
An Introduction to Relational Formal

Modelling

J.N. Oliveira

DI/UM, 2003-06

October 26, 2006

Functions are not enough

Partiality (in Haskell):

Mpi> (split head tail)(tail [1])

Program error: {head []}

Mpi> 2/0

Program error: {primDivDouble 2.0 0.0}

Functions such as tail, /, head (and many others!) are partial

Functions are not enough

VDM-SL notation:

vdm> p tl []

l. 1, c. 4:

Run-Time Error 77: The sequence was empty

vdm> p 2/0

l. 1, c. 3:

Run-Time Error 76: Division with zero

vdm>

Functions such as tl, /, hd (and many others!) are partial

1

Functions are not enough

Another example is

gets : set of nat -> nat * set of nat

gets(s) == let a in set s

in mk_(a , s \ {a}) ;

which is not only partial

vdm> p gets({})

/home/jno/work/x.vdm, l. 4, c. 25:

Run-Time Error 53: The binding environment was empty

vdm>

but also non-deterministic:

gets{a, b} = 〈a, {b}〉 ∨ gets{a, b} = 〈b, {a}〉

Specifications as “properties”

• Specification of square root:

(sqrt x)2 = x

that is

sq · sqrt = id

(= sqrt has left inverse sq)

• Specification of sort:

l′ = sort l ⇔ (IsOrdered l′) ∧ IsPermutation(l′, l)

Relational approach

Need to model

• total/partial functions

• non-determinism

• properties, datatype invariants and loop-invariants

• orders and inductive structures

• vagueness or under-specification. . .

⇒ adoption of binary relations, which have a long tradition in the. . .

2

Pre/post specification style

VDM-SL notation:

gets(s: set of nat) r: (nat * set of nat)

pre card s > 0

post let mk_(n,s’) = r

in n in set s and s’ = s \ {n} ;

Testing this in the interpreter:

>> p post_gets({1,2} , mk_(2, {1}))

true

>> p post_gets({1,2} , mk_(2 , {1,2}))

false

Pre/post specification style

Tolerance to incomplete design:

Sort(inp: seq of int) out: seq of int

post IsPermutation(out,inp) and IsOrdered(out);

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) == is not yet specified;

IsOrdered: seq of int -> bool

IsOrdered(l) == is not yet specified;

Of course ...

>> p post_Sort([] , [])

/Users/jno/work/x.vdm, l. 10, c. 3:

Run-Time Error 233: Cannot evaluate ‘not yet specified’ functions

3

Pre/post specification layout

VDM-SL generic layout is

Spec(inp: A) out: B
pre Precond(inp)

post Postcond(out,inp);

where

Precond: A -> bool
Precond(a) ==

Postcond: B * A -> bool

Postcond(b,a) ==

This clearly leads to a binary relation approach, since Postcond ∈ 2B×A is
equivalent to Postcond ⊆ B ×A

From predicates to relations

• Predicate logic connectives such as eg. ∧ are “overloaded”
operators

• They can be regarded as models of a more structured logic —
that of binary relations

• Functions generalize to binary relations in a very natural way.

• Predicates, sets, functions and relations can all be combined in a
single relational calculus

• Usual infix notation, e.g. a < b, can be generalized to any
relation R, e.g. a R b

4

Arrows “as” binary relations

• We will “type” relations in a way consistent with functions:

B A
R

wherever b R a is a statement involving b ∈ B and a ∈ A.

• From now on, an arrow

B A
R

means a binary relation from A (source) to B (target) and write
b R a to denote that pair 〈b, a〉 is in R, eg.

1 ≤ 2

John IsFatherOf Mary

3 = (1+) 2

Functions are relations

• Regard function f : A −→ B as a binary relation relating a and b iff
b = f a. So, b f a literally means b = f a.

• Therefore, generalize

B A
f

b = f a

to B A
R

b R a

• Extend function composition f · g to R · S in the obvious way

b(R · S)c ≡ 〈∃ a : : b R a ∧ a S c〉

5

Check generalization

Back to functions,

b(f · g)c ≡ 〈∃ a : : b f a ∧ a g c〉

≡ { b f a means b = f a }

〈∃ a : : b = f a ∧ a = g c〉

≡ { cancel ∃ by substitution of a by g c }

b = f(g c)

we recover what we had before.

Notation convention: function (relation) identifiers are always
lowercase (uppercase) letters.

