An Introduction to Relational Formal

Modelling

J.N. Oliveira

DI/UM, 2003-06
October 26, 2006

Functions are not enough

Partiality (in Haskell):

Mpi> (split head tail) (tail [1])
Program error: {head []}
Mpi> 2/0

Program error: {primDivDouble 2.0 0.0}

Functions such as tail, /, head (and many others!) are partial

Functions are not enough

VDM-SL notation:

vdm> p t1 []
1. 1, c. 4:

Run-Time Error 77: The sequence was empty
vdm> p 2/0
1.1, c. 3:

Run-Time Error 76: Division with zero
vdm>

Functions such as t1, /, hd (and many others!) are partial

Functions are not enough

Another example is

gets : set of nat -> nat * set of nat
gets(s) == let a in set s
inmk_(Ca, s\ {a}) ;

which is not only partial

vdm> p gets({})
/home/jno/work/x.vdm, 1. 4, c. 25:

Run-Time Error 53: The binding environment was empty
vdm>

but also non-deterministic:

gets{a,b} = (a, {b}) V gets{a, b} = (b,{a})

Specifications as “properties”

e Specification of square root:
(sqrt z)* =z
that is
sq - sqrt = id

(= sqrt has left inverse sq)

e Specification of sort:

I'=sortl < (IsOrderedl’) A IsPermutation(l’,1)

Relational approach

Need to model
e total/partial functions
e non-determinism
e properties, datatype invariants and loop-invariants
e orders and inductive structures
e vagueness or under-specification. . .

= adoption of binary relations, which have a long tradition in the. ..

Pre/post specification style

VDM-SL notation:

gets(s: set of nat) r: (nat * set of nat)
pre card s > 0
post let mk_(n,s’) =r

in n in set s and s’ =s \ {n}

Testing this in the interpreter:

>> p post_gets({1,2} , mk_(2, {1}))
true

>> p post_gets({1,2} , mk_(2 , {1,2}))
false

Pre/post specification style

Tolerance to incomplete design:

Sort(inp: seq of int) out: seq of int
post IsPermutation(out,inp) and IsOrdered(out);

IsPermutation: seq of int * seq of int -> bool
IsPermutation(11,12) == is not yet specified;

IsOrdered: seq of int -> bool
IsOrdered(l) == is not yet specified;

Of course ...

>> p post_Sort([1 , [1)
/Users/jno/work/x.vdm, 1. 10, c. 3:
Run-Time Error 233: Cannot evaluate ‘not yet specified’ functions

Pre/post specification layout

VDM-SL generic layout is

Spec(inp: A) out: B
pre Precond(inp)
post Postcond(out,inp);

where

Precond: A -> bool
Precond(a) ==

Postcond: B * A -> bool
Postcond(b,a) ==

This clearly leads to a binary relation approach, since Postcond € 25*4 s

equivalent to Postcond C B x A

From predicates to relations

e Predicate logic connectives such as eg. A are “overloaded"”
operators

e They can be regarded as models of a more structured logic —
that of binary relations

e Functions generalize to binary relations in a very natural way.

e Predicates, sets, functions and relations can all be combined in a
single relational calculus

e Usual infix notation, e.g. a < b, can be generalized to any
relation R, e.g. a R b

Arrows “as” binary relations

o We vﬁll “type” relations in a way consistent with functions:
B <—— A wherever b R a is a statement involving b € B and a € A.

e From now on, an arrow

R
B<——A

means a binary relation from A (source) to B (target) and write
b R a to denote that pair (b, a) is in R, eg.

1 < 2
John IsFatherOf Mary
3 = (1+4) 2

Functions are relations

e Regard function f : A — B as a binary relation relating a and b iff
b= f a. So, b f a literally means b = [a.

o Therefore, generalize

f R
B<——A4 to B<——A
b=fa bRa

e Extend function composition f - g to R-.S in the obvious way

b(R-S)e = (da::bRa A aSc)

Check generalization

Back to functions,

b(f - g)c

Ha ::bfaANageo)
{bfameansb=fa }

Ha ::b=faANa=gc

{ cancel 3 by substitution of a by g ¢}
b=f(g ¢

we recover what we had before.

Notation convention: function (relation) identifiers are always
lowercase (uppercase) letters.

