTree and bb is an instance of BalancedBST :

samebaseclass(a,b) ≡ true
samebaseclass(a,bb) ≡ true
samebaseclass(b,bb) ≡ true
samebaseclass(t,bb) ≡ false
samebaseclass(q,a) ≡ false

65



The VDM++ Language

7.21 Same Class Membership

Syntax: expression = . . .
| sameclass expression
| . . . ;

sameclass expression = ‘sameclass’,
‘(’, expression, expression, ‘)’ ;

Semantics: The function sameclass when applied to object references expressi-
on1 and expression2 yields the boolean value true if and only if the objects
denoted by expression1 and expression2 are instances of the same class,
and false otherwise.

Examples: Assuming the classes Tree, BinarySearchTree, Queue, and iden-
tifiers t, b, q from section 7.18, and assuming b’ is another instance of
BinarySearchTree we have:

sameclass(b,t) ≡ false
sameclass(b,b’) ≡ true
sameclass(q,t) ≡ false

7.22 History Expressions

Syntax: expression = . . .
| act expression
| fin expression
| active expression
| req expression
| waiting expression
| . . . ;

act expression = ‘#act’, ‘(’, name, ‘)’
| ‘#act’, ‘(’, name list, ‘)’ ;

fin expression = ‘#fin’, ‘(’, name, ‘)’
| ‘#fin’, ‘(’, name list, ‘)’ ;

active expression = ‘#active’, ‘(’, name, ‘)’
| ‘#active’, ‘(’, name list, ‘)’ ;

66



The VDM++ Language

req expression = ‘#req’, ‘(’, name, ‘)’
| ‘#req’, ‘(’, name list, ‘)’ ;

waiting expression = ‘#waiting’, ‘(’, name, ‘)’
| ‘#waiting’, ‘(’, name list, ‘)’ ;

Semantics: History expressions can only be used in permission predicates (see
section 15.1). History expressions may contain one or more of the following
expressions:

• #act (operation name). The number of times that operation name
operation has been activated.

• #fin(operation name). The number of times that the operation name
operation has been completed.

• #active(operation name). The number of operation name opera-
tions that are currently active. Thus: #active(operation name) =
#act(operation name) - #fin(operation name).

• #req(operation name). The number of requests that has been issued
for the operation name operation.

• #waiting(operation name). The number of outstanding requests for
the operation name operation. Thus: #waiting(operation name) =
#req(operation name) - #act(operation name).

For all of these operators, the name list version #history op(op1,. . .,opN) is
simply shorthand for #history op(op1) + · · · +#history op(opN).

Examples: Suppose at a point in the execution of a particular thread, three
operations, A, B and C may be executed. A sequence of requests, activations
and completions occur during this thread. This is shown graphically in
figure 1.

S
rB fB rC aC fAaA aB rA rC rC

T
rA

Figure 1: History Expressions

67



The VDM++ Language

Here we use the notation rA to indicate a request for an execution of op-
eration A, aA indicates an activation of A, fA indicates completion of an
execution of operation A, and likewise for operations B and C. The respec-
tive history expressions have the following values for the interval [S,T]:

#act(A) = 1 #act(B) = 1 #act(C) = 1 #act(A,B,C) = 3
#fin(A) = 1 #fin(B) = 1 #fin(C) = 0 #fin(A,B,C) = 2
#active(A) = 0 #active(B) = 0 #active(C) = 1 #active(A,B,C) = 1
#req(A) = 2 #req(B) = 1 #req(C) = 3 #req(A,B,C) = 6
#waiting(A) = 1 #waiting(B) = 0 #waiting(C) = 2 #waiting(A,B,C) = 3

7.23 Literals and Names

Syntax: expression = . . .
| name
| old name
| symbolic literal
| . . . ;

name = identifier, [ ‘‘’, identifier ] ;

name list = name, { ‘,’, name } ;

old name = identifier, ‘~’ ;

Semantics: Names and old names are used to access definitions of functions,
operations, values and state components. A name has the form:

id1‘id2

where id1 and id2 are simple identifiers. If a name consists of only one
identifier, the identifier is defined within scope, i.e. it is defined either locally
as a pattern identifier or variable, or globally within the current module as
a function, operation, value or global variable. Otherwise, the identifier id1
indicates the class name where the construct is defined (see also section 14.1
and appendix B.)

An old name is used to access the old value of global variables in the post
condition of an operation definition (see section 12) and in the post condi-
tion of specification statements (see section 13.15). It has the form:

68



The VDM++ Language

id~

where id is a state component.

Symbolic literals are constant values of some basic type.

Examples: Names and symbolic literals are used throughout all examples in this
document (see appendix B.2).

For an example of the use of old names, consider the instance variables
defined as:

instance variables
numbers: seq of nat := [];
index : nat := 1;

inv index not in set elems numbers;

We can define an operation that increases the variable index in an implicit
manner:

IncIndex()
ext wr index : nat
post index = index~ + 1

The operation IncIndex manipulates the variable index, indicated with
the ext wr clause. In the post condition, the new value of index is equal to
the old value of index plus 1. (See more about operations in section 12).

For a simple example of class names, suppose that a function called build rel
is defined (and exported) in a class called CGRel as follows:

types

Cg = <A> | <B> | <C> | <D> | <E> | <F> |
<G> | <H> | <J> | <K> | <L> | <S>;

CompatRel = map Cg to set of Cg

functions

build_rel : set of (Cg * Cg) -> CompatRel
build_rel (s) == {|->}

69



The VDM++ Language

In another class we can access this function by using the following call

CGRel‘build_rel(mk_(<A>, <B>))

7.24 The Undefined Expression

Syntax: expression = . . .
| undefined expression ;

undefined expression = ‘undefined’ ;

Semantics: The undefined expression is used to state explicitly that the result
of an expression is undefined. This could for instance be used if it has
not been decided what the result of evaluating the else-branch of an if-
then-else expression should be. When an undefined expression is evaluated
the interpreter will terminate the execution and report that an undefined
expression was evaluated.

Pragmatically use of undefined expressions differs from pre-conditions: use
of a pre-condition means it is the caller’s responsibility to ensure that the
pre-condition is satisfied when the function is called; if an undefined ex-
pression is used it is the called function’s responsibility to deal with error
handling.

Examples: We can check that the type invariant holds before building Score
values:

build_score : Team * nat * nat * nat * nat -> Score
build_score (t,w,d,l,p) ==

if 3 * w + d = p
then mk Score(t,w,d,l,p)
else undefined

7.25 The Precondition Expression

Syntax: expression = . . .
| precondition expression ;

70



The VDM++ Language

precondition expression = ‘pre ’, ‘(’, expression,
[ { ‘,’, expression } ], ‘)’ ;

Semantics: Assuming e is of function type the expression pre (e,e1,...,en)
is true if and only if the pre-condition of e is true for arguments e1,...,em
where m is the arity of the pre-condition of e. If e is not a function or m > n
then the result is undefined. If e has no pre-condition then the expression
equals true.

Examples: Consider the functions f and g defined below

f : nat * nat -> nat
f(m,n) == m div n
pre n <> 0;

g (n: nat) sqrt:nat
pre n >= 0
post sqrt * sqrt <= n and

(sqrt+1) * (sqrt+1) > n

Then the expression

pre (let h in set {f,g, lambda mk (x,y):nat * nat & x div y}
in h, 1,0,-1)

is equal to

• false if h is bound to f since this equates to pre f(1,0);

• true if h is bound to g since this equates to pre g(1);

• true if h is bound to lambda mk (x,y):nat * nat & x div y since
there is no pre-condition defined for this function.

Note that however h is bound, the last argument (-1) is never used.

8 Patterns

Syntax: pattern bind = pattern | bind ;

71



The VDM++ Language

pattern = pattern identifier
| match value
| set enum pattern
| set union pattern
| seq enum pattern
| seq conc pattern
| tuple pattern
| record pattern ;

pattern identifier = identifier | ‘-’ ;

match value = symbolic literal
| ‘(’, expression, ‘)’ ;

set enum pattern = ‘{’, [ pattern list], ‘}’ ;

set union pattern = pattern, ‘union’, pattern ;

seq enum pattern = ‘[’, [ pattern list], ‘]’ ;

seq conc pattern = pattern, ‘^’, pattern ;

tuple pattern = ‘mk (’, pattern, ‘,’, pattern list, ‘)’ ;

record pattern = ‘mk ’, name, ‘(’, [ pattern list], ‘)’ ;

pattern list = pattern, { ‘,’, pattern } ;

Semantics: A pattern is always used in a context where it is matched to a value
of a particular type. Matching consists of checking that the pattern can
be matched to the value, and binding any pattern identifiers in the pattern
to the corresponding values, i.e. making the identifiers denote those values
throughout their scope. In some cases where a pattern can be used, a bind
can be used as well (see next section). If a bind is used it simply means
that additional information (a type or a set expression) is used to constrain
the possible values which can match the given pattern.

Matching is defined as follows

1. A pattern identifier fits any type and can be matched to any value.
If it is an identifier, that identifier is bound to the value; if it is the
don’t-care symbol ‘-’, no binding occurs.

72



The VDM++ Language

2. A match value can only be matched against the value of itself; no
binding occurs. If a match value is not a literal like e.g. 7 or <RED> it
must be an expression enclosed in parentheses in order to discriminate
it to a pattern identifier.

3. A set enumeration pattern fits only set values. The patterns are
matched to distinct elements of a set; all elements must be matched.

4. A set union pattern fits only set values. The two patterns are matched
to a partition of two subsets of a set. In the Toolbox the two subsets
will always be chosen such that they are non-empty and disjoint.

5. A sequence enumeration pattern fits only sequence values. Each pat-
tern is matched against its corresponding element in the sequence
value; the length of the sequence value and the number of patterns
must be equal.

6. A sequence concatenation pattern fits only sequence values. The two
patterns are matched against two subsequences which together can be
concatenated to form the original sequence value. In the Toolbox the
two subsequences will always be chosen so that they are non-empty.

7. A tuple pattern fits only tuples with the same number of elements.
Each of the patterns are matched against the corresponding element
in the tuple value.

8. A record pattern fits only record values with the same tag. Each of
the patterns are matched against the field of the record value. All the
fields of the record must be matched.

Examples: The simplest kind of pattern is the pattern identifier. An example
of this is given in the following let expression:

let top = GroupA(1)
in top.sc

Here the identifier top is bound to the head of the sequence GroupA and
the identifier may then be used in the body of the let expression.

In the following examples we use match values:

let a = <France>
in cases GroupA(1).team:

<Brazil> -> "Brazil are winners",
(a) -> "France are winners",
others -> "Neither France nor Brazil are winners"

end;

73



The VDM++ Language

Match values can only match against their own values, so here if the team
at the head of GroupA is <Brazil> then the first clause is matched; if the
team at the head of GroupA is <France> then the second clause is matched.
Otherwise the others clause is matched. Note here that the use of brackets
around a forces a to be considered as a match value.

Set enumerations match patterns to elements of a set. For instance in

let {sc1, sc2, sc3, sc4} = elems GroupA
in sc1.points + sc2.points + sc3.points + sc4.points;

the identifiers sc1, sc2, sc3 and sc4 are bound to the four elements of
GroupA. Note that the choice of binding is loose - for instance sc1 may be
bound to [any] element of elems GroupA. In this case if elems GroupA does
not contain precisely four elements, then the expression is not well-formed.

A set union pattern can be used to decompose a set for recursive function
calls. An example of this is the function set2seq which converts a set into
a sequence (with arbitrary order):

set2seq[@elem] : set of @elem -> seq of @elem
set2seq(s) ==

cases s:
{} -> [],
{x} -> [x],
s1 union s2 -> (set2seq[@elem](s1))^(set2seq[@elem](s2))

end

In the third cases alternative we see the use of a set union pattern. This
binds s1 and s2 to arbitrary subsets of s such that they partition s. The
Toolbox interpreter always ensures a disjoint partition.

Sequence enumeration patterns can be used to extract specific elements from
a sequence. An example of this is the function promoted which extracts
the first two elements of a seqnce of scores and returns the corresponding
pair of teams:

promoted : seq of Score -> Team * Team
promoted([sc1,sc2]^-) == mk (sc1.team,sc2.team);

Here sc1 is bound to the head of the argument sequence, and sc2 is bound
to the second element of the sequence. If promoted is called with a sequence
with fewer than two elements then a runtime error occurs. Note that as we

74



The VDM++ Language

are not interested in the remaining elements of the list we use a don’t care
pattern for the remainder.

The preceding example also demonstrated the use of sequence concatena-
tion patterns. Another example of this is the function quicksort which
implements a standard quicksort algorithm:

quicksort : seq of nat -> seq of nat
quicksort (l) ==

cases l:
[] -> [],
[x] -> [x],
[x,y] -> if x < y then [x,y] else [y,x],
-^[x]^- -> quicksort ([y | y in set elems l & y < x]) ^

[x] ^ quicksort ([y | y in set elems l & y > x])
end

Here, in the second cases clause a sequence concatenation pattern is used
to decompose l into an arbitrary pivot element and two subsequences. The
pivot is used to partition the list into those values less than the pivot and
those values greater, and these two partitions are recursively sorted.

Tuple patterns can be used to bind tuple components to identifiers. For
instance since the function promoted defined above returns a pair, the fol-
lowing value definition binds the winning team of GroupA to the identifier
Awinner:

values

mk (Awinner,-) = promoted(GroupA);

Record patterns are useful when several fields of a record are used in the
same expression. For instance the following expression constructs a map
from team names to points score:

{ t |-> w * 3 + l | mk Score(t,w,l,-,-) in set elems GroupA}

The function print Expr on page 47 also gives several examples of record
patterns.

75



The VDM++ Language

9 Bindings

Syntax: bind = set bind | type bind ;

set bind = pattern, ‘in set’, expression ;

type bind = pattern, ‘:’, type ;

bind list = multiple bind, { ‘,’, multiple bind } ;

multiple bind = multiple set bind
| multiple type bind ;

multiple set bind = pattern list, ‘in set’, expression ;

multiple type bind = pattern list, ‘:’, type ;

Semantics: A bind matches a pattern to a value. In a set bind the value is
chosen from the set defined by the set expression of the bind. In a type bind
the value is chosen from the type defined by the type expression. Multiple
bind is the same as bind except that several patterns are bound to the same
set or type. Notice that type binds cannot be executed by the interpreter.
This would require the interpreter to search through infinite domains like
the natural numbers.

Examples: Bindings are mainly used in quantified expressions and comprehen-
sions which can be seen from these examples:

forall i, j in set inds list & i < j => list(i) <= list(j)

{ y | y in set S & y > 2 }

{ y | y: nat & y > 3 }

occurs : seq1 of char * seq1 of char -> bool
occurs (substr,str) ==

exists i,j in set inds str & substr = str(i,...,j);

76



The VDM++ Language

10 Value (Constant) Definitions

VDM++ supports the definition of constant values. A value definition corre-
sponds to a constant definition in traditional programming languages.

Syntax: value definitions = ‘values’, [ access value definition,
{ ‘;’, access value definition }, [ ‘;’ ] ] ;

access value definition = ([ access ], [ ‘static’ ]) | ([ ‘static’ ], [ access ]),
value definition ;

value definition = pattern, [ ‘:’, type ], ‘=’, expression ;

Semantics: The value definition has the form:

values
access pat1 = e1;
...
access patn = en

The global values (defined in a value definition) can be referenced at all
levels in a VDM++ specification. However, in order to be able to execute
a specification these values must be defined before they are used in the
sequence of value definitions. This “declaration before use” principle is only
used by the interpreter for value definitions. Thus for instance functions can
be used before they are declared. In standard VDM-SL there are not any
restrictions on the order of the definitions at all. It is possible to provide
a type restriction as well, and this can be useful in order to obtain more
exact type information.

Details of the access and static specifiers can be found in section 14.3.

Examples: The example below, taken from [4] assigns token values to identifiers
p1 and eid2, an Expert record value to e3 and an Alarm record value to
a1.

types

Period = token;
ExpertId = token;
Expert :: expertid : ExpertId

77



The VDM++ Language

quali : set of Qualification
inv ex == ex.quali <> {};
Qualification = <Elec> | <Mech> | <Bio> | <Chem>;
Alarm :: alarmtext : seq of char

quali : Qualification

values

public p1: Period = mk_token("Monday day");
private eid2 : ExpertId = mk_token(145);
protected e3 : Expert = mk_Expert(eid2, <Mech>, <Chem> );
a1 : Alarm = mk_Alarm("CO2 detected", <Chem>)

As this example shows, a value can depend on other values which are defined
previous to itself.

11 Instance Variables

Both an object instantiated from a class description and the class itself can have
an internal state, also called the instance variables of the object or class. In the
case of objects, we also refer to this state as the global state of the object.

Syntax: instance variable definitions = ‘instance’, ‘variables’,
[ instance variable definition,
{ ‘;’, instance variable definition } ] ;

instance variable definition = access assignment definition
| invariant definition ;

access assignment definition = ([ access ], [ ‘static’ ]) | ([ ‘static’ ], [ access ]),
assignment definition ;

assignment definition = identifier, ‘:’, type, [ ‘:=’, expression ] ;

invariant definition = ‘inv’, expression ;

Semantics: The section describing the internal state is preceded by the key-
word instance variables. A list of instance variable definitions and/or
invariant definitions follows. Each instance variable definition consists of

78



The VDM++ Language

an instance variable name with its corresponding type indication and may
also include an initial value and access and static specifiers. Details of the
access and static specifiers can be found in section 14.3.

