CSK

VDMTools

VDM++ Toolbox User Manual

\

2

How to contact CSK:

http://www.csk.com/systems Web
@ VDM.SP@csk.com General information

VDM++ Toolbox User Manual — Revised for v7.0
(© COPYRIGHT 2006 by CSK SYSTEMS CORPORATION

The software described in this document is furnished under a license agreement.
The software may be used or copied only under the terms of the license agreement.

This document is subject to change without notice

http://www.csk.com/systems
mailto:VDM.SP@csk.com

VDM++ Toolbox User Manual

CcsSK

Contents
1 Introduction 1
2 VDMTools Overview 4
3 A Guided Tour of the VDMTools 7
3.1 Creating Input to VDMTools 7
3.2 Starting the VDM++ Graphical User Interface 8
3.3 On-LineHelp, 9
3.4 Menus, Toolbars and Subwindows 9
3.5 Configuring your Project L. 10
3.6 Syntax Checking your VDM Specification. 11
3.6.1 Parsing the specification 12
3.6.2 Correcting syntax errors 13
3.7 Type Checking your VDM Specification. 15
3.8 Validating your Specification o0 19
3.8.1 Evaluating expressions using the interpreter 20
3.8.2 Setting breakpointso oL 22
3.8.3 Dynamic type checking 26
3.8.4 Checking Integrity Properties 27
3.8.5 Multi-threaded models 32
3.9 Introducing Systematic Testing 33
3.10 Pretty Printing o oo 34
3.11 Generating Code 36
3.12 The VDMTools API 36
3.13 Exiting VDMTools oo 36
4 The VDMTools Reference Manual 38
4.1 The Overall Graphical User Interface 38
4.1.1 Project handling 39
4.1.2 Operations on specifications 42
4.1.3 The log window, error list and source window 43
414 Editing files 46
4.1.5 Using the interpreter 46
416 On-linehelp 47
4.2 The Overall Command Line Interface 47
4.2.1 Initialisation file.o oL 49
4.3 The Syntax Checker 51
4.3.1 The graphical user interface 51
4.3.2 Format of syntax errors 52

4.3.3 The command line interface 52

CSK

VDM++ Toolbox User Manual

4.3.4 The Emacs interface
4.4 The Type Checker
4.4.1 The graphical user interface
4.4.2 Format of type errors and warnings
4.4.3 The command line interface
4.4.4 The Emacs interface, .
4.5 The Interpreter and Debugger
4.5.1 The graphical user interface
4.5.2 Standard libraries oL
4.5.3 The command line interface
4.5.4 The Emacs interface
4.5.5 Scheduling of threads
4.6 The Integrity Examine00
4.7 The Pretty Printer oo
4.7.1 The graphical user interface
4.7.2 The command line interface
4.7.3 The Emacs interface
4.8 The VDM++ to C++ Code Generator
4.8.1 The graphical user interface
4.8.2 The command line interface
4.8.3 The Emacs interface
4.9 The VDM++ to Java Code Generator
4.9.1 The graphical user interface
4.9.2 The command line interface
4.9.3 The Emacs interface, ..
4.10 Systematic Testing of VDM models
4.10.1 Preparing the test coverage file
4.10.2 Updating the test coverage file.
4.10.3 Producing the test coverage statistics
4.10.4 Test coverage example using BKTEX
Glossary

A Information Resources on VDM Technology

B Combining VDM++ and ETEX

B.1
B.2

Format of a Specification File
Setting up a BTEX Document

ii

VDM++ Toolbox User Manual

CcsSK

C Setting up your VDMTools Environment 113
C.1 Environment Variables 113
C.2 Interface Options 114
C.3 Multilingual Support Lo 115

D The Emacs Interface 117
E Test Scripts for the Sorting Example 118
E.1 The Windows/DOS Platform 118
E.2 The UNIX Platforms 119

F Troubleshooting Problems with Microsoft Word 121
G Format for Priority File 122
Index 123

il

CSK VDM++ Toolbox User Manual

v

VDM++ Toolbox User Manual CSK

1 Introduction

VDMTools is a set of tools that allows you to develop and analyse precise mod-
els of computing systems. When used in the early stages of system development,
these models can serve as system specifications, or as an aid in checking the
consistency and completeness of user requirements. The models are expressed
either in the ISO VDM-SL standard language | | or in the object-oriented
formal specification language VDM++ | 1 |. This manual describes
the VDM++ Toolbox, which provides a range of tools for automatic checking
and validation of models expressed in VDM++ prior to implementation. These
range from traditional syntax and type checking tools to a powerful interpreter
that executes models on request and performs automatic consistency checking
during execution. The execution facilities support the use of testing techniques
in early analysis and design and allow execution of entire test suites in line with
established software engineering practice. Moreover, the interpreter enables inter-
active debugging of models by setting breakpoints, stepping through statements
and expression evaluations, inspecting the call stack, and checking the values of
variables in scope.

This document provides an introduction and reference manual to the VDM-++
Toolbox (called the Toolbox in the remainder of the document). The VDM++
language is described in the separate language reference manual |]. In
the remainder of this manual we use the term specification to refer to any model
constructed in the language for whatever purpose.

VDM Input Formats

The Toolbox supports VDM++ specifications embedded in either Microsoft Word
or BTEX documents so that it is possible to analyse specifications without having
to extract them into a special file. We recommend the use of either one of these
two approaches as an excellent way of combining the model of a system with its
documentation. Having just one version of the specification helps to avoid incon-
sistencies arising between working and documented versions of the specification.
If you would rather not use Word or KTEX, you can of course write specifications
as clear text in plain ASCII files using your preferred text editor.

The Toolbox supports input documents in a range of different languages and
scripts. Appendix C.3 explains how to configure the Toolbox for different scripts.

If you use Microsoft Word to write your VDM++ specifications, you should save

CSK VDM++ Toolbox User Manual

the documents containing specifications in rich text format (RTF). The Toolbox
distribution contains example files in this format. Throughout this manual, you
will see examples using files from the Toolbox distribution. The names of such
example files are followed by the extension “.rtf”, indicating that they are in
rich text format.

In this manual we will normally introduce features of the Toolbox using Word
and RTF. If you use the IXTEX text processing system to write your specifications,
then note that the Toolbox expects input containing IXTEX commands mixed with
VDM specifications using the style and format described in Appendix B. The
Toolbox distribution also contains example files in this format, indicated by the
filename extension “.vpp” rather than “.rtf”. Thus, if an example refers to a file
called sort.rtf, you should instead use the file sort.vpp. References to a direc-
tory structure are shown throughout this manual in the form examples/sort.vdm
(i.e. with a forward slash) unless the reference is only relevant under Windows in
which case it is shown as examples\sort.vdm (i.e. with a backward slash).

If you prefer to write specifications as plain text ASCII files, note that the only
way to incorporate explanatory text into your specification is by means of the
VDM++ comment syntax, described in the Language Manual. Files prepared in
this format are normally given a “.vpp” extension.

Using This Manual

This manual is divided into three parts. Sections 2 and 3 provide an overview
of the various tools in the Toolbox and a “hands-on” tutorial introduction to
using the Toolbox via its graphical user interface. Before working through this
part of the manual the Toolbox should be installed and the environment vari-
ables required should be set (see Appendix C). The installation of the Toolbox
is described in the document |]. As you work through Section 3, you will
get to know the various tools and control commands available to you.

The second part of the manual (Section 4) is a reference guide covering all the
features of the Toolbox systematically. All three available interfaces — the com-
mand line interface, the Emacs interface and the graphical user interface — are
described for each feature.

The third part of the manual consists of appendices on a range of topics. Ap-
pendix A includes pointers to information resources for VDM, including internet
sites, project descriptions, technical papers and books. Appendix B explains how
you merge text and specification in IfTEX documents.

VDM++ Toolbox User Manual CSK

Appendix C describes which environment variables and options can be set for the
Toolbox. Appendix D describes the Emacs interface. Appendix E presents a few
test scripts used for systematic testing of the sorting specification which is used
as a running example in this manual. Appendix I offers some possible solutions
to common problems encountered when using the Toolbox in conjunction with
Microsoft Word. And Appendix G describes the format for defining priority files
for use with the interpreter.

CSK VDM++ Toolbox User Manual

The VDM++ Technology
4 N\

Syntax Checker Specification Manager
VDM Specification

Type Checker - -

ocument Generator
-
Interpreter & Debugger Test Coverage and Statistics Tool
|:} Integrity Checker

Code Corba Compliant API

| Jcor coue]
Java to VDM++ M

N
UML Rose VDM++ Link

A J

Figure 1: Overview of VDMTools

2 VDMTools Overview

A VDM++ specification is a document which aims to describe the properties of
a system in a precise way. The specification can be distributed among several
files in the input formats described in Section 1. Figure 1 provides an overview
of the functionality of the Toolbox and its additional features. The various tools
are described below:

Specification Manager The specification manager keeps track of the status of
classes in the specification, which may be spread across several files.

Syntax Checker: The syntax checker checks whether the syntax of your VDM-++
specification is correct with respect to the definition of the VDM++ lan-
guage. If the syntax is accepted it gives access to the other tools in the
Toolbox.

Type Checker The type checker contains a powerful type inference mechanism
which identifies mis-uses of values and operators and which can also show
all places where run-time errors could occur.

Interpreter and Debugger The interpreter allows you to execute all the exe-
cutable constructs in VDM++. These range from simple value builders like
set comprehension and sequence enumeration to more advanced constructs
like exception handling, lambda expressions, loose expressions and pattern
matching, or even multithreaded models. One of the benefits of executing
specifications is that testing techniques can be used to assist in their valida-
tion. In the development process small or large parts of a specification can

VDM++ Toolbox User Manual CSK

be executed to enhance the designer’s knowledge of and confidence in the
specification. Furthermore, an executable specification can form a running
prototype.

A source-level debugger is an essential aid when working with executable
specifications. The VDM++ debugger supports the functionality found
in debuggers for ordinary programming languages, including setting break-
points, stepping, inspection of variables defined in the scope, and inspection
of the call stack.

Integrity Examiner The integrity examiner extends the static checking capa-
bilities of the VDM++ Toolbox by scanning through specifications checking
for potential sources of internal inconsistencies or integrity violations. The
checks include the violation of data type invariants, preconditions, post-
conditions, sequence bounds and map domains. Each integrity property is
presented as a VDM++ expression which should evaluate to true — if it
instead evaluates to false this indicates that there is a potential problem
with the corresponding part of the specification.

Test Facility The test facility allows you to exercise your specification using a
predefined set of tests called a test suite. Test coverage information can
be automatically recorded during execution of a test suite and presented
back to the specifier, indicating which parts of the specification are most
frequently evaluated and which parts have not been covered at all. The test
coverage information is displayed directly in the source file which can be a
Microsoft Word or IXTEX document depending upon the input format used.

Automatic Code Generator The Toolbox supports automatic generation of
C++ and Java code from VDM++ specifications’, helping to achieve con-
sistency between specification and implementation. The code generator
produces fully executable code for 95% of all VDM++ constructs, and there
are facilities for including user-defined code for non-executable parts of the
specification. Once a specification has been tested, the code generator can
be applied to obtain a rapid implementation automatically. The use of the
C++ Code Generator is described in the document |] and the use
of the Java Code Generator is described in the document |].

Corba Compliant API The Toolbox provides a Corba compliant Application
Programmer Interface (API) which allows other programs to access a run-
ning Toolbox. This enables external control of the the Toolbox components
such as the type checker, interpreter and debugger. The API allows any

You must have a separate Code Generator license to use this facility.

CSK VDM++ Toolbox User Manual

code such as a graphical front-end or existing legacy code to control the
Toolbox.

Rose-VDM++ Link The Rose-VDM++ link integrates UML and VDM—++. It
provides a bi-directional translation which gives a tight coupling between
the Toolbox and Rational Rose. Hence the link supports round trip engi-
neering between UML and VDM++-, where the graphical notation is used to
provide the structural, diagrammatic overview of a model while the formal
notation is used to provide the detailed functional behaviour. The use of
the Rose-VDM++ link is described in the document [SYS0GD].

Java to VDM++ Translator This feature allows existing legacy Java applica-
tions to be reverse engineered to VDM++. Analysis of the application can
then be performed at the VDM++ level and new features can be specified.
Finally, the new specification can be translated back to Java. The use of
the Java to VDM++ Translator is described in [SYS06a].

VDM++ Toolbox User Manual CSK

3 A Guided Tour of the VDMTools

This section provides a “guided tour” of the Toolbox. If you are new to the
principles of system modelling in VDM, we recommend that you should first
read “Modelling Systems: Practical Tools and Techniques in Software Develop-
ment” |], by John Fitzgerald and Peter Gorm Larsen. This is a tutorial book
which includes many examples built around VDM specifications which can be ex-
plored using the Toolbox. If you do have some knowledge about these general
concepts, but are unfamiliar with the object-oriented extensions in VDM++,
we recommend that you review the VDM++ language reference manual “The
VDM++ Specification Language” |].

3.1 Creating Input to VDMTools

In order to use the Toolbox it is necessary to produce a VDM++ specification.
In this section we illustrate how to do that using Microsoft Word in the rich
text format (RTF) on a simple sorting example. If you alternatively prefer using
VDM++ combined with BTEX you should consult Appendix B?. In the remainder
of this section we assume some basic familiarity with Microsoft Word.

Start Microsoft Word by selecting it from the programs entry in the Windows
setup under Windows. Open the vpphome/examples/sort/MergeSort.rtf file
from the Toolbox distribution. Reading through this file, you will see that the
document is a mixture of explanatory text and a formal model in VDM++. All
the formal parts are written in the style VDM. You may not change the formatting
of the text in the VDM style directly in the source text. The pretty-printer will
put VDM keywords in the boldface font anyway. If you wish, you can modify the
appearance of this style, so long as the style’s name is not changed: the Toolbox
will only analyse those parts of the document written in the VDM style.

A definition of the styles which are used by the Toolbox inside Microsoft Word can
be found in the VDM. dot file from the Toolbox distribution. This file can be copied
to your template directory (C:\Program Files\Microsoft Office\Templates
normally) so that these style definitions will be included if you select this tem-
plate when a new document is started (there are also various ways in which the
definitions can be copied into the template file you normally use).

Now look at the end of the MergeSort.rtf document. You will see that the
name of the class MergeSort is written in the style VDM_TC_TABLE. We will come

2Tt is also possible to use plain ASCIT VDM++.

CSK VDM++ Toolbox User Manual

back to the usage of this when we discuss how to record and display test coverage
information. The styles VDM_COV and VDM_NCOV are also used in connection with
test coverage information. We will also come back to these styles later.

If you wish to gain more experience with using Microsoft Word for producing
your input to the Toolbox we recommend that you try to read in some of the
other examples from the Toolbox distribution after completing this guided tour.

3.2 Starting the VDM++ Graphical User Interface

The Toolbox is normally used via its graphical user interface. Before starting
this interface, VDM source files should be copied into a working directory. The
Toolbox distribution contains a specification of different sorting algorithms, a
presentation of which can be found in the technical report [SYS06f]. During this
guided tour we will use this sorting specification as our running example, so copy
the directory vpphome/examples/sort from the Toolbox distribution and cd to
it. This will enable you to try the tools in the Toolbox directly on your computer
while you are following the tour.

The Toolbox is started by selecting it from the “Program Files” entry in the
Windows start menu or with the command vppgde on Unix platforms. The
Toolbox will start up as shown in Figure 2. This window is called the main
window of the Toolbox.

% The VDM++ Toolbox M=
Project File Windows Actions Interpreter Help

DEARE A0 T AaEe NS0 %K Wy aeh
FETIEEEERE =2 @

g Manager jﬂﬁ

Project]OIaSS]

Files [

Project -

[Java Files]

- [WDM Files]

Figure 2: Graphical User Interface Startup

VDM++ Toolbox User Manual CSK

3.3 On-Line Help

On-line help for the Toolbox and the interface in general can be accessed through
the Help toolbar or the Help menu. Currently only the following very limited help
is available:

About (2): Displays the version number of the Toolbox.

aboutgt (@): Displays information about and a reference to Qt, the multiplat-
form C+-+ GUI toolkit which the Toolbox interface uses.

3.4 Menus, Toolbars and Subwindows

The top of the main window consists of a menu line with six pull-down menus:

Project: A project consists of a collection of file names that together form a
VDM++ specification. Under this menu heading it is possible to open and
save projects, to configure (add files to and remove files from) projects,
and to create new projects. This is also the place from which to exit the
Toolbox and to set options for the various tools in the Toolbox, for example
to govern the level of type checking.

File: Here you can invoke a file editor for making corrections to your specification
and also remove displays of source files generated by the Toolbox when it
reports errors.

Windows: Controls to determine which windows are displayed in the bottom pane
of the main window. Each menu item toggles opening/closing of a particular
window.

Actions: This offers the various actions that can be applied to a specification: syn-
tax and type checking, generation of integrity properties, code generation,
translation from Java to VDM++, and pretty printing.

Interpreter: This offers functions for controlling the interpreter (see Section 3.8.1).

Below this menu line are six® toolbars comprising buttons which offer the same
actions®.

3When the Toolbox is started, only the three which correspond to the first, third and fourth
menus are displayed open; the other three are displayed in iconised form above them.
4Except that the function for exiting from the toolbox is only available on the Project menu.

CSK VDM++ Toolbox User Manual

Finally, the lower pane of the main window is used to display various subwindows
which either present information about the status of the current project or offer
interfaces to tools within the Toolbox. The available windows are as follows:

Manager Displays the current status of the current project. It consists of two
parts:

Project View This shows a tree representation of the contents of the project
comprising the files in the project and (only after successfully syntax
checking the file) the classes declared in each file.

Class View This offers both a VDM View and a Java View, which display the
status of each of the individual VDM++ classes or Java files in the
project respectively.

Source Window Displays the part of the source specification in which the error
currently selected in the Error List was discovered.

Log Window Displays messages from the Toolbox.
Interpreter Window The interface to the interpreter.
Error List Reports errors found by the Toolbox.

Integrity Properties Window Displays the integrity properties that have been gen-
erated for the specification.

When the Toolbox is started, only the Manager is open.

3.5 Configuring your Project

First you need to configure the Toolbox by indicating which files (in your desired
input format) are to be analysed. For this purpose you can select the action Add
File to Project on the Project menu or simply press the & (Add Files) button on
the (Project Operations) toolbar’. The dialog box shown in Figure 3 will then
appear.

5In the remainder of this guided tour we concentrate on interactions via the toolbar buttons.
You can of course always use the equivalent menu item if you prefer.

10

VDM++ Toolbox User Manual CSK

i Select Files to Add to Project

Look jre | =5-am Files/The WDM++ Toolbox vE87/examples/sort »| <o 5 |eE ==

_‘] To zOrter vpp
test Su:urt Machine.rtf
@ DoSart rtf T zortmachine.vpp
Ton. dosartvpp

@ ExplSort rif

o explsartypp

@ImplSort.rtf

o implsartypp

@ MergeSort rtf

T mereesortvpp

MergeSort-init.rtf

@Snrter.rtf

File name: | Cipen

File type: |\.I’DM files $eyvpp *wdmpp *rtf) ﬂ Cancel

Figure 3: Adding Files to a Project

Mark the six .rtf files (minus the MergeSort.rtf file) by holding down the Ctrl
key and clicking the left-hand mouse button on each of the files in turn, then press
the “Open” button. These files will then be included in the project. You can
also add a single file to a project by double clicking the left-hand mouse button
on it (but note that this also closes the dialog box so it is not an efficient way of
adding a number of files), and you can also mark a list of files at the same time
by selecting the first and last files in the list (in either order), holding down the
Shift key while making the second selection. Note that MergeSort-init.rtf
contains a number of errors for illustration purposes in this guided tour.

The six .rtf files will now appear in the Project View of the Manager in the
main Toolbox window as shown in Figure 4.

3.6 Syntax Checking your VDM Specification

Having configured your project you now need to check whether all the classes obey
the syntax rules of VDM++. The syntax checker checks whether the syntax of
your specification is correct. Note that when you change a source file you must
syntax check it again before the other tools will be aware of the changes you have
made.

