
An Introduction to Relational Formal

Modelling

J.N. Oliveira

DI/UM, 2003-05

December 18, 2005

Functions are not enough

Partiality (in Haskell):

Mpi> (split head tail)(tail [1])

(

Program error: {head []}

Mpi> 2/0

Program error: {primDivDouble 2.0 0.0}

Functions such as tail, /, head (and many others!) are partial

Functions are not enough

VDM-SL notation:

vdm> p tl []

l. 1, c. 4:

Run-Time Error 77: The sequence was empty

vdm> p 2/0

l. 1, c. 3:

Run-Time Error 76: Division with zero

vdm>

Functions such as tl, /, hd (and many others!) are partial

1

Functions are not enough

gets : set of nat -> nat * set of nat

gets(s) == let a in set s

in mk_(a,s \ {a}) ;

is not only partial

vdm> p gets({})

/home/jno/work/x.vdm, l. 4, c. 25:

Run-Time Error 53: The binding environment was empty

vdm>

but also non-deterministic:

gets{a, b} = 〈a, {b}〉 ∨ gets{a, b} = 〈b, {a}〉

Specifications as “properties”

• Specification of square root:

(sqrt x)2 = x

that is

sq · sqrt = id

(= sqrt has left inverse sq)

• Specification of sort:

l′ = sort l ⇔ (IsOrdered l′) ∧ IsPermutation(l′, l)

Relational approach

Need to model

• total/partial functions

• non-determinism

• properties, datatype invariants and loop-invariants

• orders and inductive structures

• vagueness or under-specification. . .

⇒ adoption of binary relations, which have a long tradition in the. . .

2

Pre/post specification style

Sort(l: seq of int) r: seq of int

post IsPermutation(r,l) and IsOrdered(r);

IsPermutation: seq of int * seq of int -> bool

IsPermutation(l1,l2) ==

IsOrdered: seq of int -> bool

IsOrdered(l) ==

gets(s: set of nat) r: nat * set of nat

pre card s > 0

post r.#1 in set s and r.#2 = s \ {r.#1} ;

Pre/post specification layout

Spec(a: A) r: B
pre Precond(a)

post Postcond(r,a);

where

Precond : A −→ 2

Postcond : B × A −→ 2

leads to the binary relation approach:

Postcond ∈ 2B×A ⇔ Postcond ⊆ B × A

3

From predicates to relations

• Predicate logic connectives such as eg. ∧ are “overloaded”
operators

• They can be regarded as models of a more structured logic —
that of binary relations

• Functions generalize to binary relations in a very natural way.

• Predicates, sets, functions and relations can all be combined in a
single relational calculus

• Usual infix notation, e.g. a < b, can be generalized to any
relation R, e.g. aRb

Sets / functions made relational

Strategy: identify every

• function f : A −→ B with the binary relation relating a and b iff
b = f a. So, bfa literally means b = f a.

• binary predicate A × B bool
p

with binary relation [[p]] such
that a[[p]]b ≡ p(a, b).

• unary predicate A bool
q

with binary relation [[q]] such that
a[[q]]b ≡ a = b ∧ (q a).

• set S ⊆ A with [[λa.a ∈ S]]. So,

a[[S]]b ≡ a = b ∧ a ∈ S

4

Arrows “are” binary relations

• “Type” relations in a way consistent with functions: B A
R

wherever bRa involves b ∈ B and a ∈ A.

• From now on, an arrow

B A
R

means a binary relation from A (source) to B (target) and write
bRa to denote that pair 〈b, a〉 is in R.

Relations as Arrows

• Ordering on relations:

R ⊆ S ≡ bRa ⇒ bSa

R ⊆ S means that R is either less defined or more
deterministic than S.

• Extend composition f · g to R · S in the obvious way

b(R · S)c ≡ ∃a ∈ A.bRa ∧ aSc

• Introduce converse R◦

a(R◦)b ≡ bRa

5

Relational Equality

Pointwise equality:

R = S ≡ (bRa ≡ bSa)

Pointfree equality:

• Cyclic implication (“ping-pong”) rule:

R = S ≡ R ⊆ S ∧ S ⊆ R

• Indirect equality rules:

R = S ≡ ∀X.(X ⊆ R ≡ X ⊆ S)

≡ ∀X.(R ⊆ X ≡ S ⊆ X)

Basic relational combinators

Given C B
S

and B A
R

• Composition S · R is s.t.

c(S · R)a

holds wherever there exists some b ∈ B such that cSb ∧ bRa.

