
IFAD
IF

A
D

VDMTools 

The VDM Toolbox API

How to contact IFAD:

☎ +45 63 15 71 31 Phone

+45 65 93 29 99 Fax

✉ IFAD Mail
Forskerparken 10A
DK - 5230 Odense M

http://www.ifad.dk Web
ftp.ifad.dk Anonymous FTP server

@ toolbox@ifad.dk Technical support
info@ifad.dk General information
sales@ifad.dk Sales and pricing

The VDM Toolbox API — Revised for VDM++ V6.6

c© COPYRIGHT 2000 by IFAD

The software described in this document is furnished under a license agreement.
The software may be used or copied only under the terms of the license agreement.

This document is subject to change without notice

The VDM Toolbox API

Contents

1 Introduction 1

2 CORBA - The Basics 2
2.1 IDL . 2

3 The VDM Toolbox API 3
3.1 IDL Description of The Tool API 3

3.1.1 VDMProject . 4
3.1.2 VDMModuleRepos . 4
3.1.3 VDMParser . 5
3.1.4 VDMInterpreter . 6
3.1.5 VDMErrors . 8

3.2 IDL Description of VDM Values 9
3.2.1 VDM Values as Distributed Objects 11
3.2.2 Using Values Returned from the Interpreter 12
3.2.3 Constructing VDM Values in the Client 13
3.2.4 Converting Distributed VDM Values to “real” VDM C++

Values . 14
3.3 Handling of Exceptions . 14

4 Writing a C++ Client 16
4.1 Choosing a CORBA Implementation 16
4.2 Implementing a Client . 17

4.2.1 Initializing the CORBA Services 17
4.2.2 Acquiring the Application Object 18
4.2.3 Object References in C++ 20
4.2.4 Configuring the Current Project 20
4.2.5 Using the Parser . 21
4.2.6 Using the Type Checker 22
4.2.7 Using the Interpreter 22
4.2.8 Additional Aspects of the Example 24

4.3 Compiling the Client . 24
4.3.1 Supported Compilers 25

4.4 Running the Client . 25

5 Writing a Java Client 26
5.1 Choosing a CORBA Implementation 26
5.2 Implementing a Client . 27

5.2.1 Importing CORBA Services 27
5.2.2 Acquiring the Application Object 27

i

The VDM Toolbox API

5.2.3 Configuring the Current Project 30
5.2.4 Using the Parser . 30
5.2.5 Using the Type Checker 31
5.2.6 Using the Interpreter 32
5.2.7 Additional Aspects of the Example 34

5.3 Compiling the Client . 34
5.4 Running the Client . 35

6 API Reference Guide 36
6.1 Corba API . 36

6.1.1 Types . 36
6.1.2 Error Structure . 36
6.1.3 ModuleStatus Structure 37
6.1.4 VDMApplication Interface 37
6.1.5 VDMCodeGenerator Interface 38
6.1.6 VDMErrors Interface 39
6.1.7 VDMInterpreter Interface 39
6.1.8 VDMModuleRepos Interface 43
6.1.9 VDMParser Interface 44
6.1.10 VDMPrettyPrinter Interface 45
6.1.11 VDMProject Interface 45
6.1.12 VDMTypeChecker Interface 46

6.2 VDM API . 46
6.2.1 Types . 47
6.2.2 VDM::VDMGeneric Interface 47
6.2.3 Basic VDM Types . 48
6.2.4 VDM::VDMMap Interface 49
6.2.5 VDM::VDMRecord Interface 50
6.2.6 VDM::VDMSequence Interface 50
6.2.7 VDM::VDMSet Interface 51
6.2.8 VDMTuple Interface 52
6.2.9 VDMFactory Interface 53

6.3 Exceptions . 53
6.4 C++ API Reference . 54

6.4.1 corba client.h . 54
6.4.2 Naming Conventions 56
6.4.3 Casting . 56

6.5 Java API . 56
6.5.1 Helper Classes . 57
6.5.2 Holder Classes . 58

ii

The VDM Toolbox API

7 Recommended Reading 59

8 References 59

A Example Programs 60
A.1 The C++ Client Example . 60
A.2 The Java Client Example . 69

iii

The VDM Toolbox API

iv

The VDM Toolbox API

1 Introduction

This document describes how to use the CORBA-based API of the VDM Toolbox.

The VDM Toolbox API allows you to write programs (clients) that access and
modify certain properties of a running instance of a VDM Toolbox (graphical or
command line). The VDM Toolbox can be accessed by several CORBA clients
at the same time. These clients can - through the API - access and configure
the project, parse and type check individual files, evaluate expressions through
the interpreter, etc. The client processes and the VDM Toolbox are separate
processes that may run on different machines, possibly running on different oper-
ating systems, on the network. As a consequence, a VDM Toolbox being used as
server by any client process is also available to the user through its user interface.

The API is based on CORBA (see [OMG&96]). For this reason the API is
accessible from any language for which there exists a CORBA 2.0 compliant im-
plementation. For example you could easily write your client in either C++ or
Java, since several (free) CORBA implementations are available for these lan-
guages. Throughout Section 3 small pieces of example code written in C++ are
provided. In sections 4 and 5 however, we will describe how to write a complete
client in C++ and Java respectively.

This document and the API it describes apply to both the VDM-SL and VDM++
version of the Toolbox. The API only differentiates between VDM-SL and VDM++
in a few cases, and they are explicitly stated in the definition of the API. In gen-
eral, when we use the term “module” in this manual and in the definition of the
API, we refer to either a module in VDM-SL or a class in VDM++.

1

The VDM Toolbox API

2 CORBA - The Basics

The main idea in CORBA is distribution of objects. A client process can create,
access and possibly modify the state of objects handled by and physically con-
tained in a separate server process located locally or remotely on the network.
The client has “a handle” to the object contained in the server and it uses this
handle to make method calls, as if the distributed object is located in the address
space of the client. The CORBA standard specifies how a handle to a distributed
object can be acquired as well as how methods are invoked, and values are passed
between different objects.

Since CORBA is only a standard for object distribution, an implementation of
CORBA (a so-called ORB) is necessary to write CORBA servers and clients.
Currently CORBA implementations are available for a multitude of different plat-
forms and languages.

2.1 IDL

The objects exposed by a CORBA enabled server are described using the Interface
Definition Language (IDL). IDL is an object-oriented language for describing
interfaces in an implementation language and in a platform neutral way. Vendors
that provide tools with a CORBA interface make the interface known to clients
by distributing the IDL description with the tool. The syntax of IDL is described
in [OMG&96].

When implementing a client, the IDL description is mapped to the preferred
implementation language using an IDL compiler (comes with the chosen CORBA
implementation). The code generated from the IDL description is compiled and
linked with the client executable making it capable of using the CORBA interface
of the server.

2

The VDM Toolbox API

3 The VDM Toolbox API

The CORBA interface of the VDM Toolbox is described in the two IDL files
corba api.idl and metaiv idl.idl, that are also distributed with the VDM
Toolbox. The first file describes the actual interface of the VDM Toolbox whereas
the second file describes the interface of different VDM values that can be passed
between a client and the VDM Toolbox. In the following both files will be de-
scribed in detail, and in Section 6 a reference manual for these interfaces is pro-
vided.

3.1 IDL Description of The Tool API

The API of the VDM Toolbox consists of a number of different objects (interfaces
in IDL) accessible from a client process. The object VDMApplication, from which
all other aspects of the API are available, is the main entry point. This object is
the client’s handle to the VDM Toolbox, and must consequently be constructed
prior to using any other functionality of the API. In section 4 and Section 5 we
will describe how to acquire this handle to the VDM Toolbox in C++ and Java
respectively.

ToolboxAPI::VDMApplication

Tool: ToolType

Register ()

Unregister(in VDM::ClientID id)

GetProject()

GetInterpreter()

GetCodeGenerator()

GetParser()

GetTypeChecker()

GetPrettyPrinter()

GetErrorHandler()

GetModuleRepos()

GetVDMFactory()

PushTag(in VDM::ClientID id)

DestroyTag(in VDM::ClientID id)

Figure 1: The VDMApplication interface.

The VDMApplication interface is shown in Figure 1. The methods Register

3

The VDM Toolbox API

and Unregister are used by a client to register and unregister its process at
the server. Moreover, the VDMApplication interface consists of a number of
methods returning other interfaces. For instance, if you wish to configure the
current project of the VDM Toolbox, use GetProject to get a handle to the
project interface, that is, a handle to the VDMProject interface described below.
Additionally the Tool attribute of the interface can be used to decide the type
of tool used as server, i.e. whether the client is connected to a VDM-SL or a
VDM++ Toolbox. For detailed information on how to read and modify the
value of attributes see Sections 4 and 5.

3.1.1 VDMProject

ToolboxAPI::VDMProject

New()

Open(in FileName name)

Save()

SaveAs(in FileName name)

GetModules(out ModuleList modules)

GetFiles(out FileList files)

AddFile(in FileName name)

RemoveFile(in FileName name)

Figure 2: The VDMProject interface.

The VDMProject interface is shown in Figure 2. Using this interface it is possible
to access and modify the current project of the VDM Toolbox. GetFiles and
GetModules return (through a parameter) a sequence of file names and module
names in the current project. AddFile and RemoveFile are used to configure the
project.

3.1.2 VDMModuleRepos

The VDMModuleRepos interface is shown in Figure 3.

The interface VDMModuleRepos is used to acquire additional information on a
given module or class. FilesOfModule returns the files of a particular module,
while Status retrieves the current status, as indicated by the S, T, C, and P
indicators in the user interface, of a given module. The four remaining methods

4

The VDM Toolbox API

ToolboxAPI::VDMModuleRepos

FilesOfModule(out FileList files, in ModuleName name)

Status(out ModuleStatus state, in ModuleName name)

SuperClasses(out ClassList classes, in ClassName name)

SubClasses(out ClassList classes, in ClassName name)

Uses(out ClassList classes, in ClassName name)

UsedBy(out ClassList classes, in ClassName name)

Figure 3: The VDMModuleRepos interface.

are only available from the VDM++ Toolbox. They are used to query the in-
heritance and association relationships of a class. Use these methods to find the
super or sub classes of a class as well as to find out how classes reference each
other.

Notice that, since this IDL description is common to both the VDM++ and VDM-
SL Toolbox, whenever we use ModuleName or ModuleList in the definitions this
applies to both modules (from VDM-SL) and classes (from VDM++). However
if ClassName or ClassList is explicitly used, application is restricted to VDM++
only.

3.1.3 VDMParser

ToolboxAPI::VDMParser

Parse(in FileName name)

ParseList(in FileList names)

Figure 4: The VDMParser interface.

The VDMParser interface is shown in Figure 4. The interface can be used to have
the VDM Toolbox parse either a single file or a list of files. In the latter case the
file list will normally have been acquired by a call to VDMProject::GetFiles,
instead of manually constructing the list.

If errors are encountered while parsing the file(s) the VDMErrors interface (de-
scribed in Section 3.1.5) can subsequently be queried to gain detailed information
describing the errors detected.

The structure of the interfaces for the type checker, code generator and pretty
printer (VDMCodeGenerator, VDMTypeChecker and VDMPrettyPrinter) are very

5

The VDM Toolbox API

similar to VDMParser, with the only difference that these interfaces have a number
of different attributes that can be read and modified from the client. The setting
of such attributes control the functionality of the particular interface. These three
interfaces will not be described in detail here, and we refer to the IDL description
in Section 6 for further details and descriptions of the individual attributes.

3.1.4 VDMInterpreter

ToolboxAPI::VDMInterpreter

DynTypeCheck: boolean

DynInvCheck: boolean

DynPreCheck: boolean

DynPostCheck: boolean

PPOfValues: boolean

Verbose: boolean

Debug: boolean

Initialize ()

EvalExpression (in VDM::ClientID id, in string expr)

Apply (in VDM::ClientID id, in string f, in VDM::VDMSequence arg)

EvalCmd (in string cmd)

SetBreakPointByPos (in string file, in long line, in long col)

SetBreakPointByName (in string mod, in string func)

DeleteBreakPoint (in long num)

StartDebugging (in VDM::ClientID id, in string expr)

VDM::VDMTuple DebugStep (in VDM::ClientID id)

VDM::VDMTuple DebugStepIn (in VDM::ClientID id)

VDM::VDMTuple DebugSingleStep (in VDM::ClientID id)

VDM::VDMTuple DebugContinue (in VDM::ClientID id)

Figure 5: The VDMInterpreter interface.

The VDMInterpreter interface is shown in Figure 5. This interface allows you to
use the interpreter to evaluate and debug VDM expressions and invoke functions
and operations in the specification. Calling EvalExpression(client id, expr)

will evaluate the expression in the string argument expr and return the result to
the client. The result will be represented as the VDM value Generic described
in Section 3.2. For instance,

6

The VDM Toolbox API

EvalExpression(client_id, "[e | e in set {1,...,20}

& exists1 x in set {2,...,e} & e mod x = 0] ")

would return a Generic holding the sequence of all primes between one and
twenty. Alternatively one could specify (in VDM) a more efficient function,
Primes, for extracting all primes from a sequence and invoke it through the
Apply method of the interface:

Apply(client_id, "Primes", s)

with s being the argument for the function. Apply will also return the result of
applying the function to the given arguments as a VDM value contained in an
Generic. (In fact this example is a slight simplification of how to pass arguments
for a function when using Apply. We will describe the correct way to use Apply

in Section 4.2.7 for C++ clients, and Section 5.2.6 for Java clients.