It is possible to restrict the values of the instance variables by means of
invariant definitions. Each invariant definition, involving one or more in-
stance variables, may be defined over the values of the instance variables
of objects of a class. All instance variables in the class including those
inherited from superclasses are visible in the invariant expression. Each
invariant definition must be a boolean expression that limits the values of
the instance variables to those where the expression is true. All invariant
expressions must be true during the entire lifetime of each object of the
class.

The overall invariant expression of a class is all the invariant definitions of
the class and its superclasses combined by logical and in the order that they
are defined in 1) the superclasses and 2) the class itself.

If a class contains one or more invariant definitions, an operation named
inv classname is implicitly constructed in the class.15 This operation is
private, has no parameters and returns a boolean corresponding to the
execution of the invariant expression.

Example: The following examples show instance variable definitions. The first
class specifies one instance variable:

class GroupPhase

types

GroupName = <A> | <B> | <C> | <D> | <E> | <F> | <G> | <H>;
Team = ... -- as on page 25
Score::team : Team

won : nat
drawn : nat
lost : nat
points : nat;

instance variables
gps : map GroupName to set of Score;

inv forall gp in set rng gps &

15Not yet supported by the interpreter.

79



The VDM++ Language

(card gp = 4 and
forall sc in set gp & sc.won + sc.lost + sc.drawn <= 3)

end GroupPhase

12 Operation Definitions

Operations have already been mentioned in section 5. The general form is de-
scribed immediately below, and special operations called constructors which are
used for constructing instances of a class are described in section 12.1.

Syntax: operation definitions = ‘operations’, [ access operation definition,
{ ‘;’, access operation definition }, [ ‘;’ ] ] ;

access operation definition = ([ access ], [ ‘static’ ]) | ([ ‘static’ ], [ access ]),
operation definition ;

operation definition = explicit operation definition
| implicit operation definition
| extended explicit operation definition ;

explicit operation definition = identifier, ‘:’, operation type,
identifier, parameters,
‘==’,
operation body,
[ ‘pre’, expression ],
[ ‘post’, expression ] ;

implicit operation definition = identifier, parameter types,
[ identifier type pair list ],
implicit operation body ;

implicit operation body = [ externals ],
[ ‘pre’, expression ],
‘post’, expression,
[ exceptions ] ;

80



The VDM++ Language

extended explicit operation definition = identifier,
parameter types,
[ identifier type pair list ],
‘==’, operation body,
[ externals ],
[ ‘pre’, expression ],
[ ‘post’, expression ],
[ exceptions ] ;

operation type = discretionary type, ‘==>’, discretionary type ;

discretionary type = type | ‘()’ ;

parameters = ‘(’, [ pattern list ], ‘)’ ;

pattern list = pattern, { ‘,’, pattern } ;

operation body = statement
| ‘is not yet specified’
| ‘is subclass responsibility’ ;

externals = ‘ext’, var information, { var information } ;

var information = mode, name list, [ ‘:’, type ] ;

mode = ‘rd’ | ‘wr’ ;

name list = identifier, { ‘,’, identifier } ;

exceptions = ‘errs’, error list ;

error list = error, { error } ;

error = identifier, ‘:’, expression, ‘->’, expression ;

Semantics: Details of the access and static specifiers can be found in section
14.3. Note that a static operation may not call non-static operations or
functions, and self expressions cannot be used in the definition of a static
operation.

The following example of an explicit operation updates the instance vari-
ables of class GroupPhase when one team beats another.

81



The VDM++ Language

Win : Team * Team ==> ()
Win (wt,lt) ==

let gp in set dom gps be st
{wt,lt} subset {sc.team | sc in set gps(gp)}

in gps := gps ++ { gp |->
{if sc.team = wt
then mu(sc, won |-> sc.won + 1,

points |-> sc.points + 3)
else if sc.team = lt
then mu(sc, lost |-> sc.lost + 1)
else sc

| sc in set gps(gp)}}
pre exists gp in set dom gps &

{wt,lt} subset {sc.team | sc in set gps(gp)};

An explicit operation consists of a statement (or several composed using a
block statement), as described in section 13. The statement may access any
instance variables it wishes, reading and writing to them as it sees fit.

An implicit operation is specified using an optional pre-condition, and a
mandatory post-condition. For example we could specify the Win operation
implicitly:

Win (wt,lt: Team)
ext wr gps : map GroupName to set of Score
pre exists gp in set dom gps &

{wt,lt} subset {sc.team | sc in set gps(gp)}
post exists gp in set dom gps &

{wt,lt} subset {sc.team | sc in set gps(gp)}
and gps = gps~ ++

{ gp |->
{if sc.team = wt
then mu(sc, won |-> sc.won + 1,

points |-> sc.points + 3)
else if sc.team = lt
then mu(sc, lost |-> sc.lost + 1)
else sc

| sc in set gps(gp)}};

The externals field lists the instance variables that the operation will ma-
nipulate. The instance variables listed after the reserved word rd can only
be read whereas the operation can both read and write the variables listed
after wr.

82



The VDM++ Language

The exceptions clause can be used to describe how an operation should deal
with error situations. The rationale for having the exception clause is to give
the user the ability to separate the exceptional cases from the normal cases.
The specification using exceptions does not give any commitment as to how
exceptions are to be signalled, but it gives the means to show under which
circumstances an error situation can occur and what the consequences are
for the result of calling the operation.

The exception clause has the form:

errs COND1: c1 -> r1
...
CONDn: cn -> rn

The condition names COND1, . . . , CONDn are identifiers which describe the
kind of error which can be raised16. The condition expressions c1, . . . ,
cn can be considered as pre-conditions for the different kinds of errors.
Thus, in these expressions the identifiers from the arguments list and the
variables from the externals list can be used (they have the same scope as
the pre-condition). The result expressions r1, . . . , rn can correspondingly
be considered as post-conditions for the different kinds of errors. In these
expressions the result identifier and old values of global variables (which
can be written to) can also be used. Thus, the scope corresponds to the
scope of the post-condition.

Superficially there appears to be some redundancy between exceptions and
pre-conditions here. However there is a conceptual distinction between them
which dictates which should be used and when. The pre-condition specifies
what callers to the operation must ensure for correct behaviour; the excep-
tion clauses indicate that the operation being specified takes responsibility
for error handling when an exception condition is satisfied. Hence normally
exception clauses and pre-conditions do not overlap.

The next example of an operation uses the following instance variable def-
inition:

instance variables
q : Queue

end

This example shows how exceptions with an implicit definition can be used:

16Notice that these names are purely of mnemonic value, i.e. semantically they are not im-
portant.

83



The VDM++ Language

DEQUEUE() e: [Elem]
ext wr q : Queue
post q~ = [e] ^ q
errs QUEUE_EMPTY: q = [] -> q = q~ and e = nil

This is a dequeue operation which uses a global variable q of type Queue to
get an element e of type Elem out of the queue. The exceptional case here
is that the queue in which the exception clause specifies how the operation
should behave is empty.

12.1 Constructors

Constructors are operations which have the same name as the class in which they
are defined and which create new instances of that class. Their return type must
therefore be the same class name, and if a return value is specified this should be
self though this can optionally be omitted.

Multiple constructors can be defined in a single class using operation overloading
as described in section 14.1.

13 Statements

In this section the different kind of statements will be described one by one. Each
of them will be described by means of:

• A syntax description in BNF.

• An informal semantics description.

• An example illustrating its usage.

13.1 Let Statements

Syntax: statement = let statement
| let be statement
| . . . ;

84



The VDM++ Language

let statement = ‘let’, local definition, { ‘,’, local definition },
‘in’, statement ;

let be statement = ‘let’, bind, [ ‘be’, ‘st’, expression ], ‘in’,
statement ;

local definition = value definition
| function definition ;

value definition = pattern, [ ‘:’, type ], ‘=’, expression ;

where the “function definition” component is described in section 6.

Semantics: The let statement and the let-be-such-that statement are similar to
the corresponding let and let-be-such-that expressions except that the in
part is a statement instead of an expression. Thus it can be explained as
follows:

A simple let statement has the form:

let p1 = e1, ..., pn = en in s

where p1, ..., pn are patterns, e1, ..., en are expressions which match
the corresponding patterns pi, and s is a statement, of any type, involving
the pattern identifiers of p1, ..., pn. It denotes the evaluation of the
statement s in the context in which the patterns p1, ..., pn are matched
against the corresponding expressions e1, ..., en.

More advanced let statements can also be made by using local function
definitions. The semantics of doing that is simply that the scope of such
locally defined functions is restricted to the body of the let statement.

A let-be-such-that statement has the form

let b be st e in s

where b is a binding of a pattern to a set value (or a type), e is a boolean
expression, and s is a statement, involving the pattern identifiers of the
pattern in b. The be st e part is optional. The expression denotes the
evaluation of the statement s in the context where the pattern from b has
been matched against an element in the set (or type) from b17. If the be st
expression e is present, only such bindings where e evaluates to true in the
matching context are used.

17Remember that only the set bindings can be executed by means of the interpreter.

85



The VDM++ Language

Examples: An example of a let be st statement is provided in the operation
GroupWinner from the class GroupPhase which returns the winning team
in a given group:

GroupWinner : GroupName ==> Team
GroupWinner (gp) ==

let sc in set gps(gp) be st
forall sc’ in set gps(gp) \ {sc} &

(sc.points > sc’.points) or
(sc.points = sc’.points and sc.won > sc’.won)

in return sc.team

The companion operation GroupRunnerUp gives an example of a simple let
statement as well:

GroupRunnerUp_expl : GroupName ==> Team
GroupRunnerUp_expl (gp) ==

def t = GroupWinner(gp)
in let sct = iota sc in set gps(gp) & sc.team = t

in
let sc in set gps(gp) \ {sct} be st

forall sc’ in set gps(gp) \ {sc,sct} &
(sc.points > sc’.points) or
(sc.points = sc’.points and sc.won > sc’.won)

in return sc.team

Note the use of the def statement (section 13.2) here; this is used rather
than a let statement since the right-hand side is an operation call, and
therefore is not an expression.

13.2 The Define Statement

Syntax: statement = . . .
| def statement
| . . . ;

def statement = ‘def’, equals definition,
{ ‘;’, equals definition },[ ‘;’ ], ‘in’,
statement ;

86



The VDM++ Language

equals definition = pattern bind, ‘=’, expression ;

Semantics: A define statement has the form:

def pb1 = e1;
...
pbn = en

in
s

The define statement corresponds to a define expression except that it is
also allowed to use operation calls on the right-hand sides. Thus, operations
that change the state can also be used here, and if there are more than
one definition they are evaluated in the order in which they are presented.
It denotes the evaluation of the statement s in the context in which the
patterns (or binds) pb1, ..., pbn are matched against the values returned
by the corresponding expressions or operation calls e1, ..., en18.

Examples: Given the following sequences:

secondRoundWinners = [<A>,<B>,<C>,<D>,<E>,<F>,<G>,<H>];
secondRoundRunnersUp = [<B>,<A>,<D>,<C>,<F>,<E>,<H>,<G>]

The operation SecondRound, from class GroupPhase returns the sequence
of pairs representing the second round games gives an example of a def
statement:

SecondRound : () ==> seq of (Team * Team)
SecondRound () ==
def winners = { gp |-> GroupWinner(gp) | gp in set dom gps };

runners_up = { gp |-> GroupRunnerUp(gp) | gp in set dom gps}
in return ([mk_(winners(secondRoundWinners(i)),

runners_up(secondRoundRunnersUp(i)))
| i in set {1,...,8}])

18If binds are used it simply means that the values which can match the pattern are further
constrained by the type or set expression as it is explained in section 8.

87



The VDM++ Language

13.3 The Block Statement

Syntax: statement = . . .
| block statement
| . . . ;

block statement = ‘(’, { dcl statement },
statement, { ‘;’, statement }, [ ‘;’ ], ‘)’ ;

dcl statement = ‘dcl’, assignment definition,
{ ‘,’, assignment definition }, ‘;’ ;

assignment definition = identifier, ‘:’, type, [ ‘:=’, expression ] ;

Semantics: The block statement corresponds to block statements from tradi-
tional high-level programming languages. It enables the use of locally de-
fined variables (by means of the declare statement) which can be modified
inside the body of the block statement. It simply denotes the ordered ex-
ecution of what the individual statements prescribe. The first statement
in the sequence that returns a value causes the evaluation of the sequence
statement to terminate. This value is returned as the value of the block
statement. If none of the statements in the block returns a value, the eval-
uation of the block statement is terminated when the last statement in the
block has been evaluated. When the block statement is left the values of the
local variables are discharged. Thus, the scope of these variables is simply
inside the block statement.

Examples: In the context of instance variables

instance variables
x:nat;
y:nat;
l:seq1 of nat;

the operation Swap uses a block statement to swap the values of variables
x and y:

Swap : () ==> ()
Swap () ==
(dcl temp: nat := x;
x := y;

88



The VDM++ Language

y := temp
)

13.4 The Assignment Statement

Syntax: statement = . . .
| general assign statement
| . . . ;

general assign statement = assign statement
| multiple assign statement ;

assign statement = state designator, ‘:=’, expression ;

state designator = name
| field reference
| map or sequence reference ;

field reference = state designator, ‘.’, identifier ;

map reference = state designator, ‘(’, expression, ‘)’ ;

sequence reference = state designator, ‘(’, expression, ‘)’ ;

multiple assign statement = ‘atomic’, ‘(’ assign statement, ‘;’,
assign statement,
[ { ‘;’, assign statement } ] ‘)’ ;

Semantics: The assignment statement corresponds to a generalisation of assign-
ment statements from traditional high level programming languages. It is
used to change the value of the global or local state. Thus, the assignment
statement has side-effects on the state. However, in order to be able to
simply change a part of the state, the left-hand side of the assignment can
be a state designator. A state designator is either simply the name of a
global variable, a reference to a field of a variable, a map reference of a
variable, or a sequence reference of a variable. In this way it is possible to
change the value of a small component of the state. For example, if a state
component is a map, it is possible to change a single entry in the map.

An assignment statement has the form:

89



The VDM++ Language

sd := ec

where sd is a state designator, and ec is either an expression or a call of an
operation. The assignment statement denotes the change to the given state
component described at the right-hand side (expression or operation call).
If the right-hand side is a state changing operation then that operation is
executed (with the corresponding side effect) before the assignment is made.

Multiple assignment is also possible. This has the form:

atomic (sd1 := ec1;
...;
sdN := ecN
)

All of the expressions or operation calls on the right hand sides are executed
or evaluated, and then the results are bound to the corresponding state
designators. The right-hand sides are executed atomically with respect to
invariant evaluation. However in the case of a multi-threaded concurrent
model, execution is not necessarily atomic with respect to task switching.

Examples: The operation in the previous example (Swap) illustrated normal as-
signment. The operation Win sd, a refinement of Win on page 82 illustrates
the use of state designators to assign to a specific map key:

Win_sd : Team * Team ==> ()
Win_sd (wt,lt) ==

let gp in set dom gps be st
{wt,lt} subset {sc.team | sc in set gps(gp)}

in gps(gp) := { if sc.team = wt
then mu(sc, won |-> sc.won + 1,

points |-> sc.points + 3)
else if sc.team = lt
then mu(sc, lost |-> sc.lost + 1)
else sc

| sc in set gps(gp)}
pre exists gp in set dom gps &

{wt,lt} subset {sc.team | sc in set gps(gp)}

90



The VDM++ Language

The operation SelectionSort is a state based version of the function
selection sort on page 42. It demonstrates the use of state designa-
tors to modify the contents of a specific sequence index, using the instance
variables defined on page 88.

functions

min_index : seq1 of nat -> nat
min_index(l) ==
if len l = 1 then 1
else let mi = min_index(tl l)

in if l(mi+1) < hd l
then mi+1
else 1

operations

SelectionSort : nat ==> ()
SelectionSort (i) ==

if i < len l
then (dcl temp: nat;

dcl mi : nat := min_index(l(i,...,len l)) + i - 1;
temp := l(mi);
l(mi) := l(i);
l(i) := temp;
SelectionSort(i+1)
);

The following example illustrates multiple assignment.

class C

instance variables
size : nat;
l : seq of nat;

inv size = len l

operations
add1 : nat ==> ()
add1 (x) ==

91



The VDM++ Language

( l := [x] ^ l;
size := size + 1);

add2 : nat ==> ()
add2 (x) ==

atomic (l := [x] ^ l;
size := size + 1)

end C

Here, in add1 the invariant on the class’s instance variables is broken,
whereas in add2 using the multiple assignment, the invariant is preserved.

13.5 Conditional Statements

Syntax: statement = . . .
| if statement
| cases statement
| . . . ;

if statement = ‘if’, expression, ‘then’, statement,
{ elseif statement }, [ ‘else’, statement ] ;

elseif statement = ‘elseif’, expression, ‘then’, statement ;

cases statement = ‘cases’, expression, ‘:’,
cases statement alternatives,
[ ‘,’, others statement ], ‘end’ ;

cases statement alternatives = cases statement alternative,
{ ‘,’, cases statement alternative } ;

cases statement alternative = pattern list, ‘->’, statement ;

others statement = ‘others’, ‘->’, statement ;

Semantics: The semantics of the if statement corresponds to the if expression
described in section 7.4 except for the alternatives which are statements
(and that the else part is optional)19.

