An Introduction to Data Refinement

J.N. Oliveira
DIUM March 19, 2007

Formal Methods II, 2002-06,
March 19, 2007

FM software design process

e Formal specification — “what” the intended software system
should do

e |Implementation — machine code produced instructing the
hardware about “how"” to do it

In general, there is more than one way in which a particular machine
can accomplish “what” the specifier bore in mind:

e Relationship between specifications and implementations is
one-to-many

e Specifications are more abstract than implementations.

Overall idea

e Calculate implementations from specifications

Spec = X
< X'
S X//
<
< Imp

by adding details in a controlled manner.

e Define a suitable ordering < on datatypes and develop corresponding
data refinement theory

Example of data refinement

Finite sets represented by finite lists:

F = elems

[1,2]
{1, 2/[2, 1]

Refinement inequation

PrA < A*
_/
elems
meaning that
- sets are “implemented” by lists
- A* is able to "represent” Py A
- A* is “abstracted” by Py A

- A* is a refinement (“refines”) Py A

Refinement inequations

A is implemented by B, as witnessed by pair f,r, iff

such that
e representation r is injective

e abstraction f is surjective

e that is,
f-r = id
Recall. ..
injective entite maive
(somerpham)
Recall. ..
Taxonomy
| || Reflexive | Coreflexive |

ker R entire R injective R

img R || surjective R | simple R
Kernel

kerRY R°- R

Image (its dual)

img R e er (R%)

Not general enough (1)

In the following inequation
(31

A7 < A1l

~—_ ~
-0
31
expressing the fact that every element of datatype A can be represented by a
“pointer”,
- r =11 is injective, but

- its converse i{ is partial (=not entirely defined)

Not general enough (1)

Representations r need not be functions. Back to

elems
relation R = elems® will be perfectly acceptable as a representation since

elems - elems® = id

because elems is a surjection.

Data refinement

Principle of data abstraction: A abstracts B wherever

e A surjective abstraction A <—— B can be found:
imgF = id (1)
F'is thus simple but possibly partial.

e Any entire subrelation R of F° is said to be a representation for
F. So RC F°.

Representation relations

e |t follows that R is injective, since ker R C ker F° and
ker F° = img F' = id.

e So, no two different abstract values a,a’ € A get mixed up along the
representation process.

o Altogether, ker R = id because id C ker R C id (R is entire).
e [t follows that R is a right-inverse of F', that is

F-R = id)
This is proved by circular inclusion
F-RCidCF-R

in the next slide.

Right invertibility

F-RCid NidCF-R
{ imgF =id and ker R = id}

F-RCF-F° ANR°-RCF-R

{ converses }
F-RCF-F° AN RR-RCR°-F°
= { (F) and (R°-) are monotone }
RCF° AN RCF°

{ R C F° is assumed }
TRUE

Refinement inequations

R
A 3 B suchthat F-R=1idy

F

This inequation has several informal interpretations:
- Ais "smaller" than B
- B is able to “represent” A
- B is “abstracted” by A

Ais “implemented” by B

- B is a refinement (“refines”) A

Refinement equations

Isomorphisms: A = B such that r= f°

r=f°
{ add variables }

bra = bf°

{ functions and converses }

b=ra = fb=a

Example

Back to representing finite sets by finite lists:

F = elems
(1,2]

{1,2 (2,1]

[1,2,1]

Among the many R C F°, we may choose the following:

Relational representation

Listify : set of nat -> seq of nat
Listify(s) ==
if s = {} then []
else let e in set s
in [e] -~ Listify(s \ {e});

Intuitively,
p Listify = [noRepeats]
where
noRepeats(s) == card elems s = len s

Functional representation

listify : set of nat -> seq of nat
listify(s) ==
if s = {} then []
else let e = minset(s)
in [e] - listify(s \ {e});

Intuitively,

plistify = [IsOrdered] - [noRepeats]

Concrete invariants

o Wherever
A~ < B such that R C F° and p R = [¢]

we say that ¢ is the concrete invariant induced by R.

e In case R is a function, and because it always is injective, one has
A = By

where By denotes the subset of B which satisfies concrete-invariant ¢.