11

CSK VDM++ Toolbox User Manual

‘: Manager jﬂ ﬂ

Project] Clasz]

Files
[Project - Sartpr) |

5. [VDM Files]
=) Default

- DoSort.rif
- ExplSortrtf
- ImplSort rf
+ - MergeSort.rtf
+ -Gorterrtf

- SortMachine rtf

Figure 4: Main Window After Addition of Files

3.6.1 Parsing the specification

Select the files for syntax checking by marking the six .rtf files in the Project
View of the Manager, then press the # (Syntax Check) button on the (Actions)
toolbar to invoke the syntax checker. (Selecting the containing level “Default”
folder and applying the syntax check operation to that has the same effect —
this applies the operation to each of the files in the folder.) Notice that at this
point the Log Window opens automatically (if it is not already open) and displays
the message “Parsing "..../DoSort.rtf" ...” etc.. If syntax errors are
discovered the Error List is also automatically invoked and the Source Window is
automatically opened. Our sorting example contains two deliberate syntax errors
by way of illustration.

12

VDM++ Toolbox User Manual CSK

3.6.2 Correcting syntax errors

The Error List is shown in Figure 5. Its top pane shows a list of the places (file
name, line number, column number) at which errors and warnings arose, while
the bottom displays a more detailed explanation of the currently selected error.
Initially, the first error in the list is selected automatically.

§ Error List 4 Errors, 0 Warnines - | O] x
%) -1olx]|

j (1% C/Proeram Files/The YDM++ Toolbox 687 examples/zort/DoSortrtt Line 21, Calumn 3
@Y Ci/Proeram Files/The WDM++ Toolbox +5.8.7/examples/zort/DoSortrtt Line 27, Calumn &
j (3% C/Proeram Files/The WDM++ Toolbox 627 examples/zort/DoSortrtf Line 28, Calumn §

4Y Ci/Program Files/The WDM++ Toolbox 6.2 7 examples/zart/DaSartrtf Line 31, Calumn 1

C:/Program Files/The WDM++ Toolbox wB.8. 7 examples/zort/DoSortrtf, 1 21, ¢ 3

Expected: <<binary opr>, "0 ", 7 "operationg’ “ingtance’, “svnc' “thread, Tend’ “functionz' "#, “post, “pre| types or “values' before
“InsertSorted : int *

fizgumed: " before “TheertSorted © int #'

Figure 5: The Error List

The Source Window displays the part of the source specification in which the
currently selected error was discovered, the actual position being marked by the
window’s cursor. For the first syntax error, the Source Window appears as shown
in Figure 6.

The first error message is as follows:

C:\vpphome\examples\sort\MergeSort-init.rtf, 1. 29, c. 3:
Expected: <<binary op>>, ‘(’, ‘.’, ‘;’, ‘operations’, ‘instance’,
‘sync’, ‘thread’, ‘end’, ‘functions’, ‘.#’, ‘post’
‘pre’, ‘types’ or ‘values’ before ‘Merge : seq of’

“;’ before ‘Merge : seq of’

Assumed:

Messages of this form indicate the text which was expected but not found at the
error point. The syntax checker reports the error and makes an assumption about
what should have been at the error point in order to allow it to recover and carry
on with the syntax check.

In this example, the error message tells us that a missing ‘;” before the function
Merge has been assumed in order to proceed with the syntax check, and you can

13

VDM++ Toolbox User Manual

CcsK
A Source Window jﬂﬂ
MeresSort-init.rf

14 —LINE 111]

15 MereeSorter: zeq of real -» zeq of real

16 MereeSorterl) ==

17 cazes |

18 0 =,

1% [e] -»1

20 others = let 1712 in =et {} be =t abs den 11 - len 120 < 2

21 in

a3 let || = MereeSorter{),

23 I+ = Mergezorter (12} in

24: Meree Ll v

2 end

26

s

28 —-LIME 141

200 Meree: seq of int * geq of bool => zeq of int

30 Meres(1,12) ==

A cases mk 0112k

3 k(0. 0mmk (L0 = 1,

x others =»if hd N <= hd 12 then

a4 [hd]~ Mergettail 11, 123

i1 elze

36 [hd 12] ™ Mergedl, t1 123

a7 end

38 pre forall i inoset inds 1 & NG »= 0 and

a8 forall i in set inds 12 & 1263 >=0

A0 —

41: end MergeSort I

Figure 6: The Source Window for the First Error

see from the description of the VDM++ syntax in |] that this assumption
is correct — two function definitions must be separated by the delimiter ‘;’. The

error can therefore be fixed by using the file editor to add the character ;’ to the
end of the definition of the function MergeSorter.

(Note that the source file is not changed by the syntax checker when it “assumes”
something: corrections to the source text should be done manually by the user.)

You can correct the syntax errors by invoking your preferred editor (see Ap-
pendix C) directly from the Toolbox interface. Select the file MergeSort-init.rtf
in the main window and press the External Editor button (%) on the (File Oper-
ations) toolbar. Note that if more than one file is selected when you invoke the
External Editor in this way you actually get one External Editor for each of the
selected files.

You can get to the next reported error by pressing the |>| button which appears
to the left of the list of errors or by selecting the error notifier directly in the top
pane of the Error List. Here the explanation is:

14

VDM++ Toolbox User Manual CSK

C:\vpphome\examples\sort\MergeSort-init.rtf, 1. 34, c. 53:
Expected: <<binary op>>, ‘(’,)’, ¢,7, ‘.7, ‘[7, ‘~2, “#7,
2 or ¢, ... ,’ before ‘11 , 12)’

Assumed: ‘*’ before ‘11 , 12)’

This tells us that there is a syntax error before 11, 12 and that a multiplication
symbol ‘*’ was assumed between ‘tail’ and ‘11’ in order to recover from the
syntax error (the ‘tail’ symbol has been read as the name of an identifier). In
this case the assumption is incorrect and the error is in fact that the ‘t1’ operation
which returns the tail of a sequence has been wrongly written as ‘tail’. Make
this correction using the file editor.

When you have corrected the syntax errors and saved the file, you must re-run
the syntax checker to check your corrections were right. This time the file should
be syntactically correct, and if you switch to the VDM View in the (Class View
of the) Manager you will see that the status of each of the six classes (DoSort,
ExplSort, ImplSort, MergeSort, Sorter, SortMachine) in our specification
is now marked with the symbol § in the syntax column indicating that it is
syntactically correct. (See Figure 7.) Note that the blanks in the other columns
mean that no attempt has yet been made to type check, code generate or pretty
print the specification.

Now that the syntax checking has been completed successfully, the files can be
selected for further processing directly in the VDM View.

3.7 Type Checking your VDM Specification

Once a specification has passed the syntax check, the type checker can be applied.
This is invoked by pressing the " (Type Check) button on the (Actions) toolbar.

Select all six classes in the VDM View and run the type checker. After type
checking, the Toolbox updates the status information in this view to indicate,
using the symbols T and J (this is the first symbol T with a red line through
it) respectively, whether the type check succeeded or failed for each class.

In this example it in fact failed for the MergeSort class, which generated three
type errors and one warning. The errors’ are displayed in the Error List as before.

6The format of type errors is described in more detail in the reference part of this manual.

15

CSK VDM++ Toolbox User Manual

E Manager j ﬂ ﬂ

Project | Class l

WVOM View]Java View |

Clazses |5yntax |T;-.f|:ue |G++ |Java |F‘retty Print |

DoSort S
Explsort S
Impl=ort S

MergeSort S

Sorter S

SortMachine S

Figure 7: The VDM View

The first error, which is shown in Figure 8, is caused by the lower-case s in
the function name Mergesorter (see the corresponding Source Window shown in
Figure 9): this function name should be MergeSorter.

The second error, which is shown in Figure 10, tells us that we tried to apply
the ‘<=" operator with a right-hand argument (Rhs) which does not belong to a
numeric type. More specifically, the actual argument (denoted by the keyword
act: in the error message) is of type bool while the expected argument (denoted
by the keyword exp:) is a real number (real is the most general numeric type).
Information like this can be valuable when trying to determine the cause of an

See Section 4.4.

16

VDM++ Toolbox User Manual CSK

d Error Ligt: 3 Errors, 1 Warning jﬂﬁ

j (1) G/Program Files/The WDM++ Toolbox vB 8 }examples/zort/MereeSort-initrtf Line 23, Golumn 30
2} Gi/Program Files/The WDM++ Toolbox vE87 examples/zort/ MergeSort-initrtf Ling 34, Golumn 39
(3% G/Program Files/The WDM++ Toolbox w687 examples/zort/ MergeSort=initrtf Line 40, Column 39
j 4} C:/Program Files/The WDM++ Toolbox w687 examples/zort/MergeSort-initrtf Line 19, Column 8

C:i/Program Files/The WDM++ Toolbox w687 examples/zort/MergaSort-initrtf, | 23, c. 30
Error[34] : Unknown identifier ™ Mereesaorter”

Figure 8: First error reported when type checking

error.

This mistake is in fact caused by the seq of bool in the signature of the Merge
function, which should be seq of int. The same mistake also caused the third
error, which is similar to the second, and this disappears when the second error
is removed. So just correct the first two errors and syntax and type check the
specification again.

Notice how the status information in the main window is updated during this
process. First, when the source file is edited the symbol § which indicated in
the VDM View that the file was syntactically correct is replaced by the symbol
S indicating that there is an inconsistency between the version currently in the
Toolbox and the version on the file system. The file must be syntax checked again
before proceeding. Second, after the syntax check and type check are re-run, the
symbols S and T are shown in the respective status fields to indicate that both
operations were successful.

Note also that the type check operation is considered to be successful even though
the type checker returns a warning. This is because warnings generally repre-
sent redundancy in a specification rather than actual errors, for example that a
particular Boolean expression will always evaluate to false or that a particular
parameter or local variable is never used in the body of a function or operation.
Of course, such redundancy can actually be the result of an error — the expression
or statement which raises the warning may have been mis-typed — so it is useful
to check the warnings to make sure that this is not the case. In our example,
the warning tells us that the local variable ‘e’ which is introduced in the second
pattern in the cases statement in the function MergeSort is never used. This is

17

CSK VDM++ Toolbox User Manual

A Source Window jﬂ ﬂ

MergeSort-init.rif

14: ——LINE 11 1 -
1% MergeSorter: =eq of real —» seq of real

16 MergeSorter(l) ==

17 casesz |

18 1 =

19 el -1

20: others —» let 1712 in set {fbe st abs Oen N - len 120 £ 2
21 i

2 let || = MergeSorter (13,
2 |r = Mereesarter {12} in
24: Mereell | 1)

28 end

26

2T

28 —-LIME 141

20 Merge: zeq of int * zeq of bool - =eq of int
30 Mereel |23 ==

3 cazes mk_¢012x

a2 ke E00, 0 ik L0 = 1,

3 others =+ if hd 11 <= hd IZ then
34 fhd N1~ Mergeltail 1, 12
3h elze

3 [hd 121 ™ Mereet, t1 123
ar end

35 pre forall iinoset inds 0& N0 »=0 and

ia forall i in =et inds 12 & 1200 =0

40 —_
41: end MergeSort -

Figure 9: The Source Window for the Type Errors

in fact not an error and the specification is correct as it stands, but we could
remove the warning if we wanted to by replacing the ‘e’ with the “don’t-care”
pattern ‘-’

Although our specification has now passed the type checking operation this does
not mean that it is guaranteed to be correct and there may still be some errors
(just as there may be run-time errors such as division by zero in a program even
though that program has passed the syntax and type checks of the compiler for the
appropriate programming language). In order to help to identify potential sources
of these “run-time” errors in the model, the type checker has an option which
causes it to report an error at all points in the specification which are potential
sources of run-time errors. Then, if one can convince oneself that the potential
errors reported cannot occur, no run-time errors will appear. More information

18

VDM++ Toolbox User Manual CSK

d Error Ligt: 3 Errors, 1 Warning jﬂﬁ

j {1} G:#Program Files/The WDM++ Toolbox vB8 T examples/zort/MereeSort-initrtf Line 23, Golumn 30
2% Gi/Program Files/The WDM++ Toolbox va8 7 examplessort/MergeSort-init it Ling 34, Column 38
3% G/Program Files/The WDM++ Toolbox vi87 examples/zort/ MergeSort=initrtf Line 40, Column 39
j 4} C:/Program Files/The WDM++ Toolbox w687 examples/zort/MergeSort-initrtf Line 19, Column 8

Ci/Program Files/The WDM++ Toolbox w687 examples/zort/MergaSort-initrtf, | 34, c. 3%
Errar[175] : Bhe of <= iz not a numeric type
act : boal
exp : real

Figure 10: Second error reported when type checking

about this can be found in the reference part of this manual in Section 4.4.

3.8 Validating your Specification

Specifications are developed for a purpose: usually in order to gain a better
understanding of the desired behaviour of a proposed computing system, or in
order to check that some design has desired properties such as safety, or in order to
serve as the basis for subsequent detailed design or coding. Whatever its purpose,
it is not sufficient for a specification merely to be syntax- and type-correct — it
must also faithfully express the behaviour of the system being modelled, albeit
at an abstract level.

Validation is the process of increasing confidence that a formal specification ac-
curately reflects the informally expressed requirements for the system which is
being modelled. A wide range of validation techniques are available when the
specification is given in a formal specification language: specifications may be
inspected and they may be tested; it is even possible to conduct highly rigor-
ous proofs that specifications exhibit desired properties. The Toolbox provides
support for validation through animation and testing using the interpreter and
the debugger — executing parts of the specification on chosen input values — and
through the generation of integrity properties. This section shows you how the
interpreter, the debugger and the integrity examiner can be used to check your
specification and improve its quality.

19

CSK VDM++ Toolbox User Manual

3.8.1 Evaluating expressions using the interpreter

The interpreter allows you to evaluate and debug expressions and statements.
These can be arbitrarily complex, including application of functions and opera-
tions and use of variables defined in the scope of the specifications read into the
Toolbox. The debugger allows you to set breakpoints, step through the evalua-
tion, and inspect variables.

The Interpreter Window, shown in Figure 11, is opened by pressing the @ (In-
terpreter) button on the (Window Operations) toolbar. The Interpreter toolbar is
opened at the same time if it is not already open.

@Interpreter find o jﬂﬁ
3
> |
Trace Break Points
Function | Walue Enable Dizable | Delete |
Enabled | Mo. | Line |

Figure 11: The Interpreter Window

The top two panes of the tool are respectively the Response and Dialog panes:
you can give commands directly to the interpreter in the Dialog pane and you
receive output from the interpreter in the Response pane. To evaluate a VDM-++
expression, you type it directly on the command line in the Dialog pane.

Type the following expression into the Dialog pane:

It is also possible to refer to the VDM++4 constructs which have been read in from

20

VDM++ Toolbox User Manual CSK

the specification files, but before doing this you must first initialise the interpreter
by pressing the = (Init) button. During initialisation, constants are evaluated
and instance variables are initialised. After initialisation you can refer to any of
the functions, operations, instance variables, values, types etc. which are defined
in the classes in the specification.

print { a | a in set {1,...,10} & a mod 2 = 0 }

then press RETURN. The answer is a set of even numbers. The expression
you evaluated was a set comprehension, a value construction which is explained
further in |].

In order to see which functions you can call from the class MergeSort, type
functions MergeSort at the prompt in the Dialog pane. This displays the list
of available functions in class MergeSort. From this list it can be seen that it is
possible to call the precondition function for functions which have a precondition
attached to them, like the function pre Merge.

Application of functions and operations and inspection of instance variables and
values can only be performed through objects. Objects can be created so that
they are available for subsequent use in the interpreter.

The following two commands, when used in the Dialog pane, will create an object
of class MergeSort named ms then call the operation Sort on ms with the sequence
[3.1415, -56, 34-12, 0] and display the result:

create ms := new MergeSort()
print ms.Sort([3.1415, -56, 34-12, 0])

Alternatively, objects can be created local to the evaluation of a statement in the
interpreter. For example the call to MergeSort ‘Sort could also be performed
by the following command where the ms object from the previous example is not
given any name at all:

print new MergeSort().Sort([3.1415, -56, 34-12, 0])

21

CSK VDM++ Toolbox User Manual

In this example an object is created local to the evaluation, i.e. it only exists
throughout the evaluation of the Sort operation.

In order to look up an instance variable, first create an object of the class
SortMachine:

create sm := new SortMachine()

The class SortMachine has an instance variable srt that is a reference to a
Sorter object. Initially srt points to a MergeSort object. Try first to see the
value of srt and then call the Sort operation on the object it points to:

print sm.srt
print sm.srt.Sort([3.1415, -56, 34-12, 0])

Figure 12 shows the results of all the above evaluations.

Note that not all VDM++ constructs are executable and unexecutable constructs
cannot be evaluated using the interpreter. For example if you try to call the
implicitly defined function ImplSort‘ImplSorter with a sequence of numbers,
the interpreter will return an error saying that it encountered a non-executable
construct during evaluation. See Figure 12.

3.8.2 Setting breakpoints

Breakpoints cause the interpreter to break execution when evaluating functions
or operations.

Set a breakpoint in the function MergeSorter in the class MergeSort by typing
break MergeSort‘MergeSorter.

(When setting a breakpoint the name of the function or operation must be qual-
ified with the name of the class in which it is defined.) The location of the

22

VDM++ Toolbox User Manual CSK

@Interpreter Windaow jmﬁ

Thitializing specification ..

done

»» functions MergeSort

Functions defined in current scope:
Functions in Clazs Sorter

Functionz in Glazs MergeSaort
Meree pre_Merge MergeSorter
»¥ create me = new MereeSort()
> print meSort([3,1415,-56,34-1200
[-B603141522]
»» create am = new SortMachine(
¥ print =mart
ohjretd MergeSarts:
<k
= print =mert Sort (31415 -65634-1200
[-8603141822]

pd

| <
Trace Break Points

Figure 12: Evaluation of Expressions A D

breakpoint will now appear in the BreakPoints pane at the bottom right of the
Interpreter Window together with the number allocated to the breakpoint (1 in
this case since this is the first breakpoint we have set) and the symbol | v| which
indicates that the breakpoint is enabled. You can now use the debug command
to start the evaluation instead of the print command used before. The only
difference between the two commands is that debug forces the interpreter to stop
at breakpoints whereas print ignores breakpoints.

debug new MergeSort().Sort([3.1415, -56, 34-12, 0])

will cause the interpreter to stop at the breakpoint when it enters the function
Sort. At the same time, the source file containing the specification of the function
Sort is displayed in the Source Window and the current point of evaluation (at the
moment this is the location of the breakpoint, i.e. the beginning of the function
Sort) is indicated by the cursor. In addition, the Trace pane, which is situated
at the bottom left of the Interpreter Window, shows the function call stack.

You can now inspect the values of the parameters of the Sort function, either
by printing them using print (e.g. by typing print 1 in the Dialog pane) or by

23

CSK VDM++ Toolbox User Manual

clicking the left mouse button on the ‘...’ adjacent to the function name in the
Trace pane at the bottom left of the Interpreter Window. Clicking the left mouse
button on the parameters which are revealed will replace them with the “...’
again.

You can also set breakpoints by selecting the desired position directly in the
appropriate source file. In addition, breakpoints need not be at the start of a
function/operation but can be at any position within its body.

If the source file is not an RTF file you can set breakpoints by double-clicking the
left or middle mouse button on the desired position in the file in the Source Win-
dow. If you are using an RTF source file you must position the cursor at the appro-
priate position in the file in Microsoft Word, then press Control-Alt-spacebar
to set a breakpoint.

You can set breakpoints at any time during debugging, so now use the source
file to set a new breakpoint inside the function Merge in the class MergeSort as
described above.

Return to the interpreter and press the . (Continue) button on the (Interpreter)
toolbar. This causes the execution to carry on to the next breakpoint. In fact
because of the recursive call of Sort the interpreter will stop at the same break-
point again, so press the Continue button repeatedly until the execution stops
inside the Merge function.

As the execution proceeds, the various function/operation calls are logged in the
Trace pane, and you can use this function call stack to navigate through the steps
of the execution so far. Press the (Up) button a couple of times to see how
the position in the function trace context can be changed. The . (Down) button
can be used to move back down the trace again.

You can also step through the execution expression by expression by pressing the
= (Single Step) button. Press this a few times and see how the cursor in the
Source Window moves to mark the changes in the current point of evaluation.
You now have access not only to the parameters of the function but also to all
the variables (including local variables) that are in scope at the current point
of evaluation, and you can inspect their values using, for example, the print

24

VDM++ Toolbox User Manual CSK

command.