In this example it is convenient to use the interpreter to construct the sequence
of integers:

s = EvalExpression(client_id, "[e|e in set {1,...,20}]")

and use the returned value s as argument to Apply. Alternatively the client could
have manually constructed the sequence.

Apart from the functions already mentioned, the interpreter interface holds a
number of attributes (boolean values) that can be modified from the client.
The settings of these attributes control the way the interpreter behaves. The
first five attributes (DynTypeCheck, DynInvTheck, DynPreCheck, DynPostCheck,
PPOfValues) corresponds to the options for the interpreter that it is possible
to set from the user interface of the VDM Toolbox. They control aspects such
as dynamic type checking of invariants, pre- and post conditions etc. The two
remaining attributes, Verbose and Debug, control how the API uses the inter-
preter. Verbose controls whether or not the result of using the interpreter should
be echoed in the user interface of the VDM Toolbox. If Verbose is false the
client will use the interpreter “silently” without echoing results to the user inter-
face. The attribute Debug controls whether breakpoints in the specification are
respected during evaluation or not. If Debug is set to true the evaluation will be
suspended at each breakpoint and the user is able to debug the specification. In
this case the call to Apply and EvalExpression will not return before the user
has finished the debugging.

7

The VDM Toolbox API

It is possible to set breakpoints using the methods SetBreakPointByPos and
SetBreakPointByName. While the first method takes a file and a position (line,
column) as parameters, the latter expects the name of the module and a function
name. Both methods return the number of the breakpoint that has been set.
This number can be used to delete the breakpoint again (DeleteBreakPoint).

Debugging is then started by calling StartDebugging. The method takes the
ClientID and an expression (a string) as parameter. StartDebugging returns,
when the evaluation is finished or a breakpoint has been encountered. It returns
a VDMTuple, containing the evaluation state (either <BREAKPOINT>, <INTERRUPT>,
<SUCCESS> or <ERROR>) and, in case of <SUCCESS>, the result of the evaluation
as a MetaIV value. The methods DebugStep, DebugStepIn, DebugSingleStep
and DebugContinue can be used to step through the specification.

Assume we have a module A that contains two functions:

module A

...

functions

foo: nat -> nat

foo (a) == a + 1;

bar: nat -> nat

bar (b) = foo (b)

...

We could use SetBreakPointByName ("A", "foo") to set a breakpoint for the
function foo. The call of StartDebugging (id, "A‘bar(1)) would then return
after the call of foo (b) in bar has been encountered. The result would be
mk (<BREAKPOINT>,<<UNDEFINED>>). A call to DebugContinue continues the
evaluation and would return mk (<SUCCESS>, 2).

3.1.5 VDMErrors

The VDMErrors interface is shown in Figure 6. The state of this interface is up-
dated if errors are encountered during parsing, type checking, code generation or
pretty printing. Use this interface to query the number of errors and/or warnings
through the attributes n err and n warn. The two methods of the interface return
a sequence of error or warning descriptors used to gain detailed information.

8

The VDM Toolbox API

ToolboxAPI::VDMErrors

NumErr: short

NumWarn: short

GetErrors(out ErrorList err)

GetWarnings(out ErrorList err)

Figure 6: The VDMErrors interface.

3.2 IDL Description of VDM Values

Having described the interface of the VDM Toolbox, we will now proceed with
a description of how VDM values are passed through the API, i.e. how VDM
values can be passed from the VDM Toolbox to the client and vice versa.

The given code examples are written in C++. We refer to section 5 for the Java
syntax.

As already mentioned, the EvalExpression method of the VDMInterpreter in-
terface returns the result of the evaluation as a VDM value, and the Apply method
takes as argument a VDM sequence of VDM values as the list of arguments for
a function or operation. How to use and manipulate such VDM values is docu-
mented in Section 6.2 and also described in the IDL file metaiv idl.idl. The
structure of the IDL interface is kept as tight as possible to the structure of the
VDM C++ Library (as described in [LibMan]). Each class of the VDM C++
Library corresponds to an interface (with the same name) in the IDL description.
Figure 7 illustrates the fact that all concrete VDM values inherit from the same
super class, Generic. Notice that the figure only shows a subset of the available
VDM values.

Figure 7: Inheritance structure of VDM values.

9

The VDM Toolbox API

The following is an example of how to read the contents of a VDM value returned
from the interpreter:

01 VDM::VDMGeneric_var g;

02 g = interp->EvalExpression(client_id,

"{ e |-> 2**e | e in set {1,...,16}}");

03 if(!g->IsMap()){

04 // signal an error...

05 ...

06 }

07 else{

08 VDM::VDMMap_var m;

09 m = VDM::VDMMap::_narrow(g);

10 VDM::VDMGeneric_var iter;

11 for(int i = m->First(iter); i; i = m->Next(iter)){

12 VDM::VDMGeneric_var rng = m->Apply(client_id, iter);

13 cout << iter->ToAscii() << "-->" << rng->ToAscii() << "\n";

14 iter->Destroy();

15 rng->Destroy();

16 }

17 }

18 g->Destroy();

The interpreter returns the result of an evaluation in a VDMGeneric. For this
reason the variable g is declared as a VDM::Generic var1, and used to hold the
result from EvalExpression. The expression evaluated by the interpreter is
a map comprehension; hence the value contained in g should be of type Map.
The method IsMap of the Generic interface can be used to check that this is
indeed the case, as seen in line 3. If g is not of type Map an error is signalled.
Otherwise it is safe to convert the Generic to a Map type. The way to cast (or
narrow) an object reference is to use the narrow method supplied by the ORB
implementation. Line 9 shows how to narrow from VDMGeneric to VDMMap. With
an object reference, m, of type VDMMap all the methods of the Map interface are
now available. Using First and Next it is possible to iterate through the domain
of the map (line 11), and with Apply (line 12) the value associated with a key
in the map can be retrieved. Keep in mind, that only one Client should access
these methods at a time. If you use them concurrently, the clients may not get
all values contained by the VDMMap.

1See Section 4 for a description of the special var types used in the client and how to use
CORBA object references.

10

The VDM Toolbox API

To facilitate the printing of VDM values, the Generic interface (and hence all other
VDM values) provides the ascii method returning the ASCII representation of
the VDM value. In line 13 this method is used to print out each element of the
map m.

To summarize: This simple example uses the interpreter to construct a map that
is subsequently printed using the various methods of VDMMap to iterate through
the map. The output from the example above is:

1-->2

2-->4

3-->8

... (lines removed for brevity) ...

16-->65536

3.2.1 VDM Values as Distributed Objects

Whenever VDM values are passed from the server to the client they are passed
as “handles” or object references to distributed objects contained in the server.
That is, the real VDM values used by a client are actually managed by the VDM
Toolbox and are contained in the address space of the server. For this reason all
VDM values held by a client must be explicitly freed in the server when the client
will not use the value any longer. The client does this by calling the Destroy

method of the VDM value. In lines 14 and 15, of the example above, the object
iter, used to represent each element in the domain of m, and rng, used to hold
the corresponding element of the range of m, are destroyed. Finally, in line 18
the VDM value created by the interpreter, g, is destroyed. If values are not
destroyed in this way when the client does not need them any more, they will
never be released in the VDM Toolbox. As a consequence the VDM Toolbox
process will use an increasing amount of memory.

An alternative to explicitly destroy objects by calling the Destroy method on the
object is to use the two methods PushTag and DestroyTag of the VDMApplication
interface. Calling PushTag will generate a unique tag and push it onto an internal
tag stack. The tag stored on top of the tag stack is used to tag all objects
subsequently created by the VDM Toolbox. Each call to DestroyTag will pop
the topmost tag of the tag stack and call destroy on each object tagged with this
value. As a consequence all objects created since the last call to PushTag will
be destroyed. Using the combination of PushTag and DestroyTag the previous
example now reads as follows:

11

The VDM Toolbox API

01 app->PushTag(client_id);

02 VDM::VDMGeneric_var g;

03 g = interp->EvalExpression(client_id,

"{ e |-> 2**e | e in set {1,...,16}}");

04 if(!g->IsMap()){

05 // signal an error...

06 ...

07 }

08 else{

09 VDM::VDMMap_var m;

10 m = VDM::VDMMap::_narrow(g);

12 VDM::VDMGeneric_var iter;

12 for(int i = m->First(iter); i; i = m->Next(iter)){

13 VDM::VDMGeneric_var rng = m->Apply(client_id, iter);

14 cout << iter->ToAscii() << "-->" << rng->ToAscii() << "\n";

15 }

16 }

17 app->DestroyTag(client_id);

// All objects created since last PushTag()

// will now be destroyed.

Notice that calls to PushTag and DestroyTag can be nested to any depth as long
as the total number of calls to DestroyTag does not exceed the total number of
calls to PushTag.

3.2.2 Using Values Returned from the Interpreter

In the example above we used the ToAscii method to print the range and domain
of the map generated by the interpreter. The value, as opposed to the ASCII
representation, is available through the GetValue method. For instance, the
following code squares each element of a sequence and prints out the result:

01 app->PushTag(client_id);

02 g = interp->EvalExpression(client_id,

"[e | e in set {1,...,10}]");

03 if(!g->IsSequence()){

04 exit(-1);

05 }

06 else{

12

The VDM Toolbox API

07 VDM::VDMSequence_var s = VDM::VDMSequence::_narrow(g);

08 for(int i = 1; i <= s->Length(); i++){

09 VDM::VDMGeneric_var e = s->Index(i);

10 if(e->IsNumeric()){

11 VDM::VDMNumeric_var ii = VDM::VDMNumeric::_narrow(e);

12 cout << ii->GetValue() * ii->GetValue() << " ";

13 }

14 }

15 }

16 app->DestroyTag(client_id);

Notice that the PushTag and DestroyTag methods are also used in this example
to make sure that values used by the client are released in the VDM Toolbox
when the client no longer needs them.

In what follows we will assume that all code examples are “wrapped” with calls
to PushTag and DestroyTag, so that we will not have to call Destroy explicitly.

3.2.3 Constructing VDM Values in the Client

The VDM values we have used so far were all created by the interpreter and
returned to the client. However, the client can construct VDM values directly by
using the VDMFactory interface. The following example acquires a handle to the
VDMFactory interface and constructs a set of numeric values:

VDM::VDMFactory_var fact = app->GetVDMFactory();

VDM::VDMSet_var s = fact->MkSet(client_id);

VDM::VDMNumeric_var elem;

for(int j=0; j<20; j++){

elem = fact->MkNumeric(client_id, j);

s->Insert(elem);

}

Notice that the factory interface is used to construct the overall set as well as
each numeric value to be inserted in the set. Also notice that each numeric
value constructed by the factory is destroyed after it has been inserted in the set,
because elements are implicitly copied when inserted into composite types such
as VDMSequence, VDMSet, VDMMap, VDMRecord and VDMTuple.

13

The VDM Toolbox API

3.2.4 Converting Distributed VDM Values to “real” VDM C++ Val-
ues

It is important to keep in mind that when the client receives a VDM value from
the interpreter, it is simply holding a handle to a VDM value contained in the
VDM Toolbox. Every time the client invokes a method on the VDM value this
method call is mediated to the distributed VDM value in the VDM Toolbox.
For this reason, when the client iterates through, for instance, a large sequence
returned from the interpreter, the VDM Toolbox gets called for each element
in the sequence. Of course this approach is not particularly efficient. To allow
more efficient access to VDM values held by the client, you can use the function
GetCPPValue declared in the file corba client.h. This function converts the
distributed VDM value to an IDL sequence of bytes, which can in turn be con-
verted to a true VDM C++ value, provided that you include metaiv.h and link
with the VDM library [LibMan]. For ease of use the conversion from a distributed
VDM value to a VDM C++ value is available in corba client.h. Simply call
GetCPPValue and give it as argument the object reference you wish to convert:

#include "metaiv.h"

g = interp->EvalExpression(client_id, "[e | e in set {1,...,10}]");

Generic cpp_g; // The C++ Generic

cpp_g = GetCPPValue(g);

// Now the C++ value cpp_g is local to the client process and can

// be accessed efficiently.

The conversion from a VDM C++ value to an object reference can be achieved
through the function FromCPPValue, also declared, as well as documented, in
corba client.h.

For Java clients, the conversion described above has to be done manually, and
the VDM Java Library must be included in the classpath when compiling and
executing the client [CGManJavaPP]. See the function EchoPrimes2 in the Java
program in Appendix A.2 for an example.

3.3 Handling of Exceptions

The IDL interface metaiv idl.idl declares two CORBA exceptions APIError

and VDMError. These two kinds of exceptions are used to signal to the client pro-

14

The VDM Toolbox API

cess if something goes wrong in the server process. APIError is used to signal er-
rors that may appear while using the API of the VDM Toolbox (corba api.idl)
while VDMError is devoted to the signalling of errors in the use of VDM values.
The contents of an APIError is a simple message string describing what went
wrong, while a VDMError holds an integer indicating the error. The meaning of
these integers is shown in Section 6.3.

The examples in Appendix A.1 and A.2 show how the client can handle such
exceptions using standard exception handling in C++ and Java respectively.

15

The VDM Toolbox API

4 Writing a C++ Client

We will here describe how to write a client using C++ on Windows and Linux.

4.1 Choosing a CORBA Implementation

The CORBA implementation we will use in this example is a CORBA 2 com-
pliant ORB omniORB2. The implementation is developed by The Olivetti and
Oracle Research Laboratory, and freely available under the terms and conditions
of the GNU General Public License. Several platforms and C++ compilers are
supported by omniORB2 that implements a full mapping from IDL to C++. The
ORB can be downloaded from:

http://www.uk.research.att.com/omniORB/omniORB.html

and available as pure C++ source code or pre-compiled for a handful of different
platforms including Windows NT/9x and Linux 2.0. If the distribution is not
available for a particular platform it is possible to download the source code and
build the executables and libraries.