Relations generalize functions

e Equality on functions,
f=9g = (VYa:a€A: fa = ga)
generalizes to ordering relations:

RCS = (Vba :: bRa=bSa)

e R C S means that R is either less defined or more
deterministic than S.

o As we shall see later on:

fCg = f=9g = [2g

Converses

R R
Every relation B <—— A has a converse A <—— B which is such
that, for all a, b,

a(R°)b = bRa

Function converses f°, g° etc. always exist (as relations) enjoying the
following (very usefull) property:

(f b)R(g a) =b(f° R-g)a

Let us see examples of its use

From pointwise to PF-notation

Function

facO = 1
fac(n+1) = (n+1)xfacn

in pointfree notation:
fac- [0 ,suc] = * - [suc , fac]
Property
VMn,m :: n<m= facn < facm)

(= fac is monotonic) in PF-notation?

Properties in PF style

fac is monotonic:

Mn,m :: n<m= facn < facm)
{rule (f b)R(g a) =b(f°-R-g)a }

Vn,m :: n<m=n(fac <-fac)m)

{ ordering on relations (ie. dropping n and m) }

< C fac® < -fac

From PF to pointwise notation

Role of id:

e Recall that every function f is a relation such that b f a means
b= f a.

e Therefore, function id is the equality relation: b id a means
b= a.

For example, what does
fo-f Cid

mean? Let us introduce points and calculate:

From PF to pointwise notation

fo-fcid
{ relational inclusion }
Vy,z o y(f° flz=y(id)z)
{ introduce id in antecedent ; id is equality relation }
(Vyx 0 y(f°id- flz=y=ux)
{rule (f R(ga)=b(f° R-g)a }
Vyz 2 (fy)=Fr)=y=u1)

{ recall definition from discrete maths }

f is injective

Why id (really) matters

Terminology:

e Say R is reflexive iff id C R

pointwise: Ma :: aRa) (check as homework);
e Say R is coreflexive iff R C id
pointwise: Ma:: bRa=b=a) (check as homework).

Define, for B <—— A:

Kernel of R Image of R
ker R img R
A<—A B<—B

kerRY R°- R | imgRY R-R°

Example: kernel of a function

Let us go pointwise:

a’(ker f)a

= { substitution }
a'(f° fa

= {rule (fb)R(g a)=b(f°-R-g)a }
(f d') = (fa)

In words: a'(ker f)a means a’ and a “have the same f”

Binary relation taxonomy

Topmost criteria:

\\ Definitions:

injective entire simple surjective
|| Reflexive | Coreflexive |
ker R entire R injective R

imgR || surjective R simple R

Binary relation taxonomy

The whole picture:

rejation
injective

function abstraction

injection surjection
bijection
In general, “larger than entire means entire”

and “smaller than simple
means simple”

Functions in one slide

A function f is a binary relation such that

Pointwise | Pointfree

“Left” Uniqueness
bfaAb fa = b=V |
Leibniz principle

a=d = fa=fd | id C kerf

imgf C id (f is simple)

(f is entire)

As we shall see, these two principles are captured by

@urss =ns@-s
\/

Relation taxonomy — orders

R
Orders are endo-relations A <—— A classified as

endg;relation

metric transitive

sym Wﬁme anti-symmetric connected
plr

preorder

(Criteria

partial order

id linear order
definitions: next slide)

10

Orders and their taxonomy

Besides

reflexive: iff ida C R

coreflexive: iff R Cida

an order (or endo-relation) A <—— A can be

transitive: iff R-RCR
anti-symmetric: iff ROR® Cida
symmetric: iff RC R°(= R=R")
connected: iff RUR° =T

T
where A <—— A is the largest relation of its type.

