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“How” does one specify?

General problem solving strategy?

Problem
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“How” does one specify?

Divide-and-conquer :

Problem Sub-problems

divide (analysis)

Solution Sub-solutions

solve
sub-problems

combine (synthesis)
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Divide-and-conquer (formally)

Problem space

A

B

Solve

Solution space
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Divide-and-conquer (formally)

Sub-problem structure

A F A
Divide

B

Solve
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Divide-and-conquer (formally)

A F A
Divide

B

Solve

F B
Conquer

F Solve

Questions:

What are the mathematics of Divide, Conquer, Solve?

What do (F A), (F Solve) mean?
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Relators

Symbol F is overloaded:

F A means a (parametric) datatype , eg. A⋆ —
seq of A in VDM-SL;

F X means a relation

A F A

B

X

F B

F X

Example: X⋆ will be such that

l(X⋆)l′ ≡ len l = len l′ ∧ ∀i ∈ inds l.(l i)X(l′ i)
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Properties of relators

Every relator F is monotone,

R ⊆ S ⇒ (F R) ⊆ (F S)

and commutes with (·) , (_)◦ and id:

F (R · S) = (F R) · (F S)

F id = id

F (R◦) = (F R)◦

Terminology:
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Properties of relators

Every relator F is monotone,

R ⊆ S ⇒ (F R) ⊆ (F S)

and commutes with (·) , (_)◦ and id:

F (R · S) = (F R) · (F S)

F id = id

F (R◦) = (F R)◦

Terminology:

A F A
S

is called an F-coalgebra
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Back to divide-and-conquer

Divide-and-conquer = relational hylomorphism :

A F A
S

B F B
R

X F X
that is, X = R · (F X) · S

How do we solve this (hylo) equation for X?
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An example first

mergeSort: seq of int -> seq of int

mergeSort(l) ==

cases l :

[e] -> [e] ,

others -> let l1 ˆ l2

in set {l} be st

abs (len l1 - len l2) < 2 in

lmerge(mergeSort(l1), mergeSort(l2))

end;

is a relational hylomorphism for

F X = int + X × X
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In fact

seq of int F seq of int
S

seq of int F seq of int
R

mergeSort F mergeSort

that is,

mergeSort = R · (F mergeSort) · S

where R = [singl , lmerge] , for singl = λe.[e]
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mergeSort algebra and coalgebra

and S is

S: seq of int -> ( int | seq of int * seq of int )

S(l) ==

cases l :

[e] -> e ,

others -> let l1 ˆ l2

in set {l} be st

abs (len l1 - len l2) < 2 in

mk_(l1,l2)

end;
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Equations and fixpoints

Given an equation of pattern

x = f x

where A A
f

for some A, we will say that any
solution to this equation — that is, any a0 ∈ A such
that

a0 = f a0

is a fixpoint of f .
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Equations versus recursion

Equation x = f x can also be regarded as a
“recursive” definition of its fixpoints, eg.

x = 1 + x
2 is a recursive definition of number 2.

However,

x = x2+3
4 has two solutions (=fixpoints) 1 e 3.

What are we “recursively defining” here?

Furthermore, x = x defines any object!

Last but not least, some equations don’t have
any solution at all. Think eg. of x = x + 1 in IN .

irhsl.tex – p. 11/45



Solving (Fixpoint) Equations I

Let A A
≤A

be a partial order . Then, every
a ∈ A such that

a ≤A f a

is said to be a post-fixpoint of f , and every a ∈ A
such that

a ≥A f a

is said to be a pre-fixpoint of f . Clearly,

Every a ∈ A which is both a pre-fixpoint and
a post-fixpoint of f is a fixpoint of f .
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Solving (Fixpoint) Equations II

Function B A
f

is monotone wherever

f · ≤A ⊆ ≤B ·f

for partial orders ≤A and ≤B, that is:

f · ≤A ⊆ ≤B ·f

≡ { shunting }

≤A ⊆ f ◦· ≤B ·f

≡ { going pointwise }

a ≤A a′ ⇒ (f a) ≤B (f a′)
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Solving (Fixpoint) Equations III

Pointwise ordering on functions B A
f, g

:

f
.

