An Introduction to Relational
Hylomorphisms
DI/UM, 2002

Jo<£ N. Oliveira
Dept. Informatica
Universidade do Minho, 4700 Braga, Portugal
jno@di.uminho.pt

irhsl.tex — n. 1/45

“How"” does one specify?

General problem solving strategy?

Problem >

irhsl.tex — n. 2/45

“How"” does one specify?
Divide-and-congquer

divide (analysis)

.
Problem > @b-proble@

irhsl.tex — n. 2/45

“How"” does one specify?
Divide-and-congquer

divide (analysis)

.
Problem > @b-proble@

solve
sub-problems

_Sub-solutions >

irhsl.tex — n. 2/45

“How"” does one specify?
Divide-and-congquer

divide (analysis)

T~
Problem > @b—proble@

solve
sub-problems
CSolution > _Sub-solutions_>

combine (synthesis)

irhsl.tex — n. 2/45

Divide-and-conquer (formally)

Problem space

Solution space

irhsl.tex — n. 3/45

Divide-and-conquer (formally)

Sub-problem structure

Divide \

-F A

Solve

irhsl.tex — n. 3/45

Divide-and-conquer (formally)

Divide

FA
Solve

B - F B
C'onquer

irhsl.tex — n. 3/45

Divide-and-conquer (formally)

Divide

FA
Solve F Solve

B - F B
C'onquer

irhsl.tex — n. 3/45

Divide-and-conquer (formally)

Divide
-F A
Solve F Solve
B -~ FB
C'onquer

Questions:
= What are the mathematics of Divide, Conquer, Solve?

m What do (F A), (F Solve) mean?

irhsl.tex — n. 3/45

Relators

Symbol F is overloaded:

= F A means a (parametric) datatype , eqg. A* —
seq of A In VDM-SL;

m F X means a relation

A FA
X| | FX
B F B

Example: X* will be such that

(X)) = lenl=lenl" A Vieindsl.(li)X(I' 1)

irhsl.tex — n. 4/45

Properties of relators

Every relator F IS monotone,

RCS = (FR)C(FS)

and commutes with ()

Terminology:

F(R-95)
Fid
F(R”)

, (_)° and id:

(FR) - (FS)
id
(FR)”

irhsl.tex — n. 5/45

Properties of relators

Every relator F IS monotone,
RCS = (FR)C(FS)
and commutes with (-) , (_)° and id:

F(R-S) = (FR)-(FS)
Fid = id
F(R°) = (FR)

Terminology:

R
A - F A is called an F-algebra

irhsl.tex — n. 5/45

Properties of relators

Every relator F IS monotone,
RCS = (FR)C(FS)
and commutes with (-) , (_)° and id:

F(R-S) = (FR)-(FS)
Fid = id
F(R°) = (FR)

Terminology:

A——F A is called an F-coalgebra

irhsl.tex — n. 5/45

Back to divide-and-conquer

Divide-and-conquer = relational hylomorphism

S
A—FA

that is, X=R-(FX)-S
X FX

B——FB
R

How do we solve this (hylo) equation for X?

irhsl.tex — n. 6/45

An example first

mergeSort: seq of int -> seq of int
mergeSort(l) ==
cases | :
le] -> [e] ,
others -> let 11 ~ 2
In set {l} be st
abs (len 11 - len 12) < 2 in
Imerge(mergeSort(l1), mergeSort(12))
end,;

IS a relational hylomorphism for

FX = Int +X xX

irhsl.tex — n. 7/45

In fact

seq of iInt. ——Fseq of Int

mergeSort F mergeSort

seq of Int ?Fseq of Int
that Is,

mergeSort = R - (FmergeSort)-S

where R = [singl ,lmerge] , for singl = e.|e]

irhsl.tex — n. 8/45

mergeSort algebra and coalgebra

and S Is

S: seq of int -> (int | seq of int * seqg of int)
S(l) ==
cases | :
[e] > e,
others -> let 11 ~ 12
in set {I} be st
abs (len 11 - len 12) < 2 in
mk_(11,12)
end,;

irhsl.tex — p. 9/45

Equations and fixpoints

Given an equation of pattern

r = f«x

where A - A for some A, we will say that any

solution to this equation — that is, any ay € A such
that

ap = [ag

IS a fixpoint of f.

irhsl.tex — n. 10/45

Equations versus recursion

Equation x = f x can also be regarded as a
“recursive” definition of its fixpoints, eq.

=1+ % IS a recursive definition of number 2.
However,

r = % has two solutions (=fixpoints) 1 e 3.

What are we “recursively defining” here?
Furthermore, » = = defines any object!