Relations generalize functions

• Equality on functions,

f = g ≡ 〈∀ a : a ∈ A : f a =B g a〉

generalizes to ordering relations:

R ⊆ S ≡ 〈∀ b, a : : bRa ⇒ bSa〉

• R ⊆ S means that R is either less defined or more
deterministic than S.

• As we shall see later on:

f ⊆ g ≡ f = g ≡ f ⊇ g

6

Converses

Every relation B A
R

has a converse A B
R◦

which is such
that, for all a, b,

a(R◦)b ≡ b R a

Function converses f◦, g◦ etc. always exist (as relations) enjoying the
following (very useful!) property:

(f b)R(g a) ≡ b(f◦ · R · g)a

Let us see examples of its use

From pointwise to PF-notation

Function

fac 0 = 1

fac(n + 1) = (n + 1) ∗ fac n

in pointfree notation:

fac · [0 , suc] = ∗ · [suc , fac]

Property

〈∀ n, m : : n ≤ m ⇒ fac n ≤ fac m〉

(≡ fac is monotonic) in PF-notation?

Properties in PF style

fac is monotonic:

〈∀ n, m : : n ≤ m ⇒ fac n ≤ fac m〉

≡ { rule (f b)R(g a) ≡ b(f◦ ·R · g)a }

〈∀ n, m : : n ≤ m ⇒ n(fac◦· ≤ ·fac)m〉

≡ { ordering on relations (ie. dropping n and m) }

≤ ⊆ fac◦· ≤ ·fac

7

From PF to pointwise notation

Role of id:

• Recall that every function f is a relation such that b f a means
b = f a.

• Therefore, function id is the equality relation: b id a means
b = a.

For example, what does

f◦ · f ⊆ id

mean? Let us introduce points and calculate:

From PF to pointwise notation

f◦ · f ⊆ id

≡ { relational inclusion }

〈∀ y, x : : y(f◦ · f)x⇒ y(id)x〉

≡ { introduce id in antecedent ; id is equality relation }

〈∀ y, x : : y(f◦ · id · f)x⇒ y = x〉

≡ { rule (f b)R(g a) ≡ b(f◦ ·R · g)a }

〈∀ y, x : : (f y) = (f x) ⇒ y = x〉

≡ { recall definition from discrete maths }

f is injective

8

Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a : : a R a〉 (check as homework);

• Say R is coreflexive iff R ⊆ id
pointwise: 〈∀ a : : b R a⇒ b = a〉 (check as homework).

Define, for B A
R

:

Kernel of R Image of R

A A
kerR

B B
imgR

kerR
def
= R◦ ·R imgR

def
= R · R◦

Example: kernel of a function

Let us go pointwise:

a′(ker f)a

≡ { substitution }

a′(f◦ · f)a

≡ { rule (f b)R(g a) ≡ b(f◦ ·R · g)a }

(f a′) = (fa)

In words: a′(ker f)a means a′ and a “have the same f”

Binary relation taxonomy

Topmost criteria:
relation

injective entire simple surjective
Definitions:

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

9

Binary relation taxonomy

The whole picture:
relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

In general, “larger than entire means entire” and “smaller than simple
means simple”

Functions in one slide

A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

As we shall see, these two principles are captured by

f · R ⊆ S ≡ R ⊆ f◦ · S

R · f◦ ⊆ S ≡ R ⊆ S · f

Relation taxonomy — orders

Orders are endo-relations A A
R

classified as
endo-relation

symmetric transitive reflexive anti-symmetric connected

per preorder

coreflexive equivalence partial order

id linear order

(Criteria

definitions: next slide)

10

Orders and their taxonomy

Besides

reflexive: iff idA ⊆ R

coreflexive: iff R ⊆ idA

an order (or endo-relation) A A
R

can be

transitive: iff R · R ⊆ R

anti-symmetric: iff R ∩ R◦ ⊆ idA

symmetric: iff R ⊆ R◦(≡ R = R◦)

connected: iff R ∪ R◦ = ⊤

where A A
⊤

is the largest relation of its type.

Orders and their taxonomy

Therefore:

• Preorders are reflexive and transitive orders.
Example: y IsAtMostAsOldAs x

• Partial orders are anti-symmetric preorders
Example: y ⊆ x

• Linear orders are connected partial orders
Example: y ≤ x

• Equivalences are symmetric preorders
Example: y IsPermutation x

• Pers are partial equivalences
Example: y IsBrotherOf x

Predicates & sets made PF

Strategy: identify every

• binary predicate B ×A 2
p

with binary relation

B A
⌈p⌉

such that b⌈p⌉a ≡ p(b, a).