• Converse A B
R◦

of B A
R

a(R◦)b ≡ bRa

• Meet R ∩ S — recall set-theoretical intersection

Basic Relation Calculus (I)

Composition is associative:

R · (S · T) = (R · S) · T

Identity

R · id = id · R = R

Empty relation

R · ⊥ = ⊥ · R = ⊥

where B A
⊥

is the smallest relation of its type.

6

Basic Relation Calculus (II)

Composition is monotonic:

R ⊆ S
T ⊆ U

(R · T) ⊆ (S · U)

Bottom and top relations:

⊥ ⊆ R ⊆ ⊤

where B A
⊤

is the largest relation of its type.
Pointwise descriptions:

b⊤a ≡ true , b⊥a ≡ false

Converse

◦-universal

X◦ ⊆ Y ≡ X ⊆ Y ◦

◦-monotonicity:

R ⊆ S ≡ R◦ ⊆ S◦

Then:

Involution : (R◦)◦ = R

Contravariance : (R · S)◦ = S◦ · R◦

These can be proved from ◦-universal by (elegant) indirect proofs
(example in next slide):

7

Indirect proof of involution

(R◦)◦ ⊆ Y

≡ { ◦-universal X◦ ⊆ Y ≡ X ⊆ Y ◦ for X := R◦ }

R◦ ⊆ Y ◦

≡ { ◦-monotonicity }

R ⊆ Y

:: { indirection }

(R◦)◦ = R

Meet and converse

∩-universal

X ⊆ (R ∩ S) ≡ (X ⊆ R) ∧ (X ⊆ S)

Converse distributes over ∩ (proof in next slide):

(R ∩ S)◦ = R◦ ∩ S◦

Another indirect proof

X ⊆ R
◦ ∩ S

◦

≡ { ∩-universal }

(X ⊆ R
◦) ∧ (X ⊆ S

◦)

≡ { monotonicity and involution }

(X◦ ⊆ R) ∧ (X◦ ⊆ S)

≡ { ∩-universal }

X
◦ ⊆ (R ∩ S)

≡ { monotonicity and involution }

X ⊆ (R ∩ S)◦

:: { indirection }

R
◦ ∩ S

◦ = (R ∩ S)◦

8

Converses of functions

Function converses f◦, g◦ etc. always exist (as relations) enjoying the
following property:

(f b)R(g a) ≡ b(f◦ · R · g)a

which unfolds to

bR(g a) ≡ b(R · g)a (f := id)

(f b)Ra ≡ b(f◦ · R)a (g := id)

Pointwise vs pointfree notation

Function

fac 0 = 1

fac(n + 1) = (n + 1) ∗ fac n

in pointfree notation:

fac · [0 , suc] = ∗ · [suc , fac]

Property

fac n = fac m ⇒ n = m

(≡ fac is injective) in pointfree notation?

Properties in pointfree style (I)

fac is injective:

fac n = fac m ⇒ n = m

≡ { identity function / relation }

(fac n) id (fac m) ⇒ n id m

≡ { rule (f b)R(g a) ≡ b(f◦ · R · g)a }

n(fac◦ · id · fac)m ⇒ n id m

≡ { dropping variables n and m ; natural-id }

fac◦ · fac ⊆ id

9

Properties in pointfree style (II)

Example property of integer arithmetics:

n d
r q

d × q ≤ n ≡ q ≤ n/d

≡ { using “Haskell section notation” }

(d×)q ≤ n ≡ q ≤ n(/d)

≡ { rule (f b)Ra ≡ b(f◦ · R)a }

q((d×)◦· ≤)n ≡ q(≤ ·(/d))n

≡ { pointwise equality }

(d×)◦· ≤ = ≤ ·(/d)

Reasoning:

q ≤ (n/m)/d

≡ { “universal” property }

d × q ≤ n/m

Orders and their taxonomy (A)

An order (or endo-relation) A A
R

is

reflexive: iff idA ⊆ R

coreflexive: iff R ⊆ idA

transitive: iff R · R ⊆ R

anti-symmetric: iff R ∩ R◦ ⊆ idA

symmetric: iff R ⊆ R◦(≡ R = R◦)

connected: iff R ∪ R◦ = ⊤

where A A
⊤

is the largest relation of its type.