Orders and their taxonomy

Therefore:

e Preorders are reflexive and transitive orders.
Example: y IsAtMostAsOldAs x

e Partial orders are anti-symmetric preorders
Example: y C z

e Linear orders are connected partial orders
Example: y <z

e Equivalences are symmetric preorders
Example: y IsPermutation x

e Pers are partial equivalences
Example: y IsBrotherOf ©

Predicates & sets made PF

Strategy: identify every »

e binary predicate B x A—>2 with binary relation

[p]
B~——A

such that b[pla = p(b, a).
q [q]
e unary predicate A—2 with coreflexive A <—— A such that

al[gla’ =a=4d A (qa).
e set S C A with [Aa.a € S]. So,

b[Sla=b=a A a€ S

11

Last but not least

e Intersection (meet):
b(RNS)a = (bRa) N (bSa)
e Union (join):
b(RUS)a = (bRa)V(bSa)
e Bottom relation B <—— A — the smallest relation of its type:

(Vb,a :: bla= false)

T
Top relation B <—— A — the largest relation of its type:
(Vb,a :: bTa = true)

R
Of course, for all B<—— Aonehas L C R CT

Last but not least

Coreflexives:
0<—0

1=—1

e Example: [facn <1] =

e Useful properties:
— Coreflexives are symmetric and transitive:
R=R°=R-R=RnNid
— Meet of two coreflexives is composition:

RNS=R-S

12

Last but not least

Domain:

O0R = kerRnNid
Range:

pR = imgRNid
Facts:

SR = pR°
§(R-S) = 6(6R-S) , pR-S) = p(R-pS)

R = R-0R), R = (pR)'R

PF-meaning of VDM-SL specs

PTET poUstT

Given bool <—— A and bool <—— B x A, VDM spec

Spec(a: A) r: B
pre prec(a)
post postc(r,a);

Spec
means binary relation B <—— A defined by

Spec [postc] - [prec|
[prec] Post = [postc]
where A <—— A is coreflexive and B <—— A is of the same type as Spec.

13

Example: VDM-SL Sqrt spec

Sqrt(x: real) r: real
pre true
post sq(r) = x ;

means

Sqrt [sgr=2x]-id

{(fb)R(g a) =b(f°-R-g)a; natural-id }

Sqrt [r(sq° - id - id)z]

{ natural-id (twice) }

Sqrt def sq°

Pre/post-consistency

In
def
Spec = [postc]| - [prec|

it is common practice to ensure that the pre-condition be at most the
domain of the post-condition:

[prec] C § [postc]

Example:

Inv(x: real) r: real
pre x > 0
post r =1/ x ;

Pre/post-consistency

By rule (f b)R(g a) = b(f° - R g)a we easily obtain [Inv] = (1/), which is
undefined for z = 0. Consistency is ensured since x > 0=z # 0.
Counter example:

Get(x: seq of int) r: int
pre len x = card elems x
post r = hd x ;

(no repeats property does not ensure list non-emptiness).

14

Invariants

Note that the same problem would be found in

Get(x: NoRepeatsList) r: int
post r = hd x ;

where datatype NoRepeatsList is defined with an invariant

types
NoRepeatsList = seq of int
inv x == len x = card elems X;

Data type invariants

Arising from natural phenomena:

dateOk : natl * natl * natl -> bool
dateOk(y,m,d) ==
if m in set {1,3,5,7,8,10,12} then
d <= 31 and
(not (y=1582 and m=10) or (d<5) or (14<d))
else if m in set {4,6,9,11} then d <= 30
else if m=2 and leapYear(y) then d <= 29
else if m=2 and not leapYear(y) then d <= 28
else false;

where

15

Data type invariants

leapYear : natl -> bool
leapYear(y) ==
0 = rem(y, if 1700 <= y and rem(y,100)=0
then 400 else 4);

Business rules are also invariants, cf eg.

Account :: personal: Data
avgbalance: real
currentbalance: real
inv a == a.currentbalance > - a.avgbalance/3 ;

Invariants can thus be as arbitrary as human inventiveness...

Invariants entail proof obligations

Let

e ¢ be the invariant associated to datatype A and i be the one
associated to datatype B.

e f be a function of type B<~—— A
Clearly,

e Guarantee — it is the onus of the designer of f to ensure that every
output of f will satisfy ¢

e Rely — designer of f can rely on ¢ holding for every input
Formally:

Ma :: ga=U(f a))

16

Data type invariants

PF-transform of proof obligation, where ® = [¢] and ¥ = [¢]:
[C v f

cf. f-eCU-f
{ shunting rule }

Cf7T-f

{ introduce variables }

Va,a :: a®ad=(fa)¥(fa))