• unary predicate A 2
q

with coreflexive A A
⌈q⌉

such that
a⌈q⌉a′ ≡ a = a′ ∧ (q a).

• set S ⊆ A with ⌈λa.a ∈ S⌉. So,

b⌈S⌉a ≡ b = a ∧ a ∈ S

11

Last but not least

• Intersection (meet):

b(R ∩ S)a ≡ (b R a) ∧ (b S a)

• Union (join):

b(R ∪ S)a ≡ (b R a) ∨ (b S a)

• Bottom relation B A
⊥

— the smallest relation of its type:
〈∀ b, a : : b⊥a ≡ false〉

• Top relation B A
⊤

— the largest relation of its type:
〈∀ b, a : : b⊤a ≡ true〉

Of course, for all B A
R

one has ⊥ ⊆ R ⊆ ⊤

Last but not least

Coreflexives:

• Example: ⌈fac n ≤ 1⌉ =
0 0

1 1

• Useful properties:

– Coreflexives are symmetric and transitive:

R = R◦ = R ·R = R ∩ id

– Meet of two coreflexives is composition:

R ∩ S = R · S

12

Last but not least

Domain:

δ R = kerR ∩ id

Range:

ρR = imgR ∩ id

Facts:

δ R = ρR◦

δ (R · S) = δ (δ R · S) , ρ (R · S) = ρ (R · ρ S)

R = R · (δ R) , R = (ρR) ·R

PF-meaning of VDM-SL specs

Given bool A
prec

and bool B × A
postc

, VDM spec

Spec(a: A) r: B
pre prec(a)

post postc(r,a);

means binary relation B A
Spec

defined by

Spec
def
= ⌈postc⌉ · ⌈prec⌉

where A A
⌈prec⌉

is coreflexive and B A
Post = ⌈postc⌉

is of the same type as Spec.

13

Example: VDM-SL Sqrt spec

Sqrt(x: real) r: real
pre true

post sq(r) = x ;

means

Sqrt
def
= ⌈sq r = x⌉ · id

≡ { (f b)R(g a) ≡ b(f◦ ·R · g)a ; natural-id }

Sqrt
def
= ⌈r(sq◦ · id · id)x⌉

≡ { natural-id (twice) }

Sqrt
def
= sq◦

Pre/post-consistency

In

Spec
def
= ⌈postc⌉ · ⌈prec⌉

it is common practice to ensure that the pre-condition be at most the
domain of the post-condition:

⌈prec⌉ ⊆ δ ⌈postc⌉

Example:

Inv(x: real) r: real

pre x > 0
post r = 1 / x ;

Pre/post-consistency

By rule (f b)R(g a) ≡ b(f◦ ·R · g)a we easily obtain ⌈Inv⌉ = (1/), which is
undefined for x = 0. Consistency is ensured since x > 0 ⇒ x 6= 0.
Counter example:

Get(x: seq of int) r: int

pre len x = card elems x
post r = hd x ;

(no repeats property does not ensure list non-emptiness).

14

Invariants

Note that the same problem would be found in

Get(x: NoRepeatsList) r: int
post r = hd x ;

where datatype NoRepeatsList is defined with an invariant

types

NoRepeatsList = seq of int
inv x == len x = card elems x;

Data type invariants

Arising from natural phenomena:

dateOk : nat1 * nat1 * nat1 -> bool

dateOk(y,m,d) ==

if m in set {1,3,5,7,8,10,12} then

d <= 31 and

(not (y=1582 and m=10) or (d<5) or (14<d))

else if m in set {4,6,9,11} then d <= 30

else if m=2 and leapYear(y) then d <= 29

else if m=2 and not leapYear(y) then d <= 28

else false;

where

15

Data type invariants

leapYear : nat1 -> bool

leapYear(y) ==
0 = rem(y, if 1700 <= y and rem(y,100)=0

then 400 else 4);

Business rules are also invariants, cf eg.

Account :: personal: Data
avgbalance: real

currentbalance: real
inv a == a.currentbalance > - a.avgbalance/3 ;

Invariants can thus be as arbitrary as human inventiveness...

Invariants entail proof obligations

Let

• φ be the invariant associated to datatype A and ψ be the one
associated to datatype B.