10

Order taxonomy (B)

• Preorders are reflexive and transitive orders.

• Partial orders are anti-symmetric preorders

• Linear orders are connected partial orders

• Equivalences are symmetric preorders

• Predicates are coreflexive orders: the “meaning” of a predicate

Bool A
φ

is a coreflexive relation [[φ]] such that

φa ≡ a[[φ]]a

mapping every a which validates φ onto itself.

Order taxonomy (C)

order

symmetric reflexive transitive anti-symmetric connected

preorder

equivalence partial order

linear

Properties (A)

Dedekind’s rule (also known as the modular law):

(R · S) ∩ T ⊆ R · (S ∩ (R◦ · T))

Dually (apply converses and rename):

(R · S) ∩ T ⊆ (R ∩ (T · S◦)) · S

Symmetrical equivalent statement:

(R · S) ∩ T ⊆ (R ∩ (T · S◦)) · (S ∩ (R◦ · T))

= “weak right-distribution of meet over composition”.

11

Derived combinators

• Kernel of B A
R

is A A
kerR

defined by

kerR
def
= R◦ · R

• Image of B A
R

is B B
img R

defined by

imgR
def
= R · R◦

• Duality:

ker (R◦) = imgR

img (R◦) = kerR

Properties of kernel and image

Order-preservation:

R ⊆ S ⇒ kerR ⊆ kerS

R ⊆ S ⇒ imgR ⊆ imgS

Symmetry:

(kerR)◦ = kerR

(imgR)◦ = imgR

Also:

R ⊆ R · kerR (= img R · R)

12

Entireness and simplicity

An entire (or total) relation is such that its kernel is reflexive:

R is entire ≡ id ⊆ kerR

A simple (or functional) relation is such that its image is coreflexive:

R is simple ≡ imgR ⊆ id

Simplicity is the dual of entireness. Simple relations are also called
partial functions.

(Total) functions

Functions are both simple and entire relations, usually denoted by
lowercase letters f :

id ⊆ f◦ · f
︸ ︷︷ ︸

entire

∧ f · f◦ ⊆ id
︸ ︷︷ ︸

simple

Thus:

f ⊆ R ⇒ R is entire

R ⊆ f ⇒ R is simple

In general, “larger than entire means entire” and “smaller than simple
means simple”

13

Surjectiveness and injectiveness

More taxonomy:

• R is surjective iff R◦ is entire

• R is injective iff R◦ is simple

Facts:

R is entire and injective ≡ kerR = id

R is simple and surjective ≡ img R = id

Summary:

Reflexive Coreflexive

ker R entire R injective R
img R surjective R simple R

Bijections

f is bijective iff it is an injective and surjective function (thus simple
and entire)

B A
f

bijective ≡ ker f = id ∧ img f = id

In this case

id = f◦ · f ∧ f · f◦ = id

Binary relation taxonomy

relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

14

Reasoning about functions

Shunting rules:

f · R ⊆ S ≡ R ⊆ f◦ · S

R · f◦ ⊆ S ≡ R ⊆ S · f

Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g

Ping-pong proof of the equality rule follows.

Proof of functional equality

f ⊆ g

≡ { identity }

f · id ⊆ g

≡ { shunting on f }

id ⊆ f◦ · g

≡ { shunting on g }

id · g◦ ⊆ f◦

≡ { converses }

g ⊆ f

15

Adding structure to the calculus

Note a recurrent pattern in several laws above:

X◦
︸︷︷︸

f X

⊆ Y ≡ X ⊆ Y ◦
︸︷︷︸

g Y

(h·)X
︸ ︷︷ ︸

f X

⊆ Y ≡ X ⊆ (h◦·)Y
︸ ︷︷ ︸

g Y

X(·h◦)
︸ ︷︷ ︸

f X

⊆ Y ≡ X ⊆ Y (·h)
︸ ︷︷ ︸

g Y

as well as in

(d×)q
︸ ︷︷ ︸

f q

≤ n ≡ q ≤ n(/d)
︸ ︷︷ ︸

g n

Back to the primary school desk

The integral division algorithm

7 2
1 3

2 × 3 + 1 = 7 , “ie.” 3 = 7/2

However

7 2
3 2

2 × 2 + 3 = 7 ∧ 2 6= 7/2

7 2
5 1

2 × 1 + 5 = 7 ∧ 1 6= 7/2

16

Quotient is a supremum

n d
r q

d × q + r = n ≡ q = n/d
provided q is the
largest such q (r is
smallest)

n/d =
∨

{q | ∃r . d × q + r = n}

=
∨

{q | d × q ≤ n}

Maths teachers tell: it takes a while before children master the “
∨

semantics”!
What about you? Can you easily reason about n/d in this format?
Try and prove (n/m)/d = n/(d × m).

“Universal” property instead

Alternative:

n d
r q

q × d ≤ n ≡ q ≤ n/d
“universal” property of
integral division

Reasoning:

q ≤ (n/m)/d

≡ { “universal” property }

q × d ≤ n/m

Reasoning continued

≡ { “universal” property again }

(q × d) × m ≤ n

≡ { × is associative }

q × (d × m) ≤ n

≡ { “universal” property again }

q ≤ n/(d × m)

17

Indirect equality

So we have

q ≤ (n/m)/d ≡ q ≤ n/(d × m)

that is,

(n/m)/d = n/(d × m)

by the indirect equality rule:

(q ≤ x ≡ q ≤ y) ≡ (x = y)

Also easy to check

Cancellation law: (n/d) × d ≤ n

≡ { universal property }

n/d ≤ n/d

≡ { reflexive ≤ }

true

“Reflection”: 1 × d ≤ n ≡ 1 ≤ n/d

≡ { 1 is the unit of × }

d ≤ n ≡ n/d ≥ 1

18

Galois connections

n/d is a Galois connection:

n d
r q

q×d
︸︷︷︸

f q

≤ n ≡ q ≤ n/d
︸︷︷︸

g n

In general, for preorders (A,≤) and (B,⊑) and

(A,≤) (B,⊑)

g

f
(f, g) are Galois connected iff. . .

Galois adjoints

f
︸︷︷︸

lower adjoint

b ≤ a ≡ b ⊑ g
︸︷︷︸

upper adjoint

a

that is

f◦· ≤ = ⊑ ·g

Remarks:

• Galois (connected) adjoints enjoy a number of interesting generic
properties

• Very elegant — calculational — way of performing inequational
reasoning (including logical deduction)

19

Basic properties

Cancellation:

(f · g)a ≤ a and b ⊑ (g · f)b

Distribution (in case of lattice structures):

f(a ⊔ a′) = (f a) ∨ (f a′)

g(b ∧ b′) = (g b) ⊓ (g b′)

Conversely,

• If f distributes over ⊔ then it has an upper adjoint g (f#)

• If g distributes over ∧ then it has a lower adjoint f (g♭)

Other properties

If (f, g) are Galois connected,

• f (g) uniquely determines g (f) — thus the ♭, ♯ notations

• f and g are monotonic

• (g, f) are also Galois connected — reverse the orderings

• f = f · g · f and g = g · f · g

etc

Summary

(f b) ≤ a ≡ b ⊑ (g a)

Description f = g♭ g = f ♯

Definition f b =
V

{a | b ⊑ g a} g a =
F

{b | f b ≤ a}

Cancellation f(g a) ≤ a b ⊑ g(f b)

Distribution f(b ⊔ b′) = (f b) ∨ (f b′) g(a′ ⊓ a) = (g a′) ⊓ (g a)

Monotonicity b ⊑ b′ ⇒ f b ≤ f b′ a ≤ a′ ⇒ g a ⊑ g a′

20

Converse

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

converse ()◦ ()◦ bR◦a ≡ aRb

Thus:

Cancellation (R◦)◦ = R

Monotonicity R ⊆ S ≡ R◦ ⊆ S◦

Distributions (R ∩ S)◦ = R◦ ∩ S◦, (R ∪ S)◦ = R◦ ∪ S◦

Functions

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

shunting rule (h·) (h◦·) NB: h is a function

“converse” shunting rule (·h◦) (·h) NB: h is a function

Consequences:

Functional equality: h ⊆ g ≡ h = k ≡ h ⊇ k

Functional division: h◦ · R = h \ R

Question: what does h \ R mean?