To implement a client you must download the onmiORB2 distribution for either
Win32 or Linux and install it (extract the archive). Once omniORB2 is installed
you should add to the system path environment variable the absolute path to
the binaries directory of omniORB2. This directory contains various CORBA
tools (the IDL compiler for instance). For the Windows NT distribution it also
contains some libraries used by the client implementation at run-time. If you
download the pre-compiled distribution this is all you need to do. Otherwise you
must consult the installation instructions of omniORB2 to successfully compile
the distribution.

Alternatives to omniORB2 would be e.g. Orbacus by Object Oriented Concepts
and the idlj from Sun’s Java IDL. Any ORB that implements the OMG CORBA
2.x specification and IIOP should be compatible with the VDM Toolbox API,
but this has not been tested.

Orbacus implements a complete mapping from IDL to C++ as well as Java, so
this ORB may be the choice it you wish to write your client in Java. Orbacus is
available at:

http://www.ooc.com/ob/

16

The VDM Toolbox API

Java IDL comes with an IDL to Java compiler and is available at

http://java.sun.com

However, the client example distributed with the VDM Toolbox (listed in Ap-
pendix A.1) is omniORB2 specific, so if OmniBroker is used, slight modifications
of the client example are required.

4.2 Implementing a Client

In this Section we go through an example illustrating how to use the VDM Tool-
box from a client written in C++. In the following presentation we will show
excerpts from a complete example, which can be seen in its full length in Ap-
pendix A.1.

4.2.1 Initializing the CORBA Services

Before the VDM Toolbox can be accessed from the client the underlying CORBA
implementation must be initialized. Different CORBA implementations are not
necessarily initialized in the same way, so please notice that the CORBA initial-
ization described here is omniORB2 specific. For ease of use the initialization
procedure and the acquisition of the main application object are implemented in
corba client.cc and available by including corba client.h in the client imple-
mentation. If you wish to implement the client on a different CORBA implemen-
tation it should not be too difficult to port the contents of corba client.cc. You
will find corba client.cc and corba client.h in the api/corba subdirectory
of the VDM Toolbox distribution.

To initialize the CORBA services all you need to do is:

#include "corba_client.h"

main(int argc, char *argv[])

{

init_corba(argc, argv);

...

}

17

The VDM Toolbox API

4.2.2 Acquiring the Application Object

The easiest possibility to get hold of a CORBA-reference to the VDMApplication
CORBA object is to use the get app method that you can find in the above men-
tioned corba client.h file. Since the implementation is omniORB2-specific, this
may not work with the ORB of your choice. Therefore, the COS NamingService
and stringified references are supported, too.

The COS NamingService is a standardized CORBA Object Service that is used
for managing object instances and their names. It maps names, that are saved in
a directory hierarchy to CORBA Objects. Unlike the stringified object references
it allows the client to access objects even if it doesn’t share the file system with the
VDM Toolbox. Therefore by using it, you gain flexibility. Its use is recommended
by the Object Management Group (http://www.omg.org). You can find more
information on the COS NamingService and CORBA Object Services in general
on the OMG CORBA homepage (http://www.corba.org).

When you start either the VDM-SL or the VDM++-Toolbox, it will check if
a COS NameService is running. The ORB will search for a configuration file.
You can specify the location of this file using the OMNIORB CONFIG environment
variable (refer to the omniORB-documentation to see how to use the registry
for this if you use Windows). A typical omniORB.cfg file will contain following
entries:

ORBInitialHost gandalf

ORBInitialPort 2809

This means, that the NamingService is running on a host called gandalf at port
2809.

omniORB2 provides such a NameService (there should be an executable called
omniNames that is part of the omniORB2-distribution), but you can use virtually
any other CORBA-compliant NameService as long as you make it known to the
omniORB2 using the omniORB.cfg file. Please refer to the omniORB2 documen-
tation for further details. The VDM-SL Toolbox binds its VDMApplication object
to the name SL TOOLBOX, of kind VDMApplication, while Application object of
the VDM++ Toolbox uses the name PP TOOLBOX, of kind VDMApplication. This
makes it possible for the client to distinguish the objects, so that it is no problem
to run an instance of each Toolbox at the same time.

Take care that you do not run two instances of the same Toolbox, because then
only the VDMApplication object of the Toolbox that has been started first will

18

The VDM Toolbox API

be accessible for the client. It is no problem to run more than one client using
the same VDMApplication object, but keep in mind that they will influence each
other.

Another approach used to acquire the main handle to the VDM Toolbox - the
VDMApplication CORBA object - is to let the client read a stringified object
reference (created by the most recently started VDM Toolbox) and convert this
to a CORBA object reference. All ORB implementations must implement the
two functions object to string and string to object, used to encode and
decode object references. The VDM Toolbox uses object to string to encode
the application object as a string and writes this string to a file. Subsequently the
client must read this file and use string to object to convert the string to an
object reference. The file generated by the VDM Toolbox is named vdmref.ior

for the VDM-SL Toolbox and vppref.ior for the VDM++ Toolbox. It is written
in the location specified by the VDM OBJECT LOCATION environment variable. If
the environment variable is not set, the file is located in the root of your home
directory (as pointed to by $HOME) if the VDM Toolbox is running on Unix, and in
your profile directory (as pointed to by %USERPROFILE%) if running on Windows
NT.

The easiest way to acquire the application object from the client is to use get app

declared in corba client.h.

main(int argc, char *argv[])

{

...

/* set toolType to either SL_TOOLBOX or PP_TOOLBOX */

ToolType toolType = ...;

VDMApplication_var app;

get_app(app, NULL, toolType);

...

This function will check first, if a COS NameService is running and if there
is an object named SL TOOLBOX of kind VDMApplication or PP TOOLBOX, kind
VDMApplication (depending on the toolType flag). If it cannot find the object
via the NameService, it will will automatically search for the file that contains
the IOR reference for the VDMApplication object. After the call to get app the
variable app is the main handle to the VDM Toolbox.

The client has to register itself in the server before performing any calls towards
the server. Analogously, it has to unregister itself when it terminates. This is

19

The VDM Toolbox API

done by calling the Register and Unregister methods of the VDMApplication

class.

client_id = app->Register();

...

app->Unregister(client_id);

We are now in the position to access services of the running VDM Toolbox.

4.2.3 Object References in C++

In C++ a handle to an object interface of the IDL description is contained in an
object reference. Object references are named by adding var to the name of the
interface. This kind of object reference is termed an object reference variable2.
For instance, VDMApplication var is a handle (if properly initialized) to the
VDMApplication interface of the server. Operations of an interface are called
using the “arrow” (->) on a var object reference, e.g. app->GetProject() to
call the method GetProject of the VDMApplication interface app.

4.2.4 Configuring the Current Project

The following lines of code acquire a handle to the VDMProject interface of the
VDM Toolbox and use the New and AddFile methods of this interface. As a result
the project of the VDM Toolbox is configured to contain a single file, sort.vdm.
Files added to the project in this way must be located in the same directory as
where the VDM Toolbox was started. Otherwise the file name must be given
with its absolute path. If the client tries to add a non-existing file the server will
throw an exception of type APIError indicating the error. These exceptions are
described in Section 3.3.

VDMProject_var prj = app->GetProject();

prj->New(); // New project

prj->AddFile("sort.vdm");

2Object references are also available in a more simple form, the ptr object references.
We refer to [omniORB2] and [OMG&96] for more information on the difference between the
two types of object references. For most purposes it is sufficient to use only the var object
references.

20

The VDM Toolbox API

4.2.5 Using the Parser

To use the parser from a client you must get a handle to the VDMParser interface,
and to parse a file you call the Parse method of this interface with the file name
as its single argument. For instance

VDMParser_var parser = app->GetParser();

parser->Parse("sort.vdm");

will parse the file sort.vdm.

Alternatively you could use the VDMProject interface to get the list of files con-
figured for the current project and then parse each file of this list:

FileList_var fl;

prj->GetFiles(fl);

for(int i=0; i<fl->length(); i++){

cout << (char *)fl[i] << "...Parsing...";

if(parser->Parse(fl[i]))

cout << "done.\n";

else

cout << "error.\n";

}

This example illustrates several important aspects of the API. Initially we declare
fl to be a list of files and use GetFiles to retrieve the list of files in the current
project. The type FileList is defined as an unbounded sequence of strings, as
shown on page 36. Consequently the list of files, fl, has all methods of the IDL
sequence as stated by the CORBA specification [OMG&96]. The length of a
IDL sequence can be accessed through the method length, and the individual
elements can be indexed as ordinary arrays in C++.

To summarize: The above lines of code retrieve the list of files in the current
project, iterate through the list, and for each item calls the Parse method to
parse each file. Notice that Parse returns a boolean value indicating the success
of parsing the file. Parsing all files of the project by iterating the list of files is
actually more complicated than need to be. Instead you could use the ParseList
method:

21

The VDM Toolbox API

FileList_var fl;

prj->GetFiles(fl);

parser->ParseList(fl);

4.2.6 Using the Type Checker

The interface of the type checker is similar to the interface of the parser. The
interface has a number of attributes that can be accessed and modified by the
client. Attributes can be read and modified for example:

// Get the value of DefTypeCheck:

int dtc = tpck->DefTypeCheck();

// Set the value of ExtendedTypeCheck to true

tpck->ExtendedTypeCheck(true);

provided of course that tpck is a valid handle to the type checker interface.

4.2.7 Using the Interpreter

The following example illustrates how EvalExpression of the interpreter inter-
face can be used to have the interpreter evaluate any VDM expression.

VDMInterpreter_var interp = app->GetInterpreter();

VDM::Generic_var g;

g = interp->EvalExpression(client_id, "[e|e in set {1,...,20} & \

exists1 x in set {2,...,e} & e mod x = 0]");

if(g->IsSequence())

cout << "All primes below 20:\n" << g->ascii() << "\n";

The string passed to EvalExpression is evaluated and the result of the evaluation
is returned as a VDM value in a VDM::Generic, which can later be used in a call
to Apply, or read/modified by the methods provided by the interface of the VDM
values as described in Section 3.2. The backslash at the end of the line in which
the call to EvalExpression is placed is part of the C++ syntax. It is used to

22

The VDM Toolbox API

indicate, that the string that contains the VDM-SL expression does not contain
a linebreak (\n).

The following example illustrates how to use a function of a VDM specification
that has been read into the VDM Toolbox:

interp->Init();

g = interp->EvalExpression(client_id, "MergeSort([6,4,9,7,3,42])");

Notice that before you can call any function of the specification you must make
sure that the interpreter is initialized.

An alternative to EvalExpression is to use the method Apply, which takes as
argument the name of the function or operation to apply and a sequence of
arguments for the function or method. The following example creates a VDM
sequence of integers to be sorted with MergeSort:

VDMFactory_var fact = app->GetVDMFactory();

VDM::Sequence_var list = fact->MkSequence(client_id);

VDM::Int_var elem;

for(int j=0; j<20; j++){

elem = fact->MkInt(client_id, j);

list->ImpPrepend(elem);

}

The resulting sequence, list, now contains the integers from 19 down to 0. Notice
how VDM values are constructed in the client by using the VDMFactory interface.

To call MergeSort through Apply we have to construct the list of arguments.
The arguments for the function to be called through Apply are contained in a
VDMSequence. The function we want to call only takes one argument, the sequence
of integers we have just constructed:

VDM::Sequence_var arg_l = fact->MkSequence(client_id);

arg_l->ImpAppend(list);

Now MergeSort can be applied as follows:

23

The VDM Toolbox API

g = interp->Apply(client_id, "MergeSort", arg_l);

if, of course, the interpreter has been initialized. Notice that the argument list
arg l is also constructed using the factory interface.

4.2.8 Additional Aspects of the Example

So far we have covered most of the example from Appendix A.1. Also covered in
this example is how detailed error information can be queried through the API
and how to get additional information on the status of individual modules. We
will not go into further details with the example here, but refer to the interfaces
VDMErrors and VDMModuleRepos of the IDL description as well as the example
source code and comments of Appendix A.1 for more information.

4.3 Compiling the Client

To successfully compile the file client example.cc each of the following require-
ments must be fulfilled:

• For Linux, omniORB2 must have been successfully installed; for Windows
omniORB3 must have been successfully installed. If the binary distribu-
tion is not available for your particular platform it must be compiled as
well. Moreover, the PATH environment variable must point to the binaries
directory of omniORB.

• The following files, found in $TOOLBOX/api/corba, must be present (where
$TOOLBOX represents the directory in which the Toolbox was installed).

– client example.cc

– corba client.h, corba client.cc

– corba api.idl, metaiv idl.idl

– Makefile, Makefile.nm

• Your VDM Toolbox must contain the VDM C++ library, i.e. the include
file metaiv.h and the library libvdm.a (Unix) or vdm.lib (Windows NT).

To compile the example you can simply use the makefile. On Linux you run
make with Makefile, while on Windows NT you use nmake with Makefile.nm.

24

The VDM Toolbox API

You must modify the macros OMNIDIR and TBDIR of the make file to point to the
installation directory of omniORB2 and the VDM Toolbox respectively.

Note that if you wish to use Microsoft’s Foundation Classes under win32, the
MFC library should be statically linked.

4.3.1 Supported Compilers

The client example in Appendix A.1 has been compiled and tested on Windows
NT with Microsoft Visual C++ 6.0, and on Linux with egcs 1.1.2.