• f be a function of type B A
f

Clearly,

• Guarantee — it is the onus of the designer of f to ensure that every
output of f will satisfy ψ

• Rely — designer of f can rely on φ holding for every input

Formally:

〈∀ a : : φ a⇒ ψ(f a)〉

16

Data type invariants

PF-transform of proof obligation, where Φ = ⌈φ⌉ and Ψ = ⌈ψ⌉:

f · Φ ⊆ Ψ · f

cf. f · Φ ⊆ Ψ · f

≡ { shunting rule }

Φ ⊆ f◦ · Ψ · f

≡ { introduce variables }

〈∀ a, a′ : : a Φ a′ ⇒ (f a)Ψ(f a′)〉

≡ { coreflexives (a = a′) }

〈∀ a : : a Φ a⇒ (f a)Ψ(f a)〉

Data type invariants

≡ { back to predicates }

〈∀ a : : φ a⇒ ψ(f a)〉

Another way to write it:

f · Φ ⊆ Ψ · f

≡ { shunting }

f · Φ · f◦ ⊆ Ψ

≡ { coreflexives }

f · Φ · Φ◦ · f◦ ⊆ Ψ

≡ { image definition }

img (f · Φ) ⊆ Ψ

≡ { f · Φ is simple }

ρ (f · Φ) ⊆ Ψ

17

Data type invariants

In general — let Spec = (pre, post) be a pre/post-condition pair in
VDM-SL:

Spec(a: A) r: A

pre ... a ...

post ... r ... a ... ;

Let inv be an invariant property associated with type A:

A =

inv a == ... ;

Data type invariants

Invariant preservation proof obligation:

〈∀ r, a : : post(r, a) ∧ pre a ∧ inv a⇒ inv r〉 (1)

which PF-transforms to

ρ (Spec · Inv) ⊆ Inv (2)

for Spec = ⌈post⌉ · ⌈pre⌉ and Inv = ⌈inv⌉.

• Question: How do we reason about invariants?

We first need to know how to calculate with PF-expressions.

Basic Relation Calculus

Monotonicity: All operations are monotonic, eg.

R ⊆ S
T ⊆ U

(R · T) ⊆ (S · U)

R ⊆ S

R◦ ⊆ S◦

Composition:

• Composition is associative: R · (S · T) = (R · S) · T

• Identity: R · id = id · R = R

• Empty relation: R · ⊥ = ⊥ · R = ⊥

18

Basic Relation Calculus

Relational Equality:

• Pointwise equality:

R = S ≡ 〈∀ b, a : : bRa ≡ bSa〉

• Pointfree equality:

– Cyclic inclusion (“ping-pong”) rule:

R = S ≡ R ⊆ S ∧ S ⊆ R

– Indirect equality rules:

R = S ≡ 〈∀ X : : (X ⊆ R ≡ X ⊆ S)〉

≡ 〈∀ X : : (R ⊆ X ≡ S ⊆ X)〉

Basic Relation Calculus

Converse:

◦-universal: X◦ ⊆ Y ≡ X ⊆ Y ◦

◦-monotonicity: R ⊆ S ≡ R◦ ⊆ S◦

Then:

Involution : (R◦)◦ = R

Contravariance : (R · S)◦ = S◦ ·R◦

These can be proved from ◦-universal by (elegant) indirect proofs (example
in next slide):

Basic Relation Calculus

Indirect proof of involution

(R◦)◦ ⊆ Y

≡ { ◦-universal X◦ ⊆ Y ≡ X ⊆ Y ◦ for X := R◦ }

R◦ ⊆ Y ◦

≡ { ◦-monotonicity }

R ⊆ Y

:: { indirection }

(R◦)◦ = R

19

Meet, join and converse

∩-universal

X ⊆ (R ∩ S) ≡ (X ⊆ R) ∧ (X ⊆ S)

∪-universal

R ∪ S ⊆ X ≡ (R ⊆ X) ∧ (S ⊆ X)

Converse distributes over ∩ and ∪ (see eg. calculation of next slide):

(R ∩ S)◦ = R◦ ∩ S◦

Another indirect proof

X ⊆ R
◦ ∩ S

◦

≡ { ∩-universal }

(X ⊆ R
◦) ∧ (X ⊆ S

◦)

≡ { monotonicity and involution }

(X◦ ⊆ R) ∧ (X◦ ⊆ S)

≡ { ∩-universal }

X
◦ ⊆ R ∩ S

≡ { monotonicity and involution }

X ⊆ (R ∩ S)◦

:: { indirection }

R
◦ ∩ S

◦ = (R ∩ S)◦

Reasoning about functions

Shunting rules:

f ·R ⊆ S ≡ R ⊆ f◦ · S

R · f◦ ⊆ S ≡ R ⊆ S · f

Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g

“Ping-pong” proof of the equality rule follows.