Example of a partial abstraction

Every element of datatype A can be represented by a “pointer”:
(31

A < A+1

e Simplicity of the abstraction is ensured by a known fact: the converse
of an injective relation is simple.

e Concrete invariant: ¢ = [TRUE , FALSE]

Another partial abstraction

Finite mappings “are” (simple) finite relations:
mkr

_
map A to B < set of (A % B)
VDM-SL: mkf = mkr®
mkr : map A to B -> set of (A x B)
mkr(f) == { mk_(a,£(a)) | a in set dom f };

mkf : set of (A * B) -> map A to B
mkf(r) == { p.#1 |-> p.#2 | p in set r }
pre isSimple(r);

(Guess the concrete invariant.)

Properties of <:

Reflexivity
id
AT < S A of idiid=id
\:/
id
Transitivity
R S S R
A< > BAB_< _Cc=a_ < _cC
G F.-G

Proof of transitivity

e First show that composition preserves simplicity and surjectiveness:

img (F-G) =id

{ expanding and converses}

F . (imgQG) - F° =id

{ G is simple and surjective}

img F' = id

{ Fis simple and surjective}
id = id

e Then note that S- R C (F - G)° by monotonicity.

Structural data refinement

R FR
A~ < B = FA < FB
_/ _/

F

FF
where F is an arbitrary relator (functor):

(FF)-(FR)
= { relators commute with composition}
F(F - R)
= { R is right-inverse of F'}
Fid
= { relators commute with id }
id

therefore F R is right-inverse of F f. Of course, this result extends to bifunctors.

Relators

A relator is a functor on relations

A FA
X | | FX
B FB

which is monotonic and commutes with converse:

RCS = (FR)C(FS)
F(R°) = (FR)°

Relators

Recall that F' will commute with composition and identity too:

F(R-S) = (FR)-(FS) (3)
Fid = 1id (4)
Example: X ™ will be such that
(XM = lenl=lenl’ A Vieindsl.(l)X (I')

10

Polynomial relators

Identity: IdR = R
Constant: KR = idg
Product: RxS = (R -m,S m)
Sum: R+S = [il-R7i2~S]
where
(R,S) = m -RNmy-S
[R,S] = (R-i)U(S-13)
For instance,
Maybe A = (d+1)A=A+1

“Maybe” transpose

Useful isomorphism for conversion of simple relations into a Maybe-valued
functions)
untot = (if -)
/_\
(B+1)* =
\/

A—B

tot
where A — B denotes the set of all simple relations from A to B:

f=ttR = (bRa = (fa=i1b))

“Maybe” transpose — VDM-SL

tot

—

A—B = (B+1)" (5)
‘R_________“,,f’

untot
where, for types A, B and JustB: :value:B,

tot: map A to B -> A -> [JustB]
tot(sigma) (a) ==
if a in set dom(sigma) then mk_JustB(sigma(a)) else nil;

untot: (A -> [JustB]) -> map A to B
untot(f) == { a |[-> b | a: A, b: B & £(a) = mk_JustB(b) };

11

Pointwise untot = (i3-)

As checked next:

untot f =17 - f

{ relations as set comprehensions}
untot f ={(b,a)|a € A,be B:b(i- f)a}
= { usingruleb(f° R-g)a=(f bHR(ga)}
untot f ={(b,a)|a€ A, be B:i; b= f a}

{ VDM-SL notation}

untot f = {al->bla:A,b:B & f(a)=mk_JustB(b)}

Corol. of “Maybe” transpose (I)

Isomorphism

extends to partial functions as follows:
fO

1—A A+1 (guess f and f°).

/~\;
~____—

That is, the “singleton” finite map is a disguise of a “pointer”.

Corol. of “Maybe” transpose (Il)

Sets are degenerated maps:

PA A—1

- =
~_

Calculation:

A —1

{ tot representation }

a+n4
{ basic}

QA

{ 24 is isomorphic to P A }

PA

12

Corol. of “Maybe” transpose (lla)

set2fm
—
PA = A—1
_/
dom
VDM-SL
set2fm : set of A -> map A to Nil
set2fm(s) == { a |-> nil | a in set s };
Pointfree
set2fm et ")
Right-invertibility
Calculation:
6 -set2fm =1id
= {}
0 (set2fm s) =s
= {}
o(l-s)=s

{ !'is a function, 6 (f- R) =0 R}

0s=3s

{ s is coreflexive }

S§=Ss

13

Corol. of “Maybe” transpose (lll)

Isomorphism
scurry

—
BxC—A = (C — A"

extends currying

BCxA - . (BAYC
v

to simple relations, as calculated in the next slide.

