An Introduction to Relational Formal
Modelling

J.N. Oliveira

DI/UM, 2003-05
December 18, 2005

Functions are not enough

Partiality (in Haskell):

Mpi> (split head tail) (tail [1])
(
Program error: {head []}

Mpi> 2/0

Program error: {primDivDouble 2.0 0.0}

Functions such as tail, /, head (and many others!) are partial

Functions are not enough

VDM-SL notation:

vdm> p t1 []
1. 1, c. 4:

Run-Time Error 77: The sequence was empty
vdm> p 2/0
1.1, c. 3:

Run-Time Error 76: Division with zero
vdm>

Functions such as t1, /, hd (and many others!) are partial

Functions are not enough

gets : set of nat -> nat * set of nat
gets(s) == let a in set s
in mk_(a,s \ {a}) ;

is not only partial

vdm> p gets({})
/home/jno/work/x.vdm, 1. 4, c. 25:

Run-Time Error 53: The binding environment was empty
vdm>

but also non-deterministic:

gets{a,b} = (a, {b}) V gets{a, b} = (b, {a})

Specifications as “properties”

e Specification of square root:
(sqrt z)* =z
that is
sq - sqrt =1id

(= sqrt has left inverse sq)

e Specification of sort:

I'=sortl & (IsOrderedl’) A IsPermutation(l’,l)

Relational approach

Need to model
e total/partial functions
e non-determinism
e properties, datatype invariants and loop-invariants
e orders and inductive structures
e vagueness or under-specification.. .

= adoption of binary relations, which have a long tradition in the. ..

Pre/post specification style

Sort(1l: seq of int) r: seq of int
post IsPermutation(r,1) and IsOrdered(r);

IsPermutation: seq of int * seq of int -> bool
IsPermutation(11,12) ==covninnnnnn

IsOrdered: seq of int -> bool
IsOrdered(l) ==

gets(s: set of nat) r: nat * set of nat
pre card s > 0
post r.#1 in set s and r.#2 = s \ {r.#1} ;

Pre/post specification layout

Spec(a: A) r: B
pre Precond(a)
post Postcond(r,a);

where

Precond : A—2
Postcond : BxA—2

leads to the binary relation approach:

Posteond € 22*4 & Postcond CBxA

From predicates to relations

e Predicate logic connectives such as eg. A are “overloaded”
operators

e They can be regarded as models of a more structured logic —
that of binary relations

e Functions generalize to binary relations in a very natural way.

e Predicates, sets, functions and relations can all be combined in a
single relational calculus

e Usual infix notation, e.g. a < b, can be generalized to any
relation R, e.g. aRb

Sets / functions made relational

Strategy: identify every

e function f: A — B with the binary relation relating a and b iff
b= f a. So, bfa literally means b = [a.

p
e binary predicate A x B—>bool with binary relation [p] such
that a[p]b = p(a,b).
q

e unary predicate A—>bool with binary relation [¢] such that
afglb=a=5b A (q a).

e set S C A with [Aa.a € S]. So,

a[Slb=a=b AN a€ S

Arrows “are” binary relations

e “Type” relations in a way consistent with functions: B <—— A
wherever bRa involves b € B and a € A.

e From now on, an arrow
R
B———A

means a binary relation from A (source) to B (target) and write
bRa to denote that pair (b,a) is in R.

Relations as Arrows

e Ordering on relations:
RCS = bRa=bSa

R C S means that R is either less defined or more
deterministic than S.

e Extend composition f-g to R-S in the obvious way

b(R-S)c=3a € AbRa N aSc

e Introduce converse R°

a(R°)b = bRa

Relational Equality

Pointwise equality:
R=S = (bRa=bSa)

Pointfree equality:

e Cyclic implication (“ping-pong”) rule:
R=S = RCSASCR
e Indirect equality rules:

R=S = VX (XCR=XCS)

Basic relational combinators

S R
GivenC =—— Band B——A
e Composition S - R is s.t.
(S R)a
holds wherever there exists some b € B such that ¢Sb A bRa.

e Converse A«<—— Bof B<—A

a(R°)b = bRa

o Meet RN S — recall set-theoretical intersection

Basic Relation Calculus (1)

Composition is associative:
R-(ST)=(R-S)-T
Identity
R-id=id-R=R
Empty relation
R-1=1-R=1

1
where B <—— A is the smallest relation of its type.

