Theorems for Free: an Introduction

José N. Oliveira
Dept. Informatica
Universidade do Minho, 4700 Braga, Portugal

jno@di.uminho.pt

DI/UM, 2003-06
May 23, 2006

Parametric polymorphism: why?

Less code (specific solution = generic solution +
customization)

Intellectual reward

Last but not least, quotation (from Theorems for free!l, by Philip
Wadler [?]):

From the type of a polymorphic function we can derive
a theorem that is satisfies. (...) How useful are the
theorems so generated? Only time and experience will
tell (...)

No doubt: free theorems are very useful!

Polymorphic type signatures

Polymorphic function signature:
fo:t

where ¢ is a functional type, according to the following “grammar” of
types:

t o= t—t"
t u= F(t1,...,tn)
t = w type variables v, cf. polymorphism

What does it mean that f is parametrically polymorphic?

Free theorem of type ¢

Let

V' be the set of type variables involved in type ¢

{R,},cy be a V-indexed family of relations (f, in case all such
R, are functions).

e R; be a relation defined inductively as follows:
Ri—rty,..tyy = F(Rey,...,Re,)
Rt:'[} - R'U
Rt:t/Ht” = Rt/ «— Rt”

o What kind of relation is Ry < Ry ?

Reynolds arrow operator

f(R=S)g = f-SCR-g A<>—p
1
CTD
S
That is to say, ATB
C<~—D
- R<—S5
OA(_DB
For instance, f(id<—id)g = f=g thatis, id—id = id

Free theorem (FT) of type t

The following (remarkable) theorem — due to J. Reynolds and
advertised by P. Wadler — holds:

Given any function 0 : t, and V' as above, then 0 R, 0
holds, for any relational instantiation of type variables in V.

Note that this theorem
® is a result about ¢
e holds independently of the actual definition of 6.

e holds about any function of type ¢

First example

e The target function: 0 = invl : a* — a*.

e Calculation of Rj—g+ g+:

Ror_or

= { rule Ri—pyr = Ry —Rpy }
Rgx — Rg»

= { rule Ri—gt,..t,) = F(Ry,....R:,)
R, — R,*

e Calculation of FT invl (Rgx—q+) invl follows

invl FT calculation

The FT itself will predict (R, abbreviated to R):
invl(R* +— R”)invl
= { definition f(R—S)g = f-SCR-g }
invl - R* C (R”) - invl

In case R is a function r, the FT theorem boils down to invl's natural
property:

. * . .
invl - r = r -invl

Further calculation (back to R):

Pointwise version of FT

invl - R* C R* - invl

{ shunting rule }

R* Cinvl® - R* - invl

{ going pointwise }
(R*)r = (invl I)(R*)(invl r)

{ pointwise definition of R* }

Vi € inds I.(L i)R(r i) = (invl I)(R*)(invl)

Pointwise version of FT

For example, invl will respect orderings:

Vi € inds 1.(1 i) < (r4)
= Vj € inds(invl 1).(invl 1)j < (invl 7)j

Exercise: calculate the FT of
sort :a* —a* — (2 (a x a))

(the first parameter stands for the ordering relation.)

Second example: FT of (_|

e (- has generic type
() :b—Fae—(be—B(ab)
where Fa 2 B (a, Fa).
o FT-():
(- - (Rp —B(Ra,Rp)) S (Rp—FRa)- ()

e FT-(_) calculation follows (R,, Ry abbreviated to R, S):

FT-(_) corollaries

(-)-(S<=B(R,S) S (§<FR)-()

= { definition f(R—S)g = f-SCR-g }
f(5<=B(R,S)g = (SIS —FR)(g)
= { idem }

f-B(R,S)CS-g = (f)-FRCS-(g)

At this point, we can infer ...

FT-(_) corollaries

From this, infer
o (_)-fusion (R, S :=id, s):
(f-Blid,s)=s5-g9) = (f)=s(g)
e (_)-absorption (R, S := r,id):

(f-B(rid)=g) = (f)-Fr=1(g)

= { replacement of ¢ }

(f)-Fr=(f-B(r/id)

Bibliography

[Wad89] P. Wadler. Theorems for free!l In 4th International
Symposium on Functional Programming Languages and
Computer Architecture, London, Sep. 1989. ACM.