19If the else part is omitted semantically it is like using else skip.

92



The VDM++ Language

The semantics for the cases statement corresponds to the cases expression
described in section 7.4 except for the alternatives which are statements.

Examples: Assuming functions clear winner and winner by more wins and
operation RandomElement with the following signatures:

clear_winner : set of Score -> bool
winner_by_more_wins : set of Score -> bool
RandomElement : set of Team ==> Team

then the operation GroupWinner if demonstrates the use of a nested if
statement (the iota expression is presented on page 49):

GroupWinner_if : GroupName ==> Team
GroupWinner_if (gp) ==

if clear_winner(gps(gp))
-- return unique score in gps(gp) which has more points
-- than any other score

then return ((iota sc in set gps(gp) &
forall sc’ in set gps(gp) \ {sc} &
sc.points > sc’.points).team)

else if winner_by_more_wins(gps(gp))
-- return unique score in gps(gp) with maximal points
-- & has won more than other scores with maximal points

then return ((iota sc in set gps(gp) &
forall sc’ in set gps(gp) f {sc} &
(sc.points > sc’.points) or
(sc.points = sc’.points and
sc.won > sc’.won)).team)

-- no outright winner, so choose random score
-- from joint top scores

else RandomElement ( {sc.team | sc in set gps(gp) &
forall sc’ in set gps(gp) &
sc’.points <= sc.points} );

Alternatively, we could use a cases statement with match value patterns for
this operation:

GroupWinner_cases : GroupName ==> Team
GroupWinner_cases (gp) ==

93



The VDM++ Language

cases true:
(clear_winner(gps(gp))) ->

return ((iota sc in set gps(gp) &
forall sc’ in set gps(gp) \ {sc} &
sc.points > sc’.points).team),

(winner_by_more_wins(gps(gp))) ->
return ((iota sc in set gps(gp) &

forall sc’ in set gps(gp) \ {sc} &
(sc.points > sc’.points) or
(sc.points = sc’.points and

sc.won > sc’.won)).team),

others -> RandomElement ( {sc.team | sc in set gps(gp) &
forall sc’ in set gps(gp) &
sc’.points <= sc.points} )

end

13.6 For-Loop Statements

Syntax: statement = . . .
| sequence for loop
| set for loop
| index for loop
| . . . ;

sequence for loop = ‘for’, pattern bind, ‘in’, [ ‘reverse’ ], expression,
‘do’, statement ;

set for loop = ‘for’, ‘all’, pattern, ‘in set’, expression,
‘do’, statement ;

index for loop = ‘for’, identifier, ‘=’, expression, ‘to’, expression,
[ ‘by’, expression ], ‘do’, statement ;

Semantics: There are three kinds of for-loop statements. The for-loop using an
index is known from most high-level programming languages. In addition,
there are two for-loops for traversing sets and sequences. These are espe-
cially useful if access to all elements from a set (or sequence) is needed one
by one.

94



The VDM++ Language

An index for-loop statement has the form:

for id = e1 to e2 by e3 do
s

where id is an identifier, e1 and e2 are integer expressions indicating the
lower and upper bounds for the loop, e3 is an integer expression indicating
the step size, and s is a statement where the identifier id can be used. It
denotes the evaluation of the statement s as a sequence statement where
the current context is extended with a binding of id. Thus, the first time
s is evaluated id is bound to the value returned from the evaluation of the
lower bound e1 and so forth until the upper bound is reached ie. until s >
e2 . Note that e1, e2 and e3 are evaluated before entering the loop.

A set for-loop statement has the form:

for all e in set S do
s

where S is a set expression. The statement s is evaluated in the current
environment extended with a binding of e to subsequent values from the set
S.

A sequence for-loop statement has the form:

for e in l do
s

where l is a sequence expression. The statement s is evaluated in the
current environment extended with a binding of e to subsequent values
from the sequence l. If the keyword reverse is used the elements of the
sequence l will be taken in reverse order.

Examples: The operation Remove demonstrates the use of a sequence-for loop
to remove all occurences of a given number from a sequence of numbers:

Remove : (seq of nat) * nat ==> seq of nat
Remove (k,z) ==
(dcl nk : seq of nat := [];
for elem in k do

95



The VDM++ Language

if elem <> z
then nk := nk^[elem];

return nk
);

A set-for loop can be exploited to return the set of winners of all groups:

GroupWinners: () ==> set of Team
GroupWinners () ==
(dcl winners : set of Team := {};
for all gp in set dom gps do
(dcl winner: Team := GroupWinner(gp);
winners := winners union {winner}
);

return winners
);

An example of a index-for loop is the classic bubblesort algorithm:

BubbleSort : seq of nat ==> seq of nat
BubbleSort (k) ==
(dcl sorted_list : seq of nat := k;
for i = len k to 1 by -1 do

for j = 1 to i-1 do
if sorted_list(j) > sorted_list(j+1)
then (dcl temp:nat := sorted_list(j);

sorted_list(j) := sorted_list(j+1);
sorted_list(j+1) := temp
);

return sorted_list
)

13.7 The While-Loop Statement

Syntax: statement = . . .
| while loop
| . . . ;

while loop = ‘while’, expression, ‘do’, statement ;

96



The VDM++ Language

Semantics: The semantics for the while statement corresponds to the while
statement from traditional programming languages. The form of a while
loop is:

while e do
s

where e is a boolean expression and s a statement. As long as the expression
e evaluates to true the body statement s is evaluated.

Examples: The while loop can be illustrated by the following example which
uses Newton’s method to approximate the square root of a real number r
within relative error e.

SquareRoot : real * real ==> real
SquareRoot (r,e) ==
(dcl x:real := 1,

nextx:real := r;
while abs (x - nextx) >= e * x do
( x := nextx;
nextx := ((r / x) + x) / 2;

);
return nextx
);

13.8 The Nondeterministic Statement

Syntax: statement = . . .
| nondeterministic statement
| . . . ;

nondeterministic statement = ‘||’, ‘(’, statement,
{ ‘,’, statement }, ‘)’ ;

Semantics: The nondeterministic statement has the form:

|| (stmt1, stmt2, ..., stmtn)

97



The VDM++ Language

and it represents the execution of the component statements stmti in an
arbitrary (non-deterministic) order. However, it should be noted that the
component statements are not executed simultaneously. Notice that the
interpreter will use an underdetermined20 semantics even though this con-
struct is called a non-deterministic statement.

Examples: Using the instance variables

instance variables
x:nat;
y:nat;
l:seq1 of nat;

we can use the non-deterministic statement to effect a bubble sort:

Sort: () ==> ()
Sort () ==

while x < y do
||(BubbleMin(), BubbleMax());

Here BubbleMin “bubbles” the minimum value in the subsequence l(x,...,y)
to the head of the subsequence and BubbleMax “bubbles” the maximum
value in the subsequence l(x,...,y) to the last index in the subsequence.
BubbleMin works by first iterating through the subsequence to find the in-
dex of the minimum value. The contents of this index are then swapped
with the contents of the head of the list, l(x).

BubbleMin : () ==> ()
BubbleMin () ==
(dcl z:nat := x;
dcl m:nat := l(z);
-- find min val in l(x..y)
for i = x to y do

if l(i) < m
then ( m := l(i);

z := i);
-- move min val to index x

20Even though the user of the interpreter does not know the order in which these statements
are executed they are always executed in the same order unless the seed option is used.

98



The VDM++ Language

(dcl temp:nat;
temp := l(x);
l(x) := l(z);
l(z) := temp;
x := x+1);

BubbleMax operates in a similar fashion. It iterates through the subsequence
to find the index of the maximum value, then swaps the contents of this
index with the contents of the last element of the subsequence.

BubbleMax : () ==> ()
BubbleMax () ==
(dcl z:nat := x;
dcl m:nat := l(z);
-- find max val in l(x..y)
for i = x to y do

if l(i) > m
then ( m := l(i);

z := i);
-- move max val to index y
(dcl temp:nat;
temp := l(y);
l(y) := l(z);
l(z) := temp;
y := y-1));

13.9 The Call Statement

Syntax: statement = . . .
| call statement
| . . . ;

call statement = [ object designator, ‘.’ ], name,
‘(’, [ expression list ], ‘)’, ;

object designator = name
| self expression
| new expression
| object field reference
| object apply ;

99



The VDM++ Language

object field reference = object designator, ‘.’, identifier ;

object apply = object designator, ‘(’, [ expression list ], ‘)’ ;

Semantics: The call statement has the form:

object.opname(param1, param2, ..., paramn)

The call statement calls an operation, opname, and returns the result of
evaluating the operation. Because operations can manipulate global vari-
ables a call statement does not necessarily have to return a value as function
calls do.

If an object designator is specified it must yield an object reference to
an object of a class in which the operation opname is defined, and then the
operation must be specified as public. If no object designator is specified
the operation will be called in the current object. If the operation is defined
in a superclass, it must have been defined as public or protected.

Examples:

Consider the following simple specification of a Stack:

class Stack

instance variables
stack: seq of Elem := [];

operations

public Reset: () ==> ()
Reset() ==
stack := [];

public Pop: () ==> Elem
Pop() ==
def res = hd stack in
(stack := tl stack;
return res)

pre stack <> []
post stack~ = [RESULT] ^ stack

100



The VDM++ Language

end Stack

In the example the operation Reset does not have any parameters and does
not return a value whereas the operation Pop returns the top element of the
stack. The stack could be used as follows:

( dcl stack := new Stack();
stack.Reset();
....
top := stack.Pop();

)

Inside class Stack the operations can be called as shown below:

Reset();
....
top := Pop();

Or using the self reference:

self.Reset();
top := self.Pop();

13.10 The Return Statement

Syntax: statement = . . .
| return statement
| . . . ;

return statement = ‘return’, [ expression ] ;

Semantics: The return statement returns the value of an expression inside an
operation. The value is evaluated in the given context. If an operation does
not return a value, the expression must be omitted. A return statement has
the form:

101



The VDM++ Language

return e

or

return

where expression e is the return value of the operation.

Examples: In the following example OpCall is an operation call whereas FunCall
is a function call. As the if statement only accepts statements in the two
branches FunCall is “converted” to a statement by using the return state-
ment.

if test
then OpCall()
else return FunCall()

For instance, we can extend the stack class from the previous section with
an operation which examines the top of the stack:

public Top : () ==> Elem
Top() ==

return (hd stack);

13.11 Exception Handling Statements

Syntax: statement = . . .
| always statement
| trap statement
| recursive trap statement
| exit statement
| . . . ;

always statement = ‘always’, statement, ‘in’, statement ;

trap statement = ‘trap’, pattern bind, ‘with’, statement, ‘in’,
statement ;

102



The VDM++ Language

recursive trap statement = ‘tixe’, traps, ‘in’, statement ;

traps = ‘{’, pattern bind, ‘|->’, statement,
{ ‘,’, pattern bind, ‘|->’, statement }, ‘}’ ;

exit statement = ‘exit’, [ expression ] ;

Semantics: The exception handling statements are used to control exception
errors in a specification. This means that we have to be able to signal an
exception within a specification. This can be done with the exit statement,
and has the form:

exit e

or

exit

where e is an expression which is optional. The expression e can be used
to signal what kind of exception is raised.

The always statement has the form:

always s1 in
s2

where s1 and s2 are statements. First statement s2 is evaluated, and re-
gardless of any exceptions raised, statement s1 is also evaluated. The result
value of the complete always statement is determined by the evaluation of
statement s1: if this raises an exception, this value is returned, otherwise
the result of the evaluation of statement s2 is returned.

The trap statement only evaluates the handler statement, s1, when certain
conditions are fulfilled. It has the form:

trap pat with s1 in s2

where pat is a pattern or bind used to select certain exceptions, s1 and
s2 are statements. First, we evaluate statement s2, and if no exception is
raised, the result value of the complete trap statement is the result of the

103



The VDM++ Language

evaluation of s2. If an exception is raised, the value of s2 is matched against
the pattern pat. If there is no matching, the exception is returned as result
of the complete trap statement, otherwise, statement s1 is evaluated and
the result of this evaluation is also the result of the complete trap statement.

The recursive trap statement has the form:

tixe {
pat1 |-> s1,
...
patn |-> sn

} in s

where pat1, ..., patn are patterns or binds, s, s1, ..., sn are state-
ments. First, statement s is evaluated, and if no exception is raised, the
result is returned as the result of the complete recursive trap statement.
Otherwise, the value is matched in order against each of the patterns pati.
When a match cannot be found, the exception is returned as the result of
the recursive trap statement. If a match is found, the corresponding state-
ment si is evaluated. If this does not raise an exception, the result value
of the evaluation of si is returned as the result of the recursive trap state-
ment. Otherwise, the matching starts again, now with the new exception
value (the result of the evaluation of si).

Examples: In many programs, we need to allocate memory for a single opera-
tion. After the operation is completed, the memory is not needed anymore.
This can be done with the always statement:

( dcl mem : Memory;
always Free(mem) in
( mem := Allocate();
Command(mem, ...)

)
)

In the above example, we cannot act upon a possible exception raised within
the body statement of the always statement. By using the trap statement
we can catch these exceptions:

trap pat with ErrorAction(pat) in

104



The VDM++ Language

( dcl mem : Memory;
always Free(mem) in
( mem := Allocate();
Command(mem, ...)

)
)

Now all exceptions raised within the always statement are captured by the
trap statement. If we want to distinguish between several exception values,
we can use either nested trap statements or the recursive trap statement:

DoCommand : () ==> int
DoCommand () ==
( dcl mem : Memory;

always Free(mem) in
( mem := Allocate();
Command(mem, ...)

)
);

Example : () ==> int
Example () ==
tixe
{ <NOMEM> |-> return -1,
<BUSY> |-> DoCommand(),
err |-> return -2 }

in
DoCommand()

In operation DoCommand we use the always statement in the allocation of
memory, and all exceptions raised are captured by the recursive trap state-
ment in operation Example. An exception with value <NOMEM> results in a
return value of -1 and no exception raised. If the value of the exception is
<BUSY> we try to perform the operation DoCommand again. If this raises an
exception, this is also handled by the recursive trap statement. All other
exceptions result in the return of the value -2.

13.12 The Error Statement

Syntax: statement = . . .

105



The VDM++ Language

| error statement
| . . . ;

error statement = ‘error’ ;

Semantics: The error statement corresponds to the undefined expression. It
is used to state explicitly that the result of a statement is undefined and
because of this an error has occurred. When an error statement is evaluated
the interpreter will terminate the execution of the specification and report
that an error statement was evaluated.

Pragmatically use of error statements differs from pre-conditions as was
the case with undefined expressions: use of a pre-condition means it is the
caller’s responsibility to ensure that the pre-condition is satisfied when the
operation is called; if an error statement is used it is the called operation’s
responsibility to deal with error handling.

Examples: The operation SquareRoot on page 97 does not exclude the possi-
bility that the number to be square rooted might be negative. We remedy
this in the operation SquareRootErr:

SquareRootErr : real * real ==> real
SquareRootErr (r,e) ==

if r < 0
then error
else
(dcl x:real := 1;
dcl nextx:real := r;
while abs (x - nextx) >= e * x do
( x := nextx;
nextx := ((r / x) + x) / 2;

);
return nextx
)

13.13 The Identity Statement

Syntax: statement = . . .
| identity statement ;

identity statement = ‘skip’ ;

106



The VDM++ Language

Semantics: The identity statement is used to signal that no evaluation takes
place.

Examples: In the operation Remove in section 13.6 the behaviour of the opera-
tion within the for loop if elem=z is not explicitly stated. Remove2 below
does this.

Remove2 : (seq of nat) * nat ==> seq of nat
Remove2 (k,z) ==
(dcl nk : seq of nat := [];
for elem in k do

if elem <> z then nk := nk^[elem]
else skip;

return nk
);

Here, we explicitly included the else-branch to illustrate the identity state-
ment, however, in most cases the else-branch will not be included and the
identity statement is implicitly assumed.

13.14 Start and Start List Statements

Syntax: statement = . . .
| start statement
| start list statement ;

start statement = ‘start’, ‘(’, expression, ‘)’ ;

start list statement = ‘startlist’, ‘(’, expression, ‘)’ ;

Semantics: The start and start list statements have the form:

start(aRef)
startlist(aRef_s)

If a class description includes a thread (see section 16), each object created
from this class will have the ability to operate as a stand-alone virtual
machine, or in other terms: the object has its own processing capability. In
this situation, a new expression creates the ‘process’ leaving it in a waiting

107



The VDM++ Language

state. For such objects VDM++ has a mechanism to change the waiting
state into an active state21 in terms of a predefined operation, which can
be invoked through a start statement.

The explicit separation of object creation and start provides the possibility
to complete the initialisation of a (concurrent) system before the objects
start exhibiting their described behaviour, in this way avoiding problems
that may arise when objects are referred to that are not yet created and/or
connected.

A syntactic variant of the start statement is available to start up a number
of active objects in arbitrary order: the start list statement. The parameter
aRef s to startlist must be a set of object references to objects instantiated
from classes containing a thread.

