
Theorems for Free: an Introduction

José N. Oliveira
Dept. Informatica

Universidade do Minho, 4700 Braga, Portugal
jno@di.uminho.pt

DI/UM, 2003-06

May 23, 2006

Parametric polymorphism: why?

• Less code ( specific solution = generic solution +
customization )

• Intellectual reward

• Last but not least, quotation (from Theorems for free!, by Philip
Wadler [?]):

From the type of a polymorphic function we can derive

a theorem that is satisfies. (...) How useful are the

theorems so generated? Only time and experience will

tell (...)

• No doubt: free theorems are very useful!

1



Polymorphic type signatures

Polymorphic function signature:

f : t

where t is a functional type, according to the following “grammar” of
types:

t ::= t′← t′′

t ::= F(t1, . . . , tn)

t ::= v type variables v, cf. polymorphism

What does it mean that f is parametrically polymorphic?

Free theorem of type t

Let

• V be the set of type variables involved in type t

• {Rv}v∈V be a V -indexed family of relations (fv in case all such
Rv are functions).

• Rt be a relation defined inductively as follows:

Rt=F(t1,...,tn) = F(Rt1 , . . . , Rtn
)

Rt=v = Rv

Rt=t′←t′′ = Rt′ ←Rt′′

• What kind of relation is Rt′ ← Rt′′?

2



Reynolds arrow operator

f(R← S)g ≡ f · S ⊆ R · g A

f

��

B
Soo

g

��

C D
R

oo

That is to say, A B
S

C D
R

CA DB

R← S

For instance, f(id← id)g ≡ f = g that is, id← id = id

Free theorem (FT) of type t

The following (remarkable) theorem — due to J. Reynolds and
advertised by P. Wadler — holds:

Given any function θ : t, and V as above, then θ Rt θ

holds, for any relational instantiation of type variables in V .

Note that this theorem

• is a result about t

• holds independently of the actual definition of θ.

• holds about any function of type t

3



First example

• The target function: θ = invl : a⋆← a⋆.

• Calculation of Rt=a⋆←a⋆ :

Ra⋆←a⋆

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra⋆ ←Ra⋆

≡ { rule Rt=F(t1,...,tn) = F(Rt1 , . . . , Rtn
) }

Ra
⋆← Ra

⋆

• Calculation of FT invl (Ra⋆←a⋆) invl follows

invl FT calculation

The FT itself will predict (Ra abbreviated to R):

invl(R⋆←R
⋆)invl

≡ { definition f(R← S)g ≡ f · S ⊆ R · g }

invl · R⋆ ⊆ (R⋆) · invl

In case R is a function r, the FT theorem boils down to invl’s natural
property:

invl · r⋆ = r
⋆ · invl

Further calculation (back to R):

4



Pointwise version of FT

invl ·R⋆ ⊆ R
⋆ · invl

≡ { shunting rule }

R
⋆ ⊆ invl

◦ ·R⋆ · invl

≡ { going pointwise }

l(R⋆)r ⇒ (invl l)(R⋆)(invl r)

≡ { pointwise definition of R⋆ }

∀i ∈ inds l.(l i)R(r i) ⇒ (invl l)(R⋆)(invl r)

Pointwise version of FT

For example, invl will respect orderings:

∀i ∈ inds l.(l i) < (r i)

⇒ ∀j ∈ inds(invl l).(invl l)j < (invl r)j

Exercise: calculate the FT of

sort : a⋆← a⋆← (2← (a× a))

(the first parameter stands for the ordering relation.)

Second example: FT of (| |)

• (| |) has generic type

(| |) : b← F a← (b← B (a, b))

where F a ∼= B (a, F a).

• FT-(| |):

(| |) · (Rb← B (Ra, Rb)) ⊆ (Rb← FRa) · (| |)

• FT-(| |) calculation follows (Ra, Rb abbreviated to R, S):

5



FT-(| |) corollaries

(| |) · (S← B (R, S)) ⊆ (S← FR) · (| |)

≡ { definition f(R← S)g ≡ f · S ⊆ R · g }

f(S← B (R, S))g ⇒ (|f |)(S← FR)(|g|)

≡ { idem }

f · B (R, S) ⊆ S · g ⇒ (|f |) · FR ⊆ S · (|g|)

At this point, we can infer . . .

FT-(| |) corollaries

From this, infer

• (| |)-fusion (R, S := id, s):

(f · B (id, s) = s · g) ⇒ (|f |) = s · (|g|)

• (| |)-absorption (R, S := r, id):

(f · B (r, id) = g) ⇒ (|f |) · F r = (|g|)

≡ { replacement of g }

(|f |) · F r = (|f · B (r, id)|)

Bibliography

[Wad89] P. Wadler. Theorems for free! In 4th International

Symposium on Functional Programming Languages and

Computer Architecture, London, Sep. 1989. ACM.

6