{ coreflexives (a =a’) }

VMa :: a®a=(f a)¥(f a))

Data type invariants

{ back to predicates }
Ma :: pa=9¢(f a))

Another way to write it:

f-®C V- f

= { shunting } = { image definition }
[f°Cw img(f-®) C ¥

= { coreflexives } = {f -®issimple }
[@a° 0 C U p(f-@) C ¥

17

Data type invariants

In general — let Spec = (pre, post) be a pre/post-condition pair in
VDM-SL:

Spec(a: A) r: A
pre ... a ...
post ... r ... a ... ;

Let inv be an invariant property associated with type A:

Data type invariants

Invariant preservation proof obligation:
(Vra :: post(r,a) A prea A inv a=inv r) (1)
which PF-transforms to
p (Spec- Inv) C Inv (2)

for Spec = [post] - [pre] and Inv = [inv].
e Question: How do we reason about invariants?

We first need to know how to calculate with PF-expressions.

Basic Relation Calculus

Monotonicity: All operations are monotonic, eg.
RCS

(R-T)C(S-U)

Composition:

e Composition is associative:
o Identity:

e Empty relation:

R-(ST)=(R-S) T
R-id=1id-R=R
R-1=1-R=1

18

Basic Relation Calculus

Relational Equality:

e Pointwise equality:
R=S = (Vbya :: bRa=bSa)
e Pointfree equality:
— Cyclic inclusion (“ping-pong”) rule:
R=S = RCSASCR
— Indirect equality rules:

R=S = (VX :: (XCR=XCJS9))
= (VX :: (RCX=5CX))

Basic Relation Calculus

Converse:
°-universal: X°CY = XCvYy°
°-monotonicity: RCS=R°CS°
Then:
Involution : (R°) =R

Contravariance : (R-S)°=S°-R°

o

These can be proved from
in next slide):

-universal by (elegant) indirect proofs (example

Basic Relation Calculus

Indirect proof of involution
(R°)°CY
{ °-universal X°CY = XCY° for X:=R° }

Rogyo

{ °-monotonicity }

RCY
{ indirection }
(R)° = R

19

Meet, join and converse

MN-universal

XC(RNS) = (XCR)A(XCS)
U-universal

RUSCX = (RCX)A(SCX)
Converse distributes over N and U (see eg. calculation of next slide):

(RNS)°=R°NS°

Another indirect proof

X CR°NS°

{ N-universal }

(X CR°)A(X C8°)

{ monotonicity and involution }

(X°CR)A(X°CS)

{ N-universal }

X°CRNS

{ monotonicity and involution }
X C(RNS)°
{ indirection }

R°NS°=(RNS)°

Reasoning about functions

Shunting rules:

Equality:
FCg=f=9=f2g

“Ping-pong” proof of the equality rule follows.

20

Proof of functional equality

fcy
= { identity }
fridCyg

{ shunting on f }
idC f°-g

{ shuntingon g }
id-g° C f°

{ converses; identity }

g<f

Adding structure to the calculus

Note a recurrent pattern in several laws above:

X°CYy = XCyYy°
<~ ~~
X gY
(h)XCY = XC(h°)Y
SN—— N——
X gY
X(h)CY = XCY(h)
N—— N——
X gY
as well as in
(dx)g<n = g<n(/d)
N—— N——
fa gn

21

Back to the primary school desk

The integral division algorithm

I% 2% 341 =7 , " 3=17/2

;}— 2x2+3=7 A 2#7/2

7
5

However

DO DN

2x14+5=7 A 1#£7/2

t‘?

Quotient is a supremum

provided g is the
n|d
}T dxqg+r=n=q=n/d | largest such ¢ (r

smallest)

n/d \/{q|E|r.d><q+r:n}

= Vigldxg<n}

Maths teachers tell: it takes a while before children master the "\/
semantics” !

What about you? Can you easily reason about n/d in this format?
Try and prove (n/m)/d =n/(d x m).