@Interpreter Window jﬂﬂ

Initializine specification ..

done

»» break MergeSort” MergeSorter

Breakpoint number 1 zet for MergeSorter in clazs MergeSort

»» debug new MergeSort Sortt[31415-56.34-12.00

In C:/Program Files/The VDM++ Toolbox v6.8.7 ‘examples/zart/MergeSartrtf, | 15, ¢ 3

i

> |

Trace Break Points

Function | Walue Enable Dizable | Delete |
MereeSort MergeSorter [.] Enabled Mo, | Line |
MereeSort Sort L] Mergesort Mergesorter 1 -
debug new MergeSort.Sorti[31415-56.34-12000 [.]
Thread Start [.]

« 5

Figure 13: Debugging a Specification

You can delete breakpoints, also at any time during the debugging. Try this
by typing delete 1 (i.e. delete breakpoint number 1) in the Dialog pane of the
Interpreter Window. Selecting the breakpoint in the BreakPoints pane of the In-
terpreter Window and pressing the Delete button at the top of that pane has the
same effect.

The other two buttons at the top of the BreakPoints pane are for enabling and dis-
abling breakpoints. Set the breakpoint in the function MergeSort ‘MergeSorter
again, then select it in the BreakPoints pane and press the Disable button. Note
how the symbol | v|is replaced by the symbol [| to indicate that the breakpoint
is disabled. Pressing the Enable button will re-enable the breakpoint and the
symbol will change back to |v|to confirm this.

25

CSK VDM++ Toolbox User Manual

3.8.3 Dynamic type checking

Although the type checker reported no errors in our specification, there may still
be type errors because in general it is not possible to find all type errors by a
simple static analysis of type information (i.e. an analysis based only on the types
declared in the signatures of functions and operations). Thus, for example, if a
function is declared as taking an integer (of type int) as its argument but is
applied to an expression which evaluates to a real number (of type real) this will
not raise a static type error because int is a subtype of real so the application
might be correct provided the function is called at run-time with parameters
which are actually integer reals.

In order to help discover this kind of type error at the specification level, the
interpreter can be configured to perform dynamic type checking during evaluation.
This option is enabled through the Interpreter panel of the Project Options window,
which is displayed by pressing the 1 (Project Options) button on the (Project
Operations) toolbar. This is shown in Figure 14.

| Project Options

Interpreter | Tupe checker | Pretty printer | G ++ Code generator | Java code generator | Java to WDM++]

[Dwnamic type check

I Dynamic checks of invariants

[Check of pre-conditions

[Check of post-conditions

Thitialize random eenerator with: |D il

I Enable priority-based scheduling {1 nan random

L Maximum instructions per time slice: (1000 =
v Pretty printing of values 2 | :I

Frimary Scheduling Algarithm |pure_cooperative ﬂ

v Save Options Cancel | Apply | 819 |

Figure 14: Setting Interpreter Options

Enabling dynamic type checking causes the interpreter to check actual types
during an evaluation.

26

VDM++ Toolbox User Manual CSK

To see an example of this, enable dynamic type checking by selecting it in the
Interpreter panel of the Project Options window and pressing the OK button to
accept the new options. Then evaluate the expression

debug new MergeSort().Sort([3.1415, -56, 34-12, 0])

again in the Dialog pane. This time the interpreter reports a dynamic type
error. (If you have not deleted or disabled all breakpoints you will need to step
through the specification to see this.) This is because according to its signature
the function MergeSort ‘Merge expects sequences of integers as its parameters
whereas the actual parameters contain the value 3.1415 which is not an integer
but a real number. This dynamic type error thus reveals a possible error in the
specification — the top-level function MergeSort in the MergeSorter class can
accept sequences of real numbers as its parameters but it calls the function Merge
in the same class which is only defined for lists of integers.

In a similar way, the interpreter can be configured to dynamically check that
invariants on types and preconditions and postconditions of functions and oper-
ations are respected (i.e. evaluate to true) during evaluation. These options are
also enabled through the Interpreter panel of the Project Options window shown
in Figure 14.

As an example, return to the Interpreter panel of the Project Options window and
enable the option Check of pre-conditions. Now evaluate the previous expression
again but this time omitting the number 3. 1415 from the list. Now the interpreter
reports a precondition violation as shown in Figure 15. This is because the
precondition of the function MergeSort ‘Merge requires that all the input values
should be non-negative.

3.8.4 Checking Integrity Properties

Dynamic checking of types, invariants, preconditions and postconditions as de-
scribed above is basically one form of testing — it checks for run-time errors for
some specific input values. The integrity examiner offers a more general way of
investigating possible run-time errors, though it is perhaps less intuitive for peo-

27

CSK VDM++ Toolbox User Manual

@Interpreter Windou jﬂﬁ
Thitializing zpecification .. -
dore o
»» debug new MereeSortQ Sort([31415-6634-1200
12
RFun-Time Error 202 Incompatible type in variables in function or operation application
actual value: [31415-56,22.0]
expected type: (seql of int |0
»» debug new MereeSort(.Sort!]
-56,34-12001 b
In G/ Program Files/The YDM++ Toolbox w68 7 examples/sort/MergeSortrtf, | 15, c. 3 ﬂ
>
> |
Trace BreakPaoints
Function |\.-’a|ue Enable Dizahle | Delete |
Meree5ort” MergeSorter [.] Enabled | Mo, | L= |
MereeSart Sort L.] MergeSort MergeSorter 1 -
debue new MergeSort(Sort{[-56,34-120]) [.]
MergeSort Sort [.]
debue new MergeSart0.Sort([3.1415,-56,34-1200 [.]
Thread Start [.]
|« | i

Figure 15: Dynamic Type Checking Error

ple who are more familiar with programming than with mathematics.

The integrity examiner analyses the specification looking for places where run-
time errors could potentially occur and generates a series of integrity properties
which represent conditions under which no run-time errors should occur. These
integrity properties are more general than dynamic checking because they are
presented as VDM++ predicates that involve quantification over all possible val-
ues of the appropriate variables’, which means that if it can be demonstrated
that an integrity property is true there will not be run-time errors associated
with that integrity check whatever the values of the variables involved (dynamic
checking of course only checks that there are no run-time errors for the particular
values of the variables chosen). Of course if an integrity property can instead be
shown to be false this would point to there being a potential problem with the
corresponding part of the specification.

"In some cases the full context is not shown explicitly and the scope of some variables has
to be determined by inspection of the specification.

28

VDM++ Toolbox User Manual CSK

To see how the integrity examiner works in practice, select the ExplSort class
then invoke the integrity examiner for this class by pressing the # (Generate
Integrity Properties) button on the (Actions) toolbar. The Integrity Properties Win-
dow then opens and displays the integrity properties generated. This is shown in
Figure 16.

Shid Interity properties jﬂﬂ

Checked |Module |Member Location |Inde>< |Type |

R o] ExplSort IzOrdered function 1 zequence application
Mo ExplSart Permutationz function 1 zequence application
Mo Explsort ReztSeq function 1 zequence application
R[] ExplSort Sort operation 1 non—emptiness of let be such bindine

{

Checked lMDduIe] Member] Location]Type

fvailable | | | Selected
Mo i

ez

forall |- zeq of int, i@ nat &
farall j in set (nds O ¥ [P &
jin get inds (00

Figure 16: The Integrity Properties Window

The top pane of the Integrity Properties Window shows a list of the integrity
properties together with information about their status (the Checked column),
their position in the specification (the Module, Member and Location columns)
and their type (the Type column). The numbers in the Index column simply
serve to distinguish different integrity properties which have the same position.
As can be seen from this example, even a small specification can generate many
integrity properties — in fact thirty different types of integrity properties are
checked in all — so in a large specification it is useful to be able to filter these.
The middle two panes of the Integrity Properties Window offer various filtering
methods (see Section 4.6 for details). Finally, if a particular integrity property
is selected in the top pane of the window the corresponding VDM++ predicate
is displayed in the bottom pane of the window, and at the same time the cursor
in the Source Window indicates the exact point in the specification to which the
selected integrity property relates. Each integrity property can thus be inspected
in order to try to determine whether or not it is true.

29

CSK VDM++ Toolbox User Manual

Select the first (i.e. index number 1) integrity property relating to the function
isOrdered. This has the form:

(forall 1 : seq of int &
(forall i,j in set inds (1) &
i> o=

i in set inds (1)))

and, as can be seen from the position of the cursor in the Source Window, corre-
sponds to the condition that the sequence application 1(i) in the expression

forall i,j in set inds 1 & i > j => 1(i) >= 1(j)

must be well-defined, i.e. the value i must always belong to the indices of the
sequence 1.

In this particular case it is in fact easy to see that the integrity property is true
— the second quantification in the predicate directly tells us that both i and j
belong to the indices of 1, and whether or not i is bigger than j (the third line
of the predicate) is irrelevant. The property can therefore be marked as having
been checked, which is done by pressing the J (Toggle Status) button to the left
of the top pane of the Integrity Properties Window.

Now look at the other three integrity properties related to sequence application.
It is also easy to see that these are true: the one relating to isOrdered is exactly
analogous to the one discussed above except that it relates to the sequence appli-
cation 1(j) rather than to 1(i), so the same argument applies; the one relating
to Permutations is immediately true because the second quantification gives ex-
actly the result required (i in set inds (1)); and in the case of RestSeq the
third quantification tells us that j belongs to the indices of 1 with i removed
which means that j must belong to the indices of 1. These three integrity prop-
erties can therefore be selected and marked as checked in the same way.

In cases such as these, the integrity properties could in fact be verified automat-
ically by a mechanical checker. However, this is not always possible and in the

30

VDM++ Toolbox User Manual CSK

more complicated cases the reasoning process needs to be steered by a human
even though the actual reasoning can be mechanised.

One such more complicated property is the one relating to the Sort operation,
which basically states that there must be at least one value r which satisfies the
predicate in the implicit let statement otherwise the specification does not make
sense”. It is not so easy to see that this property is true because it involves three
user-defined functions — Permutations, isOrdered, and RestSeq which is used
in the definition of Permutations — and in addition Permutations is defined
recursively. However, it is easy to see that the integrity property is true provided
the functions Permutations and isOrdered are defined correctly — clearly it
is possible to sort any given sequence of numbers, so we just need to be sure
that the set of sequences returned by the function Permutations comprises all
possible permutations of the input sequence and that the function isOrdered
defines ordered sequences of numbers correctly.

Look at the definition of the function isOrdered in the Source Window. It is
relatively easy to see that this is correct — its defining predicate states directly
that, given any two positions in the sequence, the number at the later position
cannot be smaller than the number at the earlier position, and this clearly means
that the elements must be in (ascending) order.

Now look at the function Permutations. The first branch of the cases expression
is easy to deal with — there is only one possible permutation of the empty sequence
and sequences with only one element, namely the sequence itself. For the others
branch, we first need to look at the function RestSeq. It is fairly easy to see that
this simply removes the element at a given position from a given sequence. In
the others branch of the function Permutations, therefore, we are constructing
permutations by choosing an arbitrary element from the original sequence as the
first element of the permutation and concatenating all possible permutations of
the remaining elements of the original sequence onto this. This therefore gives us
all possible permutations, so the integrity property is satisfied.

Looking now at the remaining two integrity properties, both relating to the func-
tion RestSeq, it is easy to see that the one of type Postcondition, which requires
that the explicit result of the function satisfies the postcondition if the precondi-

8There is an implicit quantification here over the variable 1 which, according to the specifi-
cation, is an arbitrary sequence of integers.

31

CSK VDM++ Toolbox User Manual

tion is satisfied, is valid — the function removes one element from the sequence so
the length of the sequence is reduced by one and the elements of the sequence are
either unchanged (in the case when the element removed occurs more than once
in the sequence) or smaller. However, the property of type Invariant states that
every natural number is different from zero, and this is of course false.

Looking at the specification of RestSeq in the Source Window, you can see that
the property is generated by the precondition of the function:

i in set inds 1

In fact it arises because the indices of a sequence is a set of positive natural num-
bers (i.e. is of type set of nat1) so that if 1 is not of type nat1 the precondition
will automatically be false. This indicates that the nat in the signature of the
function should be changed to nat1. If this is done, the new integrity property
will be

(forall 1 : seq of int, i : natl &
i<>0)

and this is of course true.

The integrity properties for the other classes can be dealt with in a similar way.

3.8.5 Multi-threaded models

VDM++ supports multiple threads within a model, and this feature of the lan-
guage is also supported by the interpreter which allows you to insert breakpoints
within particular threads and to step through threads. It also allows selection
of a particular thread to step through. The scheduling algorithm used by the
interpreter may be selected from a variety built into the Toolbox.

32

VDM++ Toolbox User Manual CSK

3.9 Introducing Systematic Testing

As part of its support for validation, the Toolbox provides a facility for test-
ing VDM++ specifications, including test coverage measurement. Test coverage
measurement helps you to see how well a given test suite covers the specification.
This is done by collecting information in a special test coverage file about which
statements and expressions are evaluated during the execution of the test suite.

There are three steps involved in producing a test coverage report:

1. Prepare a test coverage file. This file contains information about the speci-
fication’s structure.

2. Test the specification by making the interpreter execute calls to the con-
structs in the specification. This process updates the test coverage infor-
mation in the test coverage file.

3. Pretty print the test coverage report: the pretty printer takes the specifi-
cation and test coverage files and produces a nicely typeset version of the
specification with test coverage information included. We will return to this
part below in Section 3.10.

This process is illustrated in Figure 17. First the tcov reset command is issued
to reset the test coverage file so that it has no information about any prior testing
carried out for the given specification. Then the print command is used to evaluate
different constructs from the specification. The command tcov write then saves
all the test coverage information generated since the last tcov reset command
to the file vdm.tc. Finally, the command rtinfo displays a table summarising
the information in this test coverage file. This consists of a list of the various
functions and operations in the specification together, each annotated with the
number of times that function/operation has been called during testing and the
percentage of its specification which has been tested at least once.

Note that the command-line version of the VDM++ Toolbox (vppde) also has
facilities to support the collection of test coverage information.

33

CSK VDM++ Toolbox User Manual

@Interpreter Window Jmﬂ

Ihitializing specification .
dotie
¥ toow reset
> p new DoSortd Sortd-12 5451
[-125451]
2 toow write vdmitc
= rtinfo vdmitc
100% 1 DaoSort’Sort
100% 4 DoSort’ DoSorting

62% 3 DoSort hsertSorted

0% 0 Sorter Sort

0% 0 ExplSort Sort

0% 0 ExplSort’ RestSeq

0% 0 ExplSort eOrdered

0% 0 ExplSort’ Permutations

0% 0 ImplSort Sort

0% 0 ImplSort TeOrdered

0% 0 Implsort ImplSorter

0% 0 ImplSort TsPermutation

0% 0 MergeSort Sort

0% 0 MergeSart Merge

0% 0 MergeSort’ MergeSarter

0% 0 SortMachine SetSort

0% 0 SortMachine GoSarting

0% 0 SortMaching SetfAndSort —
Total Coverage: 123% j
i

LS

Trace Break.Paointz

Figure 17: Collecting Test Coverage Information

Naturally realistic testing would involve many more tests before the information
is written to the test coverage file vdm.tc using the tcov write command. Indeed,
for real projects you would generally set up an entire test environment where you
make a small script file which automates this whole process. This can also com-
pare the actual results of individual tests against expected results (it is necessary
to use the -0 option for this). Appendix E contains an example of such a script
file for both Windows and Unix.

3.10 Pretty Printing

The pretty printer transforms a specification from its input format to a pretty
printed version of the specification. Typically this pretty printed version is used
for documentation purposes.

In order to see pretty printing at work, first go to the Pretty Printer panel of the

34

VDM++ Toolbox User Manual CSK

Project Options window and enable one of the options to produce indexes (it does
not matter which of the two options you choose when the RTF format is used)
and also the test coveraging colouring option. You also need to copy the vdm.tc
file you have just produced to the working directory of the Toolbox, which you
can determine using the pwd command which you can run in the Dialog pane of
the interpreter’.

Select all six . rtf files in the Project View in the Manager, then press the pp (Pretty
Print) button on the (Actions) toolbar. In the Log Window you will see that this
produces a .rtf.rtf file for each of the selected input files. Start Microsoft
Word on the dosort.rtf.rtf file. Notice how all the VDM++ keywords have
been converted to boldface type. The other parts of your specification have been
typeset using the Word styles VDM_COV and VDM_NCOV which relate to the covered
and non-covered parts respectively. The definition of these styles can be changed
and unless you use a colour printer for your documents it is necessary to modify
the definition of the VDM_NCOV style (e.g. by using grey for the non-covered parts).

Go to the bottom of the dosort.rtf.rtf file. Note how the text written in
the VDM_TC_TABLE style has been replaced with a table showing the test cov-
erage statistics. The three columns give respectively the name of the func-
tion/operation, the number of calls of that construct in the test coverage file,
and the percentage coverage for it. The table looks like'’:

name #calls | coverage
DoSort 4 100%
ExplSort 0 0%
InsertSorted 3 62%
IsOrdered 0 0%
IsPermutation 0 0%
Merge 0 0%
MergeSort 0 0%
Permutations 0 0%
RestSeq 0 0%
total 15%

9Tf the project you are working on has been saved then the directory in which it was saved
will be the working directory.

1ONote that this is quite similar to part of the information we saw directly inside the Response
pane of the interpreter in the previous section.

35

CSK VDM++ Toolbox User Manual

Finally, go to the end of the file and select the Index and Tables ... item from the
Insert pull down menu inside Microsoft Word. Decide the layout you wish to use
for the index overview of the definitions in the dosort.rtf.rtf file. Press Ok
and see how an index of VDM definitions can be created automatically.

Using the alternative pretty printing mechanisms with KETEX is quite different
but this is explained in the reference section of this manual (see Section 4.10).

3.11 Generating Code

If you have a license for the VDM++ to C++ Code Generator you can auto-
matically have your specification translated into C++ code by pressing the
(Generate C++) button. See | | for further information about the C4++
Code Generator.

Similarly, if you have a license for the VDM++ to Java Code Generator you can
automatically have your specification translated into Java code by pressing the
% (Generate Java) button. See | | for further information about the Java
Code Generator.

3.12 The VDMTools API

All of the functionality of VDMTools is exposed to external programs via a
Corba-compliant application programmers interface (APT). Details of how to use
this API may be found in |].

3.13 Exiting VDMTools

When you wish to exit the Toolbox you should select the Exit item on the Project
menu in the main window. If you exit without saving the project, a dialog window
will appear asking if you want to save your project.

36

VDM++ Toolbox User Manual CSK

This completes the guided tour of the Toolbox. We hope that you now have a
better understanding of the kind of fuctionality it can provide. Now you should
be able to start using the Toolbox for your own VDM++ models. The remaining
parts of this manual are a detailed reference guide providing more details about
particular features.

37

CSK VDM++ Toolbox User Manual

4 The VDMTools Reference Manual

This section is structured into a number of subsections covering each of the tools
in the Toolbox. For each tool, its use through each of the three interfaces (the

graphical user interface, the Emacs interface and the command line interface) is
described.

4.1 The Overall Graphical User Interface

The graphical user interface to the Toolbox is started by selecting it from the
programs entry in the Windows setup under Windows or with the command
vppgde on Unix platforms. This opens the main graphical user interface window,
which is shown in Figure 18.

% The WYDM++ Toolbox (=)
Project File Windows Actions Interpreter Help
DG A0 Twelade MO 5| &y my 5yes @ e
T F T =2 @
% Manager jﬂﬁ
Froject lGIass]
Files [
Project -
b [lava Fileg]
- [VDM Files]

Figure 18: Graphical User Interface Startup

The top of this window consists of a menu line with six pull-down menus, below
which are six toolbars '' comprising buttons which offer the same actions as the
menus 2. The bottom part of the window is used to display various subwindows
which either present information about the status of the current project or offer
interfaces to tools within the Toolbox. We describe each of the menus/toolbars
and the available subwindows, grouped according to functionality, in the following
subsections.

11 When the Toolbox is started, only three toolbars are displayed open, the other three being
displayed in iconised form above them.
12Except that the function for exiting from the toolbox is only available on the Project menu.

38

VDM++ Toolbox User Manual CSK

4.1.1 Project handling

A project consists of a collection of files that together form a VDM++ specifi-
cation. Projects can be saved to and read from disk, which means that you do
not need to configure the Toolbox with the individual files every time you wish
to use it: you simply open the relevant project file. Projects are only available in
the graphical user interface.