Basic Relation Calculus (1)

Composition is monotonic:

RCS
TCU
(R-T)C(S-U)
Bottom and top relations:
1C R CT

T
where B <—— A is the largest relation of its type.
Pointwise descriptions:

bTa=true , bla= false

Converse

°-universal

°-monotonicity:
RCS=R°CS°
Then:

Involution : (R°)° =R
Contravariance : (R-5)°=5°-R°

These can be proved from °-universal by (elegant) indirect proofs
(example in next slide):

Indirect proof of involution

(R°)°CY

R°CY”®

{ °-monotonicity }

RCY
{ indirection }
(R°)" =R

Meet and converse

{ °-universal X°CY = XCVY° for X:=R°}

M-universal
XC(RNS) = (XCRA(XCS)
Converse distributes over N (proof in next slide):

(RNS)° = R°NS°

Another indirect proof

X CR°NS°

{ N-universal }

(X C R A (X CS%)

{ monotonicity and involution }

(X*CR)A(X°CS)

{ N-universal }

X° C(RNS)

{ monotonicity and involution }
X C(RNS)°
{ indirection }

R°NS°=(RNS)°

Converses of functions

(f b)R(g a) =b(f°-R-g)a
which unfolds to

: (f == id)
(fO)Ra=b(f°-R)a (g:=id)

Function converses f°, g° etc. always exist (as relations) enjoying the
following property:

Pointwise vs pointfree notation

Function

facO = 1

fac(n+1) = (n+1)xfacn
in pointfree notation:

fac- [0 ,suc] = * - [suc , fac]
Property

facn=facm = n=m

(= facis injective) in pointfree notation?

Properties in pointfree style (1)

fac is injective:

facn = facm = n=m

{ identity function / relation }

(fac n) id (fac m)

= nidm
{ rule (f b)R(g a) =b(f°-R-g)a }

n(fac® -id- fac)m = mnidm

{ dropping variables n and m ; natural-id }
fac® - fac C id

Properties in pointfree style (Il)

Example property of integer arithmetics:

n|d
<n=qg<
T}T dxg<n=q<n/d

= { using “Haskell section notation”
(dx)g<n = q=<n(/d)

{ rule (f b)Ra=b(f°-R)a }
q((@x)°- <n = q(<-(/d))n

{ pointwise equality }

(dx)* < = <(/d)
Reasoning:
q < (n/m)/d
= { ‘universal” property }

dxqg<n/m

Orders and their taxonomy (A)

R
An order (or endo-relation) A <—— A is

reflexive: iff ida C R
coreflexive: iff RCidg

transitive: iff R-RCR
anti-symmetric: iff RNR® Cida
symmetric: iff RCR°(=R=R")
connected: ffRUR°=T

N
where A <—— A is the largest relation of its type.

10

Order taxonomy (B)

e Preorders are reflexive and transitive orders.
e Partial orders are anti-symmetric preorders
e Linear orders are connected partial orders

e Equivalences are symmetric preorders

° Predica(lz)tes are coreflexive orders: the “meaning” of a predicate

Bool < A is a coreflexive relation [¢] such that

pa = a[d]a

mapping every a which validates ¢ onto itself.

Order taxonomy (C)

symmetric reflen've\ /travsitive anti-symmetric connected
, /_—/preorder

equivalence partial order

linear

Properties (A)

Dedekind'’s rule (also known as the modular law):
(R-S)NT < R-(SN(R°-T))
Dually (apply converses and rename):
(R-S)NT C (RN(T-8°)-S
Symmetrical equivalent statement:
(R-S)NT C (RN(T-5°)-(SN(R°-T))

= "weak right-distribution of meet over composition” .