Corol. of “Maybe” transpose (ll1)

BxC—A
= { tot/untot }
(A + 1)B><C
= { curry/uncurry }
(A+1)9"
= { ()7}
(C—A)°

This is referred to as the multiple-key decomposition / synthesis
isomorphism.

Corol. of “Maybe” transpose (lll)

The scurry isomorphism is as follows, where we abbreviate scurry R to R:
f=R = (Mabc::c(fa)b=cRab))

Its VDM-SL equivalent for finite mappings is

scurry : map A*B to C -> (A -> map B to C)
scurry(M) (a) == { b |-> M(mk_(a’,b))
| mk_(a’,b) in set dom M
& a’=a };

14

Corol. of “Maybe” transpose (1V)

Refinement of nested simplicity by decomposition:

unnjoin

/\

A-(Dx(B—=0C) < (A=D)x((AxB)—C)

\/

X,

where RM, S = (R,S)
and unnjoin R = (w1 - R,unpcurry(mz - R)) (see definition of
unpcurry in the sequel.)

Calculation

A= (Dx(B— ()

Ik

{ Maybe transpose }

(Dx(B—=C)+14

IN

{ Maybe-(right)strength is involved in the abstraction }

(D+1)x (B—=0)4

IE

{ splitting }

(D+)4 x (B—C)4

1K

{ Maybe transpose and multiple-key synthesis }

(A—=D)x(AxB—=0C)

15

Details on the X, abstraction

Pointwise:

(d, M)(R ™, S)a dRa A M= (8)a

{ scurry }
dRa N (cMb=cS (a,b))

VDM-SL equivalent for finite mappings:

njoin : (map A to D)*(map A*B to C)
-> map A to (D* (map B to C))
njoin(M,N) ==
{al->mnk_M@, {b [-> Nmk_(a,b))
| mk_(a,b) in set dom N })
| a in set dom M };

Its representation is

unnjoin : map A to (D* map B to C) —>
(map A to D)*(map A*B to C)
unnjoin(M) ==
mk_({ a |-> M(a).#1 | a in set dom M },
merge {{ mk_(a,b) [-> M(a).#2(b)
| b in set dom M(a).#2 }
| a in set dom M }

);
Concrete invariant induced by unnjoin:
¢u7Lnjoin(M7 N) = N=M-m

where R<S = 6RC6S

16

Corol. of “Maybe” transpose (V)

unpeither

—
(B+C)—~A = (B—=A)x(C—A)

\/

where peither

peither(o,7) = [o,7]
for [R,S] = (R-47)U (S -13), that is

peither = U - ((-i7) % (+i3))

Corol.of “Maybe” transpose (Va)

JustB::value:B;
JustC: :value:C;
BorC = JustB | JustC ;

/\

map (Bor(C) to A = (map B to A) x (map C to A)
peither

peither: (map B to A) * (map C to A) -> map BorC to A
peither(m,n) == { mk_JustB(b) |-> m(b) | b in set dom m} munion
{ mk_JustC(c) [-> n(c) | c in set dom n};

NB: a “Ist NF" representation rule

17

Relational projection

Given a binary relation R and suitably typed functions f and g,
e the g, f-projection of R is defined as binary relation

mofR E g-R-f° (6)

e wherever R is simple and g- R - f° is also simple, we write f — ¢
instead of 7y, s R. So,

e (f — g)R is always simple when f is injective.

e So, we could have written e.g.

peither = U - ((i1 — id) x (i2 — id))

Refining finite sets (1)

List (cf. example before):

setof A < seqof A

Index A:

setof A < map nat to A

\/

rng

Refining finite sets (I11)

Classify A by B (B D {}):

—
setof A < map A to B

\/

dom
Quantify A (“multisets”):

—
setof A < map A tonat

\/

dom

18

Refining finite maps (1)

UNCojoin

—
A= (B+C) < (A=B)x(A—=0)

where cojoin
cojoin = U - ((i1-) x (i2"))

NB: cojoin is partial since the union of two partial functions not
always is a partial function.