The Manager, which is opened/closed by pressing the & button on the Window
Operations toolbar or by selecting the appropriate item from the Windows menu,
displays the current status of the current project and is also the place where you
select which subset of project files you want the various Toolbox operations to be
applied to. It consists of two parts: the Project View and the Class View.

The Project View displays a tree representation of the contents of the project
comprising the files in the project and (only after successfully syntax checking
the file) the classes declared in each file. It is shown in Figure 19.

The Class View comprises both the VDM View and the Java View.

When VDM++ files have been successfully syntax checked the names of the
classes defined in those files are listed in the VDM View. This view also displays
the status of each of the individual classes in the project: the symbols S, T,
C, J,and P in the appropriate columns indicate respectively that the class has
been successfully syntax checked, type checked, translated to C++, translated
to Java, and pretty printed; similarly, the corresponding symbols with a (red)
line through them (&, ¥, €, 4, and J¥) indicate that the particular action
failed. Note that a blank in a column means that no attempt has yet been made
to perform that particular action. Note also that if one of the files in the project
is modified on the file system the symbol & is displayed in the Syntax column
to indicate that there is an inconsistency between the version currently in the
Toolbox and the version on the file system and that the file should be syntax
checked again before proceeding.

The Java View is analogous to the VDM View except that it shows the names and
the status of classes defined in Java files (again these must have been successfully
syntax checked in order for anything more than the file name to appear). The

39

CSK VDM++ Toolbox User Manual

fanager jﬂﬂ

Froject lGIass]

Files

[Project — Sartpr) |

4. [WDM Files]
= Default
— - DoSaort rtf

- ExplSort.rtf
b ExplSort
E -ImplSaort.rif
i ieImplSort
- MergeSort rti
b MergeSort
- Sorter rf
L Sorter
-SortMaching rtf
L.-ZortMachine

Figure 19: The Project View

symbols S, 8, T and JJ are again shown in the appropriate column to indicate
whether or not the class has been successfully syntax checked and type checked,
and the symbols & and & in the third column denote respectively that the class
has been successfully or unsuccessfully translated from Java to VDM++-. Again
a blank in a column means that no attempt has yet been made to perform that
particular action, and if one of the files in the project is modified on the file
system the symbol & is displayed in the syntax check column to indicate that
there is an inconsistency between the version currently in the Toolbox and the
version on the file system and that the file should be syntax checked again before
proceeding.

Various operations for manipulating projects, including opening and saving projects,
adding files to and removing files from projects, and creating new projects, are
available from the Project menu and the corresponding Project Operations toolbar,
which are shown in Figure 20.

The same menu/toolbar also offer facilities for setting options relating to the

40

VDM++ Toolbox User Manual CSK

[:’.‘5 The VDM++ Toolbox Sort.prj =03
’W File Windows Actiong Interpreter Help
D Mew Project Ctrl+M F Y M
a Load Project .. Gtrl+L %Mm.“ : ; @ Q ﬂi
E Save Project Ctrl+S
IE-"? Save Project fis Ctrl+i
a Add File to Project .. Ctrl+F
H Bemove File from Project Cirl+R
j Project Cptions .. Ctrl+(
W‘l Tool Options .. Ctrl+T
Fecent Projects 3
Exit Citrl+x

Figure 20: The Project Menu and Project Operations Toolbar

Toolbox environment, for setting options for the various tools within the Toolbox,
and for exiting the Toolbox (only available on the menu). In more detail, the
available actions are as follows:

New Project (0): Select this item if you are currently working on a VDM++
project and you would like to start working on a new one.

Load Project ... (&): Select this item if you wish to open an already existing
project. A file browser will appear and you can select the desired project
file. When it has been loaded the Toolbox will automatically syntax check
all the files in the project.

Save Project (): Use this item if you have changed the configuration of your
current project and want to save the new configuration.

Save Project As ... (%): Use this item to save your current configuration under
a different name. A file browser will appear and you can place the new
project file where you like and give it the name you prefer.

41

CSK VDM++ Toolbox User Manual

Add File to Project ... (&): Use this to add files to the project the Toolbox is
currently working with. A window like the one shown in Figure 3 will
appear allowing you to select the appropriate files.

Remove File from Project (121): Use this to remove files from the current project.
A dialog box will appear asking you to confirm the removal.

Project Options ... (1): . This opens the Project Options window, which allows
various options to be set for the following elements of the Toolbox:

e interpreter (described in Section 4.5);

type checker (described in Section 4.4);

pretty printer (described in Section 4.7);

C++ code generator (described in Section 4.8)

Java code generator (described in Section 4.9);

e Java to VDM++ translator (described in [SYS06a]).

Tool Options ... (wi): . This opens the Tool Options window, which allows var-
ious environment variables and interface options to be set for the Toolbox
as a whole. These options are described in Appendix C.

Exit: Choose this item to leave the Toolbox. If you have not already saved your
project the Toolbox will ask whether you wish to do so. Note that this
action is not available on the toolbar.

4.1.2 Operations on specifications

The Toolbox offers a range of functions which can be applied to a specification:
syntax checking; type checking; generating integrity properties; generating C++
or Java code; translation from Java to VDM++; and pretty printing. These are
invoked through the Actions menu or the corresponding Actions toolbar, which
are illustrated in Figure 21.

Each action is applied to every file/class which is currently selected in the Man-
ager, though the actions are to a certain extent interdependent so that some of

42

VDM++ Toolbox User Manual CSK

:: e *+ loolDox

Project File Windows |ﬂcti0ns Interpreter Help

Y
| ﬁ Syntax Check F5

JJ“ m Type Check Fi

P‘ﬂ Inteerity Check Ctrl+FQ
% Generate G+ F7
% Generate Java F8
m Pretty Print Ctr+F7
& davatoudn CtrieFB

Figure 21: The Actions Menu and Toolbar

them can only be carried out when the selected classes have a status which en-
ables the desired functionality to be applied. For example, the type checker and
the pretty printer features are enabled only when the class has been accepted by
the syntax checker.

The various actions are described in more detail in later sections as follows:

Syntax Check (#): see Section 4.3

Type Check ("#): see Section 4.4

Generate Integrity Properties (5): see Section 4.6
Generate C++ (#): see Section 4.8

Generate Java (&'): see Section 4.9

Pretty Print (pp): see Section 4.7

Java to VDM (): see [SYS064]

4.1.3 The log window, error list and source window

The Log Window displays messages from the Toolbox, including messages report-
ing on the success or failure of applying the actions described above. It opens

43

CSK VDM++ Toolbox User Manual

automatically (if it is not already open) when a new message is displayed. Al-
ternatively, it can be opened/closed by hand by pressing the & button on the
Window Operations toolbar or by selecting the corresponding item from the Win-
dows menu.

The Error List reports errors discovered by the Toolbox while performing actions.
It has two panes as shown in Figure 22. The top pane shows a list of the places
(file name, line number, column number) at which errors and warnings arose,
while the bottom displays a more detailed explanation of the currently selected
error. The format of the various errors which can arise during syntax checking and
type checking is described in Sections 4.3.2 and 4.4.2 respectively. Initially, the
first error in the list is selected automatically. You can get to the next/previous
reported error by pressing respectively the | > | or | <| button which appears to the
left of the error list. Alternatively you can move to an arbitrary error by selecting
the error notifier directly in the top pane of the Error List.

§ Error List: 4 Errars, O Warnines - |0 x
Q 1ol x|

j 1% C:/Program Files/The YWDM++ Toolbox w687 examples/zort/DoSortrtf Line 21, Calumn 3
@) Ci/Program Files/The YDM++ Toolbox w687 examples/zort/DoSortrtf Line 27, Column &

3% CGi/Program Files/The WDM++ Toolbox w687 /examples/zort/DoSortrtf Line 28, Column &
j 4k G/Program Files/The WDM++ Toolbox w687 examples/zort/DoSortrtf Line 31, Column 1

G/ Program Files/The YVDM++ Toolbox 6287 fexamples/zortDoSartetf, | 21 o 3

Expected: <<binary op>>, ", " 7, “operations’, "instance’, “sync', “thread, "end’, “functions’ " #, ‘post’, ‘pre, “types' or “values' before
‘TneertSorted © int *'

Azzumed: ' before “TheertSorted : int #'

Figure 22: The Error List

The Error List opens automatically (if it is not already open) when a new error
is discovered. Alternatively, it can be opened/closed by hand by pressing the @
button on the Window Operations toolbar or by selecting the corresponding item
from the Windows menu.

The Source Window also opens automatically (if it is not already open) when a
new error is discovered. It displays the part of the source specification in which
the currently selected error was discovered, the actual position of the error being
marked by the window’s cursor. The Source Window corresponding to the Error
List illustrated in Figure 22 is shown in Figure 23.

44

VDM++ Toolbox User Manual CSK

A Source Window jﬂﬂ

MergesSort—initrtf

14: —-LINE 11 1 -]
15 Mergesorter: =eq of real —* =zeq of real

16: MergeSorteril) ==

1% caszes |

18: [-+,

19 [e] =1

200 others => let 1712 in et {I} be =t abs den 1 - len 20 < 2
21 If

e let | | = MereeSarter 1),

23 | r = Mergesorter 120 in

24: Mergedl | | r)

20 end

216

27

28 —-LIMNE 141

28 Merge: =eq of int * zeq of bool —* =eq of int

a0 Mergef1,12) ==

a1 cases mk_41.12k

a2 tk. (O 0w 000 =2 1,

Ja: athers ->ifhd N <= hd |2 then
24: thd 117 Mereeltail 1, 123
35 elze

36 hd 12] ™ Mergetll, tl 123
37 end

a8 pre forall i in set inds N & N4 >=0 and

20: forall i ih =et inds 12 & 126G) >= 0

40: —
41: end MergesSort -

Figure 23: The Source Window

Many source files can be present in the Source Window at the same time but only
the contents of one of them is shown. The display can be changed to show a
different source file by selecting the tab corresponding to that file at the top of
the Source Window. New source files can be added to the display by hand by
double-clicking the left mouse button on the file name (or on one of the classes
contained in the file) in the Manager. Source files can be removed from the display

45

CSK VDM++ Toolbox User Manual

by pressing either the i (Close file) button or the (4 (Close all files) button on
the File Operations toolbar: the former (i) closes only the file which is currently
visible, while the latter (i4) closes all files.

The Source Window can be opened/closed by hand by pressing the A1 button on
the Window Operations toolbar or by selecting the corresponding item from the
Windows menu.

4.1.4 Editing files

In order to allow you to fix errors reported by the Toolbox without leaving the
Toolbox you can invoke your preferred editor (see Appendix C) directly on files
in the current project: simply select the appropriate file(s) in the Manager and
press the External Editor button (##) on the (Project Operations) toolbar. Note
that if more than one file is selected when you invoke the External Editor in this
way you actually get one External Editor for each of the selected files.

The Toolbox automatically registers the changes that you make to the file(s)
when you save them in the editor. However, the edited versions of the files are
not re-processed automatically so whenever you edit a source file you must run
the syntax checker on it again before the other tools in the Toolbox will be aware
of the changes you have made.

4.1.5 Using the interpreter

The interpreter allows you to evaluate and debug expressions and statements.
The Interpreter Window, which provides an interface to the interpreter, is opened
by pressing the @ (Interpreter) button on the (Window Operations) toolbar, and
the Interpreter menu and toolbar offer a range of operations which can be applied
in the interpreter. The interpreter is described in detail in Section 4.5.

46

VDM++ Toolbox User Manual CSK

4.1.6 On-line help

On-line help for the Toolbox and the interface in general can be accessed through
the Help toolbar or the Help menu. Currently only the following very limited help
is available:

About (2): Displays the version number of the Toolbox.

aboutgt (@): Displays information about and a reference to Qt, the multiplat-
form C++ GUI toolkit which the Toolbox interface uses.

4.2 The Overall Command Line Interface

The command line interface is started from a command prompt by typing'®:

vppde specfile

When vppde is called from the command line without any options and with only
one file argument (which must contain a VDM++ specification), the tool will
enter the command mode and begin by syntax checking the argument file.

The user manipulates, executes and debugs a specification using a number of
commands typed at the prompt produced by the Toolbox. The commands given
below are supported by vppde. The abbreviations in parentheses are short forms
for the commands.

A number of the commands cannot be called before the specification has been
initialised (see the init command in Section 4.5). These commands are marked
with a star (*).

A number of commands can be used to display the names of different constructs.
These are, classes, functions, operations, instvars, types and values. Help

13Either the executable vppde must be in the search path or the full path to it must be given
as well.

47

CSK VDM++ Toolbox User Manual

for the Toolbox commands can be obtained using either info or help. Sequences
of frequently used commands can be collected in script files and activated using
the script command. General operating system calls can be made using the
system command. The dir command can be used to add more directories to
the search path used by the Toolbox. pwd gives the current working directory.
Finally the quit and cquit commands can be used to leave the command line
version of the Toolbox. These commands are described as follows:

*classes
Displays the names of the defined classes and their status.

*functions class
Displays the names of the functions defined in class class. Includes pre-
condition, postcondition and invariant functions which are automatically
created when the specification includes such constructs.

*operations class
Displays the names of the operations defined in the given class.

*instvars class
Displays the names of the instance variables of the given class.

*types class
Displays the names of the types defined in the given class.

*values class
Displays the names of the values defined in the given class.

help [command]
On-line help explaining all available commands in the same style as is used
in this section. Without an argument it lists all the available commands.
Otherwise the command command is described.

info [command]
Same as help.

48

VDM++ Toolbox User Manual CSK

script file
Reads and executes the script in file. A script is a sequence of VDM++
commands. These can be any of the commands described in this section
and in other sections about the command line interface. When the script
has been executed, the control is returned to the Toolbox.

system (sys) command
Executes a shell command.

dir [path ...]
Adds a directory to the list of active directories. These are the directories
that will be searched automatically when trying to locate a specification

file.

When calling this command with no arguments the list of active directories
is printed to the screen. The directories will be searched in the displayed
order.

pwd
Gives the current working directory i.e. the directory in which the current
project file is placed (if a project file exists). In all cases this is the directory
in which the vdm. tc file must be placed, and where files generated by the
code generator and the Rose-VDM++ Link are written.

cquit
Quits the debugger without asking for confirmation. This is useful when
using the debugger in a batch job.

quit (q)
Quits the Toolbox. Asks for confirmation.

4.2.1 Initialisation file

It is possible to put command line interface commands into an “initialisation file”.
These commands will be executed automatically when the Toolbox is started from
the command line.

49

CSK VDM++ Toolbox User Manual

The initialisation file must be called .vppde and must be located either in the
directory from which the Toolbox is started or in the same directory as the
specification file which is given as argument.

20

VDM++ Toolbox User Manual CSK

4.3 The Syntax Checker

The syntax checker checks whether your specification conforms to the syntax given
in the language definition. The other tools in the system rely on the specification
being syntax-correct, so your specification must have been syntax checked with
no syntax errors before the other tools in the Toolbox can be applied. Note that
when you change a source file you must syntax check it again before the other
tools will be aware of the changes you have made.

The syntax checker can be accessed from either the graphical, command line or
Emacs interface.

The syntax checker aims to report as many of the syntax errors in a specification
as possible at the same time. Consequently, it uses an advanced recovery mech-
anism which allows it to detect and recover from a syntax error before passing
on to report subsequent syntax errors in the specification. It does this either by
ignoring some symbols in the specification or by assuming additional symbols.
The error messages it gives include information about what was expected at an
error point in the specification and what was ignored or assumed in order to allow
the checker to carry on. Initially, it is easiest to understand the error messages by
concentrating on what was assumed or ignored because this guess by the syntax
checker is often close to the real error.

4.3.1 The graphical user interface

To start the syntax checker from the graphical user interface, select the files
or classes (more than one, if you wish) you want to check or recheck in the
Project View or the VDM View of the Manager as appropriate'®, then press the
(Syntax Check) button on the (Actions) toolbar to invoke the syntax checker.
The Log Window opens automatically (if it is not already open) and displays
information about the checking process for each selected file or class in turn.
If syntax errors are discovered, the Error List and the Source Window are also
automatically invoked.

14Tf you select classes in the VDM View of the Manager the syntax checker is actually applied
to the set of files which contain the selected classes — the Toolbox only knows which files have
been edited. This of course means that if a particular file contains more than one class definition
and you select only some of those classes then the other classes in the same file are implicitly
included.

o1

CSK VDM++ Toolbox User Manual

4.3.2 Format of syntax errors
When a syntax error in the specification is discovered the syntax checker displays

information about the error in the Error List as follows:

1. It prints the symbols which were expected at the place of the syntax error.

2. It prints how it tried to recover from the syntax error, which could be
by inserting one or more symbols, by ignoring one or more symbols, or
by replacing some input symbols with other symbols at the point of the
syntax error. The specification file is not changed by this operation, i.e. the
change is only performed internally within the syntax checker to enable it
to detect multiple syntax errors.

The symbols are displayed in a mixture of three formats:

e Display of text within single quotes, e.g. ‘functions’.

e Display of a meta-symbol, e.g. <end of file>, the designation of the end
of the file.

e Display of a group of similar tokens as a single token, e.g. <<type>>, the
syntactic unit type whose definition can be found in |]. This is done
to shorten the list of expected symbols.

4.3.3 The command line interface

The syntax of the command to invoke the syntax checker at the command line is:

vppde -p [-w] [-R testcoverage] specfile(s)

52

VDM++ Toolbox User Manual CSK

With the -p option, vppde syntax checks a number of files, each containing one
or more classes. Syntax errors are reported to stderr.

The additional options that can be used with the syntax checker are:

-w This option causes the Toolbox to write the VDM++ parts of RTF files in

ASCII files. The names of these ASCII files will be the RTF file names with
the extra extension .txt, e.g. sort.rtf will yield sort.rtf.txt.

This option is typically used in a test environment to reduce the time used
to parse specification files. If the documentation parts of RTF files are very
large this can slow down the parsing since the entire file must be parsed.
For example, figures tend to make the documentation part of a file very
large.

-R Causes the Toolbox to produce a test coverage file testcoverage which is
used to keep track of how often different constructs have been exercised
during testing of a VDM++ specification. In the current version this test
coverage file must be called vdm.tc for the pretty printer to work. See
Section 4.10 for an example.

4.3.4 The Emacs interface

In the Emacs interface all commands are given at the command prompt. Syntax
checking is made by the read command and traversing the syntax errors is done
using the first, last, next and previous commands. The location of the errors
is shown in the specification window. In more detail, the commands are:

read (r) file(s)
Syntax checks specifications from file(s) The file(s) must contain defini-
tions of classes including operations, functions, values, types, and instance
variables.

The contents of each file is treated as a whole. This means that if a syntax
error occurs then none of the VDM++ constructs in the file are included.

23

CSK

VDM++ Toolbox User Manual

first

last

This is also the case if the file contains more than one class (i.e. none of the
classes are included). If a file is syntax checked successfully and redefines
a class which is already defined in a syntax checked file then a warning is
given.

(f)
This command displays the position of the first recorded error or warning
message from the syntax checker, type checker, code generator or pretty

printer.

This command displays the position of the last recorded error or warning
message from the syntax checker, type checker, code generator or pretty
printer.

next (n)

This command displays the position of the next recorded message in the
source file window. It is used to display error or warning messages from the
syntax checker, type checker, code generator and pretty printer.

previous (pr)

This command displays the position of the previous recorded message. It
is also used to display error or warning messages from the syntax checker,
type checker, code generator and pretty printer.

o4

VDM++ Toolbox User Manual CSK

4.4 The Type Checker

The type checker assesses whether expressions are of the types expected for their
positions in a specification. However, type correctness is not always as clear-
cut as it seems. For example, if a function takes an int as argument but is
applied to an expression of type real, then, since int is a subtype of real, the
application might be correct provided the function is called at run-time with
actual parameters which happen to be integer reals. On the other hand, the
application might also be incorrect since real contains elements that are not
part of int. We say that such an application is possibly well-formed but not
definitely well-formed.

In fact the type checker can perform type checking at either of these two different
levels: possible and definite well-formedness. In short the difference between them
is that specifications which are possibly well-formed can be type correct but are
not guaranteed to be so, whereas specifications that are definitely well-formed are
guaranteed to be type correct. Thus, the function application discussed in the
previous paragraph would pass a possible well-formedness (“pos”) type check but
fail a definite well-formedness (“def”) type check: the “def” check would identify
it as a possible source of a run-time error.