“Universal” property instead

Alternative:

n|d _ “universal” property of
r }7 gxd<n=g<n/d integral division

Reasoning:

q < (n/m)/d
= { “universal” property }

gxd<n/m

22

Reasoning continued

{ “universal” property again

}

(gxd)xm<n

{ xis

gx(dxm

qg<mn/(dx

{ “universal" property again

}

associative
)<n

}

m)

Indirect equality

So we have
q<(n/m)/d = q<n/(dxm)
that is,
(n/m)/d = n/(dxm)
by the indirect equality rule:
(g<z=q<y)=(x=y)
Also easy to check
Cancellation law: (n/d) xd<mn
= { universal property }
n/d <nj/d
= { reflexive < '}
true

“Reflection”:

1xd<n=1<n/d
{ 1is the unit of x }

d <

n=n/d>1

23

Galois connections

n/d is a Galois connection:

n}i g<xd<n=q<mn/d
r|q ~ ~—
I q gmn

In general, for preorders (4, <) and (B,C) and

g
—
(4, <) (B,5)
\/
f
(f,g) are Galois connected iff. ..

Galois adjoints

J b<a = bE g a
~—~ ~—~
lower adjoint upper adjoint
that is
< = Cuy
Remarks:

e Galois (connected) adjoints enjoy a number of interesting generic

properties

e \ery elegant — calculational — way of performing inequational

reasoning (including logical deduction)

24

Basic properties

Cancellation:

(f-9)Ja<a and bL(g9-f)b

Distribution (in case of lattice structures):

flaud) = (fa)Vv(fd)
gb AY) = (gb)N(gd)
Conversely,

e If f distributes over LI then it has an upper adjoint g (f*)
e If g distributes over A then it has a lower adjoint f (g°)

Other properties

If (f,g) are Galois connected,
e f (g) uniquely determines g (f) — thus the _°, _# notations
e f and g are monotonic

e (g, f) are also Galois connected — reverse the orderings

o f=f-g-fandg=9g-f-yg

etc
Summary
| (fb)<a=bLC (ga)
| Description | = | =/t
Definition b=A{a|bC ga} a=]{b] <a}
Cancellation (ga)<a bC g(f b)
Distribution GUBY=(/b)V (/b)) | 9@ Ma)=(ga)N (g a)
Monotonicity bCV = b< [¥ a<d=galgd

25

Converse

XC(Y) |
g=f"] Obs. |
(0)° [bR°a=aRb |

| JX)CY
| Description | f=¢

| converse | (0)°

Thus:

Cancellation (R°)° =R
Monotonicity RCS=RCS°
Distributions (RNS)*=R°NS°,(RUS)°=R°US°

Functions
| UX)CY=XC(@Y) |
| Description | f=¢g | g=Jf" | Obs. |
shunting rule (h+) (hR°-) | NB: h is a function
“converse” shunting rule | (-h°) (-h) NB: h is a function
Consequences:
Functional equality: hCg= h=k =hDk
Functional division: h®-R=h\R

Question: what does i \ R mean?

Relational division

| UX)CY=XC(@Y) |
| Description | f=¢ | g=fF | Obs. |
left-division (R") (R\) | left-factor
right-division (-R) (/R) | right-factor

Immediate: (R-) and (-R) distribute over union:

R-(SUT) = (R-S)U(R-T)
(SUT)-R = (S-R)U(T-R)

Some intuition about relational division operators follows.

26

Relational division

The relational division operators are upper-adjoints:

R- XCY=XCR\Y
X-RCY=XCY/R

Left division abstracts a (pointwise) universal quantification
X CR\Y

A C
RN, Y a(R\Y)e = (Vb :: bRa=bYc)
B

An example follows.

Example

Recall data division in the relational model:

A C
RN, 8 a(R\ S)e = (Vb.bRa = bSc)

b R a = flight b carries passenger a
b S ¢ = flight b belongs to air-company ¢

a (R\ S) ¢ = passenger a is faithful to company ¢, that is, (s)he
only flies company c.