Last but not least, some equations don’t have
any solution at all. Thinkeg. of v =2 + 1 In IV.

irhsl.tex — p. 11/45

Solving (Fixpoint) Equations |

<
let A——— Abea partial order . Then, every

a € A such that

a <afa

IS said to be a post-fixpoint of f, and every a € A
such that

a >4 fa

IS said to be a pre-fixpoint of f. Clearly,

Every a € A which is both a pre-fixpoint and
a post-fixpoint of f Is a fixpoint of f.

irhsl.tex — n. 12/45

Solving (Fixpoint) Equations Il

Function B - A IS monotone wherever
f-<u € <p-f

for partial orders <4 and <g, that is:

J-<a C <p-f

{ shunting }

<a C f°-<p-f

{ going pointwise }

a<sd = (fa)<p(fd)

irhsl.tex — n. 13/45

Solving (Fixpoint) Equations Il

L . | /g
Pointwise ordering on functions B -~ A:

f<pg = f C <p-g

meaning

f € <p-yg
{ shunting }

id C 7 <p-g

fﬁBQ

{ going pointwise }

Va.fa <g ga

irhsl.tex — n. 14/45

Solving (Fixpoint) Equations IV

Lattice fixpoint theorem (Tarski 1955) for monotone
f as above and <4 defining a complete lattice

= The set of all fixpoints of f,
P={ac€A|la= fa}

IS non-empty and (P; <,) is a complete
(sub)lattice.

= The least of all fixpoints (/\ P) and the greatest
one (\/ P) are as follows:

pf = AP = Nazlz= fa]
vf = VP = V{z|z <4 fa}

irhsl.tex — n. 15/45

Solving relational equations

Hylo-equation X=R-(FX)-S
f X
and other relational equations such as
X=RU 12{(- X
g

(cf. transitive closure) have least solutions

uf = [R,S]
pg = RY

because both f, g are monotone.

irhsl.tex — n. 16/45

Laws of the Fixpoint Calculus

Computation rule:

pf = fuf

Example: hylo-cancellation law
|R,S] = R-F|R,S]-S
Rolling rule:

u(g-h) = g(u(h-g))

Example: f =¢g-hwhere h X = R- X and
gX = RUX. Then

irhsl.tex — n. 17/45

Rolling rule

pf = wlg-h)
= { rolling rule }

g(u(h - g))
— { definitions of g, i }
RU (px.(R-(RUx))
— { (R-) is a lower-adjoint }

RUux.(RPUR - x)

Further application of this rule will “factor out” R?, 3, etc., In

the limit, uf = J2, 7 = R™.

irhsl.tex — n. 18/45

Hylo rolling rule

Let f=¢g-hwhere h X =FX-Sandg=(R-). Then

uf = plg-h) = glu(h-g))
— { definitions of g, h }
R- (uX.(F(R-X) - 5)
{ relators }

R-(uXFR-FX-5)

that is,

|R,S] = R-|FR,S]

irhsl.tex — n. 19/45

Other rules

Square rule:

pf = u(f?)

Monotonicity:

f<g = nf<pg
Thus
[TUJC[RS] « TCRAUCS

irhsl.tex — n. 20/45

Other rules

Induction rule:
uf <z < fx<zx
Thus
|R,S|CT <« R-FT-SCT
and, in particular (coreflexive hylos):

|R,S|Cid <« R-SCid
| R,R°]| Cid <« Rissimple

Last — but not least — ;/-fusion :

irhsl.tex — n. 21/45

u-fusion theorem

L et
fb
A B
g| | h
A B
fb

= h, g be monotonic,
m (A, <)and (B,C) be complete lattices

= f” be a lower-adjoint.
Then

Pluh)=pg < f-h=g-f

irhsl.tex — n. 22/45

Applications of u-fusion theorem

Converse of a hylo
[[SvR]]o — [[Rovso]]
Proof: let f* = (_)° and

hX = §5-
gX =T -FX-U

that Is,

irhsl.tex — n. 23/45

Proof

Then
[S,R]"=[T,U]
= { p-fusion theorem }

(S-FX-R)°=T-F(X°)-U

{ converse and F is a relator }
R°-FX°.-S°=T-FX°.U
= { Leibniz }

RR=T AN S°=U

irhsl.tex — n. 24/45

Hylo(cata)-fusion

V-ISR|=|[T,R] <« V.-S=T-(FV)
Proof: since (V-) = (V\)",

V- [S,R]|=[T R]
= { p-fusion theorem }
V- (S-FX-R=T-F(V-X)-R

{ associative (-) and relator F }
(V-S)- FX-R=T-(FV)-(FX)-R
= { Leibniz }

V.S=T- -(FV)