≤B g ≡ f ⊆ ≤B ·g

meaning

f
.

≤B g ≡ f ⊆ ≤B ·g

≡ { shunting }

id ⊆ f ◦· ≤B ·g

≡ { going pointwise }

∀a.f a ≤B g a
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Solving (Fixpoint) Equations IV

Lattice fixpoint theorem (Tarski 1955) for monotone
f as above and ≤A defining a complete lattice :

The set of all fixpoints of f ,

P = {a ∈ A | a = f a}

is non-empty and 〈P ;≤A〉 is a complete
(sub)lattice.

The least of all fixpoints (
∧

P ) and the greatest
one (

∨
P ) are as follows:

µf =
∧

P =
∧
{x | x ≥ f x}

νf =
∨

P =
∨
{x | x ≤A f x}
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Solving relational equations

Hylo-equation X = R · (F X) · S
︸ ︷︷ ︸

f X

and other relational equations such as

X = R ∪ R · X︸ ︷︷ ︸

g X

(cf. transitive closure) have least solutions

µf = [[ R,S ]]

µg = R+

because both f, g are monotone.
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Laws of the Fixpoint Calculus

Computation rule:

µf = f µf

Example: hylo-cancellation law

[[ R,S ]] = R · F [[ R,S ]] · S

Rolling rule:

µ(g · h) = g(µ(h · g))

Example: f = g · h where hX = R · X and
g X = R ∪ X. Then
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Rolling rule

µf = µ(g · h)

= { rolling rule }

g(µ(h · g))

= { definitions of g, h }

R ∪ (µx.(R · (R ∪ x))

= { (R·) is a lower-adjoint }

R ∪ µx.(R2 ∪ R · x)

Further application of this rule will “factor out” R2, R3, etc., In
the limit, µf =

⋃
∞

j=1
Rj = R+.
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Hylo rolling rule

Let f = g · h where hX = F X · S and g = (R·). Then

µf = µ(g · h) = g(µ(h · g))

= { definitions of g, h }

R · (µX.(F(R · X) · S)

= { relators }

R · (µX.F R · F X · S)

that is,

[[ R,S ]] = R · [[ F R,S ]]

irhsl.tex – p. 19/45



Other rules

Square rule:

µf = µ(f 2)

Monotonicity:

f
.

≤ g ⇒ µf ≤ µg

Thus

[[ T, U ]] ⊆ [[ R,S ]] ⇐ T ⊆ R ∧ U ⊆ S
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Other rules

Induction rule:

µf ≤ x ⇐ f x ≤ x

Thus

[[ R,S ]] ⊆ T ⇐ R · F T · S ⊆ T

and, in particular (coreflexive hylos):

[[ R,S ]] ⊆ id ⇐ R · S ⊆ id

[[ R,R◦ ]] ⊆ id ⇐ R is simple

Last — but not least — µ-fusion :
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µ-fusion theorem

Let

A B
f ♭

A

g

B
f ♭

h

h, g be monotonic,

(A,≤) and (B,⊑) be complete lattices ,

f ♭ be a lower-adjoint.

Then

f ♭(µh) = µg ⇐ f ♭ · h = g · f ♭
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Applications of µ-fusion theorem

Converse of a hylo

[[ S,R ]]◦ = [[ R◦, S◦ ]]

Proof: let f ♭ = (_)◦ and

h X = S · F X · R
g X = T · F X · U

that is,

µh = [[ S,R ]]

µg = [[ T, U ]]
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Proof

Then

[[ S,R ]]◦ = [[ T, U ]]

⇐ { µ-fusion theorem }

(S · F X · R)◦ = T · F (X◦) · U

≡ { converse and F is a relator }

R◦ · F X◦ · S◦ = T · F X◦ · U

⇐ { Leibniz }

R◦ = T ∧ S◦ = U
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Hylo(cata)-fusion