20

Proof of functional equality

f ⊆ g

≡ { identity }

f · id ⊆ g

≡ { shunting on f }

id ⊆ f◦ · g

≡ { shunting on g }

id · g◦ ⊆ f◦

≡ { converses; identity }

g ⊆ f

Adding structure to the calculus

Note a recurrent pattern in several laws above:

X◦

|{z}

f X

⊆ Y ≡ X ⊆ Y ◦

|{z}

g Y

(h·)X
| {z }

f X

⊆ Y ≡ X ⊆ (h◦·)Y
| {z }

g Y

X(·h◦)
| {z }

f X

⊆ Y ≡ X ⊆ Y (·h)
| {z }

g Y

as well as in

(d×)q
| {z }

f q

≤ n ≡ q ≤ n(/d)
| {z }

g n

21

Back to the primary school desk

The integral division algorithm

7 2
1 3

2 × 3 + 1 = 7 , “ie.” 3 = 7/2

However

7 2
3 2

2 × 2 + 3 = 7 ∧ 2 6= 7/2

7 2
5 1

2 × 1 + 5 = 7 ∧ 1 6= 7/2

Quotient is a supremum

n d
r q

d× q + r = n ≡ q = n/d

provided q is the
largest such q (r
smallest)

n/d =
_

{q | ∃r . d× q + r = n}

=
_

{q | d× q ≤ n}

Maths teachers tell: it takes a while before children master the “
W

semantics”!
What about you? Can you easily reason about n/d in this format?
Try and prove (n/m)/d = n/(d ×m).

“Universal” property instead

Alternative:

n d
r q

q × d ≤ n ≡ q ≤ n/d
“universal” property of
integral division

Reasoning:

q ≤ (n/m)/d

≡ { “universal” property }

q × d ≤ n/m

22

Reasoning continued

≡ { “universal” property again }

(q × d) × m ≤ n

≡ { × is associative }

q × (d × m) ≤ n

≡ { “universal” property again }

q ≤ n/(d × m)

Indirect equality

So we have

q ≤ (n/m)/d ≡ q ≤ n/(d × m)

that is,

(n/m)/d = n/(d × m)

by the indirect equality rule:

(q ≤ x ≡ q ≤ y) ≡ (x = y)

Also easy to check

Cancellation law: (n/d) × d ≤ n

≡ { universal property }

n/d ≤ n/d

≡ { reflexive ≤ }

true

“Reflection”: 1 × d ≤ n ≡ 1 ≤ n/d

≡ { 1 is the unit of × }

d ≤ n ≡ n/d ≥ 1

23

Galois connections

n/d is a Galois connection:

n d
r q

q×d
︸︷︷︸

f q

≤ n ≡ q ≤ n/d
︸︷︷︸

g n

In general, for preorders (A,≤) and (B,⊑) and

(A,≤) (B,⊑)

g

f
(f, g) are Galois connected iff. . .

Galois adjoints

f
︸︷︷︸

lower adjoint

b ≤ a ≡ b ⊑ g
︸︷︷︸

upper adjoint

a

that is

f◦· ≤ = ⊑ ·g

Remarks:

• Galois (connected) adjoints enjoy a number of interesting generic
properties

• Very elegant — calculational — way of performing inequational
reasoning (including logical deduction)

24

Basic properties

Cancellation:

(f · g)a ≤ a and b ⊑ (g · f)b

Distribution (in case of lattice structures):

f(a ⊔ a′) = (f a) ∨ (f a′)

g(b ∧ b′) = (g b) ⊓ (g b′)

Conversely,

• If f distributes over ⊔ then it has an upper adjoint g (f#)

• If g distributes over ∧ then it has a lower adjoint f (g♭)

Other properties

If (f, g) are Galois connected,

• f (g) uniquely determines g (f) — thus the ♭, ♯ notations

• f and g are monotonic

• (g, f) are also Galois connected — reverse the orderings

• f = f · g · f and g = g · f · g

etc

Summary

(f b) ≤ a ≡ b ⊑ (g a)

Description f = g♭ g = f ♯

Definition f b =
V
{a | b ⊑ g a} g a =

F
{b | f b ≤ a}

Cancellation f(g a) ≤ a b ⊑ g(f b)