11

Derived combinators

R ker R
e Kernel of B<—— A is A <—— A defined by

kerR < Re. R

R img R
e Image of B<—— A is B <—— B defined by

def

imgR = R-R°

e Duality:
ker (R°) = imgR
img (R°) = kerR

Properties of kernel and image

Order-preservation:

RCS = kerRCkerS
RCS = imgRCimgs§

Symmetry:

(kerR)° = kerR
(imgR)° = imgR

Also:

RCR-kerR (=imgR- R)

12

Entireness and simplicity

An entire (or total) relation is such that its kernel is reflexive:
Risentire = idC kerR

A simple (or functional) relation is such that its image is coreflexive:
Rissimple = imgR Cid

Simplicity is the dual of entireness. Simple relations are also called
partial functions.

(Total) functions

Functions are both simple and entire relations, usually denoted by
lowercase letters f:

defe-f N ff°Cid
N——— —
entire simple

Thus:

f € R= R is entire
R C f= R issimple

In general, “larger than entire means entire” and “smaller than simple
means simple”

13

Surjectiveness and injectiveness

More taxonomy:
e R is surjective iff R° is entire

e R is injective iff R° is simple

Facts:
R is entire and injective = ker R =1id
R is simple and surjective = imgR =1d
Summary:
| | Reflexive [Coreflexive]
ker R entire R injective R
imgR || surjective R simple R
Bijections

f is bijective iff it is an injective and surjective function (thus simple
and entire)

f
B < A bijective = kerf =idAimgf =id
In this case

id=f>-f A f-f°=id

Binary relation taxonomy

refation

injective\/_ﬂie\\ simple surjective
representation fun, tion/ abstraction

injection surjection

bijection

14

Reasoning about functions

Shunting rules:

Equality:

fCg=f=9g=f2yg

Ping-pong proof of the equality rule follows.

Proof of functional equality

f<Sy
{ identity }

f-idCyg

{ shunting on f }
idC f°-g

{ shunting on g }
id-g° C f°

{ converses }

gef

15

Adding structure to the calculus

Note a recurrent pattern in several laws above:

X° CY

~—~

fx
(h)X CY
——

X
X(-h°

——
X

N

Y

as well as in

(dx)g<mn
~——

fa

<

Back to the primary school desk

The integral division algorithm

I% 2x3+1=7,"e" 3=7/2

However
;% 2x243=7 AN 2#7/2
g}% 2x145=7 AN 1#7/2

16

Quotient is a supremum

nld provided g is the
}T dxqg+r=n=qg=mn/d | largest such q (ris

smallest)

n/d = \/{q|3r.d><q+r=n}
= Valdxg<n}

Maths teachers tell: it takes a while before children master the "\/
semantics” !

What about you? Can you easily reason about n/d in this format?
Try and prove (n/m)/d =n/(d x m).

“Universal” property instead

Alternative:

n|d gxd<n=q<n/d “universal” property of
7 Sn=gq=<

r integral division

Reasoning:
q < (n/m)/d
= { ‘“universal" property }

gxd<n/m

Reasoning continued

{ ‘“universal” property again }

(gxd)xm<n

{ x is associative }

gx (dxm)<n

{ ‘“universal” property again }

g <n/(dxm)

17

Indirect equality

So we have
¢<(/m)jd = q<n/(dxm)
that is,
(n/m)fd = n/(dxm)

by the indirect equality rule:

(@<z=q<y)=(z=y)

Also easy to check

Cancellation law:
= { universal property }
n/d <n/d
{ reflexive < }

true
“Reflection”: 1xd<n=1<n/d

{ 1is the unit of x }

18

Galois connections

n/d is a Galois connection:

n}i g<xd<n=q<mn/d
r|q ~ ~—
I q gmn

In general, for preorders (4, <) and (B,C) and

g
—
(4, <) (B,5)
\/
f
(f,g) are Galois connected iff. ..