The definite well-formedness check will identify all places where run-time errors
could potentially occur. These include applications of functions which have a
precondition (the precondition must be satisfied before an application of that
function is made) and applications of partial operators which are built directly
into VDM (e.g. the arithmetic division operator which gives a run-time error if
its second argument is zero), as well as possible inconsistencies resulting from the
use of a subtype in a definition, either through an invariant or through the use
of one part of a union type.

In general a “def” type check will yield more error messages than a “pos” type
check. Therefore we recommend that you always run a “pos” check on your
specification first in order to deal with all the points where the specification is
not even possibly type correct, then run the “def” check in order to identify
possible causes of run-time errors. In many cases, you will be able to eliminate
these from consideration, for example because an expression is protected by being
in one limb of an “if ...then ...else ...” expression where the condition prevents
the run-time error condition from arising. In other cases, the “def” check may
identify conditions for which you do want to introduce protection by modifying

95

CSK VDM++ Toolbox User Manual

the specification.

The type checker can be accessed either from the GUI, from the command line
version of the Toolbox, or from the Emacs interface.

4.4.1 The graphical user interface

In order to invoke the type checker from the graphical user interface select the files
or classes (more than one, if you wish) to be checked or rechecked in the Project
View or the VDM View of the Manager as appropriate, then press the " (Type
Check) button on the (Actions) toolbar. The Log Window opens automatically (if
it is not already open) and displays information about the checking process for
each selected file or class in turn. If type errors are discovered, the Error List and
the Source Window are also automatically invoked. Note that since the Toolbox
knows the dependencies between all classes, all the super classes of the selected
classes will also be type checked.

Setting options

The choice between checking for possible or definite type well-formedness is made
in the Type checker panel of the Project Options window, which is displayed by
pressing the { (Project Options) button on the (Project Operations) toolbar. This
is shown in Figure 24. Either “pos” type checking or “def” type checking will
always be enabled. The default is possible well-formedness checking.

Two further options are also offered:

Extended type check: If enabled, a number of additional warnings such as “Result
of ‘conc’ can be an empty sequence” will be included when type checking.
default: disabled.

Warning/error message separation: If enabled, separates error messages and warn-
ings from the type checker when they are displayed in the Error List: error

o6

VDM++ Toolbox User Manual

CcsSK

{ Project Options

2)ed

Interpreter | ’T

Type Check Mode

&+ "pog” type check

¢ "def” type check

| Extended type check

[v ‘Warning/error meszage separation

Pretty printer] G ++ Code generatar] Java code generator] Java to WDM++]

| Save Optionz Cancel | Apply

o |

Figure 24: Setting Type Checker Options

messages are displayed before warnings.
default: enabled.

4.4.2 Format of type errors and warnings

All warnings provided by the type checker are textual descriptions explaining
what the potential problem is. Some errors such as unknown identifiers are also
simply textual. However, the majority of type errors are structured into three
lines, in which the first line gives a textual explanation about what the problem
is, the second line gives the actual type inferred by the type checker (identified by
the keyword act:), and the third line gives the type expected by the type checker
(identified by the keyword exp:). The syntax for these type descriptions is almost
identical to the normal VDM++ type syntax with the following exceptions:

e seq of A is represented as seql of A | [], where [] is the type for an

empty sequence.

e map A to B is represented as map A to B | {[->}, where {|->} is the

type for an empty map.

57

CSK VDM++ Toolbox User Manual

e set of A is represented as set of A | {}, where {} is the type for an
empty set.

e [A] is represented as A | nil.

e # stands for any type. The type checker typically infers this type if it cannot
infer anything better in an error situation.

Examples of type errors can be found in Section 3.7.

Understanding errors from “def” type check

Recall that the “def” check produces an error report wherever it is not possible
to guarantee that an expression will always be of the correct type. In order to
understand some of the warning and error messages generated during a check for
definite well-formedness, it can often be helpful to insert the word ‘DEFINITELY”’
in the error message implicitly. Thus, for example, if the message

Error : Pattern in Let-Be-expression cannot match

is returned in a check for definite well-formedness you should read it as

Error : Pattern in Let-Be-expression cannot DEFINITELY match

i.e. that there could be values for which the pattern may not match. When the
type checker reports an error, it will often display which type it inferred and
which type it expected at a given point. This can be valuable when trying to find
out what is wrong.

4.4.3 The command line interface

vppde -t [-df] specfile(s)

With the -t option vppde type checks the specfile(s). First, the specification
is parsed. Then, if no syntax errors are detected, the specification is type checked

o8

VDM++ Toolbox User Manual CSK

the default is to check for possible well-formedness). lype errors are reported
to stderr.

The additional options which can be used with the type checker are:

-d Causes the type checker to check for definite well-formedness. The differ-
ence between possible and definite well-formedness is described in the lan-
guage reference manual (|]). In short the check for definite well-
formedness returns the type-related proof obligations.

-f Causes the type checker to perform an extended type check. This will give
some extra warning and error messages for both possible and definite well-
formedness checks such as “Result of ‘conc’ can be an empty sequence”.

4.4.4 The Emacs interface

In the Emacs interface all commands are given at the command prompt. Type
checking is performed by the typecheck command and traversing the warnings
and type errors is done using the first, last, next and previous commands, as
for syntax errors. The location of the errors is shown in the specification window.
The extended type check option for the type checker can be enabled using the set
command and disabled using the unset command. In more detail, the available
commands are as follows:

typecheck (tc) class option
This command makes a static type check of the given class. The option
can be either pos or def, indicating whether the specification should be
checked for possible or definite well-formedness.

If a type error occurs it is reported, with position information, in the spec-
ification window.

first (f)
This command displays the position of the first recorded error or warning

29

CSK VDM++ Toolbox User Manual

message from the syntax checker, type checker, code generator or pretty
printer.

last
This command displays the position of the last recorded error or warning
message from the syntax checker, type checker, code generator or pretty
printer.

next (n)
This command moves the current position to the next recorded error or
warning message in the source file window. It is used to display error or
warning messages from the syntax checker, type checker, code generator or
pretty printer.

previous (pr)
This command moves the current position to the previous recorded error or
warning message in the source file window. It is also used to display error
or warning messages from the syntax checker, type checker, code generator
or pretty printer.

set full
The command set enables setting of the internal options of the Toolbox. If
the command is called without parameters it displays the current settings.

full enables extended type checks. This option has effect for both possible
and definite well-formedness checks. By default this option is disabled.

unset full
Disables the extended type checks.

60

VDM++ Toolbox User Manual CSK

4.5 The Interpreter and Debugger

The interpreter and debugger enable execution of VDM++ specifications. It is
not necessary to have type checked any classes before the interpreter can be used
(but naturally more run-time errors are likely to occur when a specification is not
type correct). The interpreter/debugger can be accessed from either the GUI,
the command line interface or the Emacs interface.

The only VDM-++ constructs that cannot be executed are implicitly defined
functions and operations, specification statements, type bindings, and expressions
conforming to the restrictions that our modelling of the VDM++ three-valued
logic impose. Support for the concurrency and real-time parts of VDM++ is also
not yet available within the interpreter. These constructs are described further
in [].

4.5.1 The graphical user interface

The Interpreter Window can be opened/closed by pressing the @ (Interpreter)
button on the (Window Operations) toolbar or by selecting the corresponding
item from the Windows menu.

The top two panes of the tool are respectively the Response and Dialog panes:
you can give commands directly to the Interpreter in the Dialog pane and you
receive output from the interpreter in the Response pane. To evaluate a VDM++
expression, you type it directly on the command line in the Dialog pane.

The two panes at the bottom of the tool are the Trace and the Breakpoints panes.
The first of these shows the function/operation call stack which logs the various
function/operation calls made as well as the actual parameters to each of those
calls. The parameters are generally elided by default and just appear in the
form ‘. ..’. They can be revealed by clicking the left mouse button on the ‘. ..".
Clicking the left mouse button on the revealed parameters will replace them with
‘... again.

The Breakpoints pane shows a list of the locations of all the current breakpoints
together with their status, which may be enabled (indicated by a to the left

61

CSK VDM++ Toolbox User Manual

of the function/operation name) or disabled (indicated by a [] to the left of
the function/operation name). The buttons at the top of the pane respectively
enable, disable, or delete the breakpoints currently selected in this list.

The Interpreter menu and toolbar offer a range of operations which can be applied
in the interpreter:

Init (#): Initialise the specification. This means that all the global values and
instance variables are initialised. Initialisation of the interpreter must be
made first to enable use of the definitions which have been syntax checked.

Step (=): Execute the next statement, without stepping into function and oper-
ation calls, and then break. This button is not useful with functions because
it evaluates the entire body expression.

Step In (=): Execute the next expression or statement, including stepping into
function and operation calls, and then break.

Single Step (=): Execute the next subexpression or substatement, without step-
ping into function and operation calls, and then break.

Continue (+): Use this to continue execution after a breakpoint until the next
breakpoint or the end of the expression/statement evaluation is reached.

Finish (1£): Finish the evaluation of the current function or operation and return
to the caller. The command is traditionally used together with Step In.

Up (.): This command can only be called after the specification has been ini-
tialised and the debugger has stopped at a breakpoint. It has the effect that
the current context is shifted one level up compared to the place currently
shown in the display window. Thus, the context is changed to the place in
the current function trace where the current function/operation was called.

Down (.): This command can only be called after the specification has been
initialised and the debugger has stopped at a breakpoint. It has the effect

62

VDM++ Toolbox User Manual CSK

that the current context is shifted one level down compared to the place
currently shown in the display window. Thus, the context is changed to the
place in the current function trace where the current function/operation
called its sub-function/operation.

Stop (&): Stop the evaluation of an expression. Access to local and global vari-
ables depends on whether the button has been pressed within a print or
a debug command (see the description of these commands below for a de-
scription of this). The command is traditionally used to break a possible
infinite loop in one’s specification.

Commands available in the dialog pane

In addition to the operations described above, commands to the interpreter can
be input directly by typing them in the Dialog pane. These are described below.
However, a number of these commands can only be executed after the interpreter
has been initialised (by pressing the B (Init) button). These are marked with a
star (*).

An expression can be evaluated using either the print or the debug command.
The only difference between the two commands is that debug causes the inter-
preter to stop at breakpoints whereas print ignores breakpoints.

Breakpoints can be set using the break command or by double-clicking on the
desired position in the Display window'®.

When a break point is reached it is possible to continue the execution using either
the Step (=), Single Step (=), Step In (), Continue (=) or Finish (E) buttons
to proceed with the execution. Breakpoints can be deleted using the delete
command.

Objects can be created using the create command and destroyed using the de-
stroy command. The objects command gives a list of the names of all the

15When the RTF format is used double-clicking does not work. Instead one must press
Ctrl-Alt-Spacebar on the line where one wishes to break inside Microsoft Word.

63

CSK VDM++ Toolbox User Manual

current objects.

There are also three commands relating to threads: the identifier of the current
thread (during an execution) can be obtained using the curthread command;
a list of all the threads currently executing can be obtained using the threads
command; and a different thread can be selected using the selthread command.

In addition to these commands, which are explained in more detail below, Sec-
tion 4.2 also contains a number of commands which are useful in the Dialog
window.

The up-arrow and down-arrow keys can be used to scroll through previous com-
mands. Pressing enter in this history list will execute the corresponding com-
mand. If some characters have been written before beginning to scroll through
the history list only those previous commands that start with these exact char-
acters are shown.

Pressing enter without typing a new command executes the previous command.

*break (b) [name]
Sets a breakpoint at the function or operation with the given name. The
name must consist of the function/operation name qualified with the name
of the class in which it is defined (i.e. in the form ClassName ‘OperationName).

When this command is evaluated a number is allocated for the new break-
point and this is shown in the Response pane. The name and number of the
new breakpoint are also added to the list of breakpoints in the Breakpoints
pane.

If called with no argument, it displays a list of all the currently defined
breakpoints.

*break (b) name number [number]

This sets a breakpoint on the line with the given number in the file with the
given name. If a second number is given, this is interpreted as the column
at which the breakpoint should be set.

64

VDM++ Toolbox User Manual CSK

Note that if the source file is not an RTF file you can also set breakpoints
by double-clicking the left or middle mouse button on the desired position
in the file in the Source Window. If you are using an RTF source file you can
similarly set a breakpoint by positioning the cursor at the appropriate posi-

tion in the file in Microsoft Word, then pressing Control-Alt-spacebar'®.

*create (cr) name := stmt
This command creates an object reference of name name initially assigned
to stmt. stmt must be either a call statement referring to an object or

a new statement. (See [SYS06d] for an explanation of the different kinds
of statements.) Afterwards the object name will be in the scope of the
debugger.

curthread

Prints the identifier of the thread currently being executed.

debug (d) expr

Evaluates and prints the value of the VDM++ expression expr. The exe-
cution will be stopped at all enabled breakpoints with the current position
of the execution being displayed in the Source Window and the call stack
being shown in the Trace pane. If a run-time error occurs, the execution
is stopped in the context where the error occurred with the position of the
error being displayed in the Source Window window and the call stack being
shown in the Trace pane.

When evaluating an expression in the interpreter you can use the symbol
$$ to refer to the result of the last evaluation. See the description of the
print command for more information.

If the Stop button is pressed during a debug command the evaluation of the
command is stopped at the expression or statement being evaluated when
the button is pressed. All the variables within scope of that expression or
statement can be accessed afterwards.

16This works with versions of the VDM template, VDM.dot, distributed with Toolbox version
v7.0 and onwards.

65

CSK VDM++ Toolbox User Manual

*delete number,
Deletes the breakpoint(s) with the given number(s). The breakpoints are
also removed from the Breakpoints pane.

*destroy name
Destroys the object with the given name.

*disable number,
Disables the breakpoint(s) with the given number(s).

*enable number,
Enables the breakpoint(s) with the given number(s).

init (i)
Initialises the interpreter with all definitions from the specification. This
includes initialising the instance variables and all values. If a value is multi-
ply defined this will be reported during this initialisation. The initialisation
command will initialise all files read into the Toolbox in the same session.
Therefore it is not necessary to initialise each file separately after it has
been read.

*objects
Displays the objects created within the debugger.

*popd
This command is used when nested debugging is taking place i.e. when an
expression is debugged while already at a breakpoint in another evaluation.
The effect of a popd command is to restore the environment to that which
existed when the last debug command was invoked.

print (p) expr, ...
Evaluates and prints the value of the VDM++ expression(s) expr with all
breakpoints disabled. If a run-time error occurs the execution stops and
the position of the error is displayed in the Source Window.

In addition to the normal VDM++ values the print command can also
return the values FUNCTION_VAL and OPERATION_VAL. This happens if the

66

VDM++ Toolbox User Manual CSK

result of the evaluation is a function or an operation (for example if a
function is evaluated just by giving the function name without supplying
any parameters enclosed in parentheses).

When evaluating an expression in the interpreter you can use the symbol
$$ to refer to the result of the last evaluation. This symbol is treated as an
expression and can therefore be embedded in other VDM++ expressions as
shown in the following examples:

vdm> p 10

10

vdm> p $$+3$, 2%$$
20

40

vdm>

If the Stop button is pressed during a print command the evaluation of the
command is stopped. No variables can be accessed afterwards.

priorityfile (pf) [filename ...]
If called with a valid filename, this reads the priority information from
this file and uses it when scheduling threads if priority-based scheduling is
enabled.

If called with no argument it lists the current priority file being used by the
interpreter.

See Appendix G for details of the required format for priority files.

selthread id
Sets the currently executing thread to be that with identifier id.

threads
Displays a list of the threads currently being executed in the following
format:

< thread id > < object ref > < status >

67

CSK

VDM++ Toolbox User Manual

tcov

where thread id is the unique identifier of the thread, object ref is the
identifier of the object within which the thread is defined (none if this is
the thread of control initiated by the interpreter), and status is one of the
following;:

Status Meaning

Blocked the thread is waiting for a permission predicate to be-
come true.

Stopped the thread has stopped at a breakpoint.

Running the thread is currently being executed by the interpreter.

MaxReached the maximum number of instructions per time slice has
been reached by this thread.

The test coverage command tcov makes it possible to control the collec-
tion of test coverage information. It is used in combination with various
keywords as follows:

tcov read filename
Reads the test coverage information saved in the given file.

Note that if you syntax check a file after reading in a test coverage file
the coverage information for that file will be reset and the test coverage
information will be lost unless you write the test coverage information
before the file is syntax checked. Also be aware that the pretty print-
ing function always uses the test coverage file that is specified in the
specification file.

tcov write filename
Writes the existing test coverage information to the given file.

tcov reset
Resets all test coverage information to zero.

Setting options

The interpreter has a number of options which can be set in the Interpreter panel

68

VDM++ Toolbox User Manual CSK

of the Project Options window (see Figure 25). These options are:

| Project Options E]

Interpreter | Type checker | Pretty printer | G ++ Code generator | Java code generator | Java to WDM++]

[Dwnamic type check

I Dynamic checks of invariants

I Check of pre—conditions

[Check of post-conditions

Thitialize random eeneratar with: |D il

I Enable priority-based scheduling 1 nan randam?

. Maximum instructions per time =lice: 1000 =
v Pretty printing of values 2 | :I

Primaty Scheduling Algorithm | pure_cooperative ﬂ

[v Save Options Cancel | Apply | 0OF |

Figure 25: Setting Interpreter Options

Dynamic type check: If this check is enabled the type of expressions will be checked
according to the definition given in the VDM++ specification whenever a
type has been fixed.
default: disabled.

Dynamic checks of invariants: If this check is enabled, expressions will be checked

against the invariant on their type whenever such an invariant exists.
default: disabled.

Check of pre-conditions: If this check is enabled the precondition of every function
which is evaluated will be checked before the function is called.
default: disabled.

Check of post-conditions: If this check is enabled the postconditions of every func-
tion and operation which is evaluated will be checked after the function or
operation has been evaluated.
default: disabled.

69

CSK VDM++ Toolbox User Manual

Pretty printing of values: Causes the pretty printer to use a nice, easy-to-read style
for printing values in which line breaks and a homogeneous indentation are
inserted.
default: enabled.

Initialise random generator with: Initialises a random number generator with the
given integer. This causes a random order of evaluation of substatements
in non-deterministic statement constructs. The integer must be larger than
or equal to zero. A negative number disables random evaluation of non-
deterministic statements.
default value: -1.

Enable priority-based scheduling: enables use of priority-based scheduling instead
of round-robin scheduling.
default: disabled

Maximum instructions per time slice: sets the number of instructions per time slice
to be the given integer (used for instruction number slice scheduling).
default value: 1000.

Primary Scheduling Algorithm: Sets the primary scheduling algorithm to be either
pure cooperative scheduling or instruction number slicing.
default: Instruction number slicing.

4.5.2 Standard libraries

Currently there are two standard libraries: one for maths and one for input /output
functionality:.

The Maths Library

The interpreter provides a maths standard library. The functions and values
available and their concrete syntax are described in [SYS06b]. To use this li-
brary the file math.vpp must be part of the project. The file is located in the

70

VDM++ Toolbox User Manual CSK

vpphome/stdlib directory.

The math.vpp file contains a number of functions that are all defined as is not yet
specified. In a general VDM++ specification such functions cannot be executed
by the interpreter, but for these particular functions definitions exist within the
toolbox. Thus, if you include the math.vpp file in you project these maths func-
tions will be available with your specification.

The IO Library

The interpreter provides an IO (input/output) standard library. The functions
and values available and their concrete syntax are described in |]. To use
this library the file io.vpp must be part of the project. The file is located in the
vpphome/stdlib directory.

The io.vpp file contains a number of functions that are all defined as is not yet
specified. In a general VDM-++ specification such functions cannot be executed
by the interpreter, but for these particular functions definitions exist within the
toolbox. Thus, if you include the io.vpp file in you project these 10 functions
will be available with your specification.

4.5.3 The command line interface

The interpreter/debugger is invoked by the following command:

vppde -i [-0 res-file] [-R testcoverage] [-D [-I]1] [-P] [-Q]
[-Z priority-file] [-M num] argfile specfiles

With the -i option vppde evaluates a VDM++ expression (or a sequence of
VDM++ expressions separated by commas) in the file argfile in the context
of the specification in the specfile(s). The result of the evaluation is reported
to stdout. When a sequence of expressions is used, it is possible to refer to the
result of the previous expression by writing $$.

