(=) meets fork

Example — exponential function

Taylor series:
X — -
e = ) - (40)
i=0
Computing finite approximation (n terms)
n XI
X — -
en = 32 (a1)
i=0
takes quadratic time. Wishing to calculate a linear-time algorithm
from this mathematical definition, we first head for an inductive
definition:

0 =1
Xn+1 n Xi
X 1 - o
e (n+1) (n+1)!+.zoi!
=
g ~——



(=) meets fork

Example — exponential function

We thus get primitive recursive definition

0 = 1
e (n+1) = hn+e“n
where h, n unfolds to (;:l—:l), = ﬁﬁ—? Therefore:
h,0 = x
X
he(n+1) = n+2(hxn)

Introducing s2 n = n+ 2, we derive:

s20=2
s2(n+1)=1+s2n



(=) meets fork

Example — exponential function

We can thus put €*, s2 and h, together in a system of three
mutually recursive functions e, s2, and hy over the naturals,
which PF-transform to

e -in = [1,(+4): (m1,m2 - m)] -F(e", (524, hy))
S2¢-in = [2,suc- 7r1r - o] -F(€™, (524, hy))
| S ——
hy-in = [x,(x)-((x/) x id) - m2] -‘F(€, (s2x, hy))

t

respectively, for

in = [0,suc]
FX = id+X



Context Kleene algebras Relations Functions -+ meets Induction (=) meets fork Summing up

Example — exponential function

From this system we obtain, thanks to the mutual recursion law
(39)
auxy 2 (€%,(s2x, hy))
= { (39) }
((r, (s, 1))

for

ro= [1,(+)(m,m - m)]
s = [2,suc-m -]

t = [x,(x)-((x/) xid)-m]

u




(=) meets fork

Example — exponential function

Next we apply the exchange law (30) to (r, (s, t)) (twice):

<rv <57 t>> = [<lv <Z’ 5>> ) <(+) ’ <7|'1,7T2 ’ 7T2>v <5UC T T2, U>>]
Thanks to universal properties (32) and (23) 2 we obtain

auxy - Q — <l7 <Za £>>
auxy -suc = ((+) - (w1, w2 - m2), (SUC - 71 - T2, UY) - AUXy

e = mp-auxy

that is, we have calculated linear implementation

2For functions.



(=) meets fork

Example — exponential function

exp x n = let (e,b,c) = aux x n
in e where
aux x 0 = (1,2,x)
aux x (i+1) = let (e,s,h) = aux x i
in (e+h,s+1, (x/s)*h)

which can be identified as the denotational semantics of a while
loop, encoded below in the C programming language:
float exp(float x, int n)
{
float e=1; int s=2; float h=x; int i;
for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}
return e;

};