4.4 Running the Client

Before you run the client example you must ensure that a VDM Toolbox to be
used as server is currently running. Use the VDM OBJECT LOCATION environment
variable in order to tell the client where to look for the [vdm|vpp]ref.ior file.

25

The VDM Toolbox API

5 Writing a Java Client

5.1 Choosing a CORBA Implementation

The Java 1.3 API contains a package called org.omg.CORBA, that provides the
mapping of the OMG CORBA APIs to the Java programming language. The
package includes the class ORB, which is implemented so that a programmer can
use it as a fully-functional Object Request Broker.

The example in the following will use this CORBA implementation.

In addition to a CORBA implementation, the user needs to have access to
the described IDL modules: corba api.idl and metaiv idl.idl. These have
been translated to Java packages and classes and can be used by including the
ToolboxAPI.jar file in the classpath. This file is part of the Toolbox distribution,
in the api/corba sub-directory.

It contains three packages:

• dk.ifad.toolbox.api.VDM

This package contains the VDM module defined in metaiv idl.idl. It
contains consequently a Java interface for every VDM value.

• dk.ifad.toolbox.api.corba.ToolboxAPI

This package contains the interfaces from corba api.idl.

• dk.ifad.toolbox.api

This package contains only one class, called ToolboxClient. It implements
methods used to connect client applications to the VDM Toolbox through
the VDM Toolbox CORBA API.

All three packages are documented by HTML documentation generated by the
javadoc program. Both the ToolboxAPI.jar file and the HTML documentation
are distributed with the VDM Toolbox.

If you don’t use the CORBA implementation following with Java 1.3, you have to
translate the IDL files to Java yourself. The files in ToolboxAPI.jar have been
created using the idltojava compiler (downloadable from the Java Developer
Connection): http://developer.java.sun.com. If you are using the Sun JDK
1.3 an executable idlj will be part of the distribution. It is the SUN IDL to Java
compiler, that generates the Java stubs and skeletons for you.

26

The VDM Toolbox API

5.2 Implementing a Client

In this Section we go through an example illustrating how to use the VDM Tool-
box from a client written in Java. In the following presentation we will show ex-
cerpts from a complete example, which can be seen in full length in Appendix A.2.

5.2.1 Importing CORBA Services

Your client program should start by importing the org.omg.CORBA package to-
gether with the three packages described above:

import org.omg.CORBA.*;

import dk.ifad.toolbox.api.*;

import dk.ifad.toolbox.api.corba.ToolboxAPI.*;

import dk.ifad.toolbox.api.corba.VDM.*;

5.2.2 Acquiring the Application Object

As in the C++ implementation, the approach used to acquire the main handle
to the VDM Toolbox - the VDMApplication CORBA object - is to let the client
either resolve the reference from the COS NamingService or to read a stringified
object reference (created by the most recently started VDM Toolbox) and convert
this to a CORBA object reference.

The easiest possibility to get hold of a CORBA-reference to the VDMApplication

CORBA object is to use the getVDMApplication method that you can find in
the above mentioned ToolboxClient.java file.

When you start either the VDM-SL or the VDM++ Toolbox, it will check if
a COS NameService is running. The ORB will search for a configuration file.
You can specify the location of this file using the OMNIORB CONFIG environment
variable (refer to the omniORB-documentation to see how to use the registry
for this if you use Windows). A typical omniORB.cfg file will contain following
entries:

ORBInitialHost gandalf

ORBInitialPort 2809

27

The VDM Toolbox API

This means, that the NamingService is running on a host called gandalf at
port 2809. omniORB2 provides such a NameService (there should be an exe-
cutable called omniNames that is part of the omniORB2-distribution), but you
can use virtually any other CORBA-compliant NameService as long as you make
it known to the omniORB2 using the omniORB.cfg file. Please refer to the om-
niORB2 documentation for further details. The Toolbox has been tested with the
tnameserv-NamingService from the Sun JDK1.3, too. You will have to tell your
client application where it can find the NameService. You can either do this by us-
ing the command-line-parameters -ORBInitialPort <port> -ORBInitialHost

<host>, or directly in the source code, by setting the corresponding properties.

Properties props = new Properties ();

props.put ("org.omg.CORBA.ORBInitialHost", "gandalf");

props.put ("org.omg.CORBA.ORBInitialPort", 2809);

orb = ORB.init (args, props);

The VDM-SL Toolbox binds its VDMApplication object to the name SL TOOLBOX,
of kind VDMApplication, while Application object of the VDM++ Toolbox uses
the name PP TOOLBOX, of kind VDMApplication. This makes it possible for the
client to distinguish the objects, so that it is no problem to run an instance of
each Toolbox at the same time.

The following code is used to resolve the VDMApplication-object from the Name-
Service:

org.omg.CORBA.Object obj =

orb.resolve_initial_references ("NameService");

NamingContext ctx = NamingContextHelper.narrow (obj);

NameComponent nc = null;

if (toolType == ToolType.SL_TOOLBOX)

nc = new NameComponent ("SL_TOOLBOX", "VDMApplication");

else

nc = new NameComponent ("PP_TOOLBOX", "VDMApplication");

NameComponent[] name = {nc};

org.omg.CORBA.Object obj = // use full qualified classpath!

ctx.resolve (name);

VDMApplication app = VDMApplicationHelper.narrow (obj);

28

The VDM Toolbox API

Take care that you do not run two instances of the same Toolbox, because then
only the VDMApplication object of the Toolbox that has been started first will
be accessible for the client. It is no problem to run more than one client using
the same VDMApplication object, but keep in mind that they will influence each
other.

If the getVDMApplication method cannot locate a NamingService, it will try
to resolve the VDMApplication-reference by using the string reference file. All
ORB implementations must implement the two functions object to string and
string to object, used to encode and decode object references. The VDM
Toolbox uses object to string to encode the application object as a string and
writes this string to a file. Subsequently the client must read this file and use
string to object to convert the string to an object reference. The file generated
by the VDM Toolbox is named vdmref.ior or vppref.ior, and it is written
in the location specified by the VDM OBJECT LOCATION environment variable. If
the environment variable is not set, the file is located in the root of your home
directory (as pointed to by $HOME) if the VDM Toolbox is running on Unix, and in
your profile directory (as pointed to by %USERPROFILE%) if running on Windows
NT.

The method readRefFile of class ToolboxClient is used by getVDMApplication

to read this vdmref.ior or vppref.ior file created by the Toolbox. You can
establish the connection to the Toolbox denoted by the object reference string by
calling the getVDMApplication method of the Toolbox client class. This method
returns an object reference to the CORBA VDMApplication object.

VDMApplication app = ToolboxClient.getVDMApplication(args,ref);

After the call to getVDMApplication the variable app is the main handle to the
VDM Toolbox.

The client has to register itself in the server before performing any calls towards
the server. Similarly, it has to unregister itself when it terminates. This is done
by calling the Register and Unregister methods of the VDMApplication class.

short client_id = app.Register();

...

...

app.Unregister(client_id);

We are now in the position to access services of the running VDM Toolbox.

29

The VDM Toolbox API

5.2.3 Configuring the Current Project

The following lines of code acquire a handle to the VDMProject interface of the
VDM Toolbox and use the New and AddFile methods of this interface. As a result
the project of the VDM Toolbox is configured to contain a single file, sort.vdm.
Files added to the project in this way must be located in the same directory as
where the VDM Toolbox was started. Otherwise the file name must be given
with its absolute path. If the client tries to add a non-existing file the server
will throw an exception of type APIError indicating the error. Exceptions are
described in Section 3.3.

VDMProject prj = app.GetProject();

prj.New();

prj.AddFile("sort.vdm");

5.2.4 Using the Parser

To use the parser from a client you must get a handle to the VDMParser interface,
and to parse a file you call the Parse method of this interface with the file name
as its single argument. I.e.,

VDMParser parser = app.GetParser();

parser.Parse("sort.vdm");

will parse the file sort.vdm.

Alternatively you could use the VDMProject interface to get the list of files con-
figured for the current project and then parse each file of this list:

FileListHolder fl = new FileListHolder();

int count = prj.GetFiles(fl);

String flist[] = fl.value;

for(int i=0; i<flist.length; i++){

System.out.println("...Parsing" + flist[i] + "...");

if(parser.Parse(flist[i]))

System.out.println("done.");

else

30

The VDM Toolbox API

System.out.println("error.");

}

This example illustrates several important aspects of the API. Initially we declare
fl to be a list of files and use GetFiles to retrieve the list of files in the current
project. From the IDL description of the API you will see that the type FileList
is defined as an unbounded sequence of strings. Consequently the list of files,
fl, has all methods of the IDL sequence as stated by the CORBA specification
[OMG&96]. The length of a IDL sequence can be accessed through the method
length, and the individual elements can be indexed as ordinary arrays in Java.

Moreover, this example shows, that the support for out and inout parameter
passing modes in Java requires the use of additional “holder” classes. These
classes are available for all of the basic IDL datatypes in the org.omg.CORBA

package and are generated for all named user defined types except those defined
by typedefs.

For user defined IDL types, the holder class name is constructed by appending
Holder to the mapped (Java) name of the type. Each holder class has a public
instance member, value, which is the typed value.

To summarize: The above lines of code retrieve the list of files in the current
project, iterate through the list, and for each item calls the Parse method to
parse each file. Notice that Parse returns a boolean value indicating the success
of parsing the file. Parsing all files of the project by iterating the list of files is
actually more complicated than need to be. Instead you could use the ParseList
method:

FileListHolder fl = new FileListHolder();

int count = prj.GetFiles(fl);

String flist[] = fl.value;

parser.ParseList(flist);

5.2.5 Using the Type Checker

The interface of the type checker is similar to the interface of the parser. The
interface has a number of attributes that can be accessed and modified by the
client. Attributes can be read and modified for example:

// Get the value of DefTypeCheck:

31

The VDM Toolbox API

boolean dtc = tpck.DefTypeCheck();

// Set the value of ExtendedTypeCheck to true

tpck.ExtendedTypeCheck(true);

provided of course that tpck is a valid handle to the type checker interface.

5.2.6 Using the Interpreter

The following example illustrates how EvalExpression of the interpreter inter-
face can be used to have the interpreter evaluate any VDM expression.

VDMInterpreter interp = app.GetInterpreter();

Generic g;

g = interp.EvalExpression(client_id,

"[e|e in set {1,...,20} & \

exists1 x in set {2,...,e} & e mod x = 0]");

if(g.IsSequence()){

System.out.println("All primes below 20": " + g.ascii());

}

The string passed to EvalExpression is evaluated and the result of the evaluation
is returned as a VDM value in a Generic, which can later be used in a call to
Apply, or read/modified by the methods provided by the interface of the VDM
values as described in Section 3.2.

The following example illustrates how to use a function of the VDM specification:

interp.Init();

g = interp.EvalExpression(client_id, "MergeSort([6,4,9,7,3,42])");

Notice that before you can call any function of the specification you must make
sure that the interpreter is initialized.

An alternative to EvalExpression is to use the method Apply, which takes as
argument the name of the function or operation to apply and a sequence of
arguments for the function or method. The following example creates a VDM
sequence of integers to be sorted with MergeSort:

32

The VDM Toolbox API

VDMFactory fact = app.GetVDMFactory();

Sequence list = fact.MkSequence(client_id);

Numeric elem;

for(int j=0; j<20; j++){

elem = fact.MkNumeric(client_id, j);

list.ImpPrepend(elem);

}

The resulting sequence, list, now contains the integers from 19 down to 0. Notice
how VDM values are constructed in the client by using the VDMFactory interface.

To call MergeSort through Apply we have to construct the list of arguments.
The arguments for the function to be called through Apply are contained in a
Sequence. The function we want to call only takes one argument, the sequence
of integers we have just constructed:

Sequence arg_l = fact.MkSequence(client_id);

arg_l.ImpAppend(list);

Now MergeSort can be applied as follows:

g = interp->Apply(client_id, "MergeSort", arg_l);

if, of course, the interpreter has been initialized. Notice that the argument list
arg l is also constructed using the factory interface.

Finally we show how to iterate through the returned sequence to compute the
sum of all the elements of the sequence:

Sequence s = SequenceHelper.narrow(g);

GenericHolder eholder = new GenericHolder();

int sum=0;

for (int ii=s.First(eholder); ii != 0; ii=s.Next(eholder)) {

Numeric num = NumericHelper.narrow(eholder.value);

sum = sum + (int) num.GetValue();

}

33

The VDM Toolbox API

5.2.7 Additional Aspects of the Example

So far we have covered most of the example from Appendix A.2. Also covered
in this example is how detailed error information can be queried through the
API and how to get additional information on the status of individual modules.
Moreover, it shows how to convert distributed VDM values to “real” VDM Java
values. We will not go into further details with the example here, but refer to
the interfaces VDMErrors and VDMModuleRepos of the IDL description as well as
the example source code and comments of Appendix A.2 for more information.

5.3 Compiling the Client

The client example.java file must be compiled using the following compiler:

jdk1.3

You can compile the main program by writing:

javac client_example.java

Ensure that your CLASSPATH environment variable includes the ToolboxAPI.jar

file. If you are using the Unix Bourne shell or a compatible shell, you can do this
with the following commands:

CLASSPATH=ToolboxAPI_Library/ToolboxAPI.jar:$CLASSPATH

export CLASSPATH

Replace ToolboxAPI Library with the name of the directory in which the file
ToolboxAPI.jar is installed.

If you are working on a Windows-based system, you can use the following com-
mand within the Windows command interpreter:

set CLASSPATH=ToolboxAPI_Library/ToolboxAPI.jar;$CLASSPATH

Note that for Windows you must use “;” and not “:” as the delimiter.