27

Right division

By taking converses we arrive at S/ R = (R°\ 5°)°:
XCS/R

{ Galois connection ((-R),(/R)) }
X-RCS

{ converses }
R°.X°C 8°

{ Galois connection ((R-), (R\)) }
X°CR°\S°

{ converses }

X g (RO\SO)O

ie. Galois connection

X-RCS = XCS/R

Meet

N-universal
XC(RNS) = (XCRAN(XCYS)

is a Galois connection

where A X = (X, X), cf.
(X, X)(E x C)(R,S) = XCN(R,S)

So N = A! distributes over itself, etc

28

Properties of N

From N-universal infer:

e N-cancellation (X := RN S)
RNSCR AN RNSCS
e N-abbreviation (X := R)
RCS = R=RNS
e N-idempotency (S := R)

RNR = R

More properties of N

N is commutative:

RNS = SNR

N is associative:

RNn(SNT) = (RNS)NT
N-fusion:

T-(RNS) € (T'-R)N(T-S)

(RNS)-T C (R-T)N(S-T)

29

Meet and join

| X)<Y=XLC(gY) |
| Description | f=¢ | g=f* | Obs. |
| meet | A | n [<is(€x9]
| join | U | A JCis(cx9)]
Join:
UR,S) CY = (R,9)(C x O).Y)
that is,

RUSCY=RCY ANSCY

Relational split

Functions:
z=(f,g) = m-x=f AN m-z=g
Relations:
XC(R,S) = m-XCR AN m-XCS
(A—0) T~
(X ,Cx Q) (AxB~—0C,Q)

Properties

(-, -) is an upper-adjoint, so it distributes over meet

(R,SNT)y = (R,S)N(R,T)
(SNT,R) = (S,RyN{T,R)
etc. Moreover:
(R,S) = (np-R)N(73-5) (3)

Why? Again Galois at work:

30

Calculation

X C(R,S)

m-XCRA M -XCS

{ Galois connected ((f-), (f°*)) }
XCn-RAXCm3-S

{ Galois connected (N”,N) }

XC(nri-RNms-8)
{ indirect equality }
(R,S)=n7-RNm3-S

Pointwise (R, S)

(a,b)(R,S)e = (a,b)(m] -RNm5-8S)c

= { pointwise N}
(a,b)(m] - R)c A (a,b)(m5 - S)c
= { rule (f b)Ra=b(f°- R)a }
mi(a,b)Re A ma(a,b)Sc

= { projections }

aRc N bSc
Relational either
Functions:
[f,gl=2 = f=x-i1 Ag=umx-i

Relations:

[R,S]CX = RCX- i ASCX- i (4)
Thus [_,] is a lower-adjoint, it distributes over U, etc. Moreover,

[R,S] = (R-i7)U(S-i3) Q)

31

Domain and range

| (fX)CY=XC(gY) |

| Description | f=¢g | g=f* | Obs. |
domain) (T9) lower C restricted to coreflexives
range p (-T) lower C restricted to coreflexives
cf.
0XCY
A A
TN 2, X SXCY=XCT-Y
B

Domain and split

The following fact holds:
(R,S)° - (X)Y) = (R°-X)N(5°-Y)

Corollary:
JR = ker(id, R)
Another consequence of the fact above:
ker R C ker(S-R) <« S entire

Corollary:

kerR C ker(f-R)

32

Modular law

Dedekind'’s rule (also known as the modular law):
(R-S)NT C R-(SN(R°-T))
Dually (apply converses and rename):
(R-S)NT C (RN(T-8°%)-S
Symmetrical equivalent statement:
(R-S)NT C (RN(T-5°)-(SN(R°-T))

= "weak right-distribution of meet over composition” .

Comprehending relations

R
For each B =<—— A define its graph or comprehension by
G R={(b,a) | bRa}

Clearly, R =[G R| and so we often abbreviate G R to R.
The graph of every coreflexive S is made simpler for obvious reasons:

G S={al|aSa}

Finite relations

R is said to be finite wherever G R is a finite set.

e Finite relations, which can be enumerated, browsed and stored in
a computer, are the subject of relational database design.

e Every finite, simple relation expresses a functional dependency.

e The graphs of finite and simple relations are called mappings in
VDM-SL terminology.

o We will use Greek literals (o, 7 etc) to denote (finite) mappings

33

VDM-SL mapping notation

e Datatype: map A to B
e Pointwise VDM-SL concrete syntax
{a—b|boa}
replaces {(b,a) |bo a}.

e In VDM-SL notation, b o a is furthermore rephrased as
ac€do N b=oc(a) —cf.c =000 — thatis, we have

o = {a—o(a)]acdo}

Relational projection

Given a binary relation R and suitably typed functions f and g,

e the g, f-projection of R is defined as binary relation

def o
mg R = g-R-f (6)

e wherever R is simple and g - R - f° is also simple, we write f — g
instead of 7y sR. So,

F=9% () (f)

e (f — g)R is always simple when f is injective.