Relational division

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

left-division (R·) (R \) left-factor

right-division (·R) (/ R) right-factor

Immediate: (R·) and (·R) distribute over union:

R · (S ∪ T) = (R · S) ∪ (R · T)

(S ∪ T) · R = (S · R) ∪ (T · R)

Some intuition about relational division operators follows.

21

Relational division

The relational division operators are upper-adjoints:

R · X ⊆ Y ≡ X ⊆ R \ Y

X · R ⊆ Y ≡ X ⊆ Y / R

Left division abstracts a (pointwise) universal quantification

A C

X ⊆ R \ Y

B

R Y a(R \ Y)c ≡ (∀b.bRa ⇒ bY c)

An example follows.

Example

Recall data division in the relational model:

A C
X ⊆ R \ S

B

R S a(R \ S)c ≡ (∀b.bRa ⇒ bSc)

b R a = flight b carries passenger a

b S c = flight b belongs to air-company c

a (R \ S) c = passenger a is faithful to company c, that is, (s)he
only flies company c.

22

Right division

By taking converses we arrive at S / R = (R◦ \ S◦)◦:

X ⊆ S / R

≡ { Galois connection ((·R), (/R)) }

X · R ⊆ S

≡ { converses }

R◦ · X◦ ⊆ S◦

≡ { Galois connection ((R·), (R\)) }

X◦ ⊆ R◦ \ S◦

≡ { converses }

X ⊆ (R◦ \ S◦)◦

ie. Galois connection

X · R ⊆ S ≡ X ⊆ S / R

Meet

∩-universal

X ⊆ (R ∩ S) ≡ (X ⊆ R) ∧ (X ⊆ S)

is a Galois connection

(∆,∩)

where ∆ X = (X, X), cf.

(X, X)(⊆ × ⊆)(R, S) ≡ X ⊆ ∩(R, S)

So ∩ = ∆♯ distributes over itself, etc

23

Properties of ∩

From ∩-universal infer:

• ∩-cancellation (X := R ∩ S)

R ∩ S ⊆ R ∧ R ∩ S ⊆ S

• ∩-abbreviation (X := R)

R ⊆ S ≡ R = R ∩ S

• ∩-idempotency (S := R)

R ∩ R = R

More properties of ∩

∩ is commutative:

R ∩ S = S ∩ R

∩ is associative:

R ∩ (S ∩ T) = (R ∩ S) ∩ T

∩-fusion:

T · (R ∩ S) ⊆ (T · R) ∩ (T · S)

(R ∩ S) · T ⊆ (R · T) ∩ (S · T)

24

Meet and join

(f X) ≤ Y ≡ X ⊑ (g Y)

Description f = g♭ g = f ♯ Obs.

meet ∆ ∩ ≤ is (⊆ × ⊆)

join ∪ ∆ ⊑ is (⊆ × ⊆)

Join:

∪(R, S) ⊆ Y ≡ (R, S)(⊆ × ⊆)(Y, Y)

that is,

R ∪ S ⊆ Y ≡ R ⊆ Y ∧ S ⊆ Y

Relational split

Functions:

x = 〈f, g〉 ≡ π1 · x = f ∧ π2 · x = g

Relations:

X ⊆ 〈R,S〉 ≡ π1 · X ⊆ R ∧ π2 · X ⊆ S

(
(A C)

×

(B C)

,⊆ × ⊆) (A × B C,⊆)

〈 , 〉

((π1·) × (π2·)) · ∆

Properties

〈 , 〉 is an upper-adjoint, so it distributes over meet

〈R, S ∩ T 〉 = 〈R, S〉 ∩ 〈R, T 〉

〈S ∩ T, R〉 = 〈S, R〉 ∩ 〈T, R〉

etc. Moreover:

〈R, S〉 = (π◦
1 · R) ∩ (π◦

2 · S) (1)

Why? Again Galois at work:

25

Calculation

X ⊆ 〈R, S〉 ≡ π1 · X ⊆ R ∧ π2 · X ⊆ S

≡ { Galois connected ((f ·), (f◦·)) }

X ⊆ π◦

1 · R ∧ X ⊆ π◦

2 · S

≡ { Galois connected (∩♭,∩) }

X ⊆ (π◦

1 · R ∩ π◦

2 · S)

:: { indirect equality }

〈R, S〉 = π◦

1 · R ∩ π◦

2 · S

Pointwise 〈R, S〉

(a, b)〈R, S〉c ≡ (a, b)(π◦
1
· R ∩ π◦

2
· S)c

≡ { pointwise ∩ }

(a, b)(π◦
1
· R)c ∧ (a, b)(π◦

2
· S)c

= { rule (f b)Ra ≡ b(f◦ · R)a }

π1(a, b)Rc ∧ π2(a, b)Sc

= { projections }

aRc ∧ bSc

Relational either

Functions:

[f , g] = x ≡ f = x · i1 ∧ g = x · i2

Relations:

[R , S] ⊆ X ≡ R ⊆ X · i1 ∧ S ⊆ X · i2 (2)

Thus [,] is a lower-adjoint, it distributes over ∪, etc. Moreover,

[R , S] = (R · i◦1) ∪ (S · i◦2) (3)

26

Domain and range

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

domain dom (⊤·) lower ⊆ restricted to coreflexives

range rng (·⊤) lower ⊆ restricted to coreflexives

cf.

A A
domX ⊆ Y

⊇

B

⊤ X dom X ⊆ Y ≡ X ⊆ ⊤ · Y

Domain and range

Dualization:

domR = rng R◦

Explicit definitions:

rng R = imgR ∩ id

domR = imgR◦ ∩ id = kerR ∩ id

Facts:

R = R · (dom R)

R = (rng R) · R

27

Domain and split

The following fact holds:

〈R, S〉
◦
· 〈X, Y 〉 = (R◦ · X) ∩ (S◦ · Y)

Corollary:

domR = ker 〈id, R〉

Another consequence of the fact above:

kerR ⊆ ker (S · R) ⇐ S entire

Corollary:

kerR ⊆ ker (f · R)

Comprehending relations

For each B A
R

define its graph or comprehension by

G R = {(b, a) | bRa}

Clearly, R = [[G R]] and so we often abbreviate G R to R.
The graph of every coreflexive S is made simpler for obvious reasons:

G S = {a | aSa}

Finite relations

R is said to be finite wherever G R is a finite set.

• Finite relations, which can be enumerated, browsed and stored in
a computer, are the subject of relational database design.

• Every finite, simple relation expresses a functional dependency.

• The graphs of finite and simple relations are called mappings in
VDM-SL terminology.

• We will use Greek literals (σ, τ etc) to denote (finite) mappings

28

VDM-SL mapping notation

• Datatype: map A toB

• Pointwise VDM-SL concrete syntax

{a 7→ b | b σ a}

replaces {(b, a) | b σ a}.

• In VDM-SL notation, b σ a is furthermore rephrased as
a ∈ domσ ∧ b = σ(a) — cf. σ = σ · dom σ — that is, we have

σ = {a 7→ σ(a) | a ∈ domσ}

Meaning of VDM-SL specs

Spec(a: A) r: B

pre precond(a)
post postcond(r,a);

where bool A
precond

and bool B × A
postcond

are predicates means B A
Spec

defined by

Spec
def
= Post · Pre

where A A
Pre = [[precond]]

is coreflexive and B A
Post = [[postcond]]

is such that
b Post a ≡ postcond(b, a).

29

VDM-SL Sqrt spec

Sqrt(x: real) r: real
pre true

post sq(r) = x ;

means

Sqrt = [[λ(r, x).sq r = x]] · id

≡ { meaning of a binary predicate }

r Sqrt x ≡ (sq r) id x

≡ { (f b)R(g a) ≡ b(f◦ · R · g)a ; natural-id }

Sqrt = sq◦

Turning implicit specifications...