irhsl.tex — n. 25/45

Hylo(ana)-fusion

|SSR|-V=|SU] « R-V=FV.-U
Proof: (V) = (/V)’. Then

[|SSR]-V=[S5U]
= { p-fusion theorem }
(S FX-R)-V=S-F(X-V)-U

{ associative (-) and relator F }
S-FX-(R-V)=S-(FX)-(FV)-U
= { Leibniz }

R-V=FV.-U

irhsl.tex — n. 26/45

Examples: VDM collective types

Ins®
setof A -1+ A xsetof A
{|R]} id +id x {| R}
B -~ 1+ Ax B
R

that Is,
{Rl} = [R,Ins°] where [ns ¥ [0, Puts]

and ...

irhsl.tex — n. 27/45

VDM-SL collective type set of A

Putsf@A] : @A +* set of @A -> set of @A
Puts(e,s) == {e} union s
pre not e in set s ;

Pointfree version (for R = [u , f]):

shylo[@A,@B] : (@A @B -> @B)* @B -> set of @A -> @B
shylo(f,u)(s) ==
if s={} then u
else let a in set s,
r = s \ {a}
in f(a,shylo[@A,@B](f,u)(r));

irhsl.tex — n. 28/45

VDM-SL collective type set of A

= For shylo(f,u) to be a function the following
must hold:

fla, f(a',0)) = f(d, f(a,b))
m Fusion law
T-{R}={S} < T-R=5-(FT)

arises from hylo(cata)-fusion
m The reflection law holds:

{{Ins]} = id

irhsl.tex — n. 29/45

Relational cata(ana)morphisms

Define
(R) = [R,in"]
(5) = [, 5]
wn”
where ,F ~— =~ FuF . Forinstance,
~—'
i

elems = (|ins))

irhsl.tex — n. 30/45

Relational cata(ana)morphisms

From
[[SvR]]O — [[Rovso]]
Infer
(S)
= [in,S]”
= [S°,in°]
= (5°)°

(=ana Is the converse of the cata of the converse)

irhsl.tex — n. 31/45

Inductive coreflexives

Recall
|R,S|Cid <« R-SCid
which entails
(R) Cid <= R Cin
that Is,
(in-S) Cid <« SCid

Example (on finite lists):

def

[sOrdered = (jin - (id + ok)))

irhsl.tex — n. 32/45

Inductive coreflexives

where ok Is the coreflexive induced by predicate

ok(a,x) == forall b in set elems x & a <= Db

This leads to

1sOrdered

inil ,cons - ok| -

(¢d + id x IsOrdered) -

nil , cons|’

= |nil ,cons - ok - (id x IsOrdered)| -

- .
nil , cons

irhsl.tex — n. 33/45

Inductive coreflexives

...and, finally, to

IsOrdered(l) ==
if | =]
then true
else (forall b in set elems tI | & hd | <= b) and
IsOrdered (tl 1) ;

Exercise: calculate the above from (jin - (id + ok)))

irhsl.tex — n. 34/45

VDM-SL datatype map Ato B

[O
map A to C 14 (AxC)xmapAto C
(R} id +id x (id, {1
B - - 1+ (AxC)x B

leading to the following pointwise syntax:

irhsl.tex — n. 35/45

VDM-SL datatype map Ato B

mhylo[@A,@B,@C] : (@A*@&€@B -> @B)* @B ->
map @A to @C ->
@B
mhylo(f,u)(M) ==
if M={|]->} then u
else let a in set dom M,
¢ = M(a),
R ={a} < M
in f(c,mhylo[@A,@B,@C](f,u)(R));

irhsl.tex — n. 36/45

Hylos as unigque solutions

A standard result of the relational calculus
establishes the following condition for

uX.(R-FX-95)

to be a unigue solution:

the “accessibility relation” of S' is required to be
iInductive (cf. “well-founded” relations)

This ensures termination Insofar as the “size”
of a sub-problem generated by S Is strictly
smaller than its source.