34

The VDM Toolbox API

5.4 Running the Client

Before you run the client example you must first ensure that a VDM Toolbox to
be used as server is currently running. In order to make the example work, you
need a CORBA enabled Toolbox.

35

The VDM Toolbox API

6 API Reference Guide

6.1 Corba API

6.1.1 Types

The following type synonyms are defined:

Name Synonym for
ModuleName string

ModuleList sequence<ModuleName>

ClassName string

ClassList sequence<ClassName>

FileName string

FileList sequence<FileName>

ErrorList sequence<Error>

The following enumeration is defined

enum ToolType {SL_TOOLBOX, PP_TOOLBOX};

The following structures are defined:

6.1.2 Error Structure

Field Meaning
FileName fname Name of file in which error/warning

was found.
unsigned short line Line number of error/warning.
unsigned short col Column number of error/warning.
string msg Text of error/warning.

36

The VDM Toolbox API

6.1.3 ModuleStatus Structure

Field Meaning
boolean SyntaxChecked Attribute describing whether

module (or class) has been syntax
checked.

boolean TypeChecked Attribute describing whether
module (or class) has been type
checked.

boolean CodeGenerated Attribute describing whether
module (or class) has been code
generated.

boolean PrettyPrinted Attribute describing whether
module (or class) has been pretty
printed.

6.1.4 VDMApplication Interface

Name Description
readonly attribute ToolType

Tool

Returns the type of tool for server
Toolbox.

ClientID Register() Returns a unique client id. A client
should register itself with the server
before performing any API calls.

void Unregister(ClientID id) Releases any resources associated
with client id. This should be called
when a client terminates.

VDMProject GetProject() Returns a handle to the current
project.

VDMInterpreter

GetInterpreter()

Returns a handle to the Toolbox
Interpreter.

VDMCodeGenerator

GetCodeGenerator()

Returns a handle to the Toolbox
Code Generator.

VDMParser GetParser() Returns a handle to the Toolbox
Parser.

37

The VDM Toolbox API

Name Description
VDMTypeChecker

GetTypeChecker()

Returns a handle to the Toolbox
Type Checker.

VDMPrettyPrinter

GetPrettyPrinter()

Returns a handle to the Toolbox
Pretty Printer.

VDMErrors GetErrorHandler() Returns an handle to the Toolbox
errors interface.

VDMModuleRepos

GetModuleRepos()

Returns a handle to the Toolbox
module (or class) repository.

VDMFactory GetVDMFactory() Returns a handle to a VDM value
factory. Since CORBA 2.x does not
support remote object instantiation,
this factory must be used to create
CORBA VDM Objects (e.g.
VDMSequence, VDMToken. . .)

void PushTag(in ClientID id) Generates unique tag for client id
and pushes this onto the Toolbox’s
internal tag stack. All objects
created by the Toolbox for this
client thereafter are tagged with this
tag.

void DestroyTag(in ClientID

id) raises APIError

Pops the topmost tag on the tag
stack for ClientID and destroys all
objects tagged with this value.

6.1.5 VDMCodeGenerator Interface

Name Description
attribute boolean

GeneratePosInfo

Enables or disables generation of
position information. This allows all
constructs in the generated code to
be traced back to the specification.
Default is false.

enum LanguageType CPP, JAVA Possible target languages of the
code generator

38

The VDM Toolbox API

Name Description
boolean GenerateCode(in

ModuleName name, in

LanguageType targetLang)

raises APIError

Generates C++/Java code
(depending on the targetLang flag)
for module (or class) name. Raises
an exception if name is not a valid
module or class name in the current
project or if you try to generate
Java code for a VDM-SL module
(since Java code generation is only
available for VDM++-classes).

boolean GenerateCodeList(in

ModuleList names) raises

APIError

Generates C++/Java code for each
module (or class) named in names.
Raises an exception if any name in
names is not a valid module or class
name in the current project or if
you try to generate Java code for a
VDM-SL module.

6.1.6 VDMErrors Interface

Name Description
readonly attribute unsigned

short NumErr

Returns the number of errors
generated by the most recent action.

readonly attribute unsigned

short NumWarn()

Returns the number of warnings
generated by the most recent action.

unsigned short GetErrors(out

ErrorList err)

Returns the list of errors generated
by the most recent action in err.

unsigned short GetWarnings(out

ErrorList err)

Returns the list of warnings
generated by the most recent action
in err.

6.1.7 VDMInterpreter Interface

39

The VDM Toolbox API

Name Description
attribute boolean DynTypeCheck Enables or disables dynamic type

checking. Default is false.
attribute boolean DynInvCheck Enables or disables dynamic

invariant checking. Default is false.
If true, the DynTypeCheck attribute
is automatically set to true.

attribute boolean DynPreCheck Enables or disables dynamic
precondition checking. Default is
false.

attribute boolean DynPostCheck Enables or disables dynamic
postcondition checking. Default is
false.

attribute boolean PPOfValues Enables or disables pretty printing
of values. Default is true.

attribute boolean Verbose Enables or disables verbose
interaction with the Toolbox i.e.
whether the result of actions
performed via the API are echoed in
the interpreter window. Default is
false.

attribute boolean Debug Enables or disables debug mode. In
this mode breakpoints in the
specification are respected. When a
breakpoint is reached evaluation is
suspended and the user must
interact with the graphical user
interface to do the actual
debugging. Default is false.

void Initialize() Initializes the interpreter. Must be
done before evaluation.

VDMGeneric EvalExpression(in

ClientID id, in string expr)

raises APIError

Evaluates expr on behalf of client
with id id. Result of evaluation
returned as result of method. Result
will be echoed to screen if Verbose
is true. Run-time errors cause
exceptions to be raised.

40

The VDM Toolbox API

Name Description
VDMGeneric Apply(in ClientID

id, in string f, in

VDMSequence arg) raises

APIError

Applies the function (or operation)
f on argument(s) arg on behalf of
client id. The result of function (or
operation) call is returned as result
of method. Run-time errors cause
exceptions to be raised.

void EvalCmd(in string cmd) Evaluates the command cmd as if it
was written directly to the
interpreter.

long SetBreakPointByPos(in

string file, in long line, in

long col)

Sets a breakpoint at the specified
position (line, column) in the
specified file and returns the number
of the new breakpoint. An
exception or a return value of -1
indicates, that an error has occured
(e.g. the file does not exists or the
specified line number is not valid).

long SetBreakPointByName(in

string mod, in string func)

raises APIError

Sets a breakpoint at the specified
function (func) in the specified
module and returns the number of
the new breakpoint. An exception
or a return value of -1 indicates,
that an error has occured (e.g. the
module or the function does not
exist).

void DeleteBreakPoint(in long

num) raises APIError

Used to delete a breakpoint. It
takes the number returned by the
breakpoint setting methods as a
parameter.

41

The VDM Toolbox API

Name Description
VDMTuple StartDebugging (in

ClientID id, in string expr)

raises APIError

Starts debugging an expression.
This method returns, if the
evaluation of the expression has
been finished or if an breakpoint has
been encountered. It returns a
VDMTuple containing the evaluation
state (which can be either
<BREAKPOINT>, <INTERRUPT>,
<SUCCESS> or <ERROR>) and, in case
of <SUCCESS> (what means, that the
expression has been successfully
evaluated) the MetaIV value that
represents the evaluation result.

VDMTuple DebugStep (in

ClientID id)

This method is the equivalent to the
step command in the toolbox. It
executes the next statement and
then breaks. It will not step into
function and operation calls. It
returns a VDMTuple containing the
evaluation state (which can be
either <BREAKPOINT>, <INTERRUPT>,
<SUCCESS> or <ERROR>) and, in case
of <SUCCESS> (what means, that the
expression has been successfully
evaluated) the result of the
evaluation as a MetaIV value.

VDMTuple DebugStepIn (in

ClientID id)

This method is the equivalent to the
stepin command in the toolbox. It
executes the next statement and
then breaks. It will also step into
function and operation calls. It
returns a VDMTuple containing the
evaluation state (which can be
either <BREAKPOINT>, <INTERRUPT>,
<SUCCESS> or <ERROR>) and, in case
of <SUCCESS> (what means, that the
expression has been successfully
evaluated) the result of the
evaluation as a MetaIV value.

42

The VDM Toolbox API

Name Description
VDMTuple DebugSingleStep (in

ClientID id)

This method is the equivalent to the
singlestep command in the
toolbox. It executes the next
expression or statement and then
breaks. It returns a VDMTuple

containing the evaluation state
(which can be either <BREAKPOINT>,
<INTERRUPT>, <SUCCESS> or
<ERROR>) and, in case of <SUCCESS>
(what means, that the expression
has been successfully evaluated) the
result of the evaluation as a MetaIV
value.

VDMTuple DebugContinue (in

ClientID id)

This method is the equivalent to the
cont command in the toolbox. It
continues the execution after a
breakpoint has been encountered. It
returns a VDMTuple containing the
evaluation state (which can be
either <BREAKPOINT>, <INTERRUPT>,
<SUCCESS> or <ERROR>) and, in case
of <SUCCESS> (what means, that the
expression has been successfully
evaluated) the result of the
evaluation as a MetaIV value.

6.1.8 VDMModuleRepos Interface

Name Description
unsigned short

FilesOfModule(out FileList

files, in ModuleName name)

Delivers names of the files
containing module (or class) name in
files. The sequence will consist of
exactly one name unless this is a
flat module in which case the
module name DefaultMod may be
spread across several files. Returns
the number of files.

43

The VDM Toolbox API

Name Description
void Status(out ModuleStatus

state, in ModuleName name)

raises APIError

Delivers in state the status of
module (or class) name. Raises an
exception if name does not exist in
the current project.

unsigned short

SuperClasses(out ClassList

classes, in ClassName name)

raises APIError

Delivers in classes list of
superclasses of class name. VDM++
specific, raises an exception if called
with the VDM-SL toolbox.

unsigned short SubClasses(out

ClassList classes, in

ClassName name) raises

APIError

Delivers in classes list of
subclasses of class name. VDM++
specific, raises an exception if called
with the VDM-SL toolbox.

unsigned short Uses(out

ClassList classes, in

ClassName name) raises

APIError

Delivers in classes list of classes
used by class name. VDM++
specific, raises an exception if called
with the VDM-SL toolbox.

unsigned short UsedBy(out

ClassList classes, in

ClassName name) raises

APIError

Delivers in classes list of classes
that use class name. VDM++
specific, raises an exception if called
with the VDM-SL toolbox.

6.1.9 VDMParser Interface

Name Description
boolean Parse(in FileName

name) raises APIError

Returns true if file name was
successfully parsed; otherwise
returns false and the state of the
VDMErrors interface is modified.
Raises an exception if the file does
not exist.

boolean ParseList(in FileList

names) raises APIError

Returns true if all of the files in
names were successfully parsed.
Otherwise returns false and the
state of the VDMErrors interface is
modified. Raises an exception if any
file does not exist.

44

The VDM Toolbox API

6.1.10 VDMPrettyPrinter Interface

Name Description
boolean PrettyPrint(in

FileName name) raises APIError

Returns true if module (or class)
name was successfully pretty
printed; otherwise returns false and
the state of the VDMErrors interface
is modified. Raises an exception if
the module (or class) does not exist.

boolean PrettyPrintList(in

FileList names) raises

APIError

Returns true if all of the modules
(or classes) in names were
successfully pretty printed.
Otherwise returns false and the
state of the VDMErrors interface is
modified. Raises an exception if any
module (or class) does not exist.

6.1.11 VDMProject Interface

Name Description
void New() Creates a new project
void Open(in FileName name)

raises APIError

Opens project with name given by
argument FileName.

void Save() raises APIError Save project using existing name.
Raises an exception if the project
currently has no name (e.g. if it is
new)

void SaveAs(in FileName name) Save project using name given by
argument FileName

unsigned short GetModules(out

ModuleList modules)

For current project, generates list of
modules (VDM-SL) or list of classes
(VDM++) in modules and returns
the number of modules or classes.

unsigned short GetFiles(out

FileList files)

For current project, generates list of
files in files and returns the
number of files.

45

The VDM Toolbox API

Name Description
void AddFile(in FileName name)

raises APIError

Adds a file to the project. Raises
APIError if unsuccessful (e.g. file
not found).

void RemoveFile(in FileName

name) raises APIError

Removes a file from the project.
Raises APIError if unsuccessful
(e.g. file not in current project) .

6.1.12 VDMTypeChecker Interface

Name Description
attribute boolean DefTypeCheck Determines whether type checking

mode is “def” (true) or “pos”
(false). Default is “pos”.

attribute boolean

ExtendedTypeCheck

Determines whether extended type
checking is enabled. Default is false.

boolean TypeCheck(in

ModuleName name) raises

APIError

Returns true if module (or class)
name was successfully type checked;
otherwise returns false and the state
of the VDMErrors interface is
modified. Raises an exception if the
module (or class) does not exist.

boolean TypeCheckList(in

ModuleList names) raises

APIError

Returns true if all of the modules
(or classes) in names were
successfully type checked.
Otherwise returns false and the
state of the VDMErrors interface is
modified. Raises an exception if any
module (or class) does not exist.

6.2 VDM API

In the following, Section titles have fully qualified interface names (i.e. VDM::Interface)
but short names used in actual descriptions for brevity.