V · [[ S,R ]] = [[ T,R ]] ⇐ V · S = T · (F V )

Proof: since (V ·) = (V \)♭,

V · [[ S,R ]] = [[ T,R ]]

⇐ { µ-fusion theorem }

V · (S · F X · R) = T · F (V · X) · R

≡ { associative (·) and relator F }

(V · S) · F X · R = T · (F V ) · (F X) · R

⇐ { Leibniz }

V · S = T · (F V )
irhsl.tex – p. 25/45



Hylo(ana)-fusion

[[ S,R ]] · V = [[ S,U ]] ⇐ R · V = F V · U

Proof: (·V ) = (/V )♭. Then

[[ S,R ]] · V = [[ S,U ]]

⇐ { µ-fusion theorem }

(S · F X · R) · V = S · F (X · V ) · U

≡ { associative (·) and relator F }

S · F X · (R · V ) = S · (F X) · (F V ) · U

⇐ { Leibniz }

R · V = F V · U
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Examples: VDM collective types

set of A 1 + A × set of A
Ins◦

B 1 + A × B
R

{|R|} id + id × {|R|}

that is,

{|R|} = [[ R, Ins◦ ]] where Ins
def
= [∅ , Puts]

and . . .
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VDM-SL collective type setofA

Puts[@A] : @A * set of @A -> set of @A

Puts(e,s) == {e} union s

pre not e in set s ;

Pointfree version (for R = [u , f ]):

shylo[@A,@B] : (@A * @B -> @B) * @B -> set of @A -> @B

shylo(f,u)(s) ==

if s={} then u

else let a in set s,

r = s \ {a}

in f(a,shylo[@A,@B](f,u)(r));
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VDM-SL collective type setofA

For shylo(f,u) to be a function the following
must hold:

f(a, f(a′, b)) = f(a′, f(a, b))

Fusion law

T · {|R|} = {|S|} ⇐ T · R = S · (F T )

arises from hylo(cata)-fusion

The reflection law holds:

{|Ins|} = id
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Relational cata(ana)morphisms

Define

(|R|) = [[ R, in◦ ]]

[(S)] = [[ in, S ]]

where µF ∼= F µF

in◦

in

. For instance,

elems = (|ins|)
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Relational cata(ana)morphisms

From

[[ S,R ]]◦ = [[ R◦, S◦ ]]

infer

[(S)]

= [[ in, S ]]◦
◦

= [[ S◦, in◦ ]]◦

= (|S◦|)◦

(=ana is the converse of the cata of the converse)
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Inductive coreflexives

Recall

[[ R,S ]] ⊆ id ⇐ R · S ⊆ id

which entails

(|R|) ⊆ id ⇐ R ⊆ in

that is,

(|in · S|) ⊆ id ⇐ S ⊆ id

Example (on finite lists):

IsOrdered
def
= (|in · (id + ok)|)
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Inductive coreflexives

where ok is the coreflexive induced by predicate

ok(a,x) == forall b in set elems x & a <= b

This leads to

IsOrdered = [nil , cons · ok] ·

(id + id × IsOrdered) ·

[nil , cons]◦

= [nil , cons · ok · (id × IsOrdered)] ·

[nil , cons]◦
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Inductive coreflexives

. . . and, finally, to

IsOrdered(l) ==

if l = []

then true

else (forall b in set elems tl l & hd l <= b) and

IsOrdered (tl l) ;

Exercise: calculate the above from (|in · (id + ok)|)
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VDM-SL data type map A toB

map A to C 1 + (A × C) × map A to C
Ins◦

B 1 + (A × C) × B
R

{|R|} id + id × 〈id, {|R|

leading to the following pointwise syntax:
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VDM-SL data type map A toB

mhylo[@A,@B,@C] : (@A * @C* @B -> @B) * @B ->

map @A to @C ->

@B

mhylo(f,u)(M) ==

if M={|->} then u

else let a in set dom M,

c = M(a),

R = {a} <-: M

in f(c,mhylo[@A,@B,@C](f,u)(R));
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Hylos as unique solutions

A standard result of the relational calculus
establishes the following condition for

µX.(R · F X · S)

to be a unique solution:

the “accessibility relation” of S is required to be
inductive (cf. “well-founded” relations)

This ensures termination insofar as the “size”
of a sub-problem generated by S is strictly
smaller than its source.