Distribution f(b ⊔ b′) = (f b) ∨ (f b′) g(a′ ⊓ a) = (g a′) ⊓ (g a)

Monotonicity b ⊑ b′ ⇒ f b ≤ f b′ a ≤ a′ ⇒ g a ⊑ g a′

25

Converse

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

converse ()◦ ()◦ bR◦a ≡ aRb

Thus:

Cancellation (R◦)◦ = R

Monotonicity R ⊆ S ≡ R◦ ⊆ S◦

Distributions (R ∩ S)◦ = R◦ ∩ S◦, (R ∪ S)◦ = R◦ ∪ S◦

Functions

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

shunting rule (h·) (h◦·) NB: h is a function

“converse” shunting rule (·h◦) (·h) NB: h is a function

Consequences:

Functional equality: h ⊆ g ≡ h = k ≡ h ⊇ k

Functional division: h◦ ·R = h \R

Question: what does h \ R mean?

Relational division

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

left-division (R·) (R \) left-factor

right-division (·R) (/ R) right-factor

Immediate: (R·) and (·R) distribute over union:

R · (S ∪ T) = (R · S) ∪ (R · T)

(S ∪ T) · R = (S · R) ∪ (T ·R)

Some intuition about relational division operators follows.

26

Relational division

The relational division operators are upper-adjoints:

R ·X ⊆ Y ≡ X ⊆ R \ Y

X ·R ⊆ Y ≡ X ⊆ Y / R

Left division abstracts a (pointwise) universal quantification

A C

X ⊆ R \ Y

B

R Y a(R \ Y)c ≡ 〈∀ b : : bRa⇒ bY c〉

An example follows.

Example

Recall data division in the relational model:

A C
X ⊆ R \ S

B

R S a(R \ S)c ≡ (∀b.bRa ⇒ bSc)

b R a = flight b carries passenger a

b S c = flight b belongs to air-company c

a (R \ S) c = passenger a is faithful to company c, that is, (s)he
only flies company c.

27

Right division

By taking converses we arrive at S / R = (R◦ \ S◦)◦:

X ⊆ S / R

≡ { Galois connection ((·R), (/R)) }

X ·R ⊆ S

≡ { converses }

R◦ ·X◦ ⊆ S◦

≡ { Galois connection ((R·), (R\)) }

X◦ ⊆ R◦ \ S◦

≡ { converses }

X ⊆ (R◦ \ S◦)◦

ie. Galois connection

X · R ⊆ S ≡ X ⊆ S / R

Meet

∩-universal

X ⊆ (R ∩ S) ≡ (X ⊆ R) ∧ (X ⊆ S)

is a Galois connection

(∆,∩)

where ∆ X = (X, X), cf.

(X, X)(⊆ × ⊆)(R, S) ≡ X ⊆ ∩(R, S)

So ∩ = ∆♯ distributes over itself, etc

28

Properties of ∩

From ∩-universal infer:

• ∩-cancellation (X := R ∩ S)

R ∩ S ⊆ R ∧ R ∩ S ⊆ S

• ∩-abbreviation (X := R)

R ⊆ S ≡ R = R ∩ S

• ∩-idempotency (S := R)

R ∩ R = R

More properties of ∩

∩ is commutative:

R ∩ S = S ∩ R

∩ is associative:

R ∩ (S ∩ T) = (R ∩ S) ∩ T

∩-fusion:

T · (R ∩ S) ⊆ (T · R) ∩ (T · S)

(R ∩ S) · T ⊆ (R · T) ∩ (S · T)

29

Meet and join

(f X) ≤ Y ≡ X ⊑ (g Y)

Description f = g♭ g = f ♯ Obs.

meet ∆ ∩ ≤ is (⊆ × ⊆)

join ∪ ∆ ⊑ is (⊆ × ⊆)

Join:

∪(R, S) ⊆ Y ≡ (R, S)(⊆ × ⊆)(Y, Y)

that is,

R ∪ S ⊆ Y ≡ R ⊆ Y ∧ S ⊆ Y

Relational split

Functions:

x = 〈f, g〉 ≡ π1 · x = f ∧ π2 · x = g

Relations:

X ⊆ 〈R,S〉 ≡ π1 ·X ⊆ R ∧ π2 ·X ⊆ S

(
(A C)

×

(B C)

,⊆ × ⊆) (A×B C,⊆)