Examples: Consider the specification of an operating system. A component of
this would be the daemons and other processes started up during the boot
sequence. From this perspective, the following definitions are relevant:

types

runLevel = nat;

Process = Kerneld | Ftpd | Syslogd | Lpd | Httpd

instance variables
pInit : map runLevel to set of Process

where Kerneld is an object reference type specified elsewhere, and similarly
for the other processes listed.

We can then model the boot sequence as an operation:

bootSequence : runLevel ==> ()
bootSequence(rl) ==

for all p in set pInit(rl) do
start(p);

Alternatively we could use the startlist statement here:

bootSequenceList : runLevel ==> ()
bootSequenceList(rl) ==

startlist(pInit(rl))

21When an object is in an active state, its behaviour can be described using a thread (see
section 16).

108



The VDM++ Language

13.15 The Specification Statement

Syntax: statement = . . .
| specification statement ;

specification statement = ‘[’, implicit operation body, ‘]’ ;

Semantics: The specification statement can be used to describe a desired effect
a statement in terms of a pre- and a post-condition. Thus, it captures the
abstraction of a statement, permitting it to have an abstract (implicit) spec-
ification without being forced to an operation definition. The specification
statement is equivalent with the body of an implicitly defined operation
(see section 12). Thus specification statements can not be executed.

Examples: We can use a specification statement to specify a bubble maximum
part of a bubble sort:

Sort2 : () ==> ()
Sort2 () ==

while x < y do
|| (BubbleMin(),

[ext wr l : seq1 of nat
wr y : nat
rd x : nat

pre x < y
post y < y~ and

permutation (l~(x,...,y~),l(x,...,y~)) and
forall i in set {x,...,y} & l(i) < l(y~)]

)

(permutation is an auxiliary function taking two sequences which returns
true iff one sequence is a permutation of the other.)

109



The VDM++ Language

14 Top-level Specification

In the previous sections VDM++ constructs such as types, expressions, state-
ments, functions and operations have been described. A number of these con-
structs can constitute the definitions inside a class definition. A top-level speci-
fication, or document, is composed by one or more class definitions.

Syntax: document = class, { class } ;

14.1 Classes

Compared to the standard VDM-SL language, VDM++ has been extended with
classes. In this section, the use of classes to create and structure a top-level
specification will be described. With the object oriented facilities offered by
VDM++ it is possible to:

• Define classes and create objects.

• Define associations and create links between objects.

• Make generalisation and specialisation through inheritance.

• Describe the functional behaviour of the objects using functions and oper-
ations.

• Describe the dynamic behaviour of the system through threads and syn-
chronisation constraints.

Before the actual facilities are described, the general layout of a class is described.

Syntax: class = ‘class’, identifier, [ inheritance clause ],
[ class body ],
‘end’, identifier ;

inheritance clause = ‘is subclass of’, identifier, { identifier } ;

class body = definition block, { definition block } ;

110



The VDM++ Language

definition block = type definitions
| value definitions
| function definitions
| operation definitions
| instance variable definitions
| synchronization definitions
| thread definitions ;

Semantics: Each class description has the following parts:

• A class header with the class name and an optional inheritance clause.

• An optional class body.

• A class tail.

The class name as given in the class header is the defining occurrence of the
name of the class. A class name is globally visible, i.e. visible in all other
classes in the specification.

The class name in the class header must be the same as the class name in
the class tail. Furthermore, defining class names must be unique throughout
the specification.

The (optional) class body may consist of:

• A set of value definitions (constants).

• A set of type definitions.

• A set of function definitions.

• A set of instance variable definitions describing the internal state of
an object instantiated from the class. State invariant expressions are
encouraged but are not mandatory.

• A set of operation definitions that can act on the internal state.

• A set of the synchronization definitions, specified either in terms of
permission predicates or in terms of traces. Each trace represents an
allowed sequence of invocations of the functions and operations by
other objects.

• A set of thread definitions that describe the thread of control for active
objects.

In general, all constructs defined within a class must have a unique name,
e.g. it is not allowed to define an operation and a type with the same name.
However, it is possible to overload function and operation names (i.e. it is

111



The VDM++ Language

possible to have two or more functions with the same name and two or more
operations with the same name) subject to the restriction that the types of
their input parameters should not overlap. That is, it should be possible
using static type checking alone to determine uniquely and unambiguously
which function/operation definition corresponds to each function/operation
call. Note that this applies not only to functions and operations defined in
the local interface of a class but also to those inherited from superclasses.
Thus, for example, in a design involving multiple inheritance a class C may
inherit a function from a class A and a function with the same name from
a class B and all calls involving this function name must be resolvable in
class C.

14.2 Inheritance

The concept of inheritance is essential to object orientation. When one defines a
class as a subclass of an already existing class the definition of the subclass in-
troduces an extended class, which is composed of the definitions of the superclass
together with the definitions of the newly defined subclass.

Through inheritance, a subclass inherits from the superclass:

• Its instance variables. This also includes all invariants and their restrictions
on the allowed modifications of the state.

• Its operation and function definitions.

• Its value and type definitions.

• Its synchronization definitions as described in section 15.2.

A name conflict occurs when two constructs of the same kind and with the same
name are inherited from different superclasses. Name conflicts must be explicitly
resolved through name qualification, i.e. prefixing the construct with the name
of the superclass and a ‘-sign (back-quote) (see also section 19).

Example: In the first example, we see that inheritance can be exploited to allow
a class definition to be used as an abstract interface which subclasses must
implement:

class Sort

112



The VDM++ Language

instance variables
protected data : seq of int

operations

init_data : seq of int ==> ()
init_data (l) ==
data := l;

sort_ascending : () ==> ()
sort_ascending () == is subclass responsibility;

end Sort

class SelectionSort is subclass of Sort

functions

min_index : seq1 of nat -> nat
min_index(l) ==

if len l = 1
then 1
else let mi = min_index(tl l)

in if l(mi+1) < hd l
then mi+1
else 1

operations

sort_ascending : () ==> ()
sort_ascending () == SelectionSort(1);

SelectionSort : nat ==> ()
SelectionSort (i) ==

if i < len data
then (dcl temp: nat;

dcl mi: nat := min_index(data(i,...,len data)) +
i - 1;

temp := data(mi);
data(mi) := data(i);

113



The VDM++ Language

data(i) := temp;
SelectionSort(i+1)
)

end SelectionSort

Here the class Sort defines an abstract interface to be implemented by dif-
ferent sorting algorithms. One implementation is provided by the Selecti-
onSort class.

The next example clarifies how name space clashes are resolved.

class A
instance variables
i: int := 1;
j: int := 2;

end A

class B is subclass of A
end B

class C is subclass of A
instance variables
i: int := 3;

end C

class D is subclass of B,C
operations
GetValues: () ==> seq of int
GetValues() ==

return [
A‘i, -- equal to 1
B‘i, -- equal to 1 (A‘i)
C‘i, -- equal to 3
j -- equal to 2 (A‘j)

]
end D

In the example objects of class D have 3 instance variables: A‘i, A‘j and C‘j.
Note that objects of class D will have only one copy of the instance variables
defined in class A even though this class is a common super class of both class B

114



The VDM++ Language

and C. Thus, in class D the names B‘j, C‘j, D‘j and j are all referring to the same
variable, A‘j. It should also be noticed that the variable name i is ambiguous in
class D as it refers to different variables in class B and class C.

14.3 Interface and Availability of Class Members

In VDM++ definitions inside a class are distinguished between:

Class attribute: an attribute of a class for which there exists exactly one incar-
nation no matter how many instances (possibly zero) of the class may even-
tually be created. Class attributes in VDM++ correspond to static class
members in languages like C++ and Java. Class (static) attributes can be
referenced by prefixing the name of the attribute with the name of the class
followed by a ‘-sign (back-quote), so that, for example, ClassName‘val
refers to the value val defined in class ClassName.

Instance attribute: an attribute for which there exists one incarnation for each
instance of the class. Thus, an instance attribute is only available in an ob-
ject and each object has its own copy of its instance attributes. Instance
(non-static) attributes can be referenced by prefixing the name of the at-
tribute with the name of the object followed by a dot, so that, for example,
object.op() invokes the operation op in the object denoted by object
(provided that op is visible to object).

Functions, operations, instance variables and constants22 in a class may be either
class attributes or instance attributes. This is indicated by the keyword static:
if the declaration is preceded by the keyword static then it represents a class
attribute, otherwise it denotes an instance attribute.

Other class components are by default always either class attributes or instance
attributes as follows:

• Type definitions are always class attributes.

• Thread definitions are always instance attributes. Thus, each active object
has its own thread(s).

22In practice, constants will generally be static – a non-static constant would represent a
constant whose value may vary from one instance of the class to another which would be more
naturally represented by an instance variable.

115



The VDM++ Language

• Synchronization definitions are always instance attributes. Thus, each ob-
ject has its own “history” when it has been created.

In addition, the interface or accessibility of a class member may be explicitly
defined using an access specifier: one of public, private or protected. The meaning
of these specifiers is:

public: Any class may use such members

protected: Only subclasses of the current class may use such members

private: No other class may use such members - they may only be used in the
class in which they are specified.

The default access to any class member is private. That is, if no access specifier
is given for a member it is private.

This is summarized in table 11. A few provisos apply here:

• Granting access to instance variables (i.e. through a public or protected
access specifier) gives both read and write access to these instance variables.

• Public instance variables may be read (but not written) using the dot (for
object instance variables) or back-quote (for class instance variables) no-
tation e.g. a public instance variable v of an object o may be accessed as
o.v.

• Access specifiers may only be used with type, value, function, operation
and instance variable definitions; they cannot be used with thread or syn-
chronization definitions.

• It is not possible to convert a class attribute into an instance attribute, or
vice-versa.

• For inherited classes, the interface to the subclass is the same as the interface
to its superclasses extended with the new definitions within the subclass.

• Access to an inherited member cannot be made more restrictive e.g. a public
instance variable in a superclass cannot be redeclared as a private instance
variable in a subclass.

116



The VDM++ Language

public protected private
Within the class

√ √ √

In a subclass
√ √

×
In an arbitrary external class

√
× ×

Table 11: Summary of Access Specifier Semantics

Example In the example below use of the different access specifiers is demon-
strated, as well as the default access to class members. Explanation is given
in the comments within the definitions.

class A

types
public Atype = <A> | <B> | <C>

values
public Avalue = 10;

functions
public compare : nat -> Atype
compare(x) ==

if x < Avalue
then <A>
elseif x = Avalue
then <B>
else <C>

instance variables
public v1: nat;
private v2: bool := false;
protected v3: real := 3.14;

operations
protected AInit : nat * bool * real ==> ()
AInit(n,b,r) ==
(v1 := n;
v2 := b;
v3 := r)

end A

117



The VDM++ Language

class B is subclass of A

instance variables
v4 : Atype --inherited from A

operations

BInit: () ==> ()
BInit() ==
(AInit(1,true,2.718); --OK: can access protected members

--in superclass
v4 := compare(v1); --OK since v1 is public
v3 := 3.5; --OK since v3 protected and this

--is a subclass of A
v2 := false --illegal since v2 is private to A
)

end B

class C

instance variables
a: A := new A();
b: B := new B();

operations

CInit: () ==> A‘Atype --types are class attributes
CInit() ==
(a.AInit(3,false,1.1);

--illegal since AInit is protected
b.BInit(); --illegal since BInit is (by default)

--private
let - = a.compare(b.v3) in skip;

--illegal since C is not subclass
--of A so b.v3 is not available

return b.compare(B‘Avalue)
--OK since compare is a public instance
--attribute and Avalue is public class
--attribute in B

118



The VDM++ Language

)

end C

15 Synchronization Constraints

In general a complete system contains objects of a passive nature (which only
react when their operations are invoked) and active objects which ‘breath life’
into the system. These active objects behave like virtual machines with their
own processing thread of control and after start up they do not need interaction
with other objects to continue their activities. In another terminology a system
could be described as consisting of a number of active clients requesting services
of passive or active servers. In such a parallel environment the server objects
need synchronization control to be able to guarantee internal consistency, to be
able to maintain their state invariants. Therefore, in a parallel world, a passive
object needs to behave like a Hoare monitor with its operations as entries.

If a sequential system is specified (in which only one thread of control is active
at a time) only a special case of the general properties is used and no extra
syntax is needed. However, in the course of development from specification to
implementation more differences are likely to appear.

The following default synchronization rules for each object apply in VDM++:

• operations are to be viewed as though they are atomic, from the point of
the caller;

• operations which have no corresponding permission predicate are subject
to no restrictions at all;

• synchronization constraints apply equally to calls within an object (i.e. one
operation within an object calls another operation within that object) and
outside an object (i.e. an operation from one object calls an operation in
another object);

• operation invocations have the semantics of a rendez-vous (as in Ada, see
[1]) in case two active objects are involved. Thus if an object O1 calls an
operation o in object O2, if O2 is currently unable to start operation o then
O1 blocks until the operation may be executed. Thus invocation occurs
when both the calling object and the called object are ready. (Note here

119



The VDM++ Language

a slight difference from the semantics of Ada: in Ada both parties to the
rendez-vous are active objects; in VDM++only the calling party is active)

The synchronization definition blocks of the class description provide the user
with ways to override the defaults described above.

Syntax: synchronization definitions = ‘sync’, [ synchronization ] ;

synchronization = permission predicates ;

Semantics: Synchronization is specified in VDM++using permission predicates.

15.1 Permission Predicates

The following gives the syntax used to state rules for accepting the execution of
concurrently callable operations. Some notes are given explaining these features.

Syntax: permission predicates = permission predicate, { ‘;’,
permission predicate } ;

permission predicate = ‘per’, name, ‘=>’, expression
| mutex predicate ;

mutex predicate = ‘mutex’, ‘(’, ‘all’, ‘)’
| ‘mutex’, ‘(’, name list ‘)’ ;

Semantics: Permission to accept execution of a requested operation depends on
a guard condition in a (deontic) permission predicate of the form:

per operation name => guard condition

The use of implication to express the permission means that truth of the
guard condition (expression) is a necessary but not sufficient condition for
the invocation. The permission predicate is to be read as stating that
if the guard condition is false then there is non-permission. Expressing
the permission in this way allows further similar constraints to be added
without risk of contradiction through inheritance for the subclasses. There
is a default for all operations:

per operation name => true

120



The VDM++ Language

but when a permission predicate for an operation is specified this default is
overridden.

Guard conditions can be conceptually divided into:

• a history guard defining the dependence on events in the past;

• an object state guard, which depends on the instance variables of the
object, and

• a queue condition guard, which depends on the states of the queues
formed by operation invocations (messages) awaiting service by the
object.

These guards can be freely mixed. Note that there is no syntactic distinc-
tion between these guards - they are all expressions. However they may be
distinguished at the semantic level.

A mutex predicate allows the user to specify either that all operations of the
class are to be executed mutually exclusive, or that a list of operations are
to be executed mutually exclusive to each other. Operations that appear
in one mutex predicate are allowed to appear in other mutex predicates as
well, and may also be used in the usual permission predicates. Each mutex
predicate will implicitly be translated to permission predicates using history
guards for each operation mentioned in the name list. For instance,

sync
mutex(opA, opB);
mutex(opB, opC, opD);
per opD => someVariable > 42;

would be translated to the following permission predicates:

sync
per opA => #active(opA) + #active(opB) = 0;
per opB => #active(opA) + #active(opB) = 0 and

#active(opB) + #active(opC) + #active(opD) = 0;
per opC => #active(opB) + #active(opC) + #active(opD) = 0;
per opD => #active(opB) + #active(opC) + #active(opD) = 0 and

someVariable > 42;

Note that it is only permitted to have one permission predicate for each
operation. The #active operator is explained below.

A mutex(all) constraint specifies that all of the operations specified in that
class and any superclasses are to be executed mutually exclusively.

121



The VDM++ Language

15.1.1 History guards

Semantics: A history guard is a guard which depends on the sequence of earlier
invocations of the operations of the object expressed in terms of history
expressions (see section 7.22). History expressions denotes the number of
activations and completions of the operations, given as functions

#act and #fin, respectively.

#act: operation name → N
#fin: operation name → N

Furthermore, a derived function #active is available such that #active(A)
= #act(A) - #fin(A), giving the number of currently active instances of A.
Another history function - #req - is defined in section 15.1.3.

Examples: Consider a Web server that is capable of supporting 10 simultaneous
connections and can buffer a further 100 requests. In this case we have one
instance variable, representing the mapping from URLs to local filenames:

instance variables
site_map : map URL to Filename := {|->}

The following operations are defined in this class (definitions omitted for
brevity):

ExecuteCGI: URL ==> File Execute a CGI script on the server
RetrieveURL: URL ==> File Transmit a page of html
UploadFile: File * URL ==> () Upload a file onto the server
ServerBusy: () ==> File Transmit a “server busy” page
DeleteURL: URL ==> () Remove an obsolete file

Since the server can support only 10 simultaneous connects, we can only
permit an execute or retrieve operation to be activated if the number already
active is less than 10:

per RetrieveURL => #active(RetrieveURL) +
#active(ExecuteCGI) < 10;

per ExecuteCGI => #active(RetrieveURL) +
#active(ExecuteCGI) < 10;

122



The VDM++ Language

15.1.2 The object state guard

Semantics: The object state guard is a boolean expression which depends on the
values of one (or more) instance variable(s) of the object itself. Object state
guards differ from operation pre-conditions in that a call to an an operation
whose permission predicate is false results in the caller blocking until the
predicate is satisfied, whereas a call to an operation whose pre-condition is
false means the operation’s behaviour is unspecified.