One can perform induction over S.

irhsl.tex — p. 37/45

Accessibility and membership

Accessibility relation for F A A:
=S
A A
-<Sd§f Eg- S
CF -

where A F A extends A <—— P A inductively over
polynomial functors, as follows:

cr ¥ ¢
ce ¥ 1
Sxx = id
CFxG < (€r 1) U (€g -m2)

@E Y e _ [@E R Fr‘] irhsl.tex — n. 38/45

Example

LetF X =1+ B x X. Then,

C1+BxX

- { € for coproduct bifunctor }

(€1, €Bxx]

— { € for constant and product (bi)functors }
L, (€p m)U (Exx.x ‘m2)]

= { € for constant and identity functor }
[J_ : (J_ . 7'('1) U (Zd . 7T2)]

— {Land [R,S]=(R-i})U(S-5) }

7'('2'28

irhsl.tex — n. 39/45

Example (pointwise)

Then,
<5 = €11Bxx S
— (7’(’2 ‘ Z;) .S
= Ty - (ZS . S)
meaning
a <sa = d =mx N (iy x)Sa

For example, for S = [nil , cons]|” on finite
sequences, we get

irhsl.tex — n. 40/45

Accessibility on finite sequences

o - (ig - [nil , cons]”)
= 79 - (|nil ,cons| - iy)°

— 9 - CONS"

and therefore

a' = my(b,a’) N a = cons(b,a)

b,a’)

/
a '<[mjl cons]® &

N\

/
a <[mjl cons]® COTLS

tla '<[

nil ,cons|® &

irhsl.tex — n. 41/45

Hylo factorization (2)

For such inductive S, we can factor | R, SZ]Llin two

components Py

pk = F(uF)
N——
S n°

A ~F A
X1 F X,

uF ——F uF X1 = in - FXq-8
X F X5

B F B

irhsl.tex — n. 42/45

Hylo-factorization Theorem

Using (|_J), |(_) notation:

pX.(R-FX-S5)=(R)-[5)

(5) \,
pk =

(R

S

m

R

| FIS)
F uF

F ()
F B

Hylo-factorization Theorem

Taking converses:
pX.(R-FX-5% = (R)-(S)
S

A < FA
(1S])° F(S)”
7 Zn 7
LF - F uF
(R F(R)
B - F B

R

irhsl.tex — n. 43/45

Hylo-factorization Theorem

Entire /simple factorization if both R and S° are
entire /simple (=S surjective /injective)

A -

()" |

puk -

(R

S

m

R

FA
F(S)”
F uF

F ()
FB

irhsl.

tex — n. 43/45

Virtual data-structuring

= Particular choice of F for sub-problem
organization induces intermediate type uF.

This Is made explicit by hylo-factorization.

= Intermediate data-structure saves the outcome
of a “one go” divide step (|S))” and passes it on

to the conquer step (| Rz|) for processing.

= In general, people “fuse” things very early In
design, thus virtualizing this structure.

= Factorization helps in spec understanding and
classification .

irhsl.tex — n. 44/45

Final note on iInductive relation <

Is such that the validity of a predicate ¢ can be
proved by structural induction over It:

Va. pa) <= (Va.pa<= (Ve<a. ¢c))
—— —,—,—_—_—_.—
Induction step

which corresponds to pointfree definition
<\RCR = TCR

where R generalizes ¢ such that ¢ a = aRb, for
some fixed b.

irhsl.tex — n. 45/45

	«How» does one specify?
	«How» does one specify?
	«How» does one specify?
	«How» does one specify?

	Divide-and-conquer (formally)
	Divide-and-conquer (formally)
	Divide-and-conquer (formally)
	Divide-and-conquer (formally)
	Divide-and-conquer (formally)

	Relators
	Properties of relators
	Properties of relators
	Properties of relators

	Back to divide-and-conquer
	An example first
	In fact
	$mergeSort$ algebra and coalgebra
	Equations and fixpoints
	Equations versus recursion
	Solving (Fixpoint)
Equations I
	Solving (Fixpoint)
Equations II
	Solving (Fixpoint)
Equations III
	Solving (Fixpoint)
Equations IV
	Solving relational equations
	Laws of the Fixpoint Calculus
	Rolling rule
	Hylo rolling rule
	Other rules
	Other rules
	$mu $-fusion theorem
	Applications of $mu $-fusion theorem
	Proof
	Hylo(cata)-fusion
	Hylo(ana)-fusion
	Examples: VDM collective types
	VDM-SL collective type $vdmslSet A$
	VDM-SL collective type $vdmslSet A$
	Relational cata(ana)morphisms
	Relational cata(ana)morphisms
	Inductive coreflexives
	Inductive coreflexives
	Inductive coreflexives
	VDM-SL data type $vdmslMap A B$
	VDM-SL data type $vdmslMap A B$
	Hylos as unique solutions
	Accessibility and membership
	Example
	Example (pointwise)
	Accessibility on finite sequences
	Hylo factorization (2)
	Hylo-factorization Theorem
	Hylo-factorization Theorem
	Hylo-factorization Theorem

	Virtual data-structuring
	Final note on inductive relation $prec $

