
Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function
Taylor series:

ex =
∞
∑

i=0

x i

i !
(40)

Computing finite approximation (n terms)

ex n =
n∑

i=0

x i

i !
(41)

takes quadratic time. Wishing to calculate a linear-time algorithm
from this mathematical definition, we first head for an inductive
definition:

ex 0 = 1

ex (n + 1) =
xn+1

(n + 1)!
︸ ︷︷ ︸

hxn

+
n

∑

i=0

x i

i !
︸ ︷︷ ︸

ex n

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function

We thus get primitive recursive definition

ex 0 = 1

ex (n + 1) = hxn + ex n

where hxn unfolds to xn+1

(n+1)! = x
n+1

xn

n! . Therefore:

hx0 = x

hx(n + 1) =
x

n + 2
(hxn)

Introducing s2 n = n + 2, we derive:

s2 0 = 2

s2(n + 1) = 1 + s2 n

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function

We can thus put ex , s2 and hx together in a system of three
mutually recursive functions ex , s2x and hx over the naturals,
which PF-transform to

ex · in = [1 , (+) · 〈π1, π2 · π2〉]
︸ ︷︷ ︸

r

·F〈ex , 〈s2x , hx〉〉

s2x · in = [2 , suc · π1 · π2]
︸ ︷︷ ︸

s

·F〈ex , 〈s2x , hx〉〉

hx · in = [x , (∗) · ((x/) × id) · π2]
︸ ︷︷ ︸

t

·F〈ex , 〈s2x , hx〉〉

respectively, for

in = [0 , suc]

F X = id + X

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function

From this system we obtain, thanks to the mutual recursion law
(39)

auxx " 〈ex , 〈s2x , hx〉〉

= { (39) }

(|〈r , 〈s, t〉〉|)

for

r = [1 , (+) · 〈π1, π2 · π2〉]

s = [2 , suc · π1 · π2]

t = [x , (∗) · ((x/) × id) · π2
︸ ︷︷ ︸

u

]

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function

Next we apply the exchange law (30) to 〈r , 〈s, t〉〉 (twice):

〈r , 〈s, t〉〉 = [〈1, 〈2, x〉〉 , 〈(+) · 〈π1, π2 · π2〉, 〈suc · π1 · π2, u〉〉]

Thanks to universal properties (32) and (23) 2 we obtain

auxx · 0 = 〈1, 〈2, x〉〉

auxx · suc = 〈(+) · 〈π1, π2 · π2〉, 〈suc · π1 · π2, u〉〉 · auxx

ex = π1 · auxx

that is, we have calculated linear implementation

2For functions.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function

exp x n = let (e,b,c) = aux x n

in e where

aux x 0 = (1,2,x)

aux x (i+1) = let (e,s,h) = aux x i

in (e+h,s+1,(x/s)*h)

which can be identified as the denotational semantics of a while
loop, encoded below in the C programming language:

float exp(float x, int n)

{

float e=1; int s=2; float h=x; int i;

for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}

return e;

};