Examples: Using the web server example again, we can only allow file removal
if some files already exist:

per DeleteURL => dom site_map <> {}

Constraints for safe execution of the operations Push and Pop in a stack
object can be expressed using an object state guard as:

per Push => length < maxsize;

per Pop => length > 0

where maxsize and length are instance variables of the stack object.

It is often possible to express such constraints as a consequence of the
history, for example the empty state of the stack:

length = 0 <=> #fin(Push) = #fin(Pop)

However, the size is a property which is better regarded as a property of
the particular stack instance, and in such cases it is more elegant to use
available instance variables which store the effects of history.

15.1.3 Queue condition guards

Semantics: A queue condition guard acts on requests waiting in the queues for
the execution of the operations. This requires use of a third history function
#req such that #req(A) counts the number of messages which have been
received by the object requesting execution of operation A. Again it is useful
to introduce the function #waiting such that: #waiting(A) = #req(A) -
#act(A), which counts the number of items in the queue.

123



The VDM++ Language

Examples: Once again, with the web server we can only activate the ServerBusy
operation if 100 or more connections are waiting:

per ServerBusy => #waiting(RetrieveURL)
+ #waiting(ExecuteCGI) >= 100;

The most important use of such expressions containing queue state functions
is for expressing priority between operations. The protocol specified by:

per B => #waiting(A) = 0

gives priority to waiting requests for activation of A. There are, however,
many other situations when operation dispatch depends on the state of
waiting requests. Full description of the queuing requirements to allow
specification of operation selection based on request arrival times or to
describe ‘shortest job next’ behaviour will be a future development.

Note that #req(A) have value 1 at the time of evaluation of the permission
predicate for the first invocation of operation A. That is,

per A => #req(A) = 0

would always block.

15.1.4 Evaluation of Guards

Using the previous example, consider the following situation: the web server
is handling 10 RetrieveURL requests already. While it is dealing with these
requests, two further RetrieveURL requests (from objects O1 and O2) and one
ExecuteCGI request (from object O3) are received. The permission predicates for
these two operations are false since the number of active RetrieveURL operations
is already 10. Thus these objects block.

Then, one of the active RetrieveURL operations reaches completion. The permis-
sion predicate so far blocking O1, O2 and O3 will become “true” simultaneously.
This raises the question: which object is allowed to proceed? Or even all of them?

Guard expressions are only reevaluated when an event occurs (in this case the
completion of a RetrieveURL operation). In addition to that the test of a permis-
sion predicate by an object and its (potential) activation is an atomic operation.
This means, that when the first object evaluates its guard expression, it will find it
to be true and activate the corresponding operation (RetrieveURL or ExecuteCGI

124



The VDM++ Language

in this case). The other objects evaluating their guard expressions afterwards
will find that #active(RetrieveURL) + #active(ExecuteCGI) = 10 and thus
remain blocked. Which object is allowed to evaluate the guard expression first is
undefined.

It is important to understand that the guard expression need only evaluate to
true at the time of the activation. In the example as soon as O1, O2 or O3’s
request is activated its guard expression becomes false again.

15.2 Inheritance of Synchronization Constraints

Synchronization constraints specified in a superclass are inherited by its sub-
class(es). The manner in which this occurs depends on the kind of synchroniza-
tion.

15.2.1 Mutex constraints

Mutex constraints from base classes and derived classes are simply added. If the
base class and derived class have the mutex definitions MA and MB , respectively,
then the derived class simply has both mutex constraints MA, and MB . The
binding of operation names to actual operations is always performed in the class
where the constraint is defined. Therefore a mutex(all) constraint defined in a
superclass and inherited by a subclass only makes the operations from the base
class mutually exclusive and does not affect operations of the derived class.

Inheritance of mutex constraints is completely analogous to the inheritance scheme
for permission predicates. Internally mutex constraints are always expanded into
appropriate permission predicates which are added to the existing permission
predicates as a conjunction. This inheritance scheme ensures that the result (the
final permission predicate) is the same, regardless of whether the mutex defini-
tions are expanded in the base class and inherited as permission predicates or are
inherited as mutex definitions and only expanded in the derived class.

The intention for inheriting synchronization constraints in the way presented is
to ensure, that any derived class at least satisfies the constraints of the base
class. In addition to that it must be possible to strengthen the synchronization
constraints. This can be necessary if the derived class adds new operations as in
the following example:

class A

125



The VDM++ Language

operations

writer: () ==> () is not yet specified

reader: () ==> () is not yet specified

sync
per reader => #active(writer) = 0;
per writer => #active(reader, writer) = 0;

end A

class B is subclass of A
operations

newWriter: () ==> () is not yet specified

sync
per reader => #active(newWriter) = 0;
per writer => #active(newWriter) = 0;
per newWriter => #active(reader, writer, newWriter) = 0;

end B

Class A implements reader and writer operations with the permission predicates
specifying the multiple readers-single writer protocol. The derived class B adds
newWriter. In order to ensure deterministic behaviour B also has to add permis-
sion predicates for the inherited operations.

The actual permission predicates in the derived class are therefore:

per reader => #active(writer)=0 and #active(newWriter)=0;
per writer => #active(reader, writer)=0 and #active(newWriter)=0;
per newWriter => #active(reader, writer, newWriter)=0;

A special situation arises when a subclass overrides an operation from the base
class. The overriding operation is treated as a new operation. It has no permission
predicate (and in particular inherits none) unless one is defined in the subclass.

The semantics of inheriting mutex constraints for overridden operations is com-
pletely analogous: newly defined overriding operations are not restricted by mu-
tex definitions for equally named operations in the base class. The mutex(all)

126



The VDM++ Language

shorthand makes all inherited and locally defined operations mutually exclusive.
Overridden operations (defined in a base class) are not affected. In other words,
all operations, that can be called with an unqualified name (“locally visible op-
erations”) will be mutex to each other.

16 Threads

Objects instantiated from a class with a thread part are called active objects. The
scope of the instance variables and operations of the current class is considered
to extend to the thread specification.

Syntax: thread definitions = ‘thread’, [ thread definition ] ;

thread definition = periodic thread definition
| procedural thread definition ;

Subclasses inherit threads from superclasses. If a class inherits from several classes
only one of these may declare its own thread (possibly through inheritance).
Furthermore, explicitly declaring a thread in a subclass will override any inherited
thread.

16.1 Periodic Thread Definitions

The periodic thread definition can be regarded as the implicit way of describing
the activities in a thread.

Syntax: periodic thread definition = periodic obligation ;

periodic obligation = ‘periodic’,‘(’, numeral, ‘)’, ‘(’, name, ‘)’ ;

Semantics: Given a defined time resolution ∆T, a thread with a periodic obliga-
tion invokes the mentioned operation at the beginning of each time interval
with length expression. This creates the periodic execution of the operation
simulating the discrete equivalent of continuous relations which have to be
maintained between instance variables, parameter values and possibly other
external values obtained through operation invocations. It is not possible
to dynamically change the length of the interval.

127



The VDM++ Language

Periodic obligations are intended to describe e.g. analogue physical relations
between values in formulas (e.g. transfer functions) and their discrete event
simulation. It is a requirement on the implementation to guarantee that the
execution time of the operation is at least smaller than the used periodic
time length. If other operations are present the user has to guarantee
that the fairness criteria for the invocation of these other operations are
maintained by reasoning about the time slices used internally and available
for external invocations.

A periodic thread is not created or started when an instance of the corre-
sponding class is created. Instead, as with procedural threads, start state-
ments should be used with periodic threads.

Examples: Consider a timer class which periodically increments its clock in its
own thread. It provides operations for starting, and stopping timing, and
reading the current time.

class Timer

The Timer has two instance variables the current time and a flag indicating
whether the Timer is active or not (the current time is only incremented if
the Timer is active).

instance variables
curTime : nat := 0;
active : bool := false;

The Timer provides straightforward operations which need no further ex-
planation.

operations
public Start : () ==> ()
Start() ==
(active := true;
curTime := 0);

public Stop : () ==> ()
Stop() ==
active := false;

public GetTime : () ==> nat
GetTime() ==

128



The VDM++ Language

return curTime;

IncTime: () ==> ()
IncTime() ==

if active
then curTime := curTime + 100;

The Timer’s thread ensures that the current time is incremented. We take
one time unit for the Timer to correspond to 10 system time units.

thread
periodic(1000)(IncTime)

end Timer

16.2 Procedural Thread Definitions

A procedural thread provides a mechanism to explicitly define the external be-
haviour of an active object through the use of statements, which are executed
when the object is started (see section 13.14).

Syntax: procedural thread definition = statement ;

Semantics: A procedural thread is scheduled for execution following the appli-
cation of a start statement to the object owning the thread. The statements
in the thread are then executed sequentially, and when execution of the
statements is complete, the thread dies. Synchronization between multiple
threads is achieved using permission predicates on shared objects.

Examples: The example below demonstrates procedural threads by using them
to compute the factorial of a given integer concurrently.

class Factorial

instance variables
result : nat := 5;

operations

public factorial : nat ==> nat
factorial(n) ==

129



The VDM++ Language

if n = 0 then return 1
else (

dcl m : Multiplier;
m := new Multiplier();
m.calculate(1,n);
start(m);
result:= m.giveResult();
return result

)

end Factorial

class Multiplier

instance variables
i : nat1;
j : nat1;
k : nat1;
result : nat1

operations

public calculate : nat1 * nat1 ==> ()
calculate (first, last) ==
(i := first; j := last);

doit : () ==> ()
doit() ==
(
if i = j then result := i
else (

dcl p : Multiplier;
dcl q : Multiplier;
p := new Multiplier();
q := new Multiplier();
start(p);start(q);
k := (i + j) div 2;
-- division with rounding down
p.calculate(i,k);
q.calculate(k+1,j);
result := p.giveResult() * q.giveResult ()

130



The VDM++ Language

)
);

public giveResult : () ==> nat1
giveResult() ==

return result;

sync
-- cyclic constraints allowing only the
-- sequence calculate; doit; giveResult

per doit => #fin (calculate) > #act(doit);
per giveResult => #fin (doit) > #act (giveResult);
per calculate => #fin (giveResult) = #act (calculate)

thread
doit();

end Multiplier

17 Differences between VDM++ and ISO /VDM-
SL

This version of VDM++ is based on the ISO/VDM-SL standard, but a few differ-
ences exist. These differences are both syntactical and semantical, and are mainly
due to the extensions of the language and to requirements to make VDM++ con-
structs executable23.

The major difference between VDM++ and ISO/VDM-SL is the object-oriented
and concurrent extensions available in VDM++. This cause some syntactical
differences.

First of all an VDM++ specification is composed by a set of class definitions.
Flat ISO/VDM-SL specifications are not accepted. For the definitions part of
VDM++, the following differences with ISO/VDM-SL exist:

Syntactical differences:

23The semantics mentioned here is the semantics of the interpreter.

131



The VDM++ Language

• Semicolon (“;”) is used in the standard as a separator between subse-
quent constructs (e.g., between function definitions). VDM++ adds
to this rule that an optional semicolon can be put after the last of
such a sequence of constructs. This change apply to the following
syntactic definitions (see appendix A): type definitions, values defi-
nitions, function definitions, operation definitions, def expression, def
statement, and block statement.

• In explicit function and operation definitions it is possible to specify
an optional post condition in VDM++ (see section 6 and section 12
or section A.3.3 or section A.3.4).

• The body of explicit function and operation definitions can be specified
in a preliminary manner using the clauses is subclass responsibility and
is not yet specified.

• An extended form for explicit function and operation definitions has
been included. The extension is to enable the function and operation
definition to use a heading similar to that used for implicit definitions.
This makes it easier first to write an implicit definition and then add
an algorithmic part later on. In addition the result identifier type pair
has been generalised to work with more than one identifier.

• In an if statement the “else” part is optional (see section 13.5 or sec-
tion A.6.3).

• An empty set and an empty sequence can be used directly as patterns
(see section 8 or section A.7.1).

• “map domain restrict to” and “map domain restrict by” have a right
grouping (see section C.7).

• The operator precedence ordering for map type constructors is different
from the standard (see section C.8).

• In VDM++ tuple select, type judgement and precondition expressions
have been added.

• In VDM++ atomic assignment statements have been added.

• In VDM++ the definitions has been extended with instance variable
definitions, thread definitions and synchronization definitions.

• In VDM++ the following expressions have been added: new expres-
sion, self expression , isofbaseclass expression, isofclass expression,
samebaseclass expression, sameclass expression, act expression, fin ex-
pression, active expression, req expression and waiting expression.

132



The VDM++ Language

• In VDM++ the following statements have been added: specification
statement, select statement, start statement and startlist statement.

• The VDM-SL state definition has been replaced by the VDM++ in-
stance variables.

Semantical differences (wrt. the interpreter):

• VDM++ only operates with a conditional logic (see section 4.1.1).

• In VDM++ , value definitions which are mutually recursive cannot be
executed and they must be ordered such that they are defined before
they are used (see section 10).

• The local definitions in a let statement and a let expression cannot be
recursively defined. Furthermore they must be ordered such that they
are defined before they are used (see section 7.1 and section 13.1).

• The numeric type rat in VDM++ denotes the same type as the type
real (see section 4.1.2).

• The two forms of interpreting looseness which are used in ISO/VDM-
SL are ‘underdeterminedness’ and ‘nondeterminism’. In ISO/VDM-SL
the looseness in operations is nondeterministic whereas it is underde-
termined for functions. In VDM++ the looseness in both operations
and functions is underdetermined. This is, however, also in line with
the standard because the interpreter simply corresponds to one of the
possible models for a specification.

18 Static Semantics

VDM specifications that are syntactically correct according to the syntax rules
do not necessarily obey the typing and scoping rules of the language. The well-
formedness of a VDM specification can be checked by the static semantics checker.
In the Toolbox such a static semantics checker (for programming languages this
is normally referred to as a type checker) is also present.

In general, it is not statically decidable whether a given VDM specification is
well-formed or not. The static semantics for VDM++ differs from the static
semantics of other languages in the sense that it only rejects specifications which
are definitely not well-formed, and only accepts specifications which are definitely
well-formed. Thus, the static semantics for VDM++ attaches a well-formedness
grade to a VDM specification. Such a well-formedness grade indicates whether

133



The VDM++ Language

a specification is definitely well-formed, definitely not-well-formed, or possibly
well-formed.

In the Toolbox this means that the static semantics checker can be called for
either possible correctness or definite correctness. However, it should be noted
that only very simple specifications will be able to pass the definite well-formed-
ness check. Thus, for practical use the possible well-formedness is most useful.

The difference between a possibly well-formedness check and a definite well-
formedness check can be illustrated by the following fragment of a VDM specifi-
cation:

if a = true
then a + 1
else not a

where a has the type nat | bool (the union type of nat and bool). The reader can
easily see that this expression is ill-formed if a is equal to true because then it will
be impossible to add one to a. However, since such expressions can be arbitrarily
complex this can in general not be checked statically. In this particular example
possible well-formedness will yield true while definite well-formedness will yield
false.

19 Scope Conflicts

A name conflict occurs when two constructs with the same name (i.e. identified by
the same identifier) are visible in the same scope. This is also true when two such
constructs are not in the same language category, e.g. a type and an operation
with the same name. A specification with a naming conflict is considered to be
erroneous.

In case both constructs are defined in the same class, then the conflict can not
be resolved other than by renaming one of the constructs. If they are defined in
different classes, then the conflict can be resolved through name qualification, i.e.
one of the constructs is preceded by the name of the class in which it is defined
and a ‘‘’ (backquote) separator, so e.g.

types
Queue = seq of ComplexTypes‘RealNumber

134



The VDM++ Language

name qualification is used to define the type Queue in terms of a type RealNumber
defined in class ComplexTypes.

Note that only name qualification in which a class name is used to resolve the
naming conflict uses the ‘‘’ symbol as a separator; a ‘.’ (dot) symbol is used to
‘qualify’ ordinary values and/or objects. E.g. the notation

o.i

may refer to the instance variable i of an object, or to the field i of a compound
value (record) o.

135



The VDM++ Language

References

[1] Reference manual for the ada programming language. Tech. rep., United
States Government (Department of Defence), American National Standards
Institute, 1983.

[2] Dawes, J. The VDM-SL Reference Guide. Pitman, 1991. ISBN 0-273-03151-
1.

[3] Dürr, E. Syntactic description of the vdm++ language. Tech. rep., CAP
Gemini, P.O.Box 2575, 3500 GN Utrecht, NL, September 1992.

[4] Fitzgerald, J., and Jones, C. Proof in VDM: case studies. Springer-
Verlag FACIT Series, 1998, ch. Proof in the Validation of a Formal Model of
a Tracking System for a Nuclear Plant. To appear.

[5] Jones, C. B. Systematic Software Development Using VDM, second ed.
Prentice-Hall International, Englewood Cliffs, New Jersey, 1990. ISBN 0-13-
880733-7.

[6] P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and H.
Toetenel and D. J. Andrews and J. Dawes and G. Parkin and oth-
ers. Information technology — Programming languages, their environments
and system software interfaces — Vienna Development Method — Specifica-
tion Language — Part 1: Base language, December 1996.