46

The VDM Toolbox API

6.2.1 Types

The following type synonyms are defined:

Name Synonym for
ClientID short

bytes sequence<octet>

6.2.2 VDM::VDMGeneric Interface

Name Description
string ToAscii() Returns a string representation of

the object.
boolean IsNil() Returns true if and only if the

object has type VDMNil.
boolean IsChar() Returns true if and only if the

object has type VDMChar

boolean IsNumeric() Returns true if and only if the
object has type VDMNumeric

boolean IsQuote() Returns true if and only if the
object has type VDMQuote

boolean IsTuple() Returns true if and only if the
object has type Tuple

boolean IsRecord() Returns true if and only if the
object has type Record

boolean IsSet() Returns true if and only if the
object has type Set

boolean IsMap() Returns true if and only if the
object has type Map

boolean IsText() Returns true if and only if the
object has type VDMText

boolean IsToken() Returns true if and only if the
object has type VDMToken

boolean IsBool() Returns true if and only if the
object has type VDMBool

boolean IsSequence() Returns true if and only if the
object has type Sequence

47

The VDM Toolbox API

Name Description
boolean IsObjectRef() Returns true if and only if the

object is a reference to another
VDM object.

void Destroy() raises APIError Calls to this method indicate to the
server that the client has no further
use for this object. If this was the
last reference to the server object,
the resources associated with it will
be released.

bytes GetCPPValue() Returns the binary representation of
the MetaIV value. In this way, by
linking the client application with
the VDM library, it is possible to
create a ‘real’ MetaIV value in the
client. This allows for more efficient
access when iterating through a
large VDM value.

VDMGeneric Clone() This method returns a copy of the
value held by the object on which
this method is invoked.

6.2.3 Basic VDM Types

The following interfaces extend the VDMGeneric interface. The only difference is
the addition of a GetValue() method which has default access and returns the
value corresponding to this VDM value.

Interface GetValue() returns

VDM::VDMBool boolean

VDM::VDMChar char

VDM::VDMNumeric double

VDM::VDMQuote string

VDM::VDMText string

VDM::VDMToken string

48

The VDM Toolbox API

The interface VDM::VDMNil has no public methods or member variables
in addition to those it inherits.

6.2.4 VDM::VDMMap Interface

This interface extends VDMGeneric.

Name Description
void Insert(in VDMGeneric key,

in VDMGeneric val) raises

VDMError

Adds a new key key with value val

to the map. Raises an exception if
key is already in the domain of the
map.

void ImpModify(in VDMGeneric

key, in VDMGeneric val)

Modifies the map so that key has
value val.

VDMGeneric Apply(in VDMGeneric

key) raises VDMError

Returns the value corresponding to
key. Raises an exception if key is
not in the domain of the map.

void ImpOverride(in VDMMap m) Overrides this map with the map
object m.

unsigned long Size() Returns the number of keys in the
map.

boolean IsEmpty() Returns true if and only if the map
has no keys.

Set Dom() Returns the domain (keys) of the
map.

Set Rng() Returns the range (values) of the
map.

boolean DomExists(in

VDMGeneric g)

Returns true if and only if g lies in
the domain of the map.

void RemElem(in VDMGeneric

key) raises VDMError

Removes key key from the map.
Raises an exception if key is not in
the domain of the map.

short First(out VDMGeneric g) Delivers the first key in the map in
g. Returns 1 if the map is
non-empty, 0 if the map is empty.

short Next(out VDMGeneric g) Iterator delivering the next key in
the map in g. Returns 1 if there are
still keys in the map not yet visited,
0 if all of the keys have been yielded
by the iterator.

49

The VDM Toolbox API

6.2.5 VDM::VDMRecord Interface

This interface extends Generic.

Name Description
void SetField(in unsigned long

i, in VDMGeneric g) raises

VDMError

Sets field i to have value g. Raises
an exception if i is not a valid field
for this record (i.e. not in the range
1, . . . , number of fields)

VDMGeneric GetField(in

unsigned long i) raises

VDMError

Returns the value of field i. Raises
an exception if i is not a valid field
for this record (i.e. not in the range
1, . . . , number of fields)

string GetTag() Returns the tag of this record.
boolean Is(in string tag) Returns true if and only if tag

matches the tag for this record.
long Length() Returns the number of fields in this

record.

6.2.6 VDM::VDMSequence Interface

This interface extends VDMGeneric.

Name Description
VDMGeneric Index(in long i)

raises VDMError

Returns the value at index i in the
sequence. Raises an exception if i is
not a valid index.

VDMGeneric Hd() raises

VDMError

Returns the value at the head of the
sequence. Raises an exception if the
sequence is empty.

VDMSequence Tl() raises

VDMError

Returns the tail of the sequence,
leaving this sequence unchanged.
Raises an exception if the sequence
is empty.

void ImpTl() raises VDMError Removes the head of this sequence.
Raises an exception if the sequence
is empty.

void RemElem(in long i) raises

VDMError

Removes the element at index i

from the sequence.
long Length() Returns the length of the sequence

50

The VDM Toolbox API

Name Description
boolean GetString(out string

s)

If this sequence is purely a sequence
of char, returns true, and delivers
the corresponding string in s,
otherwise returns false.

boolean IsEmpty() Returns true if and only if the
sequence is empty.

void ImpAppend(in VDMGeneric

g)

Appends value g to the end of the
sequence.

void ImpModify(in long i, in

VDMGeneric g) raises VDMError

Overwrites the value stored at index
i with g. Raises an exception if i is
not a valid index for this sequence
(i.e. not in the range
1, . . . , length of sequence)

void ImpPrepend(in VDMGeneric

g)

Prepends the value g to the front of
the sequence.

void ImpConc(in VDMSequence s) Concatenates sequence s to the end
of this sequence.

Set Elems() Returns the set of elements in the
sequence.

short First(out VDMGeneric g) Delivers the first element in the
sequence in g. Returns 1 if the
sequence is non-empty, 0 if the
sequence is empty.

short Next(out VDMGeneric g) Iterator delivering the next element
in the sequence in g. Returns 1 if
there are still elements in the
sequence not yet visited, 0 if all of
the elements have been yielded by
the iterator.

6.2.7 VDM::VDMSet Interface

This interface extends VDMGeneric.

Name Description
void Insert(in VDMGeneric g) Inserts value g into the set.
unsigned long Card() Returns the cardinality of the set.
boolean IsEmpty() Returns true if and only if the set is

empty.

51

The VDM Toolbox API

Name Description
boolean InSet(in VDMGeneric g) Returns true if and only if g lies in

the set.
void ImpUnion(in VDMSet s) Adds all of the elements of s to this

set.
void ImpIntersect(in VDMSet s) Removes from this set those

elements that do not occur in s.
VDMGeneric GetElem() raises

VDMError

Returns an arbitrary element of the
set. Raises an exception if the set is
empty.

void RemElem(in VDMGeneric g)

raises VDMError

Removes the element g from the set.
Raises an exception if g does not
occur in the set.

boolean SubSet(in VDMSet s) Returns true if and only if s is a
subset of this set.

void ImpDiff(in VDMSet s) Modifies this set by removing any
elements from it that also occur in
the set s.

short First(out VDMGeneric g) Delivers the first element in the set
in g. Returns 1 if the set is
non-empty, 0 if the set is empty.

short Next(out VDMGeneric g) Iterator delivering the next element
in the set in g. Returns 1 if there
are still elements in the set not yet
visited, 0 if all of the elements have
been yielded by the iterator.

6.2.8 VDMTuple Interface

This interface extends VDMGeneric.

Name Description
void SetField(in unsigned long

i, in VDMGeneric g) raises

VDMError

Sets field i in the tuple to be value
g. Raises an exception if field i does
not exist.

VDMGeneric GetField(in

unsigned long i) raises

VDMError

Returns field i. Raises an exception
if field i does not exist.

unsigned long Length() Returns the number of fields in the
tuple.

52

The VDM Toolbox API

6.2.9 VDMFactory Interface

Name Description
VDMNumeric MkNumeric(in

ClientID id, in double d)

Returns a VDMNumeric object
with value d to client id

VDMBool MkBool(in ClientID id,

in boolean b);

Returns a VDMBool object with
value b to client id

VDMNil MkNil(in ClientID id); Returns a VDMNil object to client
id

VDMQuote MkQuote(in ClientID

id, in string s);

Returns a VDMQuote object with
value s to client id

VDMChar MkChar(in ClientID id,

in char c);

Returns a VDMChar object with
value c to client id

VDMText MkText(in ClientID id,

in string s);

Returns a VDMText object with
value s to client id

VDMToken MkToken(in ClientID

id, in string s);

Returns a VDMToken object with
value s to client id

VDMMap MkMap(in ClientID id); Returns a VDMMap object to client
id

VDMSequence MkSequence(in

ClientID id);

Returns a VDMSequence object to
client id

VDMSet MkSet(in ClientID id) Returns a VDMSet object to client
id

VDMTuple MkTuple(in ClientID

id, in unsigned long length);

Returns a VDMTuple object with
length components to client id

VDMGeneric FromCPPValue(in

ClientID id, in bytes

cppvalue)

Converts a ‘real’ MetaIV value, in
its binary representation, to a
VDMGeneric. This function is the
‘inverse’ of GetCPPValue().

6.3 Exceptions

Two exceptions are defined:

53

The VDM Toolbox API

Exception Component

ToolboxAPI::APIError string msg

VDM::VDMError short err

The value returned in a VDMError exception packet is a status code. A list of the
possible status codes, and their meaning is given below.

Value Description
1 Attempt to insert key into map which

already exists with different range value
2 Not in domain
4 Index out of range
6 Op on empty set
7 Not in set
10 Head on empty sequence
11 Tail on empty sequence
12 Range error

6.4 C++ API Reference

In this Section we briefly describe the translation of the IDL interfaces described in
Sections 6.1 and 6.2. This is based on the translation generated by the omniORB
IDL Compiler (Version 2.6.1).

6.4.1 corba client.h

A file corba client.cc is provided to simplify initialization of the ORB. Its
interface is defined in corba client.h and is listed here.

The enumerated type GetAppReturnCode is declared with values listed in the
following table:

Value Description
VDM OBJECT LOCATION NOT SET The environment variable

VDM OBJECT LOCATION was not set.
See the function GetAppReturnCode

for details.

54

The VDM Toolbox API

OBJECT STRING NON EXISTING The VDM Toolbox was not running
CORBA SUCCESS Successful communication with the

VDM Toolbox
CORBA ERROR Error in communication with VDM

Toolbox

The functions defined are as follows:

Name Description
void init corba(int argc, char

*argv[])

Initializes the CORBA ORB and
BOA (Basic Object Adapter). Call
this function before using any other
CORBA related functions. For more
information on the Object Request
Broker and the Basic Object
Adapter refer to the CORBA
specification, which is available from
the OMB CORBA homepage
(http://www.corba.org).

GetAppReturnCode

get app(VDMApplication var

app, char *path [,

ToolboxAPI::ToolType

toolType])

Tries to resolve VDMApplication
from the CosNamingService. If no
NamingService is running, it reads a
file named ‘vdmref.ior’ or
‘vppref.ior’ to get the id of the
running server. The file must be
located in the directory pointed to
by the environment variable
VDM OBJECT LOCATION (unless you
provide a path). The ToolType

(either ToolboxAPI::SL TOOLBOX or
ToolboxAPI::PP TOOLBOX is
optional, SL TOOLBOX is the default
setting. The value returns indicates
the result of the operation.

Generic

GetCPPValue(VDM::Generic ptr

g ptr)

Converts a MetaIV-IDL object
reference to the corresponding ‘real’
MetaIV C++ value.

55

The VDM Toolbox API

Name Description
VDM::Generic ptr

FromCPPValue(ClientID id,

Generic g, VDMFactory ptr

fact);

Converts a ‘real’ MetaIV C++
value to a VDMGeneric CORBA
object that can be passed in calls to
the server. Notice that you must
pass to this function a handle to the
VDMFactory as well.

6.4.2 Naming Conventions

To create a reference to an IDL interface I in C++, a variable of type I var

should be created.

To access an operation O defined in an interface I, indirect access of the object
reference is used i.e. I var->M. Such references should be used for both “in”
(value) parameters and “out” (result) parameters.

6.4.3 Casting

For each interface I, the corresponding C++ class I contains a static function
called narrow.

The I:: narrow function takes an argument of type CORBA::Object ptr and
returns a new object reference of the class I. Any object which may be commu-
nicated with the ORB has type CORBA::Object ptr.

If the actual (runtime) type of the argument object reference can be narrowed to
I, I:: narrow will return a valid object reference. Otherwise it will return a nil
object reference.

6.5 Java API

In this Section we briefly describe the translation of the IDL interfaces described
in Sections 6.1 and 6.2 into Java. This is based on the translation generated by
the IDL To Java Compiler (Version 1.3). Note that the documentation generated
by javadoc is included with the Toolbox distribution in api/corba/javaapi-doc.

For each interface described in Sections 6.1 and 6.2 there is a corresponding Java
class in the package dk.ifad.toolbox.api. Methods defined in the interfaces

56

The VDM Toolbox API

have the same name in the corresponding Java class. “In” parameters (value
parameters) to methods are passed as values of the corresponding class; “out”
parameters (result parameters) are passed as holder objects – see Section 6.5.2.

In addition to these classes and those described below, there is one further class
(also in the package dk.ifad.toolbox.api) - ToolboxClient. This class pro-
vides two methods

Name Description
String readRefFile() Returns the contents of the

[vdm|vpp]ref.ior file.
public VDMApplication

getVDMApplication(String[]

args, ToolType toolType)

Establishes the connection to the
Toolbox (depending on the
toolType, either to the SL TOOLBOX

or the PP TOOLBOX. Takes as
arguments (args) respectively any
command-line arguments for the
ORB.

In addition, to use the API the package org.omg.CORBA distributed with the Java
Development Kit should be used.