Galois adjoints

J b<a = bE g a
~—~ ~—~
lower adjoint upper adjoint
that is
< = Cuy
Remarks:

e Galois (connected) adjoints enjoy a number of interesting generic

properties

e \ery elegant — calculational — way of performing inequational

reasoning (including logical deduction)

19

Basic properties

Cancellation:

(f-9)Ja<a and bL(g9-f)b

Distribution (in case of lattice structures):

flaud) = (fa)Vv(fd)
gb AY) = (gb)N(gd)
Conversely,

e If f distributes over LI then it has an upper adjoint g (f*)
e If g distributes over A then it has a lower adjoint f (g°)

Other properties

If (f,g) are Galois connected,
e f (g) uniquely determines g (f) — thus the _°, _# notations
e f and g are monotonic

e (g, f) are also Galois connected — reverse the orderings

o f=f-g-fandg=9g-f-yg

etc
Summary
| (fb)<a=bLC (ga)
| Description | = | =/t
Definition b=A{a|bC ga} a=]{b] <a}
Cancellation (ga)<a bC g(f b)
Distribution GUBY=(/b)V (/b)) | 9@ Ma)=(ga)N (g a)
Monotonicity bCV = b< [¥ a<d=galgd

20

Converse

XC(Y) |
g=f"] Obs. |
(0)° [bR°a=aRb |

| JX)CY
| Description | f=¢

| converse | (0)°

Thus:

Cancellation (R°)° =R
Monotonicity RCS=RCS°
Distributions (RNS)*=R°NS°,(RUS)°=R°US°

Functions
| UX)CY=XC(@Y) |
| Description | f=¢g | g=Jf" | Obs. |
shunting rule (h+) (hR°-) | NB: h is a function
“converse” shunting rule | (-h°) (-h) NB: h is a function
Consequences:
Functional equality: hCg= h=k =hDk
Functional division: h®-R=h\R

Question: what does i \ R mean?

Relational division

| UX)CY=XC(@Y) |
| Description | f=¢ | g=fF | Obs. |
left-division (R") (R\) | left-factor
right-division (-R) (/R) | right-factor

Immediate: (R-) and (-R) distribute over union:

R-(SUT) = (R-S)U(R-T)
(SUT)-R = (S-R)U(T-R)

Some intuition about relational division operators follows.

21

Relational division

The relational division operators are upper-adjoints:

R- XCY=XCR\Y
X-RCY=XCY/R

Left division abstracts a (pointwise) universal quantification
X CR\Y

A C
RN, Y a(R\ Y)c = (Vb.bRa = bYc)
B

An example follows.

Example

Recall data division in the relational model:

A C
RN, 8 a(R\ S)e = (Vb.bRa = bSc)

b R a = flight b carries passenger a
b S ¢ = flight b belongs to air-company ¢

a (R\ S) ¢ = passenger a is faithful to company ¢, that is, (s)he
only flies company c.

22

Right division

By taking converses we arrive at S/ R = (R°\ 5°)°:
XCS/R

{ Galois connection ((-R),(/R)) }
X-RCS

{ converses }
R°.X°C 8°

{ Galois connection ((R-),(R\)) }
X°CR°\S°

{ converses }

X g (RO\SO)O

ie. Galois connection

Meet

N-universal
XC(RNS) = (XCRAN(XCYS)

is a Galois connection

where A X = (X, X), cf.
(X, X)(E x C)(R,S) = XCN(R,S)

So N = A! distributes over itself, etc

23

Properties of N

From N-universal infer:

e N-cancellation (X := RN S)
RNSCR AN RNSCS
e N-abbreviation (X := R)
RCS = R=RNS
e N-idempotency (S := R)

RNR = R

More properties of N

N is commutative:

RNS = SNR

N is associative:

RNn(SNT) = (RNS)NT
N-fusion:

T-(RNS) € (T'-R)N(T-S)

(RNS)-T C (R-T)N(S-T)

24

Meet and join

| X)<Y=XLC(gY) |
| Description | f=¢ | g=f* | Obs. |
| meet | A | n [<is(€x9]
| join | U | A JCis(cx9)]
Join:
UR,S) CY = (R,9)(C x O).Y)
that is,