71

CSK

VDM++ Toolbox User Manual

If a run-time error is encountered, the interpretation is terminated and an error
message is displayed. The error message contains position information for the
construct that caused the error and a message describing the type of error.

The additional options that can be used with the interpreter are:

Enables dynamic type checking.

Enables invariant checking
This option only has effect if the -D option is enabled as well.

Enables precondition checking for all functions which are evaluated.

Enables postcondition checking for all functions and operations which are
evaluated.

The result of the interpretation will be the same as if the argument file was
evaluated with the specification files used for generating the testcoverage
file. The difference is that the interpreter will update the testcoverage file
with run-time information and save it to the hard disk after the evaluation.
See Section 4.10 for an example.

res-file Prints the result of evaluating the argfile to the res-file. If
res-file already exists it will be overwritten. This option is typically used
in test scripts in which the result is automatically compared with expected
results.

priority-file Evaluate using priority based scheduling. Only has effect if
used with a multi-threaded model.

num Use num as the number of instructions per slice

algorithm Use the specified scheduling algorithm. This may be one of:

72

VDM++ Toolbox User Manual CSK

pure_cooperative Pure cooperative scheduling;

instruction number slice Instruction number sliced scheduling.

4.5.4 The Emacs interface

In the Emacs interface all commands are given at the command prompt. Initiali-
sation of the interpreter must be made first to enable use of the definitions which
have been syntax checked. This is done using the init command. A number of
commands cannot be called before the specification has been initialised (see the
init command below). These commands are marked with a star (*).

An expression can be evaluated using either the print or the debug command.
The only difference between the two commands is that debug will force the in-
terpreter to stop at breakpoints whereas print ignores breakpoints. Breakpoints
can be set using the break command. When a breakpoint is reached it is pos-
sible to continue the execution using either the step, singlestep, stepin, cont
or finish commands to proceed with the execution. Breakpoints can be deleted
using the delete command.

The backtrace command can be used to inspect the call stack. Options to the
interpreter can be set using the set command and they can be reset using the
unset command.

New objects can be created using the create command and then can be destroyed
again using the destroy command. The names of the current objects can be seen
using the objects command.

*backtrace (bt)
Displays the function/operation call stack.

*break (b) [name]
Sets a breakpoint at the function or operation with the given name.
The name must consist of the function/operation name qualified with the
name of the class it is defined in.
A number is allocated for the breakpoint and this is displayed as the result

73

CSK VDM++ Toolbox User Manual

of the command.

If break is called without parameters it displays all the current breakpoints.

*break (b) name number [number]

This sets a breakpoint in the file with the given name at the line with the
given number. If a second number is given, this is interpreted as the column
at which the breakpoint should be set.

*create (cr) name := stmt
This command creates an object reference of name name initially assigned
to stmt. stmt must be either a call statement referring to an object or

a new statement. (See [SYS06d] for an explanation of the different kinds
of statements.) Afterwards the object name will be in the scope of the
debugger.

*cont (c)

Continues execution after a breakpoint until another breakpoint or the end
of the evaluation is reached.

curthread
Prints the identifier of the thread currently being executed.

debug (d) expr
Evaluates and prints the value of the VDM++ expression/statement expr.
The execution stops at enabled breakpoints and the breakpoint position is
displayed. If a run-time error occurs, the execution stops in the context
where the error occurred and the position of the error is displayed in the
specification window.

In order to use the last evaluated result in a following expression, $$ can
be used. See the description of the print command for more information.

*delete name ...
Deletes the breakpoint set at the function(s) or operation(s) with the given
name(s). Function and operation names must be qualified with the name

74

VDM++ Toolbox User Manual CSK

of the class they are defined in.

*destroy name
Destroys the object referred to by name.

*disable number
Disables the breakpoint with the given number.

*enable number
Enables the previously disabled breakpoint with the given number.

*finish
Finishes the evaluation of the current function or operation and returns to
the caller. The command is traditionally used together with stepin.

init (i)
This command initialises the interpreter with all definitions from the speci-
fication. This includes initialising the instance variables and all values. If a
value is multiply defined this will be reported during this initialisation. The
initialisation command will initialise all files read into the Toolbox in the
same session. Therefore it is not necessary to initialise each file separately
after it has been read in using the read command.

*objects
Displays the objects created within the debugger.

*popd
This command is used when nested debugging is taking place i.e. when an
expression is debugged while already at a breakpoint in another evaluation.
The effect of a popd command is to restore the environment to that which
existed when the last debug command was invoked.

print (p) expr,...
Evaluates and prints the value of the VDM++ expression(s) expr with
all breakpoints disabled. If a run-time error occurs the execution will be
stopped and the position of the error is displayed.

5

CSK VDM++ Toolbox User Manual

In addition to the normal VDM++ values the print command can also
return the values FUNCTION_VAL and OPERATION_VAL. This happens if the
result of the evaluation is a function or an operation (for example if a
function is evaluated just by giving the function name without supplying
any parameters enclosed in parenthesis).

In order to use the last evaluated result in a following expression, $$ can
be used. $$ is treated as an expression and can therefore be embedded in
other VDM++ expression(s) as shown in the following example:

vdm> p 10

10

vdm> p $$+3$, 2x$$
20

40

vdm>

priorityfile (pf) [filename ...]
If called with a valid filename, this reads the priority information from
this file and uses it when scheduling threads, if priority-based scheduling is
enabled.

If called with no argument, this lists the current priority file being used by
the interpreter.

See Appendix G for further details of required format for priority files.

remove number
Removes the breakpoint with the given number.

selthread id
Sets the currently executing thread to be that with identifier id.

set option
Enables setting of the internal options of the interpreter. If the command
is called without parameters it displays the current settings. option can
be one of the following:

76

VDM++ Toolbox User Manual CSK

dtc enables dynamic type checking.

inv enables dynamic checks of invariants. In order for inv to have any
effect, dtc must be enabled as well.

pre enables check of preconditions.

post enables check of postconditions.

ppr enables pretty print format. All values will be displayed with line-
breaks and indentation according to the structure of the value.

seed integer initialises a random number generator with the given inte-
ger. This causes a random order of evaluation of sub-statements in
nondeterministic statement constructs. The integer must be > 0. A
negative number will disable random evaluation of nondeterministic
statements.

primaryalgorithm string sets the primary scheduling algorithm used by
the interpreter to be the given string. This string may be:

pure_cooperative (pc) - use pure cooperative scheduling;

instruction number slice (in) - use instruction number slicing schedul-

ing

Here the names in parentheses are abbreviations which may be used.
See Section 4.5.5 for more details of the different scheduling algorithms.
Default is instruction number _slice

maxinstr integer use the given integer as the maximum number of in-
structions per slice. See Section 4.5.5 for details of how this value is
used. Default is 1000.

priority enables priority-based scheduling. Section 4.5.5 for details of how
this is used.

All options are false by default, except ppr.

7

CSK VDM++ Toolbox User Manual

*singlestep (g)
Executes the next expression, sub-expression or statement and breaks.

*step (s)
Executes the next statement and breaks. This command will not step into
function and operation calls. This command is not useful with functions
because it evaluates the entire expression.

*stepin (si)
Executes the next expression or statement and then breaks. This command
will also step into function and operation calls.

threads
Displays a list of the threads currently being executed in the following
format:

< thread id > < object ref > < status >

where thread id is the unique identifier of the thread, object ref is the
identifier of the object within which the thread is defined (none if this is
the thread of control initiated by the interpreter), and status is one of the

following
Status Meaning
Blocked the thread is waiting for a permission predicate to be-
come true.
Stopped the thread has stopped at a breakpoint.
Running the thread is currently being executed by the interpreter.

MaxReached the maximum number of instructions per time slice has
been reached by this thread.

tcov
The test coverage command tcov makes it possible to control collection of
test coverage information:

tcov read filename
Reads the test coverage information saved in the given file.

78

VDM++ Toolbox User Manual CSK

Note, that if you syntax check a file after reading in a test coverage
file, the coverage information for that file will be reset and the test
coverage information will be lost unless you write the test coverage
information before the file is syntax checked. Also be aware that the
pretty printing function always uses the test coverage file that is spec-
ified in the specification file.

tcov write filename
Writes the existing test coverage information to the given file.

tcov reset
Resets all test coverage information to zero.

unset option, ...
Disables one or more of the internal options of the Toolbox. See the set
command for a description of the possible options.

4.5.5 Scheduling of threads

The following different primary scheduling algorithms are available:

Pure Cooperative Under this algorithm a thread will be executed until:

e It completes successfully;

e It reaches an operation call for which the corresponding permission
predicate is false;

e A breakpoint is met or the interpreter is interrupted.

Instruction number slicing Under this algorithm a thread will be executed
until:

e [t completes successfully;

e [t reaches an operation call for which the corresponding permission
predicate is false;

79

CSK VDM++ Toolbox User Manual

e The number of (internal) instructions it has executed since being sched-
uled exceeds the maxinstr constant.

e A breakpoint is met or the interpreter is interrupted.

Selection of which thread to schedule next (secondary scheduling algorithm) fol-
lows a simple round-robin strategy, which may optionally be priority-based (set
using the Enable priority-based scheduling option; see Section 4.5.1).

Note that if priority-based scheduling is used, the main thread (i.e. the thread
initiated by the user) always has highest priority, above and beyond any priorities
specified in the priority file.

30

VDM++ Toolbox User Manual CSK

4.6 The Integrity Examine

The integrity examiner analyses the specification looking for places where run-
time errors could potentially occur and generates a series of integrity properties
which, if true, are sufficient to ensure that no run-time errors should occur. In
all thirty different types of integrity properties are checked by the examiner.

Thee integrity properties are presented as VDM-++ predicates that involve quan-
tification over all possible values of the appropriate variables'”, which means that
if it can be demonstrated that an integrity property is true there will not be
run-time errors associated with that integrity check whatever the values of the
variables involved. Of course if an integrity property can instead be shown to be
false this would point to there being a potential problem with the corresponding
part of the specification.

The integrity examiner can only be accessed from the graphical interface.

To run the integrity examiner, select the files or classes (more than one, if you
wish) you want to run it on in the Project View or the VDM View of the Manager,
then press the % (Generate Integrity Properties) button on the (Actions) toolbar.
The Log Window opens automatically (if it is not already open) and displays
information about the examination process for each selected file or class in turn,
and the Integrity Properties Window opens and displays the integrity properties
generated. The Integrity Properties Window is shown in Figure 26.

The top pane of the Integrity Properties Window shows a list of the integrity
properties together with information about their status (the Checked column),
their position in the specification (the Module, Member and Location columns)
and their type (the Type column). The numbers in the Index column simply
serve to distinguish different integrity properties which have the same position.
Clicking on a list heading orders the properties based on that particular attribute.

Selecting a particular integrity property in the top pane of the window causes
the corresponding VDM++ predicate to be displayed in the bottom pane of the
window. At the same time the cursor in the Source Window indicates the exact

In some cases the full context is not shown explicitly and the scope of some variables has
to be determined by inspection of the specification.

81

CSK VDM++ Toolbox User Manual

Shimd Integrity properties - |0 x

Checked |M0dule |Member Location |Inde>< |Type |

1Mo ExplSort IzOrdered function 1 zequence application
Mo ExplSort Permutations function 1 zequence application
Mo Explsort RestsSeq function 1 zequence application 1
Mo ExplSort Sort operation 1 non-emptiness of let be zuch bindine

{

Checked lModuIe]Member]Location lType l

Available | | | Selected
Mo i

Tes

farall I: zeq of int, i nat &
Forall j in et Ginds O ¥ 0D &
jin get inds {0

Figure 26: The Integrity Properties Window

point in the specification to which the selected integrity property relates. Each
integrity property can thus be inspected in order to try to determine whether
or not it is true. For a more detailed explanation of this, see the example in
Section 3.8.4.

The buttons j and 7| on the left-hand side of the top pane move the selection to
the previous or the next integrity property respectively, while the j (Toggle Sta-
tus) button toggles the status of the selected integrity property between checked
and unchecked.

The | (Filter) button is used in conjunction with the middle two panes of the
window to filter the list of integrity properties. The left-hand pane of the two
shows lists of the possible values for each of the attributes, while the right-hand
pane shows the particular values of each attribute that the filter will use. At-
tribute values can be added to or removed from the filter by selecting them in

the appropriate pane and pressing the J (Add to Filter) or the J (Remove from
Filter) button respectively. Pressing the | (Filter) button then causes the list of
integrity properties to be filtered to show only those whose attributes match the

82

VDM++ Toolbox User Manual CSK

selected attribute values. When no attributes are selected no filter is used so all

integrity properties are shown.
;

33

CSK VDM++ Toolbox User Manual

4.7 The Pretty Printer

The pretty printer transforms a specification from its input format to a pretty
printed version of the specification. Typically this pretty printed version is used
for documentation purposes. The output format for the pretty printer depends
on the input format of the specification. If the input format is RTF the output
format will also be RTF. If the input format is a mixture of IXTEX commands
and VDM++ specification the output format is a file which can be processed
by BTEX. The main difference between the layout of the two different outputs
produced by the pretty printer is that the one to Microsoft Word uses the ASCII
version of VDM++ whereas the KTEX one uses a mathematical representation
of VDM++ which is used in most VDM text books and articles.

The pretty printer can construct cross-referenced indexes and can also take test
coverage information into account, both in the form of colouring of the parts of
the specification that have not been covered and in the form of tables describing
the percentage coverage of functions and operations.

If your input files are in RTF format, you can insert a table summarising the per-
centage test coverage by including the name of the class written in the VDM_TC_TABLE
style at the desired position in the .rtf file, and test coverage colouring informa-
tion is written by the pretty printer using the styles VDM_COV and VDM_NCOV. All
three styles are included in the VDM.dot file from the Toolbox distribution.

The ITEX generator uses the VDM+-+- Vo0, macros together with the appropri-
ate corresponding style file: vpp.sty for KTEX and vdmsl-2e.sty for HTEX2..
These macros and style files are also supplied as part of the Toolbox distribution.
Section 4.10 and Appendix B describe in detail how to set up the necessary IKTEX
environment for using the generated IXTEX file.

The testing facilities are discussed further in Section 4.10.

The pretty printer can be accessed from either the GUI, the command line inter-
face or the Emacs interface.

84

VDM++ Toolbox User Manual CSK

4.7.1 The graphical user interface

In order to invoke the pretty printer from the graphical user interface, first select
the files you want the Toolbox to pretty print in the Project View of the Manager'®,
then invoke the pretty printer by pressing the pp (Pretty Printer) button.

Setting options

The pretty printer has a number of options which can be set in the Pretty printer
panel of the Project Options window (see Figure 27). These options are:

Output index of definitions: Produces an index for definitions of functions, opera-
tions, types, instance variables and classes.
default: disabled.

Output index of definitions and uses: Produces an index for definitions of func-
tions, operations, types, instance variables and classes, and for used oc-
currences of types, functions and operations. The Microsoft Word pretty
printer is not able to take any uses of constructs into account and thus there
is no difference between this option and the first option under Windows.

default: disabled.

Test coverage colouring: This enables highlighting in colour of those parts of the
specification which have not been executed during testing. The coverage
information is written to the test coverage file along with the standard test
coverage information if this option is enabled.

default: disabled.

Note that only one of the options Output index of definitions and Output index of
definitions and uses can be enabled at any time.

18You can alternatively select classes in the VDM View of the Manager and the pretty printer
is then applied to the set of files which contain the selected classes. This of course means that
if a particular file contains more than one class definition and you select only some of those
classes then the other classes in the same file are implicitly included.

85

CSK VDM++ Toolbox User Manual

{ Project Options E]

Interpreter | Twpe checker | Pretty printer | © ++ Code eenerator] Java code eeneratar Java to WDM++]

o]

" Output index of definitions

" Output index of definitions and uzes

[~ Test coverage coloring

Iv Save Optiong Cancel | Apply | 0K |

Figure 27: Setting Pretty Printer Options

4.7.2 The command line interface

vppde -1 [-nNr] specfile(s)

With the -1 option vppde takes a VDM++ specification as its input and generates
a pretty printed document. The format of this document depends on the input
format. If the input format was RTF the name of the output file will be the same
as the input file extended with .rtf. This generated file can stand alone and be
taken into Microsoft Word directly. If the input format is a mix of IXITEX and
VDM++ specification the name of the output file will be the same as the input
file extended with .tex. This generated file(s) can be included directly in any
KETEX document.

The additional options which can be used with the pretty printer are:

-r Runs the pretty printer, inserting additional coverage information obtained
from the test coverage file. For IXTEX documents special macros are used
in the specification to show which parts have or have not been exercised by
the test suites. In the current version the test coverage file must be called
vdm. tc and it must be placed in the working directory (which can be found

36

VDM++ Toolbox User Manual CSK

using the pwd command). The test coverage file will have been generated
by running the syntax analyser with its own -R option (see Section 4.3).

Section B describes in detail how to produce the test coverage report from
the BWTEX file produced by this command.

-n For RTF documents this option will mark all function/operation definitions
with indexes. Inside the generated .rtf file you can then insert a table with
all indexes by including the name of the class written in the VDM_TC_TABLE
style at the desired position. For IXTEX documents the option inserts KTEX
macros around all definitions of functions, operations, types, states and
modules to be used to generate an index. Then an index can be produced
using the makeindex utility.

-N For RTF documents this option is identical to the -n option. For KEIEX
documents this option works as -n but also inserts the macros around all
applications of functions, operations, types and values.

4.7.3 The Emacs interface

In the Emacs interface there is only one command for the pretty printer. This
command is, for historical reasons, called latex and, as for all other commands
in the Emacs interface, it must be given at the command prompt.

latex (1) [-nNr| file
The pretty printer is invoked with file. If the IXTEX format is used the
VDM++ parts are typeset in the mathematical font with the VDM++-
Vouer, macros. If text parts exist, these and the VDM++ parts (VDM++-
VoL, macros) are merged in the same order as in file. By using the -n or
-N option indexes for defined and used occurrences will be generated (see
Appendix B).

The option -r inserts coverage information collected in the test coverage
file vdm.tc. For RTF documents the styles VDM_COV and VDM_NCOV must
be defined in the input document. For KTEX documents this option inserts
colours in the VDM++-VonS1, macros such that all specification parts which

87

CSK VDM++ Toolbox User Manual

have not been covered by the test suites are marked.

38

VDM++ Toolbox User Manual CSK

4.8 The VDM++ to C++ Code Generator

If you have a license for the VDM++ to C++ Code Generator you can have your
specification automatically translated into C++ code by the Toolbox. Here we
only explain how the code generator is invoked and what options it has; further
details can be found in |].

The C++ code generator can be accessed either from the GUI, from the command
line version of the Toolbox, or from the Emacs interface.

4.8.1 The graphical user interface

In order to invoke the C++ code generator from the graphical user interface, first
use the Manager to select the files or classes you want the Toolbox to translate,
then invoke the translator by pressing the £ (Generate C++) button. More than
one file/class can be selected, in which case all of them are translated to C++.

The following options for the code generator can be set via the C++ code generator
panel of the Project Options window which is shown in Figure 28:

Output position information Causes the code generator to generate code con-
taining position information for run-time errors. Default: off.

Check pre and post conditions Causes the code generator to generate code
containing in-line checks of preconditions and postconditions of functions
and of preconditions of operations. Default: on.

4.8.2 The command line interface

vppde -c [-r] specfile,

With the -c option vppde generates code from the given specfile(s). The spec-
ification is first parsed. Then, if no syntax errors are detected, the specification is
type checked for possible well-formedness. Finally, if no type errors are detected,
the specification is translated into a number of C++ files. The structure of the

39

CSK VDM++ Toolbox User Manual

{ Project Options E]

Tnterpreter | Twpe checker] Pratty printer | &

Java code eenerator Java to VDM++]

[Output position infor mation

[v Check pre and post conditions

Iv Save Optiong Cancel | Apply | 0K |

Figure 28: Setting Options for the C++ Code Generator

generated code and how to interface it are described in [SYS006g].

One additional option can be used with the VDM++ to C++ Code Generator:

-r Includes run-time position information in the generated C++ code (for a
detailed description see [SYS006g]).

4.8.3 The Emacs interface

In the Emacs interface there is only one command for the code generator. This
command is called codegen and, as for all other commands in the Emacs inter-
face, it must be given at the command prompt.

*codegen (cg) class [rti]
This command generates C++ code for the class class. If the option rti
is used run-time position information is included in the generated code.