[7] Paulson, L. C. ML for the Working Programmer. Cambridge University
Press, 1991.

136



The VDM++ Language

A The VDM++ Syntax

This appendix specifies the complete syntax for VDM++.

A.1 Document

document = class, { class } ;

A.2 Classes

class = ‘class’, identifier, [ inheritance clause ],
[ class body ],
‘end’, identifier ;

inheritance clause = ‘is subclass of’, identifier, { identifier } ;

A.3 Definitions

class body = definition block, { definition block } ;

definition block = type definitions
| value definitions
| function definitions
| operation definitions
| instance variable definitions
| synchronization definitions
| thread definitions ;

A.3.1 Type Definitions

type definitions = ‘types’, [ access type definition ,
{ ‘;’, access type definition }, [ ‘;’ ] ] ;

access type definition = ([ access ], [ ‘static’ ]) | ([ ‘static’ ], [ access ]),
type definition ;

137



The VDM++ Language

access = ‘public’
| ‘private’
| ‘protected’ ;

type definition = identifier, ‘=’, type, [ invariant ]
| identifier, ‘::’, field list, [ invariant ] ;

type = bracketed type
| basic type
| quote type
| composite type
| union type
| product type
| optional type
| set type
| seq type
| map type
| partial function type
| type name
| type variable ;

bracketed type = ‘(’, type, ‘)’ ;

basic type = ‘bool’ | ‘nat’ | ‘nat1’ | ‘int’ | ‘rat’
| ‘real’ | ‘char’ | ‘token’ ;

quote type = quote literal ;

composite type = ‘compose’, identifier, ‘of’, field list, ‘end’ ;

field list = { field } ;

field = [ identifier, ‘:’ ], type
| [ identifier, ‘:-’ ], type ;

union type = type, ‘|’, type, { ‘|’, type } ;

138



The VDM++ Language

product type = type, ‘*’, type, { ‘*’, type } ;

optional type = ‘[’, type, ‘]’ ;

set type = ‘set of’, type ;

seq type = seq0 type
| seq1 type ;

seq0 type = ‘seq of’, type ;

seq1 type = ‘seq1 of’, type ;

map type = general map type
| injective map type ;

general map type = ‘map’, type, ‘to’, type ;

injective map type = ‘inmap’, type, ‘to’, type ;

function type = partial function type
| total function type ;

partial function type = discretionary type, ‘->’, type ;

total function type = discretionary type, ‘+>’, type ;

discretionary type = type
| ‘(’, ‘)’ ;

type name = name ;

type variable = type variable identifier ;

invariant = ‘inv’, invariant initial function ;

invariant initial function = pattern, ‘==’, expression ;

139



The VDM++ Language

A.3.2 Value Definitions

value definitions = ‘values’, [ access value definition,
{ ‘;’, access value definition }, [ ‘;’ ] ] ;

access value definition = ([ access ], [ ‘static’ ]) | ([ ‘static’ ], [ access ]),
value definition ;

value definition = pattern, [ ‘:’, type ], ‘=’, expression ;

A.3.3 Function Definitions

function definitions = ‘functions’, [ access function definition,
{ ‘;’, access function definition }, [ ‘;’ ] ] ;

access function definition = ([ access ], [ ‘static’ ]) | ([ ‘static’ ], [ access ]),
function definition ;

function definition = explicit function definition
| implicit function definition
| extended explicit function definition ;

explicit function definition = identifier, [ type variable list ], ‘:’,
function type,
identifier, parameters list,
‘==’, function body,
[ ‘pre’, expression ] ,
[ ‘post’, expression ] ;

implicit function definition = identifier, [ type variable list ],
parameter types,
identifier type pair list,
[ ‘pre’, expression ],
‘post’, expression ;

extended explicit function definition = identifier, [ type variable list ],
parameter types,

140



The VDM++ Language

identifier type pair list,
‘==’, function body,
[ ‘pre’, expression ],
[ ‘post’, expression ] ;

type variable list = ‘[’, type variable identifier,
{ ‘,’, type variable identifier }, ‘]’ ;

identifier type pair = identifier, ‘:’, type ;

parameter types = ‘(’, [ pattern type pair list ], ‘)’ ;

identifier type pair list = identifier, ‘:’, type,
{ ‘,’, identifier, ‘:’, type } ;

pattern type pair list = pattern list, ‘:’, type,
{ ‘,’, pattern list,‘:’, type } ;

parameters list = parameters, { parameters } ;

parameters = ‘(’, [ pattern list ], ‘)’ ;

function body = expression
| ‘is not yet specified’
| ‘is subclass responsibility’ ;

A.3.4 Operation Definitions

operation definitions = ‘operations’, [ access operation definition,
{ ‘;’, access operation definition }, [ ‘;’ ] ] ;

access operation definition = ([ access ], [ ‘static’ ]) | ([ ‘static’ ], [ access ]),
operation definition ;

141



The VDM++ Language

operation definition = explicit operation definition
| implicit operation definition
| extended explicit operation definition ;

explicit operation definition = identifier, ‘:’, operation type,
identifier, parameters,
‘==’, operation body,
[ ‘pre’, expression ],
[ ‘post’, expression ] ,
;

implicit operation definition = identifier, parameter types,
[ identifier type pair list ],
implicit operation body ;

implicit operation body = [ externals ],
[ ‘pre’, expression ],
‘post’, expression,
[ exceptions ] ;

extended explicit operation definition = identifier, parameter types,
[ identifier type pair list ],
‘==’, operation body,
[ externals ],
[ ‘pre’, expression ],
[ ‘post’, expression ],
[ exceptions ] ;

operation type = discretionary type, ‘==>’, discretionary type ;

operation body = statement
| ‘is not yet specified’
| ‘is subclass responsibility’ ;

externals = ‘ext’, var information, { var information } ;

var information = mode, name list, [ ‘:’, type ] ;

142



The VDM++ Language

mode = ‘rd’ | ‘wr’ ;

exceptions = ‘errs’, error list ;

error list = error, { error } ;

error = identifier, ‘:’, expression, ‘->’, expression ;

A.3.5 Instance Variable Definitions

instance variable definitions = ‘instance’, ‘variables’,
[ instance variable definition,
{ ‘;’, instance variable definition } ] ;

instance variable definition = access assignment definition
| invariant definition ;

access assignment definition = ([ access ], [ ‘static’ ]) | ([ ‘static’ ], [ access ]),
assignment definition ;

invariant definition = ‘inv’, expression ;

A.3.6 Synchronization Definitions

synchronization definitions = ‘sync’, [ synchronization ] ;

synchronization = permission predicates ;

permission predicates = permission predicate,
{ ‘;’, permission predicate } ;

permission predicate = ‘per’, name, ‘=>’, expression
| mutex predicate ;

mutex predicate = ‘mutex’, ‘(’, ‘all’, ‘)’
| ‘mutex’, ‘(’, name list ‘)’ ;

143



The VDM++ Language

A.3.7 Thread Definitions

thread definitions = ‘thread’, [ thread definition ] ;

thread definition = periodic thread definition
| procedural thread definition ;

periodic thread definition = periodic obligation ;

periodic obligation = ‘periodic’,‘(’, numeral, ‘)’, ‘(’, name, ‘)’ ;

procedural thread definition = statement ;

A.4 Expressions

expression list = expression, { ‘,’, expression } ;

expression = bracketed expression
| let expression
| let be expression
| def expression
| if expression
| cases expression
| unary expression
| binary expression
| quantified expression
| iota expression
| set enumeration
| set comprehension
| set range expression
| sequence enumeration
| sequence comprehension
| subsequence
| map enumeration
| map comprehension
| tuple constructor
| record constructor
| record modifier

144



The VDM++ Language

| apply
| field select
| tuple select
| function type instantiation
| lambda expression
| new expression
| self expression
| threadid expression
| general is expression
| undefined expression
| isofbaseclass expression
| isofclass expression
| samebaseclass expression
| sameclass expression
| act expression
| fin expression
| active expression
| req expression
| waiting expression
| name
| old name
| symbolic literal ;

A.4.1 Bracketed Expressions

bracketed expression = ‘(’, expression, ‘)’ ;

A.4.2 Local Binding Expressions

let expression = ‘let’, local definition, { ‘,’, local definition },
‘in’, expression ;

let be expression = ‘let’, bind, [ ‘be’, ‘st’, expression ], ‘in’,
expression ;

def expression = ‘def’, pattern bind, ‘=’, expression,
{ ‘;’, pattern bind, ‘=’, expression }, [ ‘;’ ],
‘in’, expression ;

145



The VDM++ Language

A.4.3 Conditional Expressions

if expression = ‘if’, expression, ‘then’, expression,
{ elseif expression },
‘else’, expression ;

elseif expression = ‘elseif’, expression, ‘then’, expression ;

cases expression = ‘cases’, expression, ‘:’,
cases expression alternatives,
[ ‘,’, others expression ], ‘end’ ;

cases expression alternatives = cases expression alternative,
{ ‘,’, cases expression alternative } ;

cases expression alternative = pattern list, ‘->’, expression ;

others expression = ‘others’, ‘->’, expression ;

A.4.4 Unary Expressions

unary expression = prefix expression
| map inverse ;

prefix expression = unary operator, expression ;

unary operator = unary plus
| unary minus
| arithmetic abs
| floor
| not
| set cardinality
| finite power set
| distributed set union
| distributed set intersection
| sequence head
| sequence tail

146



The VDM++ Language

| sequence length
| sequence elements
| sequence indices
| distributed sequence concatenation
| map domain
| map range
| distributed map merge ;

unary plus = ‘+’ ;

unary minus = ‘-’ ;

arithmetic abs = ‘abs’ ;

floor = ‘floor’ ;

not = ‘not’ ;

set cardinality = ‘card’ ;

finite power set = ‘power’ ;

distributed set union = ‘dunion’ ;

distributed set intersection = ‘dinter’ ;

sequence head = ‘hd’ ;

sequence tail = ‘tl’ ;

sequence length = ‘len’ ;

sequence elements = ‘elems’ ;

147



The VDM++ Language

sequence indices = ‘inds’ ;

distributed sequence concatenation = ‘conc’ ;

map domain = ‘dom’ ;

map range = ‘rng’ ;

distributed map merge = ‘merge’ ;

map inverse = ‘inverse’, expression ;

A.4.5 Binary Expressions

binary expression = expression, binary operator, expression ;

binary operator = arithmetic plus
| arithmetic minus
| arithmetic multiplication
| arithmetic divide
| arithmetic integer division
| arithmetic rem
| arithmetic mod
| less than
| less than or equal
| greater than
| greater than or equal
| equal
| not equal
| or
| and
| imply
| logical equivalence
| in set
| not in set
| subset
| proper subset

148



The VDM++ Language

| set union
| set difference
| set intersection
| sequence concatenate
| map or sequence modify
| map merge
| map domain restrict to
| map domain restrict by
| map range restrict to
| map range restrict by
| composition
| iterate ;

arithmetic plus = ‘+’ ;

arithmetic minus = ‘-’ ;

arithmetic multiplication = ‘*’ ;

arithmetic divide = ‘/’ ;

arithmetic integer division = ‘div’ ;

arithmetic rem = ‘rem’ ;

arithmetic mod = ‘mod’ ;

less than = ‘<’ ;

less than or equal = ‘<=’ ;

greater than = ‘>’ ;

greater than or equal = ‘>=’ ;

149



The VDM++ Language

equal = ‘=’ ;

not equal = ‘<>’ ;

approx = ‘˜=’ ;

or = ‘or’ ;

and = ‘and’ ;

imply = ‘=>’ ;

logical equivalence = ‘<=>’ ;

in set = ‘in set’ ;

not in set = ‘not in set’ ;

subset = ‘subset’ ;

proper subset = ‘psubset’ ;

set union = ‘union’ ;

set difference = ‘\’ ;

set intersection = ‘inter’ ;

sequence concatenate = ‘^’ ;

map or sequence modify = ‘++’ ;

map merge = ‘munion’ ;

150



The VDM++ Language

map domain restrict to = ‘<:’ ;

map domain restrict by = ‘<-:’ ;

map range restrict to = ‘:>’ ;

map range restrict by = ‘:->’ ;

composition = ‘comp’ ;

iterate = ‘**’ ;

A.4.6 Quantified Expressions

quantified expression = all expression
| exists expression
| exists unique expression ;

all expression = ‘forall’, bind list, ‘&’, expression ;

exists expression = ‘exists’, bind list, ‘&’, expression ;

exists unique expression = ‘exists1’, bind, ‘&’, expression ;

A.4.7 The Iota Expression

iota expression = ‘iota’, bind, ‘&’, expression ;

A.4.8 Set Expressions

set enumeration = ‘{’, [ expression list ], ‘}’ ;

set comprehension = ‘{’, expression, ‘|’, bind list,
[ ‘&’, expression ], ‘}’ ;

set range expression = ‘{’, expression, ‘,’, ‘...’, ‘,’,
expression, ‘}’ ;

151



The VDM++ Language

A.4.9 Sequence Expressions

sequence enumeration = ‘[’, [ expression list ], ‘]’ ;

sequence comprehension = ‘[’, expression, ‘|’, set bind,
[ ‘&’, expression ], ‘]’ ;

subsequence = expression, ‘(’, expression, ‘,’, ‘...’, ‘,’,
expression, ‘)’ ;

A.4.10 Map Expressions

map enumeration = ‘{’, maplet, { ‘,’, maplet }, ‘}’
| ‘{’, ‘|->’, ‘}’ ;

maplet = expression, ‘|->’, expression ;

map comprehension = ‘{’, maplet, ‘|’, bind list,
[ ‘&’, expression ], ‘}’ ;

A.4.11 The Tuple Constructor Expression

tuple constructor = ‘mk ’, ‘(’, expression, expression list, ‘)’ ;

A.4.12 Record Expressions

record constructor = ‘mk ’,24 name, ‘(’, [ expression list ], ‘)’ ;

record modifier = ‘mu’, ‘(’, expression, ‘,’,
record modification,
{ ‘,’, record modification }, ‘)’ ;

record modification = identifier, ‘|->’, expression ;

24Note: no delimiter is allowed

152



The VDM++ Language

A.4.13 Apply Expressions

apply = expression, ‘(’, [ expression list ], ‘)’ ;

field select = expression, ‘.’, identifier ;

tuple select = expression, ‘.#’, numeral ;

function type instantiation = name, ‘[’, type, { ‘,’, type }, ‘]’ ;

A.4.14 The Lambda Expression

lambda expression = ‘lambda’, type bind list, ‘&’, expression ;

A.4.15 The New Expression

new expression = ‘new’, name, ‘(’, [ expression list ], ‘)’ ;

A.4.16 The Self Expression

self expression = ‘self’ ;

A.4.17 The Threadid Expression

threadid expression = ‘threadid’ ;

A.4.18 The Is Expression

general is expression = is expression
| type judgement ;

is expression = ‘is ’,25 name, ‘(’, expression, ‘)’
| is basic type, ‘(’, expression, ‘)’ ;

type judgement = ‘is ’, ‘(’, expression, ‘,’, type, ‘)’ ;

25Note: no delimiter is allowed

153



The VDM++ Language

A.4.19 The Undefined Expression

undefined expression = ‘undefined’ ;

A.4.20 The Precondition Expression

pre-condition expression = ‘pre ’, ‘(’, expression,
[ { ‘,’, expression } ], ‘)’ ;

A.4.21 Base Class Membership

isofbaseclass expression = ‘isofbaseclass’, ‘(’, name, expression, ‘)’ ;

A.4.22 Class Membership

isofclass expression = ‘isofclass’, ‘(’, name, expression, ‘)’ ;

A.4.23 Same Base Class Membership

samebaseclass expression = ‘samebaseclass’, ‘(’, expression,
expression, ‘)’ ;

A.4.24 Same Class Membership

sameclass expression = ‘sameclass’, ‘(’, expression,
expression, ‘)’ ;

A.4.25 History Expressions

act expression = ‘#act’, ‘(’, name, ‘)’
| ‘#act’, ‘(’, name list, ‘)’ ;

fin expression = ‘#fin’, ‘(’, name, ‘)’
| ‘#fin’, ‘(’, name list, ‘)’ ;

active expression = ‘#active’, ‘(’, name, ‘)’
| ‘#active’, ‘(’, name list, ‘)’ ;

154



The VDM++ Language

req expression = ‘#req’, ‘(’, name, ‘)’
| ‘#req’, ‘(’, name list, ‘)’ ;

waiting expression = ‘#waiting’, ‘(’, name, ‘)’
| ‘#waiting’, ‘(’, name list, ‘)’ ;

A.4.26 Names

name = identifier, [ ‘‘’, identifier ] ;

name list = name, { ‘,’, name } ;

old name = identifier, ‘~’ ;

A.5 State Designators

state designator = name
| field reference
| map or sequence reference ;

field reference = state designator, ‘.’, identifier ;

map or sequence reference = state designator, ‘(’, expression, ‘)’ ;

A.6 Statements

statement = let statement
| let be statement
| def statement
| block statement
| general assign statement
| if statement
| cases statement
| sequence for loop
| set for loop
| index for loop

155



The VDM++ Language

| while loop
| nondeterministic statement
| call statement
| specification statement
| start statement
| start list statement
| return statement
| always statement
| trap statement
| recursive trap statement
| exit statement
| error statement
| identity statement ;