One can perform induction over S.
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Accessibility and membership

Accessibility relation for F A A
S

:

A A
≺S

≺S
def
= ∈F · S

where A F A
∈F

extends A PA
∈

inductively over
polynomial functors, as follows:

∈P

def
= ∈

∈C
def
= ⊥

∈λX.X
def
= id

∈F×G

def
= (∈F ·π1) ∪ (∈G ·π2)

∈F+G

def
= [∈F ,∈G] irhsl.tex – p. 38/45



Example

Let F X = 1 + B × X. Then,

∈1+B×X

= { ∈ for coproduct bifunctor }

[∈1 ,∈B×X ]

= { ∈ for constant and product (bi)functors }

[⊥ , (∈B ·π1) ∪ (∈λX.X ·π2)]

= { ∈ for constant and identity functor }

[⊥ , (⊥ · π1) ∪ (id · π2)]

= { ⊥ and [R ,S] = (R · i◦1) ∪ (S · i◦2) }

π2 · i
◦

2
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Example (pointwise)

Then,

≺S = ∈1+B×X · S

= (π2 · i
◦
2) · S

= π2 · (i
◦
2 · S)

meaning

a′ ≺S a ≡ a′ = π2 x ∧ (i2 x)Sa

For example, for S = [nil , cons]◦ on finite
sequences, we get
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Accessibility on finite sequences

π2 · (i
◦
2 · [nil , cons]◦)

= π2 · ([nil , cons] · i2)
◦

= π2 · cons◦

and therefore

a′ ≺[nil ,cons]
◦ a ≡ a′ = π2(b, a

′) ∧ a = cons(b, a′)

≡ a′ ≺[nil ,cons]
◦ cons(b, a′)

≡ tl a ≺[nil ,cons]◦ a
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Hylo factorization (2)

For such inductive S, we can factor [[ R,S ]] in two
components

µF ∼= F(µF)

in

in◦

A F A
S

µF

X1

F µF
in

F X1

B

X2

F B
R

F X2

X1 = in · FX1 · S
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Hylo-factorization Theorem

Using (|_|), [(_)] notation:

µX.(R · F X · S) = (|R|) · [(S)]

A F A
S

µF

[(S)]

F µF
in

F [(S)]

B

(|R|)

F B
R

F (|R|)
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Hylo-factorization Theorem

Taking converses:

µX.(R · F X · S◦) = (|R|) · (|S|)◦

A F A
S

µF

(|S|)◦

F µF
in

F (|S|)◦

B

(|R|)

F B
R

F (|R|)
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Hylo-factorization Theorem

Entire /simple factorization if both R and S◦ are
entire /simple (=S surjective /injective)

A F A
S

µF

(|S|)◦

F µF
in

F (|S|)◦

B

(|R|)

F B
R

F (|R|)
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Virtual data-structuring

Particular choice of F for sub-problem
organization induces intermediate type µF.

This is made explicit by hylo-factorization.

Intermediate data-structure saves the outcome
of a “one go” divide step (|S|)◦ and passes it on
to the conquer step (|R|) for processing.

In general, people “fuse” things very early in
design, thus virtualizing this structure.

Factorization helps in spec understanding and
classification .
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Final note on inductive relation ≺

Is such that the validity of a predicate φ can be
proved by structural induction over it:

(∀a. φ a) ⇐ (∀a. φ a ⇐ (∀c ≺ a. φ c)
︸ ︷︷ ︸

induction step

)

which corresponds to pointfree definition

≺ \R ⊆ R ⇒ ⊤ ⊆ R

where R generalizes φ such that φ a = aRb, for
some fixed b.
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