Mappings in specifications

Example: VDM-SL Sort spec (sorting) in VDM-SL notation:

Sort(l: seq of int) r: seq of int
post IsOrdered(r) and IsPermutation(r,l);

where

IsPermutation: seq of int * seq of int -> bool
IsPermutation(11,12) ==
forall e in set (elems 11 union elems 12) &
card {i | i in set inds 11 & 11(i) = e} =
card {i | i in set inds 12 & 12(i) e};

34

Example: VDM-SL Sort spec

... abbreviates to

Sort ‘= [IsOrdered| - IsPermutation
= [IsOrdered] - (ker seq2bag)

assuming

seq2bag: seq of int -> map int to natl
seq2bag(l) ==
{el->card {i | i in set inds 1 & 1(i) = e } |
e in set elems 1 };

IsPermutation is an equivalence because ker f always is reflexive,
symmetric and transitive.

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

| Operator | Name | Semantics description

Creates the map consisting of the
s <: m | Domain restrict to | elements in m whose key is in s. s need
not be a subset of dom m.

Formal semantics:

[s<:m] = [m]-[s]

where [s] is coreflexive and [m] is simple.

35

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

| Operator | Name | Semantics description
overrides and merges m1 with m2, i.e. it is like
. a merge except that m1 and m2 need not be
ml ++ m2 | Override

compatible; any common elements are as by m2
(so m2 overrides m1.)

Formal semantics:

cf. relational

[my++mz] = [ma] — [ma], [ma]

McCarthy conditional:

Relational McCarthy conditional

It is defined by

R—S, T ¥ (S-6R)UT-(id—45R)

where
| UX)CY=XC(@Y) |
Description | f=¢" | g=f* | Obs.
difference (-—R) | (RU)
that is,
X—-RCY = XCRUY
X-R = [{YIXCRuUY}

36

Reasoning about VDM-SL

We want to prove VDM-SL properties such as

X<:(Y<:i0) = (XNY)<:o0o
<o = {~}
X<:(op++02) = (X<:op)++(X<:o09)

First, recall properties of coreflexives:

e Coreflexives are symmetric and transitive:

R=R°=R-R=RnNid

e Meet of two coreflexives is composition:

RNS=R-S

Example of proof

[X <: (Y <:0)]

= { relational meaning of <: }
[Y<:0] [X]

= { relational meaning of <: }
([e]- 1Y) - [X]

= { associativity of - and coreflexives }
[o] - (IXT-[YT)

= { meet of two coreflexives is composition }

[o] - ([XTNYT])

37

Proof continued

[o] - (IXTN[YT])
= { meaning of set intersection }

[o] - [XNY]

{ relational meaning of <: }

[(XNY)<: o]

Another proof

[X <: (01 ++02)]

= { relational meaning of <: and ++ }

(fo2] = fo2], [o1]) - [X]

= { McCarthy fusion law }

[o2] - [X] = [o2] - [XT], [o1] - [X]

= { relational meaning of <: }

[X <:o2] = [X<:02], [X<:o1]

= { relational meaning of ++ }

[(X <:01) ++ (X <: 02)]

Etc.

Home work: define the relational semantics of e.g..

Operator Name Semantics description
Creates the map consisting of
) . the elements in m whose key
m <-: s | Domain restricted by

is not in s. s need not be a
subset of dom m.

and prove similar properties.

38

Override pointwise

Since
5(01++0’2):5(71U502

we have, after expansion of the relational definition:

sl ++ s2 ==
{k |-> if k in set dom s2
then s2(k)
else s1(k)

| k in set dom s1 union dom s2 }

Performing the above proof over this definition would have been far less
compact.

Inductive override

Another version of map override:

sl ++ s2 ==
if s1 = {|->}
then s2
else let k in set dom si
in { k |-> if k in set dom s2
then s2(k)
else s1(k) } munion { k } <-: sl ++ s2

How do we arrive at this recursive scheme?

See next set of slides.

39