90

VDM++ Toolbox User Manual CSK

4.9 The VDM++ to Java Code Generator

If you have a license for the VDM++ to Java Code Generator you can have your
specification automatically translated into Java code by the Toolbox. Here we
only explain how the code generator is invoked and what options it has; further
details can be found in |]

The Java code generator can be accessed either from the GUI, from the command
line version of the Toolbox, or from the Emacs interface.

4.9.1 The graphical user interface

In order to invoke the Java code generator from the graphical user interface, first
use the Manager to select the files or classes you want the Toolbox to translate,
then invoke the translator by pressing the & (Generate Java) button. More than
one file/class can be selected, in which case all of them are translated to Java.

The following options for the code generator can be set via the Java code generator
panel of the Project Options window which is shown in Figure 29:

Generate only skeletons, except for types Causes the code generator to gen-
erate only skeleton classes, i.e. classes which contain full definitions of types,
values and instance variables but empty definitions of functions and oper-
ations. Default: off.

Generate only types Causes the code generator to generate only code corre-
sponding to VDM++ type definitions, i.e. values, instance variables, func-
tions and operations are ignored. Default: off.

Generate integers as longs Causes the code generator to convert VDM+-+
integer values and variables to Java longs instead of Java integers. Default:
off.

91

CSK VDM++ Toolbox User Manual

Generate code with concurrency constructs Causes the code generator to
generate code which includes support for concurrency. Default: on.

Generate pre and post functions/operations Causes the code generator to
generate code corresponding to preconditions, postconditions and invari-
ants. Default: on.

Check pre and post conditions Causes the code generator to generate code
containing in-line checks of preconditions and postconditions of functions
and of preconditions of operations. Default: off.

In addition it is possible to select which classes in the specification are to be
converted to Java interfaces, and to give the name for the package which the
code generator creates to hold the Java code it generates.

{ Project Options

Interpreter | Type checker] Pretty printer | G ++ Code generator | Java code generator Java to WDM++]

| Generate only ckeletons, except for types
|7 Generate only types

|7 Generate integers as lones

| Generate code with concurrency constructs
[v Generate pre and post functions/operations

| Check pre and post conditions

Select interfaces |

Package: |1

v Save Options Cancel | Apply | QK |

Figure 29: Setting Options for the Java Code Generator

4.9.2 The command line interface

vppde -j [options] specfile,

92

VDM++ Toolbox User Manual CSK

With the -j option vppde generates code from the given specfile(s). The spec-
ification is first parsed. Then, if no syntax errors are detected, the specification is
type checked for possible well-formedness. Finally, if no type errors are detected,
the specification is translated into a number of Java files. The structure of the
generated code and how to interface it are described in [SYS06h]. The different
options available are also listed there.

4.9.3 The Emacs interface

In the Emacs interface there is only one command for the Java code generator.
This command is called javacg and, as for all other commands in the Emacs
interface, it must be given at the command prompt.

*javacg (jcg) class [options]
This command generates Java code for the class class.

93

CSK VDM++ Toolbox User Manual

4.10 Systematic Testing of VDM models

As part of its support for validation, the Toolbox provides a facility for test-
ing VDM++ specifications, including test coverage measurement. Test coverage
measurement helps you to see how well a given test suite covers the specification.
This is done by collecting together in a special test coverage file information
about which statements and expressions are evaluated during the execution of
the test suite. The approach described here is a script-based one and is intended
for application involving a large number of test cases. The approach described
in Section 3 using the tcov command is better suited to a small number of test
cases.

VDM T
e t
specification ©s
input VDM coverage
. parser file
files

VDM

interpreter

VDM
argument

VDM

pretty
printer

files

Figure 30: Systematic test of VDM models

There are three steps involved in producing a test coverage report (see Figure 30):

1. Prepare a test coverage file. VDM+++ files in one of the input formats are
first given to the VDM++ parser with a special option. This produces a test
coverage file which contains information about the specification’s structure
but with none of the definitions covered yet.

2. The VDM++ interpreter is called with a number of arguments which are
placed in small argument files. The interpreter is used with all the specifi-

94

VDM++ Toolbox User Manual CSK

cation files and the test coverage file and then, in addition to returning the
result of evaluating the argument file, it updates the test coverage file with
information about how often the different constructs have been exercised.
The call of the interpreter is repeated with all the arguments in the test
environment one wishes to take into account.

. Finally the pretty printer is used with a special option which takes all
the specification files and the test coverage file as input and produces a
pretty printed version of the specification showing the detailed test coverage
information from the test coverage file. Note that in the input VDM++
specification files only the textual parts which do not contain VDM++
definitions can be updated while this process is going on. If changes to the
VDM++ parts happen the test coverage file does not know how to map
its information back to the VDM++ specification files. Note also that on
Windows the current version of the Toolbox requires that the test coverage
file must be called vdm.tc and must be placed in the working directory.

4.10.1 Preparing the test coverage file

The generation of the test coverage information must be performed in a command
prompt (under Windows this can be obtained by selecting the command prompt
in the programs entry in the Windows setup; under Unix this is done in a normal
shell). The parser must be invoked with the -R option. See Section 4.3.3 for
details of the parameters to be used.

Example:

"vpphome/bin/vppde" -p -R vdm.tc Sorter.rtf DoSort.rtf ExplSort.rtf
ImplSort.rtf MergeSort.rtf SortMachine.rtf

4.10.2 Updating the test coverage file

A test suite is normally structured into a hierarchy of directories where small
argument files are placed in different categories depending upon what they are
meant to test. In a development project you will wish to set up such a test envi-
ronment and also make a small script file which will automate the testing process

95

CSK VDM++ Toolbox User Manual

and even compare the actual results against expected results. In Appendix E
there is an example of such a script file for both Windows and Unix. The test
script must then call the command line interface of the Toolbox with the -R op-
tion. See Section 4.5.3 for details of the parameters to be used.

Example:

"vpphome/bin/vppde" -i -R vdm.tc -0 dosort.res sort.arg
Sorter.rtf DoSort.rtf ExplSort.rtf ImplSort.rtf MergeSort.rtf
SortMachine.rtf

4.10.3 Producing the test coverage statistics

The result of running such a test suite can be displayed by using the pretty printer
with appropriate options enabled. The pretty printer can be accessed from the
graphical user interface, the command line interface and the Emacs interface.
The important thing to remember is to use the option which enables coverage
information to be incorporated. See Section 4.7 for details of the parameters to
be used.

Example:

"vpphome/bin/vppde" -1lr Sorter.rtf DoSort.rtf
ExplSort.rtf ImplSort.rtf MergeSort.rtf SortMachine.rtf

In the pretty printed version of the files which are generated it is possible to see
tables of the percentage coverage of the functions and operations in the spec-
ification. In addition detailed test coverage information showing how parts of
functions and operations have been covered by the tests is available.

The rtinfo command, which can be input either through the command line in-
terface or in the Dialog pane of the interpreter in the graphical user interface,
displays test coverage information as explained below:

rtinfo vdm.tc
Before applying this command run-time information must have been col-
lected in the test suite vdm.tc. The test suite is read and an overview of

96

VDM++ Toolbox User Manual CSK

all functions and operations is displayed. For each element in this list, the
number of times that element has been evaluated and the percentage cov-
erage of its definition are shown. (This percentage is the number of covered
expressions in the function/operation divided by the total number of ex-
pressions.) The total coverage of the test coverage file, which is the average
of all the percentages in the list, is also shown.

4.10.4 Test coverage example using BTEX

The way the different parts of the VDM-++ input files differ with respect to test
coverage depends on the input format. An example illustrating how to incorpo-
rate test coverage information into RTF files was presented in Section 3.9. The
process for BTEX files is quite different and is illustrated here for one of the sort-
ing algorithms specified in the sorting example used throughout this manual. The
specification can be found in the vpphome/examples/sort/*.vpp files.

In this small example new DoSort().Sort([-12,5,45]) will be evaluated to
show how well this small test covers the specification of the DoSort class.

The first step is to generate a test suite file using the parser:

prompt> vppde -p -R vdm.tc sorter.vpp dosort.vpp

Parsing "sorter.vpp" ... done
Parsing "dosort.vpp" ... done
prompt>

It is now possible to evaluate the argument file sort.arg, which contains a call
to the DoSort.Sort VDM++ operation:

prompt> vppde -i -R vdm.tc sort.arg sorter.vpp dosort.vpp
Initializing specification ...

[-12,5,45]

prompt>

97

CSK VDM++ Toolbox User Manual

When the interpreter is called with the -R option, it updates the test coverage
file named vdm.tc.

Now the level of coverage of the DoSort class which has just been recorded in the
file vdm.tc can be shown in the Toolbox. A table listing all the functions and
operations in the specification together with the number of times they have been
called and the percentage of coverage can be shown using the rtinfo command.

Each percentage is the number of covered expressions in the corresponding func-
tion/operation divided by the total number of expressions it contains. The total
coverage of the whole test coverage file, which is the average of the percentages
for the individual functions/operations, is also shown. Figure 31 illustrates this.

Now we call the pretty printer with an input file in ETEX format:

prompt> vppde -lr sorter.vpp dosort.vpp

Parsing "sorter.vpp" ... done

Parsing "dosort.vpp" ... done

Generating latex to file sorter.vpp.tex ... done
Generating latex to file dosort.vpp.tex ... done
prompt>

When the pretty printer is called with the -r option it will mark all those parts
of the DoSort, InsertSorted and Sort operations and functions which have not
been covered by our small test. Note that the option -r should only be used with
ETEX2e because older versions of IXTEX do not support colours. After running
ETEX on sorter.vpp.tex the result will appear as shown in Figure 32.

Note that the others clause of the cases expression in DoSort ¢ InsertSorted is
not covered because DoSort ‘Sort was called with an already sorted sequence.

Appendix B gives a detailed description of how to combine VDM++ specifications
with BETEX.

98

VDM++ Toolbox User Manual

CcsSK
Interpreter tool Hi=] 3
Int | Step | Step In | Single Step ‘ Continue | Finish ‘ Up | Ciowen |
Dialog
Initializing specification ... done -
Jtcov reset
3B newy DaSart() Sorti[-12,5,45])
[-12545]
Jtcoy write wdm ic
3 Hinfo wdm tc
0 Impl=ot Impl=orter
0 Impl=ort lz0rdered
0 ImplSort”lsPermutation
0 Impl=ort® Sart
100% 4 DoSartDoZarting
E2% 3 DoSont'insertSorted
100% 1 CoSort™Saort
0% 0 Sorter Sort
0% 0 ExplSort’lz0rdered
0% 0 ExplSort’Permutations
0% 0 Expl=ort’RestSeq
0% 0 ExplSort Sort
0% 0 SortMachine” GoSarting
0% 0 SortMachine SetandSort
0% 0 SortMachine SetSort
0% 0 MergeZort Merge
0% 0 MergeSort™MergeZorter
0% 0 dMergeSart™Sort
4 |] r
I.
Display
| :
4 | 3
- | F
Function Trace +/= Breakpoints
[#0: Thread Start - -
< 5l 3

Figure 31: Showing test coverage information in the Toolbox

Format of input file for E'TEX test coverage

This section describes how to include colouring of parts of the specification not
covered by the test suites and tables showing coverage percentages in the IXTEX
format. We illustrate this using the same sorting example used above. We discuss
the generation of test coverage tables and the generation of colouring in turn.

99

CSK VDM++ Toolbox User Manual

DoSort : R* — R*
DoSort (1) &
if | =]
then ||
else let sorted = DoSort (tl) in
InsertSorted (hd 1, sorted);

InsertSorted : PosReal x PosReal* — PosReal*
InsertSorted (i,1) &
cases true:
(L=1) = [i
(i <hd 1) — [i] "1,
others — [hd | 7 InsertSorted (i,tl 1)
end

Figure 32: Test coverage of sorting example

Test coverage tables and the B'TEX test coverage environment

To insert tables that describe the number of calls and the coverage percentage of
functions and operations the IXTEX environment rtinfo must be used. We first
give an example illustrating the use of this environment, then we give part of a
formal BNF-like definition of the usage.

In the sorting example the rtinfo environment is defined for the class DoSort.
The rtinfo environment looks like:

\begin{rtinfo}
[TotalxCoverage] {vdm.tc} [DoSort]
DoSorting

InsertSorted

Sort

\end{rtinfo}

The first argument in the rtinfo environment (TotalxCoverage in the example)
is optional. It is used to define the width of the column in the table which contains
the function/operation names — the width will be the width of the argument. The
second argument (vdm.tc in the example) is the name of the test coverage file.
This argument is mandatory. The third (optional) argument (DoSort in the

100

VDM++ Toolbox User Manual CSK

Test Suite : vdm.tc

Class : DoSort
] Name ‘ #Calls ‘ Coverage ‘
DoSort‘DoSorting 4 V
DoSort‘InsertSorted 3 62%
DoSort‘Sort 1 V
| Total Coverage | \ 79% |

Figure 33: Example of a test coverage table

example) is the name of the class if the table is to be restricted to a particular
class. If this argument is omitted all classes in the test coverage file are listed in
the table.

Within the rtinfo environment, specific function and operation names can be
written, in which case only those functions and operations are listed in the table.
Otherwise all functions and operations are listed. In our example only the func-
tions/operations DoSort ‘DoSorting, DoSort ‘InsertSorted and DoSort ‘Sort
are listed.

The resulting table is shown in Figure 33.

The syntax of a test coverage environment is defined as follows:

test coverage environment = ‘\begin{rtinfo}’, test coverage section,
“\end{rtinfo}’ ;
test coverage section = | long name |, test suite file, | class name |,

[function list | ;

’ .

long name = ‘[, string, ‘|’ ;

test suite file = ¢{’| file identifier, ‘}’ ;

101

CSK VDM++ Toolbox User Manual

file identifier = identifier, { ‘") identifier } ;

class = ‘[, identifier, ‘| ;
function list = { identifier } ;
Colouring

Colouring of the parts of a specification not covered by a test suite can only be
shown if KTEX2¢e is used. The IXTEX file must be generated from the VDM++
specification to include test coverage colouring information, which is done by
setting the Enable test coverage colouring option in the graphical user interface or
by using the -r option in the command line interface and the emacs interface.

The following example shows the extra style files and definitions which are nec-
essary to show the colouring:

102

VDM++ Toolbox User Manual CSK

\documentclass[dvips]{article}

\usepackage [dvips]{color} <--- extra style
\usepackage{vpp}
\definecolor{covered}{rgb}{0,0,0} Yblack <--- extra

/A definition
\definecolor{not_covered}{gray}{0.5} Ygray <--- extra

A definition
\begin{document}
\end{document}

In the generated KTEX code the macros \color{covered} and \color{not_
covered} are inserted in front of the specification parts that respectively have
and have not been covered by the test suite. The \definecolor macros define
that covered parts will be printed in black while the parts which were not covered
will be grey. The result is shown in Figure 32 above.

The fact that the others clause of the cases expression in DoSort ‘ InsertSorted
is coloured grey in the HTEX output means that this clause has not been covered
(because DoSort ‘Sort has only been called with an already sorted sequence).
On the basis of such information, the test suite can be improved to cover more
of the specification.

For colour screens and colour printers red can also be used for not covered parts.
In that case the definition macro should look like:

\definecolor{not_covered}{rgb}{1,0,0} Y%red

The rtinfo environment must also be included in order to use colouring, because
the information used to generate the colouring is stored in the test coverage file.

103

VDM++ Toolbox User Manual

CcSK

References

[DL95] L.P. Dickinson and K.J. Lines. Typesetting VDM-SL with VDM-SL
macros. Technical report, National Physical Laboratory, Teddington,
Middelsex, TW11 0LW, UK, July 1995.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems — Practical
Tools and Techniques in Software Development. Cambridge University
Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 1998. ISBN
0-521-62348-0.

[JF05] Paul Mukherjee Nico Plat Marcek Verhoef John Fitzgerald, Peter-
Gorm Larsen. Validated Designs For Object-oriented Systems. Springer
Verlag, 02 2005.

[P. 96] P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and H. Toetenel
and D. J. Andrews and J. Dawes and G. Parkin and others. Information
technology — Programming languages, their environments and system
software interfaces — Vienna Development Method — Specification
Language — Part 1: Base language, December 1996.

[SYS06a] CSK SYSTEMS. The Java to VDM++ User Manual. CSK SYSTEMS,
2006.

[SYS06b] CSK SYSTEMS. The Rose-VDM++ Link. CSK SYSTEMS, 2006.

[SYS06¢] CSK SYSTEMS. VDM++ Installation Guide. CSK SYSTEMS, 2006.

[SYS06d] CSK SYSTEMS. The VDM++ Language. CSK SYSTEMS, 2006.

[SYS06e| CSK SYSTEMS. The VDM-SL Language. CSK SYSTEMS, 2006.

[SYS06f] CSK SYSTEMS. VDM++ Sorting Algorithms. CSK SYSTEMS, 2006.

[SYS06g] CSK SYSTEMS. The VDM++ to C++ Code Generator. CSK SYS-
TEMS, 2006.

[SYS06h] CSK SYSTEMS. The vdm-++ to java code generator. Technical report,
2006.

[SYS06i] CSK SYSTEMS. VDM Toolbox API. CSK SYSTEMS, 2006.

104

VDM++ Toolbox User Manual CSK

Glossary

C++4 Code Generator: The C++ Code Generator can automatically generate
C++ code from your specification. You need a separate license for the C+-+
Code Generator in order to access the C++ Code Generator from the Toolbox.

Debugger: With the debugger you can explore the behaviour of your specifica-
tion. The debugger can execute the specification and break at function and
method applications. At any point in the execution you can explore the
local or global state and local identifiers in your specification.

Dynamic Semantics: The dynamic semantics describes the meaning of a lan-
guage. Thus, the dynamic semantics describes how the language behaves if
it can be executed.

Emacs: Emacs is an ASCII editor.
GUI: Graphical User Interface.

Interpreter: The interpreter can interpret a specification according to the dy-
namic semantics of the language. That is, it can execute a program /specification.

Java Code Generator: The Java Code Generator can automatically generate
Java code from your specification. You need a separate license for the Java
Code Generator in order to access the Java Code Generator from the Toolbox.

ETEX: is a generic typesetting system.

Pretty Printer: The pretty printer processes a file and produces a pretty printed
version of the VDM++ parts in the input VDM++ file. The output format
depends on the input format.

Project: A project is a collection of ASCII file names that make up a specifica-
tion.

RTF: This is an acronym for “Rich Text Format” which is one of the formats
which can be used with the Microsoft Word editor.

Semantics: describes the meaning of the language.

Specification: A specification is a VDM++ model of a system written in one
or more files using potentially different input formats.

105

CSK VDM++ Toolbox User Manual

Static Semantics: The static semantics describes the relationships between the
symbols of the language which must be obeyed in order for a syntactically
correct specification to be well-formed (i.e. to have a consistent meaning).
A well-formed specification is also called a type-correct specification.

Syntax: The syntax of a language describes how the symbol elements of the
language (e.g. key words and identifiers) can be related. The syntax only
describes how the symbols can be ordered in the language, not the meaning
of the ordering.

Syntax Checker: A syntax checker verifies if the syntax of a specification is
correct.

Test Coverage Information: Information about how many times each con-
struct in the specification has been executed.

Test Coverage File: The test coverage file contains test coverage information.

Type Checker: The type checker checks the type correctness of a specification.
A specification can be definitely or possibly type correct.

VDM: The Vienna Development Method.

VDM-SL: The formal specification language of the Vienna Development Method.
VDM-SL is an ISO standard language [P. 96].

VDM-++4: An object-oriented specification language that is an extension of ISO
VDM-SL.

Well-formedness: A specification can be well-formed with respect to the syntax
and the static semantics of a language.

106

VDM++ Toolbox User Manual CSK

A Information Resources on VDM Technology

This short appendix contains pointers to information resources that you may find
helpful as you use VDM and the Toolbox.

The Modelling Book

For Toolbox users, the following textbook is certainly the most appropriate. It
introduces concepts such as abstraction and analysis of formal models using a
subset of the ISO Standard VDM-SL notation that is supported by the Toolbox.
The same subset is also part of the VDM++ language. The ASCII notation,
rather than the more arcane mathematical notation, is used and the presentation
is guided by a series of examples based on industrial applications of the VDM
technology. Most importantly, it includes many exercises which can be tackled
using the Toolbox or the special tutorial version of the Toolbox which is included
on a CD-ROM supplied with the book.