Note that the property VDM OBJECT LOCATION is used by readRefFile, but since
Java does not allow normal environment variables, this value must be passed
using the -D flag at runtime. For instance

java -DVDM_OBJECT_LOCATION=/tmp <java class>

6.5.1 Helper Classes

For each of the interfaces described in Sections 6.1 and 6.2 named C there is
a corresponding Helper class named CHelper. From the programmer’s point of
view, the main use of these classes is the provision of a narrow method which
narrows (casts) an arbitrary CORBA object into an object of class C. If such a
narrowing is not possible the exception org.omg.CORBA.BAD PARAM is raised.

For class CHelper the corresponding narrowing function would be declared using
the scheme

public static C narrow(org.omg.CORBA.Object that)

57

The VDM Toolbox API

where C would be replaced by the name of the particular class.

For the following classes a narrow method is not provided as it is not meaningful:

ClassList

ErrorList

FileList

ModuleList

ModuleStatus

ToolType

Error

6.5.2 Holder Classes

For each of the interfaces described in Sections 6.1 and 6.2 named C there is a
corresponding Holder class named CHolder. These are used to allow methods to
return results by reference i.e. an object of a holder class would be passed to such
a method as an argument, and the method would place its result in that object.

Each holder class has a public instance member, value, which is the typed value.

In addition to these holder classes there are four further holder classes:

Exception Type of value attribute
ClassListHolder String[]

ErrorListHolder Error[]

FileListHolder String[]

ModuleListHolder String[]

58

The VDM Toolbox API

7 Recommended Reading

For further information on CORBA and the services this standard provides we
refer to the omniORB2 users guide, [omniORB2], that gives an excellent intro-
duction to this topic. More detailed information is available in selected chapters
of the CORBA standard, [OMG&96].

8 References

[CGManJavaPP] The VDM Tool Group. The VDM++ to Java Code Gener-
ator. Technical Report, IFAD, October 2000.

[LibMan] The VDM Tool Group. The VDM C++ Library. Technical
Report, IFAD, October 2000.

[OMG&96] The Common Object Request Broker: Architecture and Spec-
ification. OMG, July 1996.

[omniORB2] Sai-Lai Lo. The omniORB2 version 2.5 User’s Guide. Olivetti
and Oracle Research Laboratory.

59

The VDM Toolbox API

A Example Programs

A.1 The C++ Client Example

/***

* * WHAT

* * This file is an example of how to implement a client

* * process that uses the CORBA API of the VDM Toolbox.

* *

* * The file can be compiled with MS VC++ 6.0 on

* * windows NT/95 and with gcc 2.95.2 on Unix.

* *

* * Use the makefile Makefile.nm if you use nmake on 98/NT and

* * Makefile if you compile on Linux

* * ID

* * $Id: client_example.cc,v 1.17 2000/10/30 17:04:22 paulm Exp $

* * AUTHOR

* * Ole Storm + $Author: paulm $

* * COPYRIGHT

* * (C) 1998 IFAD, Denmark

***/

#include <iostream.h>

#include <string>

// CORBA Initialisation and other stuff for omniORB2

#include "corba_client.h"

char ABS_FILENAME[200];

VDM::ClientID client_id;

/////

// Update this to reflect the location of the Toolbox installation:

/////

#ifdef _MSC_VER

#ifdef VDMPP

#define VDM_ROOT "g:/Program Files/The IFAD VDM++ Toolbox v6.6/"

#else

#define VDM_ROOT "g:/Program Files/The IFAD VDM-SL Toolbox v3.6/"

#endif //VDMPP

60

The VDM Toolbox API

#else

// Location of examples on non-WinNT platforms:

#ifdef VDMPP

#define VDM_ROOT "/home/vdm/toolbox/pp/"

#else

#define VDM_ROOT "/home/vdm/toolbox/sl/"

#endif //VDMPP

#endif //_MSC_VER

#define ADD_PATH(s) strcat(strcpy(ABS_FILENAME, VDM_ROOT), s)

#define SORT_NUM 20

void EchoPrimes(int, ToolboxAPI::VDMInterpreter_var,

ToolboxAPI::VDMApplication_var);

void EchoPrimes2(int, ToolboxAPI::VDMInterpreter_var,

ToolboxAPI::VDMApplication_var);

void ListModules(ToolboxAPI::VDMApplication_var app);

// The handles to the ORB and BOA are declared in corba_client.cc

// Declared as externals here if you need to fiddle directly with

// the ORB or BOA.

extern CORBA::ORB_var _the_orb;

extern CORBA::BOA_var _the_boa;

int main(int argc, char *argv[])

{

// The main handle to the VDM Toolbox:

ToolboxAPI::VDMApplication_var app;

// Initialise the ORB and BOA. Consult corba_client.{h,cc} and the

// omniORB2 user maual for details on how this is done.

init_corba(argc, argv);

// Retrieve a handle to the VDMToolbox most recently started. The

// handle is achieved through a string representation of a CORBA

// object created by the VDM Toolbox. The string is written to a

// file named object.string and located in the directory defined

// by VDM_OBJECT_LOCATION

// If this is not set, get_app automatically searches for the file

// in the home (Unix) or profiles directory (Windows NT/95).

61

The VDM Toolbox API

#ifdef VDMPP

GetAppReturnCode rt = get_app(app, NULL, ToolboxAPI::PP_TOOLBOX);

#else

GetAppReturnCode rt = get_app(app, NULL, ToolboxAPI::SL_TOOLBOX);

#endif //VDMPP

switch(rt){

case VDM_OBJECT_LOCATION_NOT_SET:

cerr << "Environment variable VDM_OBJECT_LOCATION not set\n";

exit(0);

case OBJECT_STRING_NON_EXISTING:

cerr << "The file " + GetIORFileName() + " could not be located. \

Make sure the Toolbox is running\n";

exit(0);

case CORBA_ERROR:

cerr << "Unable to setup the CORBA environment\n";

exit(0);

case CORBA_SUCCESS:

default:

break;

}

try{

// Register the client in the Toolbox:

client_id = app->Register();

// First we acquire a handle to the VDMProject interface to

// configure the current project:

ToolboxAPI::VDMProject_var prj = app->GetProject();

prj->New(); // New project

// Configure the project to contain the necessary files. The

// files must be located in the same directory as where the

// VDM Toolbox was started. Otherwise the absolute path to the

// files should be used

if(app->Tool() == ToolboxAPI::SL_TOOLBOX)

{

prj->AddFile(ADD_PATH("examples/sort/sort.vdm"));

}

else{

62

The VDM Toolbox API

prj->AddFile(ADD_PATH("examples/sort/implsort.vpp"));

prj->AddFile(ADD_PATH("examples/sort/sorter.vpp"));

prj->AddFile(ADD_PATH("examples/sort/explsort.vpp"));

prj->AddFile(ADD_PATH("examples/sort/mergesort.vpp"));

prj->AddFile(ADD_PATH("examples/sort/sortmachine.vpp"));

}

// Parse the files:

ToolboxAPI::VDMParser_var parser = app->GetParser();

ToolboxAPI::FileList_var fl;

prj->GetFiles(fl);

// Parse the files in two different ways. First we traverse

// the list of files and parse each file individually. (OK, I

// know that for the SL_TOOLBOX there is only one file

// configured, but it is fine for an illustration)

cout << "Parsing files individually\n";

for(unsigned int i=0; i<fl->length(); i++){

cout << (char *)fl[i] << "...Parsing...";

if(parser->Parse(fl[i]))

cout << "done.\n";

else

cout << "error.\n";

}

// And then we parse all files in one go:

cout << "\nParsing entire list...";

parser->ParseList(fl);

cout << "done.\n";

// If errors were encountered during the parse they can now be

// inspected:

ToolboxAPI::VDMErrors_var errhandler = app->GetErrorHandler();

// The error handler

ToolboxAPI::ErrorList_var errs;

// retrieve the sequence of errors

int nerr = errhandler->GetErrors(errs);

if(nerr){

// Print the error:

cout << nerr << " errors:\n";

for(int ierr=0; ierr<nerr; ierr++)

63

The VDM Toolbox API

cout << (char *) errs[ierr].fname << ", "

<< errs[ierr].line << "\n"

<< (char*) errs[ierr].msg << "\n";

}

// Warnings can be queried similarly.

// List the names and status of all modules:

ListModules(app);

// Type check all modules:

ToolboxAPI::VDMTypeChecker_var tchk = app->GetTypeChecker();

ToolboxAPI::ModuleList_var modules;

prj->GetModules(modules);

cout << "Type checking all modules...";

if(tchk->TypeCheckList(modules))

cout << "done.\n";

else

cout << "errors.\n";

// List the new status of all modules:

ListModules(app);

// Finally we will show how to use the interpreter.

cout << "\nInterpreter tests:\n\n";

ToolboxAPI::VDMInterpreter_var interp = app->GetInterpreter();

// Call a function that computes primes:

EchoPrimes(20, interp, app);

// Secondly we show how to use Apply:

// Construct a sequence of integers to be sorted. To do

// so we need a handle to the VDMFactory to produce VDM values:

VDM::VDMFactory_var fact = app->GetVDMFactory();

app->PushTag(client_id); // Tag all objects created from now on

VDM::VDMSequence_var list = fact->MkSequence(client_id);

64

The VDM Toolbox API

VDM::VDMNumeric_var elem;

for(int j=0; j<SORT_NUM; j++){

elem = fact->MkNumeric(client_id, j);

list->ImpPrepend(elem);

}

cout << "The sequence to be sorted: " << list->ToAscii();

// Construct the argument list for the call. That is, construct

// a VDM::Sequence containing all arguments in the right order:

VDM::VDMSequence_var arg_l = fact->MkSequence(client_id);

arg_l->ImpAppend(list);

// Set Verbose to true, to show the results of using the

// interpreter in the user interface:

interp->Verbose(true);

interp->Debug(true);

// First initialise the interpreter

interp->Initialize();

VDM::VDMGeneric_var g;

if(app->Tool() == ToolboxAPI::SL_TOOLBOX){

g = interp->Apply(client_id, "MergeSort", arg_l);

}

else{ // PP_TOOLBOX

// First we create the main sort object:

interp->EvalCmd("create o := new SortMachine()");

// Next, the GoSorting method is called on this object:

g = interp->Apply(client_id, "o.GoSorting", arg_l);

}

cout << "The sorted sequence: " << g->ToAscii() << "\n";

// Finally we iterate through the returned sequence to compute

// the sum of all the elements of the sequence:

VDM::VDMSequence_var s = VDM::VDMSequence::_narrow(g);

int sum=0;

for(int k=1; k<=s->Length(); k++){

VDM::VDMNumeric_var n = VDM::VDMNumeric::_narrow(s->Index(k));

65

The VDM Toolbox API

sum += (int)n->GetValue();

}

cout << "The sum of all the elements: " << sum << "\n";

EchoPrimes2(50, interp, app);

app->DestroyTag(client_id);

// Unregister the client:

app->Unregister(client_id);

}

catch(ToolboxAPI::APIError &ex){

cerr << "Caught API error " << (char*)ex.msg << "\n";

}

catch(CORBA::COMM_FAILURE &ex) {

cerr << "Caught system exception COMM_FAILURE, \

unable to contact server"

<< endl;

}

catch(omniORB::fatalException& ex) {

cerr << "Caught omniORB2 fatalException" << endl;

}

return 0;

}

void EchoPrimes(int n, ToolboxAPI::VDMInterpreter_var interp,

ToolboxAPI::VDMApplication_var app)

// Generates the sequence of primes below n and echoes the

// sequence to stdout.

{

app->PushTag(client_id);

interp->Initialize ();

// This VDM::Generic is used to hold the result from the

// interpreter.

VDM::VDMGeneric_var g;

// Use EvalExpression to compute the primes below 20

66

The VDM Toolbox API

char expr[200];

sprintf(expr, "[e|e in set {1,...,%d} \

& exists1 x in set {2,...,e} & e mod x = 0]", n);

g = interp->EvalExpression(client_id, expr);

if(g->IsSequence()){

cout << "All primes below " << n << ":\n" << g->ToAscii() << "\n";

}

VDM::VDMSequence_var s = VDM::VDMSequence::_narrow(g);

int sum=0;

for(int k=1; k<=s->Length(); k++){

VDM::VDMNumeric_var n = VDM::VDMNumeric::_narrow(s->Index(k));

sum += (int)n->GetValue();

}

cout << "The sum of all the primes: " << sum << "\n";

app->DestroyTag(client_id); // Clean up...

}

void EchoPrimes2(int n, ToolboxAPI::VDMInterpreter_var interp,

ToolboxAPI::VDMApplication_var app)

// Generates the sequence of primes below n and echoes the

// sequence to stdout.

// Additionally this function shows how GetCPPValue can be used

// to transfer an entire VDM value from the toolbox to the client

// and convert it to a "real" C++ value as declared in metaiv.h

{

// This VDM::VDMGeneric is used to hold the result from the

// interpreter.

VDM::VDMGeneric_var g;

// Use EvalExpression to compute the primes below 20

char expr[200];

sprintf(expr, "[e|e in set {1,...,%d} & \

exists1 x in set {2,...,e} & e mod x = 0]", n);

g = interp->EvalExpression(client_id, expr);

// Convert the VDM::Generic g into a "real" metaiv-Sequence

// value:

Sequence s(GetCPPValue(g));

67

The VDM Toolbox API

// Now we can safely destroy g since the entire value has been

// transferred to the client:

g->Destroy();

cout << "All primes below " << n << ":\n" << s.ascii() << "\n";

int i, sum=0;

Generic gg;

for(i = s.First(gg); i; i = s.Next(gg)){

sum += (int)Real(gg).GetValue();

}

cout << "The sum of all the primes: " << sum << "\n";

}

void ListModules(ToolboxAPI::VDMApplication_var app)

// This function lists the modules and their status.