RUSCY=RCY ANSCY

Relational split

Functions:
z=(f,g) = m-x=f AN m-z=g
Relations:
XC(R,S) = m-XCR AN m-XCS
(A—0) T~
(X ,Cx Q) (AxB~—0C,Q)

Properties

(-, -) is an upper-adjoint, so it distributes over meet

(R,SNT)y = (R,S)N(R,T)
(SNT,R) = (S,RyN{T,R)
etc. Moreover:
(R,S) = (np-R)N(73-5) (1)

Why? Again Galois at work:

25

Calculation

X C(R,S)

m-XCRAMm-XCS

{ Galois connected ((f-), (f°-)) }
XCni-RANXCms-8S

{ Galois connected (N”,N) }
XC(ri-RNms-8S)

{ indirect equality }
(R,S)=m7-RNmy-S

Pointwise (R, S)

(a,b)(R,S)c =

(a,b)(m] - RNmg - S)e
{ pointwise N }
(a,b)(m] - R)e A (a,b)(m5 - S)c
{rule (f) Ra =b(f°-R)a }
mi(a,b)Re A ma(a,b)Sc
{ projections }

aRc N bSe

Relational either

Functions:
[f.gl=2 = f=z-it Ag=z-i
Relations:
[R,S]CX = RCX- i ASCX- i
Thus [_,] is a lower-adjoint, it distributes over U, etc. Moreover,
[R,S] = (R-i7)U(S-i3)

26

Domain and range

(fX)CY=XC(gY) |

| Description | f=¢g | g=f* | Obs. |
domain dom (T9) lower C restricted to coreflexives
range rng (-T) lower C restricted to coreflexives
cf.
domX CY
A A
TN 2, X domXCY=XCT Y
B

Domain and range

Dualization:
dom R =rgR°
Explicit definitions:
mgR = imgRNid
domR = imgR°Nid=kerRNid

Facts:

R = R-(domR)
R = (mgR)-R

27

Domain and split

The following fact holds:
(R,S)° - (X)Y) = (R°-X)N(5°-Y)
Corollary:
domR = ker(id, R)
Another consequence of the fact above:
ker R C ker(S-R) <« S entire
Corollary:

kerR C ker(f-R)

Comprehending relations

R
For each B <—— A define its graph or comprehension by
G R={(b,a)|bRa}

Clearly, R =[G R] and so we often abbreviate G R to R.
The graph of every coreflexive S is made simpler for obvious reasons:

G S={a|aSa}

Finite relations

R is said to be finite wherever G R is a finite set.

e Finite relations, which can be enumerated, browsed and stored in
a computer, are the subject of relational database design.

Every finite, simple relation expresses a functional dependency.

The graphs of finite and simple relations are called mappings in
VDM-SL terminology.

We will use Greek literals (o, 7 etc) to denote (finite) mappings

28

VDM-SL mapping notation

e Datatype: map A to B
e Pointwise VDM-SL concrete syntax
{a—b|boa}
replaces {(b,a) |bo a}.

e In VDM-SL notation, b o a is furthermore rephrased as
a€domo A b=o(a) —cf. 0 =0 -domo — that is, we have

o = {aro(a)|a€domo}

Meaning of VDM-SL specs

Spec(a: A) r: B
pre precond(a)
post postcond(r,a);

precond postcond Spec
where bool <—— A and bool <—— B x A are predicates means B <—— A
defined by

Spec ' Ppost - Pre
Pre = [precond] Post = [postcond]
where A <—— A is coreflexive and B <—— A is such that
b Post a = postcond(b,a).

29

VDM-SL Sqgrt spec

Sqrt(x: real) r: real
pre true
post sq(r) = x ;

means

Sqgrt = [Ar,z).sqr=zx]-id

{ meaning of a binary predicate }

rSqrtx = (sqr)idz
= { (fb)R(g a) =b(f°-R-g)a ; natural-id }
Sqrt = sq°

Turning implicit specifications...