Sorting in Vdm-sl notation:

Sort(l: seq of int) r: seq of int

post IsOrdered(r) and IsPermutation(r,l);

where

IsPermutation: seq of int * seq of int -> bool
IsPermutation(l1,l2) ==

forall e in set (elems l1 union elems l2) &
card {i | i in set inds l1 & l1(i) = e} =

card {i | i in set inds l2 & l2(i) = e};

30

. . . into relational models

. . . abbreviates to

Sort
def
= [[IsOrdered]] · IsPermutation(ker seq2bag)

assuming

seq2bag: seq of int -> map int to nat1
seq2bag(l) ==

{ e |-> card { i | i in set inds l & l(i) = e } |
e in set elems l };

IsPermutation is an equivalence because ker f always is reflexive,
symmetric and transitive.

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

s <: m Domain restrict to

Creates the map consisting of the
elements in m whose key is in s. s need
not be a subset of dom m.

Formal semantics:

[[s <: m]] = [[m]] · [[s]]

where [[s]] is correflexive and [[m]] is simple.

31

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

Operator Name Semantics description

m1 ++ m2 Override

overrides and merges m1 with m2, i.e. it is like
a merge except that m1 and m2 need not be
compatible; any common elements are as by m2

(so m2 overrides m1.)

Formal semantics:

[[m1 ++m2]] = [[m2]] → [[m2]] , [[m1]]

cf. relational McCarthy conditional:

Relational McCarthy conditional

It is defined by

R → S , T
def
= (S · dom R) ∪ T · (id − domR)

where

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g♭ g = f ♯ Obs.

difference (− R) (R ∪)

that is,

X − R ⊆ Y ≡ X ⊆ R ∪ Y

X − R =
\

{Y | X ⊆ R ∪ Y }

32

Reasoning about VDM-SL

We want to prove VDM-SL properties such as

X <: (Y <: σ) = (X ∩ Y) <: σ

{} <: σ = {7→}

X <: (σ1 ++ σ2) = (X <: σ1) ++ (X <: σ2)

First, some properties of coreflexives:

• Coreflexives are symmetric and transitive:

R = R◦ = R · R = R ∩ id

• Meet of two coreflexives is composition:

R ∩ S = R · S

Example of proof

[[X <: (Y <: σ)]]

= { relational meaning of <: }

[[Y <: σ]] · [[X]]

= { relational meaning of <: }

([[σ]] · [[Y]]) · [[X]]

= { associativity of · and coreflexives }

[[σ]] · ([[X]] · [[Y]])

= { meet of two coreflexives is composition }

[[σ]] · ([[X]] ∩ [[Y]])

33

Proof continued

[[σ]] · ([[X]] ∩ [[Y]])

= { meaning of set intersection }

[[σ]] · [[X ∩ Y]]

= { relational meaning of <: }

[[(X ∩ Y) <: σ]]

Another proof

[[X <: (σ1 ++ σ2)]]

= { relational meaning of <: and ++ }

([[σ2]] → [[σ2]] , [[σ1]]) · [[X]]

= { McCarthy fusion law }

[[σ2]] · [[X]] → [[σ2]] · [[X]] , [[σ1]] · [[X]]

= { relational meaning of <: }

[[X <: σ2]] → [[X <: σ2]] , [[X <: σ1]]

= { relational meaning of ++ }

[[(X <: σ1) ++ (X <: σ2)]]

Etc.

Home work: define the relational semantics of e.g..

Operator Name Semantics description

m <-: s Domain restricted by

Creates the map consisting of
the elements in m whose key
is not in s. s need not be a
subset of dom m.

and prove similar properties.

34

Override pointwise

Since

dom (σ1 ++ σ2) = dom σ1 ∪ dom σ2

we have, after expansion of the relational definition:

s1 ++ s2 ==

{ k |-> if k in set dom s2

then s2(k)

else s1(k)

| k in set dom s1 union dom s2 }

Performing the above proof over this definition would have been far less
compact.

Inductive override

Another version of map override:

s1 ++ s2 ==

if s1 = {|->}

then s2

else let k in set dom s1

in { k |-> if k in set dom s2

then s2(k)

else s1(k) } munion { k } <-: s1 ++ s2

How do we arrive at this recursive scheme?

See next set of slides.

Bibliografia

[1] R. Barker. CASE*METHOD — Entity Relationship Modelling.
Addison-Wesley Publishing Company, Great Britain, 1992.

35