Refining finite maps (l1a)

Note the representation function:

uncojoin : map A to BorC -> (map A to B) * (map A to C)
uncojoin(f) ==
mk_({ a |-> f(a).value
| a in set dom f & is_JustB(£(a)) },
{ a |-> f(a).value
| a in set dom f & is_JustC(f(a)) }
);

Refining finite maps (111)

unjoin
A—BxC < (A=B)x(A—0C)
where

where (R, S) &of (7 - R)N (75 - S). A right-inverse of join is

.. def . .
unjoin = (id = 71,1d — m2)

19

Refining finite maps (llla)

/\
map A toBxC < (map A to B) X (map A toC)

\/

where (writing join for X) M

join :(map A to B) * (map A to C) -> map A to (B * C)
join(m,n) == { a |-> mk_(m(a),n(a))
| a in set dom m inter dom n };

Refining finite maps (1Va)

In general:
peurry
—
(CxA)—~B C— (A—B)
~_

uUnpcurry

IN

unpcurry : map C to (map A to B) -> map (C * A) to B
unpcurry (f) ==
merge { let g=f(a)
in { mk_(a,b) |-> g(b) | b in set dom g }
| a in set dom f };

Refining finite maps (1Vb)

Pointwise

pcurry : map (C * A) to B -> map C to (map A to B)
pecurry(f) ==
let y = { x.#1 | x in set dom f }
in { a |-> { p.#2 |-> £(p)
| p in set dom f & p.#l1=a }
| a in set y };

Pointfree
peurry M = M — L

(recall scurry)

20

Transposing relations

Let B := 2 in the curry/uncurry isomorphism and obtain

A
i
P(Ax O) = (PA)°
~_
AO
where
f=AR = R=¢€¢-f

€
and A <—— P A is the membership relation.

Transposing finite relations

collect

—
set of (C'x A) < map C tosetof A

\/

discollect

collect : set of (C * A) -> map C to set of A
collect(r) == { c |-> { q.#2 | q in set r & c=q.#1 }
| c in set { p.#1 | p in set r } };

discollect : map C to set of A -> set of (C * A)
discollect(f) == dunion { { mk_(c,a) | a in set f(c) }
| ¢ in set dom f };

What about recursive data?

How does one refine recursive VDM-SL models such as e.g.

FS :: D: map Id to Node; -- FS means file system

Node = File | FS; -- a Node is either a file
- or a directory

Id = seq of char; -- node identifiers

File :: F: seq of token -- sequential files

that is, F'S = uF for FX = Id — (File + X):

out
/_\
uF = Id — (File 4+ pF)

in

21

The DecTree example

or...

DecTree :: question: What

answers: map Answer to DecTree
What = seq of char;
Answer = seq of char;

that is, DecTree = uF in

DecTree = What X (Answer — DecT'ree)

for F X = What x (Answer — X)

The Exp example

or even. ..

Exp = Var | Term ;
Var :: variable: Symbol ;
Term :: operator: Symbol

arguments: seq of Exp

inv t == len t.arguments <= 20 ;
Symbol = seq of char

inv s == len s <= 10 ;

that is, Fxp = uF in
Exp = Symbol + Symbol x Exp*

for F X = Symbol + Symbol x X*

Getting away with recursion

Given out

/_\

uF = F uF

_/

n
one has
/—‘
uF < (K —~FK)xK

—_——
\/ “heap’’

F
for K a data type of “heap addresses”, or “pointers’, such that K = IV.

22

An example to start with

Since

we have:

Exp = pX.(Symbol + Symbol x X™)

Ezxp
< { remove recursion }

(K — (Symbol + Symbol x K*)) x K
< { remove finite lists }

(K — (Symbol + Symbol x (N — K))) x K

Example continued

IN

IN

Il

[Ix

{recal A=~ (B+C)<(A—=B)x(A—=0C) }
(K — Symbol) x (K — (Symbol x (IN — K))) x K
{ remove nested — }
(K — Symbol) x (K — Symbol) x (N x K) =~ K) x K
{ AxA=A*}
(K — Symbol)® x (IN x K) = K) x K
{ recall (C = AP =B xC — A}
((2 x K) — Symbol) x ((IN x K) = K) xK

SYMBOLS EXPRESSIONS

SQL encoding

Symbols table:

CREATE TABLE SYMBOLS (
Symbol CHAR (20) NOT NULL,
NodeId NUMERIC (10) NOT NULL,
IfVar BOOLEAN NOT NULL
CONSTRAINT SYMBOLS_pk

);

PRIMARY KEY(NodeId,IfVar)

23

SQL encoding

Expressions table:

CREATE TABLE EXPRESSIONS (
FatherId NUMERIC (10) NOT NULL,
ArgNr NUMERIC (10) NOT NULL,
ChildId NUMERIC (10) NOT NULL
CONSTRAINT EXPRESSIONS_pk
PRIMARY KEY (FatherId,ArgNr)
)5

Can you rely on this implementation? Need for an abstraction invariant!

Abstraction function

e Main rdle in representation is played by simple F-coalgebra K — F K,
understood as a (finite) piece of “linear storage”, a “heap” or a
“database” file.

e T (recall T notation from above), of type (K — puF)E—F5) s

nothing but the F-anamorphism combinator:

m
jF ———— F(iF)

FH ’ ’ F(FH)
K

_F = [
FH = pX.in-(FX)-H

FK

Partiality of implementation

F(o,k) = (Fo)k will be undefined wherever
e ko
e o is not “closed” over itself (see below)
e o is non-well-founded (see below)

Thus concrete invariant

def

oo, k) = kedo A (closed o) N (wellf o)

In order to define closed o and wellf o we need o's accessibility relation <,
(next slide).

24

Accessibility and membership

Accessibility relation for o:

€F
where K <—— F K extends K <—— PK inductively over polynomial

functors, as follows:
e Constant and identity functors:

Membership (continued)

e Product and coproduct

£
€rxe & (€ -m)U (€6 m2)

def
€r4c = [EF,€Eq]

e Functor composition

25

Example

Recall F X = Symbol + Symbol x X*

€ Symbol+Symbol x X *
= { € for coproduct bifunctor }
[€symbol ;s €ESymbolx X*]
= { € for constant and product (bi)functors }
[L, (€symbor -m1) U (E€x+ -m2)]
= { € for constant and identity functor }
[L, (L -m)U(€-elems - m2)]
= { Land [R,S]=(R-i])U(S-43) }

-0

€ -elems - mwa - i

Example (pointwise)

k eSymbol+SymbolxX* T

{ calculation above }

k(€ -elems -2 -i3)x

{ relational composition }
k(e -elems - m)(a,l) N x =1i2(a,l)

{ trivia }

ke (elemsl) N z =12(a,l)

26

Another example

Let FX =1+ A x X. Then,

€14+AxX

= { € for coproduct bifunctor }
[€1,Eaxx]

= { € for constant and product (bi)functors }
[L,(€a m)U(Erx.x m2)]

= { € for constant and identity functor }
[L, (L -m)U(id - m2)]

= { Land [R,S]=(R-i})U(S-45) }

.0
T2 * 19

Example (pointwise)

k €iraxx ®

{ calculation above }

k(ms - 13)x

{ relational composition }

E(m2)(a, k") A x=12(a, k)

= { trivia }
r=12(a, k') N k=Fk
= { trivia }
x =1i2(a, k)

27

Accessibility (linear example)

o
Pointer reachability in case of a “linear” heap (1+ A X K) «— K:

ki <ockys = kao€doc A (0‘ kz):iz(a,kl)
In a drawing:
K A K
o= k1 | ko k1 <o k2
ko a k1 ko <o k1

Closure and wellfoundedness

Let <(J§ denote the transitive closure of <,. Then we define
closedd = p <iCéo
that is, all reacheable £ are defined, and
wellf o = (<5)Nid= 1

that is, <. is irreflexive (no cycles, no looping)

0.0. Data Implementation

UML:

class_a
attribA : A

class_b] 1 class_c
attribB : B attribC : C

Formal model: K — Structure where

Structure = A+ AXB+AxC
= Ax(1+B+0)

K — (A+AxB)

28

Multiple inheritance

class_a
attribA : A \
class_b class_c
attribB : B attribC : C

‘\ class_d J
attribD : D

K —

Ax(1+B+C+BxCxD,)

Example

student
name : String

K\» course: String

R

active

engineering

special plan

workstudy : String

equivalences :

E

A engineering_& _special)

K—~AX(1+B+C+BxCQ)

29