{

// The project handle

ToolboxAPI::VDMProject_var prj = app->GetProject();

// The Module Repository

ToolboxAPI::VDMModuleRepos_var repos = app->GetModuleRepos();

ToolboxAPI::ModuleList_var ml;

prj->GetModules(ml);

cout << "Modules:\n";

for(int i=0; i<ml->length(); i++){

// This struct is used to hold the status of a module:

ToolboxAPI::ModuleStatus stat;

// Get the status of the i’th module

repos->Status(stat, ml[i]);

// Print the status. 0 = none, 1 = OK

cout << (int) stat.SyntaxChecked

<< (int) stat.TypeChecked

<< (int) stat.CodeGenerated

<< (int) stat.PrettyPrinted

<< " " << (char *)ml[i] << "\n";

}

}

68

The VDM Toolbox API

A.2 The Java Client Example

import org.omg.CORBA.*;

import java.io.*;

import dk.ifad.toolbox.api.ToolboxClient;

import dk.ifad.toolbox.api.corba.ToolboxAPI.*;

import dk.ifad.toolbox.api.corba.VDM.*;

public class client_example

{

private static short client;

private static final String VdmToolboxHome=

//"G:\\Program Files\\The IFAD VDM-SL Toolbox v3.6\\examples";

"/home/vdm/toolbox/examples/sl";

private static final String VppToolboxHome=

//"G:\\Program Files\\The IFAD VDM++ Toolbox v6.6\\examples";

"/home/vdm/toolbox/examples/pp";

public static void main(String args[])

{

try {

//

// Create ORB

//

VDMApplication app;

String ToolboxHome;

if (System.getProperty("VDMPP") == null) {

app = (new ToolboxClient ()).getVDMApplication(args,

ToolType.SL_TOOLBOX);

ToolboxHome = VdmToolboxHome;

}

else {

app = (new ToolboxClient ()).getVDMApplication(args,

ToolType.PP_TOOLBOX);

ToolboxHome = VppToolboxHome;

69

The VDM Toolbox API

}

// Register the client in the Toolbox:

client = app.Register();

System.out.println ("registered: " + client);

// First we acquire a handle to the VDMProject interface to

// configure the current project:

try{

VDMProject prj = app.GetProject();

prj.New();

// Configure the project to contain the necessary files.

// The files must be located in the same directory as where

// the VDM Toolbox was started. Otherwise the absolute path

// to the files should be used

if(app.Tool() == ToolType.SL_TOOLBOX){

prj.AddFile(ToolboxHome + "/sort/sort.vdm");

}

else{

prj.AddFile(ToolboxHome + "/sort/implsort.vpp");

prj.AddFile(ToolboxHome + "/sort/sorter.vpp");

prj.AddFile(ToolboxHome + "/sort/explsort.vpp");

prj.AddFile(ToolboxHome + "/sort/mergesort.vpp");

prj.AddFile(ToolboxHome + "/sort/sortmachine.vpp");

}

// Parse the files:

VDMParser parser = app.GetParser();

FileListHolder fl = new FileListHolder();

int count = prj.GetFiles(fl);

String flist[] = fl.value;

// Parse the files in two different ways. First we traverse

// the list of files and parses each file individually.

// (OK, I know that for the SL_TOOLBOX there is only one

// file configured, but it is fine for an illustration)

70

The VDM Toolbox API

System.out.println("Parsing files individually");

for(int i=0; i<flist.length; i++){

System.out.println(flist[i]);

System.out.println("...Parsing...");

if(parser.Parse(flist[i]))

System.out.println("done.");

else

System.out.println("error.");

}

// And then we parse all files in one go:

System.out.println("Parsing entire list...");

parser.ParseList(flist);

System.out.println("done.");

// If errors were encountered during the parse they can now

// be inspected:

// The error handler

VDMErrors errhandler = app.GetErrorHandler();

ErrorListHolder errs = new ErrorListHolder();

// retrieve the sequence of errors

int nerr = errhandler.GetErrors(errs);

dk.ifad.toolbox.api.corba.ToolboxAPI.Error errlist[] =

errs.value;

if(nerr>0){

// Print the errors:

System.out.println("errors: ");

for(int i=0; i<errlist.length; i++){

System.out.println(errlist[i].fname);

System.out.println(errlist[i].line);

System.out.println(errlist[i].msg);

}

}

// Warnings can be queried similarly.

71

The VDM Toolbox API

// List the names and status of all modules:

ListModules(app);

// Type check all modules:

VDMTypeChecker tchk = app.GetTypeChecker();

ModuleListHolder moduleholder = new ModuleListHolder();

prj.GetModules(moduleholder);

String modules[] = moduleholder.value;

System.out.println("Type checking all modules...");

if(tchk.TypeCheckList(modules))

System.out.println("done.");

else

System.out.println("errors.");

// List the new status of all modules:

ListModules(app);

// Finally we will show how to use the interpreter.

System.out.println("Interpreter tests:");

VDMInterpreter interp = app.GetInterpreter();

// Call a function that computes primes:

EchoPrimes(20, interp, app);

// Secondly we show how to use Apply:

// Construct a sequence of integers to be sorted. In order

// to do so we need a handle to the VDMFactory to produce

// VDM values:

VDMFactory fact = app.GetVDMFactory();

app.PushTag(client); // Tag all objects created from now on

VDMSequence list = fact.MkSequence(client);

VDMNumeric elem;

72

The VDM Toolbox API

for(int j=0; j<20; j++){

elem = fact.MkNumeric(client, j);

list.ImpPrepend(elem);

}

System.out.println("The sequence to be sorted: " +

list.ToAscii());

// Construct the argument list for the call. That is,

// construct a Sequence containing all arguments in the

// right order:

VDMSequence arg_l = fact.MkSequence(client);

arg_l.ImpAppend(list);

// Set Verbose to true, to show the results of using the

// interpreter in the user interface:

interp.Verbose(true);

interp.Debug(true);

// First initialise the interpreter

System.out.println("About to initialize the interpreter");

interp.Initialize();

VDMGeneric g;

if(app.Tool() == ToolType.SL_TOOLBOX){

g = interp.Apply(client, "MergeSort", arg_l);

}

else{ // PP_TOOLBOX

// First we create the main sort object:

interp.EvalCmd("create o := new SortMachine()");

// Next, the GoSorting method is called on this object:

g = interp.Apply(client, "o.GoSorting", arg_l);

}

System.out.println("The sorted sequence: " + g.ToAscii());

// Finally we iterate through the returned sequence to

// compute the sum of all the elements of the sequence:

73

The VDM Toolbox API

VDMSequence s = VDMSequenceHelper.narrow(g);

VDMGenericHolder eholder = new VDMGenericHolder();

int sum=0;

for (int ii=s.First(eholder); ii != 0; ii=s.Next(eholder)) {

VDMNumeric num = VDMNumericHelper.narrow(eholder.value);

sum = sum + (int) num.GetValue();

}

System.out.println("The sum of all the elements: " + sum);

EchoPrimes2(50, interp, app);

app.DestroyTag(client);

app.Unregister(client);

System.exit(0);

}

catch(APIError err) {

System.err.println("API error"+err.getMessage ());

System.exit(1);

}

}

catch

(dk.ifad.toolbox.api.ToolboxClient.CouldNotResolveObjectException ex)

{

System.err.println(ex.getMessage());

System.exit(1);

}

catch(COMM_FAILURE ex) {

System.err.println(ex.getMessage());

ex.printStackTrace();

System.exit(1);

}

};

public static void ListModules(VDMApplication app){

try{

74

The VDM Toolbox API

// This function lists the modules and their status.

// The project handle

VDMProject prj = app.GetProject();

// The Module Repository

VDMModuleRepos repos = app.GetModuleRepos();

ModuleListHolder ml = new ModuleListHolder();

prj.GetModules(ml);

String mlist[] = ml.value;

System.out.println("Modules:");

for(int i=0; i<mlist.length; i++){

// This struct is used to hold the status of a module:

ModuleStatusHolder stateholder = new ModuleStatusHolder();

// Get the status of the i’th module

repos.Status(stateholder, mlist[i]);

ModuleStatus stat = stateholder.value;

// Print the status.

System.out.println(mlist[i]);

System.out.println("SyntaxChecked: " + stat.SyntaxChecked);

System.out.println("TypeChecked: " + stat.TypeChecked);

System.out.println("Code generated: " + stat.CodeGenerated);

System.out.println("PrettyPrinted: " + stat.PrettyPrinted);

}

}

catch(APIError err) {

System.err.println("API error");

System.exit(1);

}

}

public static void EchoPrimes(int n, VDMInterpreter interp,

VDMApplication app)

{

try{

// Generates the sequence of primes below n and echoes the

75

The VDM Toolbox API

// sequence to stdout.

app.PushTag(client);

// This Generic is used to hold the result from the

// interpreter.

VDMGeneric g;

// Use EvalExpression to compute the primes below 20

String expr = "[e|e in set {1,...,"+n+"} &"+

" exists1 x in set {2,...,e} & e mod x = 0]";

g = interp.EvalExpression(client,expr);

if(g.IsSequence()){

System.out.println("All primes below " + n + ": " +

g.ToAscii());

}

VDMSequence s = VDMSequenceHelper.narrow(g);

VDMGenericHolder eholder = new VDMGenericHolder();

int sum=0;

for (int ii=s.First(eholder); ii != 0; ii=s.Next(eholder)) {

VDMNumeric num = VDMNumericHelper.narrow(eholder.value);

sum = sum + (int) num.GetValue();

}

System.out.println("The sum of all the primes: " + sum);

app.DestroyTag(client); // Clean up...

}

catch(APIError err) {

System.err.println("API error");

System.exit(1);

}

}

public static void EchoPrimes2(int n, VDMInterpreter interp,

VDMApplication app)

{

// Generates the sequence of primes below n and echoes the

76

The VDM Toolbox API

// sequence to stdout.

// Additionally this function shows how GetCPPValue can be used

// to transfer an entire VDM value from the toolbox to the

// client and convert it to a "real" Java value as declared in

// dk.ifad.toolbox.VDM

try{

app.PushTag(client);

// This VDMGeneric is used to hold the result from the

// interpreter.

VDMGeneric g;

// Use EvalExpression to compute the primes below 20

String expr = "[e|e in set {1,...,"+n+"} &" +

" exists1 x in set {2,...,e} & e mod x = 0]";

g = interp.EvalExpression(client,expr);

if(g.IsSequence()){

System.out.println("All primes below " + n + ": " + g.ToAscii());

}

VDMSequence s = VDMSequenceHelper.narrow(g);

// Conversion to real Java VDM value!

java.util.LinkedList sj =

new java.util.LinkedList ();

VDMGenericHolder eholder = new VDMGenericHolder();

// Convert the Generic g into a "real" Java Sequence value

for (int ii=s.First(eholder); ii != 0; ii=s.Next(eholder)) {

VDMNumeric num = VDMNumericHelper.narrow(eholder.value);

sj.add(new Integer((int) num.GetValue()));

}

int sum=0;

for (java.util.Iterator enum = sj.iterator();

77

The VDM Toolbox API

enum.hasNext();){

Integer i = (Integer) enum.next ();

sum = sum + i.intValue();

}

System.out.println("The sum of all the primes: " + sum);

app.DestroyTag(client); // Clean up...

}

catch(APIError err) {

System.err.println("API error");

System.exit(1);

}

}

}

78

	Introduction
	CORBA - The Basics
	IDL

	The VDM Toolbox API
	IDL Description of The Tool API
	VDMProject
	VDMModuleRepos
	VDMParser
	VDMInterpreter
	VDMErrors

	IDL Description of VDM Values
	VDM Values as Distributed Objects
	Using Values Returned from the Interpreter
	Constructing VDM Values in the Client
	Converting Distributed VDM Values to ``real" VDM C++ Values

	Handling of Exceptions

	Writing a C++ Client
	Choosing a CORBA Implementation
	Implementing a Client
	Initializing the CORBA Services
	Acquiring the Application Object
	Object References in C++
	Configuring the Current Project
	Using the Parser
	Using the Type Checker
	Using the Interpreter
	Additional Aspects of the Example

	Compiling the Client
	Supported Compilers

	Running the Client

	Writing a Java Client
	Choosing a CORBA Implementation
	Implementing a Client
	Importing CORBA Services
	Acquiring the Application Object
	Configuring the Current Project
	Using the Parser
	Using the Type Checker
	Using the Interpreter
	Additional Aspects of the Example

	Compiling the Client
	Running the Client

	API Reference Guide
	Corba API
	Types
	Error Structure
	ModuleStatus Structure
	VDMApplication Interface
	VDMCodeGenerator Interface
	VDMErrors Interface
	VDMInterpreter Interface
	VDMModuleRepos Interface
	VDMParser Interface
	VDMPrettyPrinter Interface
	VDMProject Interface
	VDMTypeChecker Interface

	VDM API
	Types
	VDM::VDMGeneric Interface
	Basic VDM Types
	VDM::VDMMap Interface
	VDM::VDMRecord Interface
	VDM::VDMSequence Interface
	VDM::VDMSet Interface
	VDMTuple Interface
	VDMFactory Interface

	Exceptions
	C++ API Reference
	corba_client.h
	Naming Conventions
	Casting

	Java API
	Helper Classes
	Holder Classes

	Recommended Reading
	References
	Example Programs
	The C++ Client Example
	The Java Client Example