〈 , 〉

((π1·) × (π2·)) · ∆

Properties

〈 , 〉 is an upper-adjoint, so it distributes over meet

〈R, S ∩ T 〉 = 〈R, S〉 ∩ 〈R, T 〉

〈S ∩ T, R〉 = 〈S, R〉 ∩ 〈T, R〉

etc. Moreover:

〈R, S〉 = (π◦
1
· R) ∩ (π◦

2
· S) (3)

Why? Again Galois at work:

30

Calculation

X ⊆ 〈R,S〉 ≡ π1 ·X ⊆ R ∧ π2 ·X ⊆ S

≡ { Galois connected ((f ·), (f◦·)) }

X ⊆ π◦

1 · R ∧ X ⊆ π◦

2 · S

≡ { Galois connected (∩♭,∩) }

X ⊆ (π◦

1 · R ∩ π◦

2 · S)

:: { indirect equality }

〈R,S〉 = π◦

1 ·R ∩ π◦

2 · S

Pointwise 〈R, S〉

(a, b)〈R, S〉c ≡ (a, b)(π◦
1
· R ∩ π◦

2
· S)c

≡ { pointwise ∩ }

(a, b)(π◦
1
· R)c ∧ (a, b)(π◦

2
· S)c

= { rule (f b)Ra ≡ b(f◦ · R)a }

π1(a, b)Rc ∧ π2(a, b)Sc

= { projections }

aRc ∧ bSc

Relational either

Functions:

[f , g] = x ≡ f = x · i1 ∧ g = x · i2

Relations:

[R ,S] ⊆ X ≡ R ⊆ X · i1 ∧ S ⊆ X · i2 (4)

Thus [,] is a lower-adjoint, it distributes over ∪, etc. Moreover,

[R ,S] = (R · i◦1) ∪ (S · i◦2) (5)

31

Domain and range

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

domain δ (⊤·) lower ⊆ restricted to coreflexives

range ρ (·⊤) lower ⊆ restricted to coreflexives

cf.

A A
δX ⊆ Y

⊇

B

⊤ X δX ⊆ Y ≡ X ⊆ ⊤ · Y

Domain and split

The following fact holds:

〈R, S〉
◦
· 〈X, Y 〉 = (R◦ · X) ∩ (S◦ · Y)

Corollary:

δ R = ker 〈id, R〉

Another consequence of the fact above:

kerR ⊆ ker (S · R) ⇐ S entire

Corollary:

kerR ⊆ ker (f · R)

32

Modular law

Dedekind’s rule (also known as the modular law):

(R · S) ∩ T ⊆ R · (S ∩ (R◦ · T))

Dually (apply converses and rename):

(R · S) ∩ T ⊆ (R ∩ (T · S◦)) · S

Symmetrical equivalent statement:

(R · S) ∩ T ⊆ (R ∩ (T · S◦)) · (S ∩ (R◦ · T))

= “weak right-distribution of meet over composition”.

Comprehending relations

For each B A
R

define its graph or comprehension by

G R = {(b, a) | bRa}

Clearly, R = ⌈G R⌉ and so we often abbreviate G R to R.
The graph of every coreflexive S is made simpler for obvious reasons:

G S = {a | aSa}

Finite relations

R is said to be finite wherever G R is a finite set.

• Finite relations, which can be enumerated, browsed and stored in
a computer, are the subject of relational database design.

• Every finite, simple relation expresses a functional dependency.

• The graphs of finite and simple relations are called mappings in
VDM-SL terminology.

• We will use Greek literals (σ, τ etc) to denote (finite) mappings

33

VDM-SL mapping notation

• Datatype: map A toB

• Pointwise VDM-SL concrete syntax

{a 7→ b | b σ a}

replaces {(b, a) | b σ a}.

• In VDM-SL notation, b σ a is furthermore rephrased as
a ∈ δ σ ∧ b = σ(a) — cf. σ = σ · δ σ — that is, we have

σ = {a 7→ σ(a) | a ∈ δ σ}

Relational projection

Given a binary relation R and suitably typed functions f and g,

• the g, f -projection of R is defined as binary relation

πg,fR
def
= g ·R · f◦ (6)

• wherever R is simple and g ·R · f◦ is also simple, we write f ⇀ g
instead of πg,fR. So,

f ⇀ g
def
= (g·) · (·f◦)

• (f ⇀ g)R is always simple when f is injective.