Sorting in VDM-SL notation:

Sort(l: seq of int) r: seq of int
post IsOrdered(r) and IsPermutation(r,l);

where

IsPermutation: seq of int * seq of int -> bool
IsPermutation(11,12) ==
forall e in set (elems 11 union elems 12) &
card {i | i in set inds 11 & 11(i) = e} =
card {i | i in set inds 12 & 12(i) = e};

30

... into relational models

... abbreviates to
Sort &' [1sOrdered] - IsPermutation(ker seq2bag)

assuming

seq2bag: seq of int -> map int to natl
seq2bag(l) ==
{el->card {i | i in set inds 1 & 1(i) =e } |
e in set elems 1 };

IsPermutation is an equivalence because ker f always is reflexive,
symmetric and transitive.

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

| Operator | Name | Semantics description

Creates the map consisting of the
s <: m | Domain restrict to | €lements in m whose key is in s. s need
not be a subset of dom m.

Formal semantics:

[s<:m] = T[m]-[s]

where [s] is correflexive and [m] is simple.

31

Relational semantics of VDM-SL

From the VDM-SL on-line manual:

| Operator | Name | Semantics description |

overrides and merges m1 with m2, i.e. it is like
a merge except that m1 and m2 need not be
compatible; any common elements are as by m2
(so m2 overrides m1.)

ml ++ m2 | Override

Formal semantics:
[mi++me] = [mo] — [m2] , [ma]

cf. relational McCarthy conditional:

Relational McCarthy conditional

It is defined by

def

R—S, T = (S:domR)UT - (id—domR)
where
| UX)CY=XC(@Y) |
Description | f=¢" | g=f* | Obs.
difference (-—R) | (RU)
that is,
X—-RCY = XCRUY
X-R = [{YIXCRuUY}

32

Reasoning about VDM-SL

We want to prove VDM-SL properties such as

X<:(Y<:i0) = (XNY)<:o0o
<o = {~}
X<:(op++02) = (X<:op)++(X<:o09)

First, some properties of coreflexives:

e Coreflexives are symmetric and transitive:

R=R°=R-R=RnNid

e Meet of two coreflexives is composition:

RNS=R-S

Example of proof

[X<: (Y<:0)]
= { relational meaning of <: }
[Y <: 0] - [X]
= { relational meaning of <: }
([e] - YD) - [X]
— { associativity of - and coreflexives }
[o] - ([XT- YD)

= { meet of two coreflexives is composition }

[o] - (IXIN YD)

33

Proof continued

[o]- (IXI N [YD)
= { meaning of set intersection }

[o] - [X N Y]

{ relational meaning of <: }

[(XNY)<: o]

Another proof

[X <: (01 ++02)]
= { relational meaning of <: and ++ }
(Io2l = [o2] » [o1]) - [X]
= { McCarthy fusion law }
[o2] - [X] — [o2] - [XT, [on] - [X]
= { relational meaning of <: }
[X <:02] = [X <:02], [X <:01]
= { relational meaning of ++ }

[(X <: 01) ++ (X <: 02)]

Etc.

Home work: define the relational semantics of e.g..

Operator Name Semantics description
Creates the map consisting of
) . the elements in m whose key
m <-: s | Domain restricted by

is not in s. s need not be a
subset of dom m.

and prove similar properties.

34

Override pointwise

Since
dom (o1 ++ 02) = dom o1 U dom o2

we have, after expansion of the relational definition:

sl ++ s2 ==
{k |-> if k in set dom s2
then s2(k)
else s1(k)

| k in set dom sl union dom s2 }

Performing the above proof over this definition would have been far less
compact.

Inductive override

Another version of map override:

sl ++ s2 ==
if s1 = {|->}
then s2
else let k in set dom si
in { k |-> if k in set dom s2
then s2(k)
else s1(k) } munion { k } <-: sl ++ s2

How do we arrive at this recursive scheme?

See next set of slides.

Bibliografia

[1] R. Barker. CASE*METHOD — Entity Relationship Modelling.
Addison-Wesley Publishing Company, Great Britain, 1992.

35