A.6.1 Local Binding Statements

let statement = ‘let’, local definition, { ‘,’, local definition },
‘in’, statement ;

local definition = value definition
| function definition ;

let be statement = ‘let’, bind, [ ‘be’, ‘st’, expression ], ‘in’,
statement ;

def statement = ‘def’, equals definition,
{ ‘;’, equals definition }, [ ‘;’ ],
‘in’, statement ;

equals definition = pattern bind, ‘=’, expression ;

A.6.2 Block and Assignment Statements

block statement = ‘(’, { dcl statement },
statement, { ‘;’, statement }, [ ‘;’ ], ‘)’ ;

dcl statement = ‘dcl’, assignment definition,
{ ‘,’, assignment definition }, ‘;’ ;

156



The VDM++ Language

assignment definition = identifier, ‘:’, type, [ ‘:=’, expression ] ;

general assign statement = assign statement
| multiple assign statement ;

assign statement = state designator, ‘:=’, expression ;

multiple assign statement = ‘atomic’, ‘(’ assign statement, ‘;’,
assign statement,
[ { ‘;’, assign statement } ], ‘)’ ;

A.6.3 Conditional Statements

if statement = ‘if’, expression, ‘then’, statement,
{ elseif statement },
[ ‘else’, statement ] ;

elseif statement = ‘elseif’, expression, ‘then’, statement ;

cases statement = ‘cases’, expression, ‘:’,
cases statement alternatives,
[ ‘,’, others statement ], ‘end’ ;

cases statement alternatives = cases statement alternative,
{ ‘,’, cases statement alternative } ;

cases statement alternative = pattern list, ‘->’, statement ;

others statement = ‘others’, ‘->’, statement ;

A.6.4 Loop Statements

sequence for loop = ‘for’, pattern bind, ‘in’, [ ‘reverse’ ],
expression, ‘do’, statement ;

157



The VDM++ Language

set for loop = ‘for’, ‘all’, pattern, ‘in set’, expression,
‘do’, statement ;

index for loop = ‘for’, identifier, ‘=’, expression, ‘to’, expression,
[ ‘by’, expression ],
‘do’, statement ;

while loop = ‘while’, expression, ‘do’, statement ;

A.6.5 The Nondeterministic Statement

nondeterministic statement = ‘||’, ‘(’, statement,
{ ‘,’, statement }, ‘)’ ;

A.6.6 Call and Return Statements

call statement = [ object designator, ‘.’ ],
name, ‘(’, [ expression list ], ‘)’, ;

object designator = name
| self expression
| new expression
| object field reference
| object apply ;

object field reference = object designator, ‘.’, identifier ;

object apply = object designator, ‘(’, [ expression list ], ‘)’ ;

return statement = ‘return’, [ expression ] ;

A.6.7 The Specification Statement

specification statement = ‘[’, implicit operation body, ‘]’ ;

158



The VDM++ Language

A.6.8 Start and Start List Statements

start statement = ‘start’, ‘(’, expression, ‘)’ ;

start list statement = ‘startlist’, ‘(’, expression, ‘)’ ;

A.6.9 Exception Handling Statements

always statement = ‘always’, statement, ‘in’, statement ;

trap statement = ‘trap’, pattern bind, ‘with’, statement,
‘in’, statement ;

recursive trap statement = ‘tixe’, traps, ‘in’, statement ;

traps = ‘{’, pattern bind, ‘|->’, statement,
{ ‘,’, pattern bind, ‘|->’, statement }, ‘}’ ;

exit statement = ‘exit’, [ expression ] ;

A.6.10 The Error Statement

error statement = ‘error’ ;

A.6.11 The Identity Statement

identity statement = ‘skip’ ;

A.7 Patterns and Bindings

A.7.1 Patterns

pattern = pattern identifier
| match value
| set enum pattern

159



The VDM++ Language

| set union pattern
| seq enum pattern
| seq conc pattern
| tuple pattern
| record pattern ;

pattern identifier = identifier | ‘-’ ;

match value = ‘(’, expression, ‘)’
| symbolic literal ;

set enum pattern = ‘{’, [ pattern list ], ‘}’ ;

set union pattern = pattern, ‘union’, pattern ;

seq enum pattern = ‘[’, [ pattern list ], ‘]’ ;

seq conc pattern = pattern, ‘^’, pattern ;

tuple pattern = ‘mk ’, ‘(’, pattern, ‘,’, pattern list, ‘)’ ;

record pattern = ‘mk ’,26 name, ‘(’, [ pattern list ], ‘)’ ;

pattern list = pattern, { ‘,’, pattern } ;

A.7.2 Bindings

pattern bind = pattern | bind ;

bind = set bind | type bind ;

set bind = pattern, ‘in set’, expression ;

26Note: no delimiter is allowed

160



The VDM++ Language

type bind = pattern, ‘:’, type ;

bind list = multiple bind, { ‘,’, multiple bind } ;

multiple bind = multiple set bind
| multiple type bind ;

multiple set bind = pattern list, ‘in set’, expression ;

multiple type bind = pattern list, ‘:’, type ;

type bind list = type bind, { ‘,’, type bind } ;

B Lexical Specification

B.1 Characters

The character set is shown in Table 12, with the forms of characters used in this
document. Notice that this character set corresponds exactly to the ASCII (or
ISO 646) syntax.

In the VDM-SL standard a character is defined as:

character = plain letter
| key word letter
| distinguished letter
| Greek letter
| digit
| delimiter character
| other characters
| separator ;

The plain letters and the keyword letters are displayed in Table 12 (in a document
the keyword letters simply use the corresponding small letters). The distinguished
letters use the corresponding capital and lower-case letters where the whole quote

161



The VDM++ Language

literal is preceded by “<” and followed by “>” (note that quote literals can also
use underscores and digits). The Greek letters can also be used with a number
sign “#” followed by the corresponding letter (this information is used by the
LATEX pretty printer such that the Greek letters can be produced). All delimiter
characters (in the ASCII version of the standard) are listed in Table 12. In the
standard a distinction between delimiter characters and compound delimiters are
made. We have chosen not to use this distinction in this presentation. Please
also notice that some of the delimiters in the mathematical syntax are keywords
in the ASCII syntax which is used here.

162



The VDM++ Language

plain letter:
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

keyword letter:
a b c d e f g h i j k l m
n o p q r s t u v w x y z

delimiter character:
, : ; = ( ) | - [ ]
{ } + / < > <= >= <> .
* -> +> ==> || => <=> |-> <: :>
<-: :-> & == ** ^ ++

digit:
0 1 2 3 4 5 6 7 8 9

octal digit:
0 1 2 3 4 5 6 7

other characters:
‘ ’ " @ ~

newline:

white space:

These have no graphic form, but are a combination of white space and line
break. There are two separators: without line break (white space) and with
line break (newline).

Table 12: Character set

163



The VDM++ Language

B.2 Symbols

The following kinds of symbols exist: keywords, delimiters, symbolic literals,
and comments. The transformation from characters to symbols is given by the
following rules; these use the same notation as the syntax definition but differ in
meaning in that no separators may appear between adjacent terminals. Where
ambiguity is possible otherwise, two consecutive symbols must be separated by a
separator.

keyword = ‘#act’ | ‘#active’ | ‘#fin’ | ‘#req’ | ‘#waiting’ | ‘abs’
| ‘all’ | ‘allsuper’ | ‘always’ | ‘and’ | ‘assumption’ | ‘atomic’
| ‘be’ | ‘bool’ | ‘by’ | ‘card’ | ‘cases’
| ‘char’ | ‘class’ | ‘comp’ | ‘compose’ | ‘conc’ | ‘dcl’
| ‘def’ | ‘del’ | ‘dinter’ | ‘div’ | ‘do’ | ‘dom’ | ‘dunion’
| ‘effect’ | ‘elems’ | ‘else’ | ‘elseif’ | ‘end’ | ‘error’ | ‘errs’
| ‘exists’ | ‘exists1’ | ‘exit’ | ‘ext’ | ‘false’ | ‘floor’
| ‘for’ | ‘forall’ | ‘from’ | ‘functions’ | ‘general’ | ‘hd’
| ‘if’ | ‘in’ | ‘inds’ | ‘inmap’ | ‘input’ | ‘instance’
| ‘int’ | ‘inter’ | ‘inv’ | ‘inverse’ | ‘iota’ | ‘is’
| ‘isofbaseclass’ | ‘isofclass’ | ‘lambda’ | ‘len’ | ‘let’
| ‘map’ | ‘merge’ | ‘mod’ | ‘mu’ | ‘munion’ | ‘mutex’ | ‘nat’
| ‘nat1’ | ‘new’ | ‘nil’ | ‘not’ | ‘of’ | ‘operations’ | ‘or’
| ‘others’ | ‘per’ | ‘periodic’ | ‘post’ | ‘power’ | ‘pre’
| ‘pref’ | ‘private’ | ‘protected’ | ‘psubset’ | ‘public’ | ‘rat’
| ‘rd’ | ‘real’ | ‘rem’ | ‘responsibility’ | ‘return’
| ‘reverse’ | ‘rng’ | ‘samebaseclass’ | ‘sameclass’ | ‘self’
| ‘seq’ | ‘seq1’ | ‘set’ | ‘skip’ | ‘specified’ | ‘st’
| ‘start’ | ‘startlist’ | ‘subclass’ | ‘subset’ | ‘subtrace’ | ‘sync’
| ‘then’ | ‘thread’ | ‘threadid’ | ‘tixe’
| ‘tl’ | ‘to’ | ‘token’ | ‘trap’ | ‘true’ | ‘types’ | ‘undefined’
| ‘union’ | ‘values’ | ‘variables’ | ‘while’ | ‘with’
| ‘wr’ | ‘yet’ | ‘RESULT’ ;

separator = newline | white space ;

identifier = ( plain letter | Greek letter ),
{ ( plain letter | Greek letter ) | digit | ‘’’ | ‘ ’ } ;

Note that the hyphen which can be used in identifiers is written as a low line (also
known as an underscore “ ”), whereas it is translated to “-” in the mathematical

164



The VDM++ Language

syntax. All identifiers beginning with one of the reserved prefixes are reserved:
init , inv , is , mk , post and pre .

type variable identifier = ‘@’, identifier ;

is basic type = ‘is ’, ( ‘bool’ | ‘nat’ | ‘nat1’ | ‘int’ | ‘rat’
| ‘real’ | ‘char’ | ‘token’ ) ;

symbolic literal = numeric literal | boolean literal
| nil literal | character literal | text literal
| quote literal ;

numeral = digit, { digit } ;

numeric literal = numeral, [ ‘.’, digit, { digit } ], [ exponent ] ;

exponent = ( ‘E’ | ‘e’ ), [ ‘+’ | ‘-’ ], numeral ;

boolean literal = ‘true’ | ‘false’ ;

nil literal = ‘nil’ ;

character literal = ‘ ’ ’, character | escape sequence
| multi character, ‘ ’ ’ ;

escape sequence = ‘\\’ | ‘\r’ | ‘\n’ | ‘\t’ | ‘\f’ | ‘\e’ | ‘\a’
| ‘\x’ digit,digit | ‘\c’ character
| ‘\’ octal digit, octal digit, octal digit
| ‘\"’ | ‘\’’ | ;

multi character = Greek letter
| ‘<=’ | ‘>=’ | ‘<>’ | ‘->’ | ‘+>’ | ‘==>’ | ‘||’
| ‘=>’ | ‘<=>’ | ‘|->’ | ‘<:’ | ‘:>’ | ‘<-:’
| ‘:->’ | ‘==’ | ‘**’ | ‘++’ ;

165



The VDM++ Language

text literal = ‘ " ’, { ‘ " " ’ | character | escape sequence }, ‘ " ’ ;

quote literal = distinguished letter,
{ ‘ ’ | distinguished letter | digit } ;

comment = ‘--’, { character – newline }, newline ;

The escape sequences given above are to be interpreted as follows:

Sequence Interpretation
‘\\’ backslash character
‘\r’ return character
‘\n’ newline character
‘\t’ tab character
‘\f’ formfeed character
‘\e’ escape character
‘\a’ alarm (bell)
‘\x’ digit,digit hex representation of character

(e.g. \x41 is ‘A’)
‘\c’ character control character

(e.g. \c A ≡ \x01)
‘\’ octal digit, octal digit, octal digit octal representation of character
‘\"’ the " character
‘\’’ the ’ character

166



The VDM++ Language

C Operator Precedence

The precedence ordering for operators in the concrete syntax is defined using
a two-level approach: operators are divided into families, and an upper-level
precedence ordering, >, is given for the families, such that if families F1 and F2

satisfy

F1 > F2

then every operator in the family F1 is of a higher precedence than every operator
in the family F2.

The relative precedences of the operators within families is determined by con-
sidering type information, and this is used to resolve ambiguity. The type con-
structors are treated separately, and are not placed in a precedence ordering with
the other operators.

There are six families of operators, namely Combinators, Applicators, Evaluators,
Relations, Connectives and Constructors:

Combinators: Operations that allow function and mapping values to be com-
bined, and function, mapping and numeric values to be iterated.

Applicators: Function application, field selection, sequence indexing, etc.

Evaluators: Operators that are non-predicates.

Relations: Operators that are relations.

Connectives: The logical connectives.

Constructors: Operators that are used, implicitly or explicitly, in the construc-
tion of expressions; e.g. if-then-elseif-else, ‘|->’, ‘. . . ’, etc.

The precedence ordering on the families is:

combinators > applicators > evaluators > relations > connectives >
constructors

167



The VDM++ Language

C.1 The Family of Combinators

These combinators have the highest family priority.

combinator = iterate | composition ;

iterate = ‘**’ ;

composition = ‘comp’ ;

precedence level combinator
1 comp
2 iterate

C.2 The Family of Applicators

All applicators have equal precedence.

applicator = subsequence
| apply
| function type instantiation
| field select ;

subsequence = expression, ‘(’, expression, ‘,’, ‘...’, ‘,’,
expression, ‘)’ ;

apply = expression, ‘(’, [ expression list ], ‘)’ ;

function type instantiation = expression, ‘[’, type, { ‘,’, type }, ‘]’ ;

field select = expression, ‘.’, identifier ;

168



The VDM++ Language

C.3 The Family of Evaluators

The family of evaluators is divided into nine groups, according to the type of
expression they are used in.

evaluator = arithmetic prefix operator
| set prefix operator
| sequence prefix operator
| map prefix operator
| map inverse
| arithmetic infix operator
| set infix operator
| sequence infix operator
| map infix operator ;

arithmetic prefix operator = ‘+’ | ‘-’ | ‘abs’ | ‘floor’ ;

set prefix operator = ‘card’ | ‘power’ | ‘dunion’ | ‘dinter’ ;

sequence prefix operator = ‘hd’ | ‘tl’ | ‘len’
| ‘inds’ | ‘elems’ | ‘conc’ ;

map prefix operator = ‘dom’ | ‘rng’ | ‘merge’ | ‘inverse’ ;

arithmetic infix operator = ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘rem’ | ‘mod’ | ‘div’ ;

set infix operator = ‘union’ | ‘inter’ | ‘\’ ;

sequence infix operator = ‘^’ ;

map infix operator = ‘munion’ | ‘++’ | ‘<:’ | ‘<-:’ | ‘:>’ | ‘:->’ ;

The precedence ordering follows a pattern of analogous operators. The family is
defined in the following table.

169



The VDM++ Language

precedence level arithmetic set map sequence
1 + - union \ munion ++ ^
2 * / inter

rem
mod
div

3 inverse
4 <: <-:
5 :> :->
6 (unary) + card dom len

(unary) - power rng elems
abs dinter merge hd tl
floor dunion conc

inds

C.4 The Family of Relations

This family includes all the relational operators whose results are of type bool.

relation = relational infix operator | set relational operator ;

relational infix operator = ‘=’ | ‘<>’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ ;

set relational operator = ‘subset’ | ‘psubset’ | ‘in set’ | ‘not in set’ ;

precedence level relation
1 <= <

>= >
= <>

subset psubset
in set not in set

All operators in the Relations family have equal precedence. Typing dictates that
there is no meaningful way of using them adjacently.

170



The VDM++ Language

C.5 The Family of Connectives

This family includes all the logical operators whose result is of type bool.

connective = logical prefix operator | logical infix operator ;

logical prefix operator = ‘not’ ;

logical infix operator = ‘and’ | ‘or’ | ‘=>’ | ‘<=>’ ;

precedence level connective
1 <=>
2 =>
3 or
4 and
5 not

C.6 The Family of Constructors

This family includes all the operators used to construct a value. Their priority
is given either by brackets, which are an implicit part of the operator, or by the
syntax.

C.7 Grouping

The grouping of operands of the binary operators are as follows:

Combinators: Right grouping.

Applicators: Left grouping.

Connectives: The ‘=>’ operator has right grouping. The other operators are
associative and therefore right and left grouping are equivalent.

171



The VDM++ Language

Evaluators: Left grouping27.

Relations: No grouping, as it has no meaning.

Constructors: No grouping, as it has no meaning.