Mappings in specifications

Example: VDM-SL Sort spec (sorting) in Vdm-sl notation:

Sort(l: seq of int) r: seq of int
post IsOrdered(r) and IsPermutation(r,l);

where

IsPermutation: seq of int * seq of int -> bool
IsPermutation(l1,l2) ==
forall e in set (elems l1 union elems l2) &

card {i | i in set inds l1 & l1(i) = e} =
card {i | i in set inds l2 & l2(i) = e};

34

Example: VDM-SL Sort spec

. . . abbreviates to

Sort
def
= ⌈IsOrdered⌉ · IsPermutation

= ⌈IsOrdered⌉ · (ker seq2bag)

assuming

seq2bag: seq of int -> map int to nat1
seq2bag(l) ==

{ e |-> card { i | i in set inds l & l(i) = e } |
e in set elems l };

IsPermutation is an equivalence because ker f always is reflexive,
symmetric and transitive.

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

s <: m Domain restrict to

Creates the map consisting of the
elements in m whose key is in s. s need
not be a subset of dom m.

Formal semantics:

⌈s <:m⌉ = ⌈m⌉ · ⌈s⌉

where ⌈s⌉ is coreflexive and ⌈m⌉ is simple.

35

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

m1 ++ m2 Override

overrides and merges m1 with m2, i.e. it is like
a merge except that m1 and m2 need not be
compatible; any common elements are as by m2

(so m2 overrides m1.)

Formal semantics:

⌈m1 ++m2⌉ = ⌈m2⌉ → ⌈m2⌉ , ⌈m1⌉

cf. relational McCarthy conditional:

Relational McCarthy conditional

It is defined by

R → S , T
def
= (S · δ R) ∪ T · (id− δ R)

where

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

difference (−R) (R ∪)

that is,

X −R ⊆ Y ≡ X ⊆ R ∪ Y

X −R =
\

{Y |X ⊆ R ∪ Y }

36

Reasoning about VDM-SL

We want to prove VDM-SL properties such as

X <: (Y <: σ) = (X ∩ Y) <: σ

{} <: σ = {7→}

X <: (σ1 ++ σ2) = (X <: σ1) ++ (X <: σ2)

First, recall properties of coreflexives:

• Coreflexives are symmetric and transitive:

R = R◦ = R · R = R ∩ id

• Meet of two coreflexives is composition:

R ∩ S = R · S

Example of proof

⌈X <: (Y <: σ)⌉

= { relational meaning of <: }

⌈Y <: σ⌉ · ⌈X⌉

= { relational meaning of <: }

(⌈σ⌉ · ⌈Y ⌉) · ⌈X⌉

= { associativity of · and coreflexives }

⌈σ⌉ · (⌈X⌉ · ⌈Y ⌉)

= { meet of two coreflexives is composition }

⌈σ⌉ · (⌈X⌉ ∩ ⌈Y ⌉)

37

Proof continued

⌈σ⌉ · (⌈X⌉ ∩ ⌈Y ⌉)

= { meaning of set intersection }

⌈σ⌉ · ⌈X ∩ Y ⌉

= { relational meaning of <: }

⌈(X ∩ Y) <: σ⌉

Another proof

⌈X <: (σ1 ++ σ2)⌉

= { relational meaning of <: and ++ }

(⌈σ2⌉ → ⌈σ2⌉ , ⌈σ1⌉) · ⌈X⌉

= { McCarthy fusion law }

⌈σ2⌉ · ⌈X⌉ → ⌈σ2⌉ · ⌈X⌉ , ⌈σ1⌉ · ⌈X⌉

= { relational meaning of <: }

⌈X <: σ2⌉ → ⌈X <: σ2⌉ , ⌈X <: σ1⌉

= { relational meaning of ++ }

⌈(X <: σ1) ++ (X <: σ2)⌉

Etc.

Home work: define the relational semantics of e.g..

Operator Name Semantics description

m <-: s Domain restricted by

Creates the map consisting of
the elements in m whose key
is not in s. s need not be a
subset of dom m.

and prove similar properties.

38

Override pointwise

Since

δ (σ1 ++ σ2) = δ σ1 ∪ δ σ2

we have, after expansion of the relational definition:

s1 ++ s2 ==

{ k |-> if k in set dom s2

then s2(k)

else s1(k)

| k in set dom s1 union dom s2 }

Performing the above proof over this definition would have been far less
compact.

Inductive override

Another version of map override:

s1 ++ s2 ==

if s1 = {|->}

then s2

else let k in set dom s1

in { k |-> if k in set dom s2

then s2(k)

else s1(k) } munion { k } <-: s1 ++ s2

How do we arrive at this recursive scheme?

See next set of slides.

39