John Fitzgerald and Peter Gorm Larsen,

“Modelling Systems: Practical Tools and Techniques in Software De-
velopment”,

Cambridge University Press 1998,

ISBN 0 521 62348 0
http://uk.cambridge.org/order/Webbook.asp?ISBN=0521623480

Supporting information (additional exercises, slides, web links, etc.) can be found
on the world-wide web at http://www.csr.ncl.ac.uk/modelling-book/.

World-wide Web Sites

The World-wide web contains a vast amount of information on formal methods
in general and VDM in particular. Here it is only necessary to give a few sites
because these contain links to the many others available.

107

CSK VDM++ Toolbox User Manual

The VDM Web Site A web page containing basic information about VDM,
including a bibliography, information on the VDM mailing list and a link
to the VDM examples repository.
http://www.csr.ncl.ac.uk/vdm/

The VDM Bibliography A searchable bibliography of papers and books on
VDM theory, practice and experience.
http://liinwww.ira.uka.de/bibliography/SE/vdm.html
VDM theory, practice and experience.

The VDM++4 Bibliography
http://liinwww.ira.uka.de/bibliography/SE/vdm.plus.plus.html

The NASA Formal Methods Page Good source of introductory material on
formal methods in general.
http://shemesh.larc.nasa.gov/fm.html

Formal Methods Europe The web pages for this organisation includes an ap-
plications database which is particular interesting. This in an indexed
database of applications of formal techniques, mostly in commercial or in-
dustrial contexts.
http://www.fmeurope.org/

The Formal Methods Archive A huge source of information on research and
application in formal methods. Links to companies and organisations in
formal methods, recommended introductory papers, and books.
http://www.comlab.ox.ac.uk/archive/formal-methods/

108

VDM++ Toolbox User Manual CSK

B Combining VDM+4+ and ETEX

In this section a general description of how to construct a IXTEX document that
contains VDM++ specification parts is given.

B.1 Format of a Specification File

If one wishes to use the KTEX text processing system two different input formats
can be used: one contains pure VDM++ ASCII specification, the other contains
ASCII specification mixed with textual documentation. The latter type can be
distinguished by the specification parts being enclosed within “\begin{vdm_al}”
and “\end{vdm_al}”’. The text-parts outside the specification blocks are ignored
by the parser (but used by the pretty-printer). The “\begin{vdm_al}” cannot
be placed arbitrarily in a specification, but only in front of the keywords class,
state, functions, operations, values and types and in front of definitions
of functions, operations, types and values. This means for instance that
a text-part cannot be inserted in the middle of the body of a function. The file:

vdmhome/examples/sort/mergesort.vpp

gives an example of how specification and text can be mixed.

B.2 Setting up a BTEX Document

The general combination of VDM++ and ETEX can be used both with the orig-
inal BTEX program and with the newer ITEX2e, whereas the incorporation of
test coverage is possible only when using IXTEX2¢e because some features, such as
colouring within documents, are only available with KTEX2e.

The following example of IXTEX code shows the KTEX style files that must be
included to generate a general KXTEX document which includes VDM++ parts:

109

CSK VDM++ Toolbox User Manual

\documentstyle [vpp]{article}
\begin{document}

\end{document}

Figure 34: Example of an original IXTEX Document

\documentclass{article}
\usepackage{vpp}

\begin{document?}

\end{document}

Figure 35: Example of a TEX2e Document

The vpp style file is included in the Toolbox distribution.

The BKTEX heading can either be inserted into one of the VDM++ specification
files or it can be put in an isolated file that includes the VDM++ specification
files. In either case the specification files must be translated into IXTEX files by the
Toolbox, either by pressing the Pretty Print button in the graphical user interface,
by using the latex command in the Emacs interface, or by using the -1 option
in a command line call to vppde. For the sorting example the heading has been
inserted into the sort.tex file.

Line numbering

All definitions in the generated IXTEX are by default given definition numbers and
line numbers. These numbers can be suppressed using the following commands:

\nolinenumbering
\setindent{outer}{\parindent}
\setindent{inner}{0.0em}

110

VDM++ Toolbox User Manual CSK

For further information see | .

Indexes

Macros to generate index numbers can be generated as part of the IXTEX pretty
printing output. The index numbers refer to pages in the final I¥TEX document.
Indexes can be generated at two levels: indexes for all definitions of classes,
functions, operations, types and instance variables, and indexes for all uses of
functions, types, and classes. Index macros for definitions only are generated in
the graphical interface by enabling the Output index of definitions option, and in
the command line and emacs interfaces by using the -n option. Index macros for
both definitions and uses are generated in the graphical interface by enabling the
Output index of definitions and uses option, and in the command line and emacs
interfaces by using the -N option.

The index numbers are automatically inserted into different ETEX macros to
clarify which kind of construct an index refers to. The macros for definitions are:

InstVarDef indicating where an instance variable is defined.

TypeDef indicating where a type is defined.

FuncDef indicating where a function or operation is defined.

ClassDef indicating where a class is defined.

The macros for uses are:

e TypeOcc indicating where a type is used.

e FuncOcc indicating where a function is used. Only the use of functions
that are explicitly defined in the document will be indexed.

e ClassOcc indicating where a class is used.

111

CSK VDM++ Toolbox User Manual

These ETEX macros must be defined at the beginning of the IXTEX document in
order to use indexing. An example of this is:

\newcommand{\InstVarDef} [1]{{\bf #1}}
\newcommand{\TypeDef} [1]{{\bf #1}}
\newcommand{\TypeOcc} [1]{{\it #1}}
\newcommand{\FuncDef} [1]{{\bf #1}}
\newcommand{\FuncOcc} [1]{#1}
\newcommand{\ClassDef}[1]1{{\sf #1}}
\newcommand{\ClassOcc}[1]{#1}

Four additional parts have to be included in the KTEX document in which you
want to include the index:

1. Include the makeidx style option in \documentstyle if using the original
ETEX, or include it as a package if using ETEX2¢..

2. Include \makeindex in the preamble of the document.

3. Define the macros InstVarDef, TypeDef,

4. Include \printindex at the position where you would like to have the index
included in the document.

Unsupported constructs

There is one syntactical construct that is not supported currently by the BTEX
pretty printer: at present it is not possible to typeset comments. These will simply
be ignored by the IXTEX pretty printer. It is recommended to mix specifications
and text instead of using VDM++ comments.

112

VDM++ Toolbox User Manual CSK

C Setting up your VDMTools Environment

A number of environment variables and other options for the Toolbox as a whole
can be set according to your personal preferences. These are described below.

C.1 Environment Variables

The following environment variables can be set for the Toolbox:

EDITOR This defines the editor used when invoking an editor from within the
Toolbox.

For Windows the default editor is Notepad. If you prefer to use, say, Word
instead, you should define the EDITOR environment variable in your user
profile (for 2000 and NT; in the autoexec.bat file for 98) to the path to
winword.exe.

For UNIX the default editor is vi. To change this, set the EDITOR envi-
ronment variable, say to emacs.

TMPDIR When you are using the Toolbox some temporary files are written on
your file system during syntax checking and pretty printing. These files are
written in /tmp or /usr/tmp (depending on your architecture). However,
the environment variable TMPDIR can be used to change this: set its value
to the name of the directory in which you want the temporary files to be
written.

OMNIORB USEHOSTNAME Not normally required, but in some circum-
stances may be required under Windows. If used, its value should be
127.0.0.1. See |] for details.

113

CSK VDM++ Toolbox User Manual

C.2 Interface Options

The following interface options can be set through the Edit and Print pane of the
Tool Options window which is opened by selecting the Tool Options (.f) item
from the Project toolbar/menu and which is shown in Figure 36:

External Editor: Options to define the external editor that can be invoked from
within the Toolbox.

Editor Name: The name of te external editor to use. Unix default value:
emacsclient. Windows default value: notepad. Note that it is not yet
possible to use Microsoft Word here directly.

Format to load single file: default value: +%1 %f

Format to load multiple files: default value: %f

Print command: default: 1pr Note: on the Windows platform it is not possi-
ble to use this at all because the pipe and print icons are not present at all.

114

VDM++ Toolbox User Manual CSK

] Tool Options

lFu:unt]

External Editor

[w Use external editor

Editor Mame: |G¥Program Files¥sakura¥sakuraexe

Format to load sinele file: |

[Editor suparts multiple filez in one editor

Format to load multiple files: |

%f expands to filenameXl expands to line number)

Print command:

% name of the frame; ¥d current date; %t current timed

v Save Optiohs Cancel Apply If

Figure 36: Setting Editor and Print Options

C.3 Multilingual Support

The Toolbox supports a range of fonts which allow a corresponding range of
scripts to be used both in the specification itself (i.e. in the names of the iden-
tifiers used in the specification) and in the more general text accompanying the
specification. The relevant language support should first be installed appropri-
ately at the level of the basic operating system (Windows or Unix) within which
the Toolbox is running, then the Toolbox can be configured to use this through
the Font pane of the Tool Options window (see Figure 37) which is invoked via
the Tool Options item (i) on the Project toolbar/menu. Press the Select Font
button in the Font pane of the Tool Options window to open a browser containing
a list of available fonts (at the level of the operating system) and select the font
you want. Finally, select the appropriate encoding from the Text Encoding menu

115

CSK VDM++ Toolbox User Manual

in the same pane.

-~

] Tool Options -‘

Edit and Print | Font:

Faont

Current font = M3 I Gothic

Select Font |

Text Encoding

Current encoding is: 515 |
Window Style

Current style is: Windows ﬂ

v Sawve Optionz Cancel | Apply | (0] 8

Figure 37: Setting Font Options

Note that the range of scripts available in the Toolbox is limited to those which
are supported by the general Qt interface. The possible selections offered when
setting the text encoding represent those currently supported.

116

VDM++ Toolbox User Manual CSK

D The Emacs Interface

The Emacs Interface is only supported on the different Unix platforms where the
Toolbox is available. The file vppde.el contains the Emacs macros which enable
one to get access to the Toolbox functionality directly from Emacs. The guided
tour from Section 3 can be followed by using the file mergesort.init instead of
the mergesort-init.rtf file.

After installing the Toolbox and updating your .emacs file as described in the
document |] you can run the Emacs editor.

From the Emacs editor call the VDM++ Development Environment (vppde)
by typing M-x vppde (Press the meta-key and the x-key and give vppde as the
argument). This can be done from any Emacs buffer. You will now be prompted
for a file name which must contain a VDM++ specification. Type mergesort.vpp

and press RETURN.

When vppde is started it will parse the input file and if some syntax errors
are discovered the Emacs window will be split into two. One half will contain
the mergesort.vpp file (from now on called the specification window) and the
other will be the command window for vppde (from now on called the command
window). The syntax errors are indicated directly in the specification window by
the marker =>.

This is similar to the explanation given in Section 3 and you can continue the
guided tour following that example. By typing help on the command line in the
command window you will also be able to get an overview of how the different
features can be accessed.

117

CSK VDM++ Toolbox User Manual

E Test Scripts for the Sorting Example

The test scripts shown here consist of two scripts:

e The specific test script that tests a single argument. It takes the name of
an argument file as parameter.

e The top level test script that loops over a number of arguments files. These
argument files can be organised in an entire directory hierarchy. For each
argument file it calls the specific test script with that file name.

The test scripts depend on the platform and thus this appendix is divided into
different parts depending upon the platform. More advanced test scripts can be
made. Those presented here are simple ones intended to demonstrate the basic
approach.

E.1 The Windows/DOS Platform

The top level test script is called vdmloop.bat and can be executed in a DOS com-
mand prompt. This file is available in the Toolbox distribution in the examples/
sort/test directory. It looks like:

Q@echo off
rem -- Runs a collection of VDM++ test examples for the
rem —-- sorting example

set SPEC1=..\DoSort.rtf ..\SortMachine.rtf ..\ExplSort.rtf
set SPEC2=..\ImplSort.rtf ..\Sorter.rtf ..\MergeSort.rtf

vppde -p -R vdm.tc %SPEC1% %SPEC2J
for /R J%f in (*.arg) do call vdmtest "%%f"

The test script, which takes one argument file, is called vdmtest.bat. This file
is also available in the Toolbox distribution. It looks like:

118

VDM++ Toolbox User Manual CSK

Qecho off

rem —-—- Runs a VDM test example for one argument file
rem -- Output the argument to stdout (for redirect) and
rem -- "con" (for user feedback)

echo VDM Test: ’%1’ > con

echo VDM Test: ’%1’

set SPEC1=..\DoSort.rtf ..\SortMachine.rtf ..\ExplSort.rtf
set SPEC2= ..\ImplSort.rtf ..\Sorter.rtf ..\MergeSort.rtf

vppde -i -R vdm.tc -0 %1.res %1 %SPEC1}, %SPEC2%
rem —- Check for difference between result of execution and
rem -- expected result.

fc /w %l.res %1.exp

rend

The reason for defining both SPEC1 and SPEC2 instead of simply one variable is
to avoid one very long line.

E.2 The UNIX Platforms

The top level test script is called vdmloop and can be executed in a normal shell.
This file is available in the Toolbox distribution in the examples/sort/test
directory. It looks like:

#!1/bin/sh

Runs a collection of VDM++ test examples for the sorting example.
SPEC="../dosort.vpp ../implsort.vpp ../sorter.vpp ../explsort.vpp \
. ./mergesort.vpp ../sortmachine.vpp"

Generate the test coverage file vdm.tc
vppde -p -R vdm.tc $SPEC

Find all argument files and run them on the specification.
find . -type f -name *.arg -exec vdmtest {} \;

119

CSK VDM++ Toolbox User Manual

The test script, which takes one argument file, is called vdmtest.bat. This file
is also available in the Toolbox distribution. It looks like:

#!/bin/sh
Runs a VDM test example for one argument file.

Output the argument to stdout (for redirect) and
"/dev/tty" (for user feedback)

echo "VDM Test: ’$1’" > /dev/tty

echo "VDM Test: ’$1°"

SPEC="../dosort.vpp ../implsort.vpp ../sorter.vpp ../explsort.vpp \
. ./mergesort.vpp ../sortmachine.vpp"

Run the specification with argument while collecting
test coverage information, and write the result to an
output file.

vppde -i -R vdm.tc -0 $1.res $1 $SPEC

Check for difference between result of execution
and expected result.
diff -w $1.res $1l.exp
if test $? = 0 ; then
echo "SUCCESS: Result equals expected result" > /dev/tty
echo "SUCCESS: Result equals expected result"
else
echo "FAILURE: Result differs from expected result" > /dev/tty
echo "FAILURE: Result differs from expected result"
fi

120

VDM++ Toolbox User Manual CSK

F Troubleshooting Problems with Microsoft Word

Breakpoints on lines
The VDM.dot Word template file included in the VDMTools distribution
includes a special macro enabling the setting of breakpoints on lines inside
functions and operations. However this has only been included from version
v7.0 of the VDM++ Toolbox. The macro can be activated by pressing
Control-Alt-spacebarwhen the cursor is placed on the desired line in an
RTF file which is included in the current project.

1. Before activating the macro the Toolbox interpreter must be initialised
by pressing the Init button.

2. Maybe you have forgotten to move the VDM.dot file into the template
directory used by Word; usually this is

C:\Program Files\Microsoft Office\Templates

3. The document you are using may not have VDM.dot as its template.
This can be checked using the Files->Properties facility inside Microsoft
Word. If you are not using VDM.dot make sure that the macro is copied
over to the template you wish to use instead.

Finding the test coverage file
If the test coverage file cannot be included correctly it could be because
you are using files which are placed on a Unix server which is accessed
from Windows via Samba. In this situation it is currently not possible
to correctly distinguish between upper and lower case letters used in file
names, so you should make sure that all file names are using lower case.

121

CSK VDM++ Toolbox User Manual

G Format for Priority File

Priority files should have the following format:

priority file = priority entry { ‘;’, priority entry } 4’ ;
priority entry = class name ‘:” numeral ;

numeral = digit, { digit } ;

digit = 0" |1 |27 |3 |4 |5 |6 |7 |8 |9 ;

122

VDM++ Toolbox User Manual

Index
$$. 65, 67, 71, 74

priorityfile command, 76
types command, 48
values command, 48
VDM. dot file, 7
break command, 63
rtinfo command, 33
VDM. dot file, 65
next command, 54, 60
pwd command, 35
tcov reset command, 33
vpp.sty file, 84
.vppde file, 50
.emacs file, 116
VDM.dot file, 84, 120
vppde , 116

command line options, 71
backtrace command, 73
break command, 64, 73, 74
classes command, 48
codegen command, 90
cont command, 74
cquit command, 49
create command, 63, 65, 74
curthread command, 64, 65, 74, 76
debug command, 23, 63, 65, 74
delete command, 63
delete command, 65, 74
destroy command, 63, 66, 75
dir command, 49
disable command, 66, 75
enable command, 66, 75
finish command, 75
first command, 54, 59
functions command, 48
help command, 48
info command, 48
init command, 66, 75

CcsSK

instvars command, 48
javacg command, 93

last command, 54, 60

latex command, 87

objects command, 63, 66, 75
operations command, 48
option command, 76

popd command, 66, 75
previous command, 54, 60
print command, 23, 63, 66, 75
priorityfile command, 67
pwd command, 49

quit command, 49

read command, 53

remove command, 76

rtinfo command, 96

script command, 49
selthread command, 64, 67
set full command, 60

set command, 60
singlestep command, 78
stepin command, 78

step command, 78

system command, 49

tcov write command, 33
tcov read command, 68
tcov read command, 78
tcov reset command, 68, 79
tcov write command, 68
tcov write command, 79
tcov command, 68, 78
threads command, 64, 67, 78
typecheck command, 59
unset full command, 60
unset command, 79

vdmgde command, 8, 38

Breakpoints, 22, 65, 74
Deleting, 25, 62, 63, 65

123

CSK

VDM++ Toolbox User Manual

Disabling, 25, 62, 66, 75
Enabling, 25, 62, 66, 75
Ignoring, 23, 63, 73
Removing, 76

Setting, 22, 63, 64, 73, 74
Setting in Microsoft Word, 65

C++ Code Generation, 36
C++ Files, 89
Call stack, 23
Call stack, 24, 61
Class View, 10
Code Generation, =
C++ Code Generation;
Java Code Generation
Command Line Interface, 47
C—++ code generator, 89
Debugger, 71
Initialisation File, 49
Interpreter, 71
Java code generator, 92
Pretty Printer, 86
Starting, 47
Syntax Checker, 52
Type Checker, 58

Dynamic Type Checking, =
Type Checking, Dynamic

Emacs Interface, 116
Error List, 10, 12, 51, 56
External Editor, 14, 46

Functions
Implicit, 61
Precondition, 21

Graphical User Interface, 38
Starting, 8, 38

Help, 9, 47

Input
Creating, 7

Formats, 1

Multilingual, 1
Integrity Properties, 27
Interpreter, 20

Commands, 62

Initialising, 21, 62, 63

Stopping, 65, 67
Interpreter Window, 10, 20, 61
Invariant Checking, 27

Java Code Generation, 36
Java Files, 93

License, 36, 89, 91
Log Window, 10

Manager, 10, 39
Non-executable Constructs, 22

Possible Well-formedness, 89, 93
Postcondition Checking, 27, 69, 72
Precondition Checking, 27
Precondition Checking, 69, 72
Precondition Functions, =
Functions, Precondition

Pretty Printing, 34

Comments, 111

Example, 108

Indexes, 110

Setting up BTEX document, 108
Priority File

Format of, 121
Project, 39

Adding files, 10
Project View, 10

Source Window, 10
Status Information, 15
Syntax Errors, 12
Syntax Checking, 15
Syntax Errors, 51, 116
Correcting, 13

124

VDM++ Toolbox User Manual

CcsSK

Format, 52
SyntaxChecking, 11

Temporary Files, 112
Test Coverage, 33
Test Coverage, 94, 97
Environments, 101
Examples, 97
File, 33, 86, 94
Test suite, 33, 94
Test Suite, =
Test Coverage, Test suite
Testing, =
Test Coverage
TMPDIR, 112
Type Checking, 15, 55
Dynamic, 26, 72
Type Correctness, =
Possible Well-formedness;
Definite Well-formedness
Type Errors, 56

VDM Standard, 1

Well-formedness, =
Possible Well-formedness;
Definite Well-formedness

125