C.8 The Type Operators

Type operators have their own separate precedence ordering, as follows:

1. Function types: ->, +> (right grouping).

2. Union type: | (left grouping).

3. Other binary type operators: * (no grouping).

4. Map types: map . . . to . . . and inmap . . . to . . . (right grouping).

5. Unary type operators: seq of, seq1 of, set of.

D Differences between the two Concrete Syn-
taxes

Below is a list of the symbols which are different in the mathematical syntax and
the ASCII syntax:

Mathematical syntax ASCII syntax

· &
× *
≤ <=
≥ >=
*= <>
o→ ==>
→ ->
⇒ =>
⇔ <=>

27Except the “map domain restrict to” and the “map domain restrict by” operators which
have a right grouping. This is not standard.

172



The VDM++ Language

Mathematical syntax ASCII syntax

-→ |->
. ==
↑ **
† ++
m
⋃

munion
! <:
" :>
−! <-:
−" :->
⊂ psubset
⊆ subset
! ^⋂

dinter⋃
dunion

F power
. . . -set set of ...
. . . ∗ seq of ...
. . . + seq1 of ...

. . .
m→. . . map ... to ...

. . .
m←→. . . inmap ... to ...

µ mu
B bool
N nat
Z int
R real
¬ not
∩ inter
∪ union
∈ in set
*∈ not in set
∧ and
∨ or
∀ forall
∃ exists
∃ ! exists1
λ lambda
ι iota
. . .-1 inverse ...

173



The VDM++ Language

E Standard Libraries

E.1 Math Library

The Math library is defined in the math.vpp file. It provides the following math
functions:

Functions Pre-conditions
sin: real +> real Sine

cos: real +> real Cosine

tan: real -> real Tangent The argument is not an integer
multiple of π/2

cot: real -> real Cotagent The argument is not an integer
multiple of π

asin: real -> real Inverse sine The argument is not in the inter-
val from -1 to 1 (both inclusive).

acos: real -> real Inverse cosine The argument is not in the inter-
val from -1 to 1 (both inclusive).

atan:real +> real Inverse tangent

sqrt: real -> real Square root The argument is non-negative.

and the value:

pi = 3.14159265358979323846

If the functions are applied with arguments that violate possible pre-conditions
they will return values that are not proper VDM++ values, Inf (infinity, e.g.
tan(pi/2)) and NaN (not a number, e.g. sqrt (-1)).

To use the standard library the file

$TOOLBOXHOME/stdlib/math.vpp

should be added to the current project. This contains the class MATH. To access
the functions in this class, instances of the class must be created; however since

174



The VDM++ Language

values are class attributes, pi may be accessed directly. The example below
demonstrates this:

class UseLib

types

coord :: x : real
y : real

functions

-- euclidean metric between two points
dist : coord * coord -> real
dist (c1,c2) ==

let math = new MATH()
in
math.sqrt((c1.x - c2.x) * (c1.x - c2.x) +

(c1.y - c2.y) * (c1.y - c2.y));

-- outputs angle of line joining coord with origin
-- from horizontal, in degrees
angle : coord -> real
angle (c) ==

let math = new MATH()
in
math.atan (c.y / c.x) * 360 / ( 2 * MATH‘pi)

end UseLib

E.2 IO Library

The IO library is defined in the io.vpp file, and it is located in the directory
$TOOLBOXHOME/stdlib/. It provides the IO functions and operations listed below.
Each read/write function or operation returns a boolean value (or a tuple with
a boolean component) representing the success (true) or failure (false) of the
corresponding IO action.

175



The VDM++ Language

writeval[@p]:[@p] +> bool
This function writes a VDM value in ASCII format to standard output.
There is no pre-condition.

fwriteval[@p]:seq1 of char * @p * filedirective +> bool
This function writes a VDM value (the second argument) in ASCII format
to a file whose name is specified by the character string in the first argument.
The third parameter has type filedirective which is defined to be:

filedirective = <start>|<append>

If <start> is used, the existing file (if any) is overwritten; if <append> is
used, output is appended to the existing file and a new file is created if one
does not already exist. There is no pre-condition.

freadval[@p]:seq1 of char +> bool * [@p]
This function reads a VDM value in ASCII format from the file specified by
the character string in the first argument. There is no pre-condition. The
function returns a pair, the first component indicating the success of the
read and the second component indicating the value read if the read was
successful.

echo: seq of char ==> bool
This operation writes the given text to standard output. Surrounding dou-
ble quotes will be stripped, backslashed characters will be interpreted as
escape sequences. There is no pre-condition.

fecho: seq of char * seq of char * [filedirective] ==> bool
This operation is similar to echo but writes text to a file rather than to
standard output. The filedirective parameter should be interpreted
as for fwriteval. The pre-condition for this operation is that if an empty
string is given for the filename, then the [filedirective] argument should
be nil since the text is written to standard output.

ferror:() ==> seq of char The read/write functions and operations return
false if an error occurs. In this case an internal error string will be set. This
operation returns this string and sets it to "".

As an example of the use of the IO library, consider a web server which maintains
a log of page hits:

176



The VDM++ Language

class LoggingWebServer

values
logfilename : seq1 of char = "serverlog"

instance variables
io : IO := new IO();

functions
URLtoString : URL -> seq of char
URLtoString = ...

operations
RetrieveURL : URL ==> File
RetrieveURL(url) ==
(def _ = io.fecho(logfilename, URLtoString(url)^"\n", <append>);
...
);

ResetLog : () ==> bool
ResetLog() ==
io.fecho(logfilename,"\n",<start>)

end LoggingWebServer

177



The VDM++ Language

Index

abs, 8
and, 5
card, 14
comp

function composition, 30
map composition, 19

conc, 16
dinter, 14
div, 8
dom, 19
dunion, 14
elems, 16
floor, 8
hd, 16
in set, 14
inds, 16
inmap to, 18
inter, 14
inverse, 19
len, 16
map to, 18
merge, 19
mk

record constructor, 24
token value, 12
tuple constructor, 22

mod, 8
munion, 19
not in set, 14
not, 5
or, 5
power, 14
psubset, 14
rng, 19
seq of, 16
seq1 of, 16
set of, 13
subset, 14

tl, 16
union, 14
()

function apply, 30
map apply, 19
sequence apply, 16

**, 19
function iteration, 30
numeric power, 8

*, 8
tuple type, 22

++
map override, 19
sequence modification, 16

+>, 30
+, 8
->, 30
-, 8
.

record field selector, 25
/, 8
:->, 19
:-, 24
::, 24
:>, 19
<-:, 19
<:, 19
<=>, 5
<=, 8
<>

boolean inequality, 5
char inequality, 10
function inequality, 30
map inequality, 19
numeric inequality, 8
optional inequality, 27
quote inequality, 11
quote value, 11

178



The VDM++ Language

record inequality, 25
sequence inequality, 16
set inequality, 14
token inequality, 12
tuple inequality, 22
union inequality, 27

<, 8
=>, 5
=

boolean equality, 5
char equality, 10
function equality, 30
map equality, 19
numeric equality, 8
optional equality, 27
quote equality, 11
record equality, 25
sequence equality, 16
set equality, 14
token equality, 12
tuple equality, 22
union equality, 27

>=, 8
>, 8
[]

optional type, 27
sequence enumeration, 16

[|]
sequence comprehension, 16

&
map comprehension, 19
sequence comprehension, 16
set comprehension, 14

\, 14
^, 16
{}

map enumeration, 19
set enumeration, 14

{|}
map comprehension, 19
set comprehension, 14

bool, 5
char, 10
false, 5
int, 7
is not yet specified

functions, 35
operations, 81

is subclass responsibility
functions, 35
operations, 81

nat1, 7
nat, 7
rat, 7
real, 7
token, 12
true, 5

Absolute value, 8
access, 33, 138
access assignment definition, 78, 143
access function definition, 33, 140
access operation definition, 80, 141
access type definition, 137
access value definition, 77, 140
act expression, 66, 154
active expression, 66, 154
all expression, 47, 151
always statement, 102, 159
and, 150
applicator, 168
apply, 57, 153, 168
approx, 150
arithmetic abs, 147
arithmetic divide, 149
arithmetic infix operator, 169
arithmetic integer division, 149
arithmetic minus, 149
arithmetic mod, 149
arithmetic multiplication, 149
arithmetic plus, 149
arithmetic prefix operator, 169
arithmetic rem, 149

179



The VDM++ Language

assign statement, 89, 157
assignment definition, 78, 88, 157

base class membership expression, 64
basic type, 138
Biimplication, 5
binary expression, 44, 148
binary operator, 44, 148
bind, 76, 160
bind list, 48, 76, 161
block statement, 88, 156
Boolean, 5
boolean literal, 165
bracketed expression, 145
bracketed type, 138

call statement, 99, 158
Cardinality, 14
cases expression, 45, 146
cases expression alternative, 45, 146
cases expression alternatives, 45, 146
cases statement, 92, 157
cases statement alternative, 92, 157
cases statement alternatives, 92, 157
Char, 10
character, 161
character literal, 165
class, 110, 137
class body, 110, 137
class membership expression, 64
combinator, 168
comment, 166
composite type, 23, 138
composition, 151, 168
Concatenation, 16
Conjunction, 5
connective, 171
Cosine, 174
Cotangent, 174

dcl statement, 88, 156
def expression, 43, 145

def statement, 86, 156
definition block, 111, 137
Difference

numeric, 8
set, 14

discretionary type, 30, 35, 81, 139
Disjunction, 5
Distribute merge, 19
Distributed concatenation, 16
Distributed intersection, 14
distributed map merge, 148
distributed sequence concatenation, 148
distributed set intersection, 147
distributed set union, 147
Distributed union, 14
Division, 8
document, 110, 137
Domain, 19
Domain restrict by, 19
Domain restrict to, 19

Elements, 16
elseif expression, 45, 146
elseif statement, 92, 157
equal, 150
Equality

boolean type, 5
char, 10
function type, 30
map type, 19
numeric type, 8
optional type, 27
quote type, 11
record, 25
sequence type, 16
set type, 14
token type, 12
tuple, 22
union type, 27

equality abstraction field, 24
equals definition, 87, 156
error, 81, 143

180



The VDM++ Language

error list, 81, 143
error statement, 106, 159
escape sequence, 165
evaluator, 169
exceptions, 81, 143
exists expression, 47, 151
exists unique expression, 48, 151
exit statement, 103, 159
explicit function definition, 34, 140
explicit operation definition, 80, 142
exponent, 165
expression, 39, 42, 44, 45, 47, 49, 50,

52, 54, 55, 57–60, 62–66, 68,
70, 144

expression list, 50, 144
extended explicit function definition,

34, 140
extended explicit operation definition,

81, 142
externals, 81, 142

field, 23, 138
field list, 23, 138
field reference, 89, 155
Field select, 25
field select, 57, 153, 168
fin expression, 66, 154
Finite power set, 14
finite power set, 147
Floor, 8
floor, 147
for loop, 94
Function apply, 30
function body, 35, 141
Function composition, 30
function definition, 34, 140
function definitions, 33, 140
Function iteration, 30
function type, 30, 35, 139
function type instantiation, 57, 153,

168

general assign statement, 89, 157
general is expression, 63, 153
general map type, 18, 139
Greater or equal, 8
Greater than, 8
greater than, 149
greater than or equal, 149

Head, 16
history expressions, 66

identifier, 164
identifier type pair, 141
identifier type pair list, 34, 141
identity statement, 106, 159
if expression, 45, 146
if statement, 92, 157
Implication, 5
implicit function definition, 34, 140
implicit operation body, 80, 142
implicit operation definition, 80, 142
imply, 150
in set, 150
index for loop, 94, 158
Indexes, 16
Inequality

boolean type, 5
char, 10
function type, 30
map type, 19
numeric type, 8
optional type, 27
quote, 11
record, 25
sequence type, 16
set type, 14
token type, 12
tuple, 22
union type, 27

inheritance clause, 110, 137
injective map type, 18, 139
instance variable definition, 78, 143

181



The VDM++ Language

instance variable definitions, 78, 143
Integer division, 8
Intersection, 14
invariant, 139
invariant definition, 78, 143
invariant initial function, 139
Inverse cosine, 174
Inverse sine, 174
Inverse tangent, 174
IO, 174, 175
iota expression, 49, 151
is basic type, 63, 165
is expression, 63, 153
isofbaseclass expression, 64, 154
isofclass expression, 64, 154
iterate, 151, 168

keyword, 164

lambda expression, 62, 153
Length, 16
Less or equal, 8
Less than, 8
less than, 149
less than or equal, 149
let be expression, 40, 145
let be statement, 85, 156
let expression, 39, 145
let statement, 85, 156
library, 174
local definition, 40, 85, 156
logical equivalence, 150
logical infix operator, 171
logical prefix operator, 171

Map apply, 19
Map composition, 19
map comprehension, 54, 152
map domain, 148
map domain restrict by, 151
map domain restrict to, 151
map enumeration, 54, 152

map infix operator, 169
Map inverse, 19
map inverse, 44, 148
Map iteration, 19
map merge, 150
map or sequence modify, 150
map or sequence reference, 155
map prefix operator, 169
map range, 148
map range restrict by, 151
map range restrict to, 151
map reference, 89
map type, 18, 139
maplet, 54, 152
match value, 72, 160
Math, 174
Membership, 14
Merge, 19
mode, 81, 143
Modulus, 8
multi character, 165
multiple assign statement, 89, 157
multiple bind, 76, 161
multiple set bind, 76, 161
multiple type bind, 76, 161
mutex predicate, 120, 143

name, 68, 155
name list, 68, 81, 155
Negation, 5
new expression, 58, 153
nil literal, 165
nondeterministic statement, 97, 158
not, 147
not equal, 150
not in set, 150
Not membership, 14
numeral, 165
numeric literal, 165

object apply, 100, 158
object designator, 99, 158

182



The VDM++ Language

object field reference, 100, 158
old name, 68, 155
operation body, 81, 142
operation definition, 80, 142
operation definitions, 80, 141
operation type, 81, 142
optional type, 27, 139
or, 150
others expression, 45, 146
others statement, 92, 157
Override, 19

parameter types, 34, 141
parameters, 35, 81, 141
parameters list, 141
partial function type, 30, 35, 139
pattern, 72, 159
pattern bind, 71, 160
pattern identifier, 72, 160
pattern list, 35, 72, 81, 160
pattern type pair list, 34, 141
periodic obligation, 127, 144
periodic thread definition, 127, 144
permission predicate, 120, 143
permission predicates, 120, 143
pi, 174
Power, 8
pre-condition expression, 154
precondition expression, 71
prefix expression, 44, 146
procedural thread definition, 129, 144
Product, 8
product type, 22, 139
Proper subset, 14
proper subset, 150

quantified expression, 47, 151
Quote, 11
quote literal, 166
quote type, 138

Range, 19

Range restrict by, 19
Range restrict to, 19
record constructor, 55, 152
record modification, 56, 152
record modifier, 56, 152
record pattern, 72, 160
record type, 23
recursive trap statement, 103, 159
relation, 170
relational infix operator, 170
Remainder, 8
req expression, 67, 155
return statement, 101, 158

same base class membership expres-
sion, 65

same class membership expression, 66
samebaseclass expression, 65, 154
sameclass expression, 66, 154
self expression, 59, 153
self expressions, 101
separator, 164
seq conc pattern, 72, 160
seq enum pattern, 72, 160
seq type, 16, 139
seq0 type, 16, 139
seq1 type, 16, 139
Sequence application, 16
sequence comprehension, 52, 152
sequence concatenate, 150
sequence elements, 147
sequence enumeration, 52, 152
sequence for loop, 94, 157
sequence head, 147
sequence indices, 148
sequence infix operator, 169
sequence length, 147
Sequence modification, 16
sequence prefix operator, 169
sequence reference, 89
sequence tail, 147
set bind, 76, 160

183



The VDM++ Language

set cardinality, 147
set comprehension, 50, 151
set difference, 150
set enum pattern, 72, 160
set enumeration, 50, 151
set for loop, 94, 158
set infix operator, 169
set intersection, 150
set prefix operator, 169
set range expression, 51, 151
set relational operator, 170
set type, 13, 139
set union, 150
set union pattern, 72, 160
Sine, 174
specification statement, 109, 158
Square root, 174
Standard libraries, 174
start list statement, 107, 159
start statement, 107, 159
state designator, 89, 155
statement, 84, 86, 88, 89, 92, 94, 96,

97, 99, 101, 102, 105–107, 109,
155

subsequence, 52, 152, 168
Subset, 14
subset, 150
Sum, 8
symbolic literal, 165
synchronization, 120, 143
synchronization definitions, 120, 143

Tail, 16
Tangent, 174
text literal, 166
thread definition, 127, 144
thread definitions, 127, 144
threadid expression, 60, 153
Token, 12
total function type, 30, 35, 139
trap statement, 102, 159
traps, 103, 159

tuple constructor, 55, 152
tuple pattern, 72, 160
tuple select, 57, 153
type, 13, 16, 18, 22, 23, 27, 29, 138
type bind, 62, 76, 161
type bind list, 62, 161
type definition, 138
type definitions, 137
type judgement, 63, 153
type name, 139
type variable, 139
type variable identifier, 165
type variable list, 34, 141

unary expression, 44, 146
Unary minus, 8
unary minus, 147
unary operator, 44, 146
unary plus, 147
undefined expression, 70, 154
Union, 14
union type, 27, 138

value definition, 40, 77, 85, 140
value definitions, 77, 140
var information, 81, 142

waiting expression, 67, 155
while loop, 96, 158

184


