Strategic Term Rewriting and Its
Application to a VDM-SL to SQL
Convertion

T.L. Alves, P.F. Silva, J. Visser,
and J.N. Oliveira

Presentation: Nuno Luz

October 2010

Content

- AIms

- Motivations

- Strategic Term Rewriting

- Database Design by Calculation
- The VooDooM Tool

- Conclusions and Future Work

Aims

- Design a tool capable of calculating database
schemas which infers SQL relational meta-data from
abstract data models specified in VDM-SL formal
modeling notation.

Abstract : Concrete
Model Refinement / Model (SQL

(VDM-SL) Reification Meta-data)

Motivations

- The need for splitting software design in two
steps [1]:

1. Formal Specification (mathematical
representation of the software + analysis and
validation);

2. Implementation (production of machine code).

- “Improve Practice Through Theory” (HASLabs’
lemma).

Strategic Term Rewriting

- Term Rewriting is the transformation of terms
according to a set of rewrite rules of the formx =y

- Strategic means:

= The specification of a rewriting strategy (e.g. leftmost-
innermost) without affecting the rewriting rules

= Separation of concerns, reusability, and understandability

- Used to separate the individual conversion rules
from the strategy of applying them to the abstract
syntax terms

Database Design by Calculation (1)

- Data refinement (or reification) by calculation strategy
[2, 3] consisting of inequations of the form:

R S SR
A < B AN B < C = A < C
F G F-G

(read: “data type B implements, or refines data type A”)

» R: representation relation (injective and total);
- F: abstraction relation (surjective function).

Database Design by Calculation (2)

- This suggests that one may calculate implementations
from specifications:

Spec = X <X’ <X”<...<Impl

- The inequations represent convertion laws, e.g.
seq2index
seq2index(|a,b,a]) = {1l — a,2+— b,3 — a}

A= N=A ({1l 0,12 - 5,33 —) = [a,b,d]

list

which are the basis for the rewriting rules applied by
VooDooM using Strategic Term Rewriting.

The VooDooM Tool (1)

- Uses Strategic Term Rewriting to apply the
database design by calculation refinement laws
to VDM-SL source code

- Relies on Strafunski and SDF (Syntax Definition
Formalism) software bundles, and the DrIFT
tool

A ;::ar:singwwI @ pretty-print A

saL
™l DA A\ -
pretty-print parsingsm

VDM

The VooDooM Tool (2)

1. Recognize a VDM-SL specification file and
convert it to an Abstract Syntax Tree (AST)

2. Transformation of the AST into its relational

equivalent, i.e. a refinement of the original model
using the following rewriting rules:

Function Rewrite rule
seqindex A= IN—- A
unconjoin A= (B4+C)=(A—=B)x (A—=C)
distr AX(B+C)=(AxB)+(AxC)
set2fm 24 = A1
opt-elim A4+1=1—-A4
unpeither (B+C)—- A= (B—=A)x(C—A)
unnjoin |A—= (Bx (C—=D))=(A—=B)x (Ax(C —=D)
rec-elim pF = (K - FK) x K

3. Output the transformed specification either as VDM-SL or SQL

The VooDooM Tool - Transformation (1)

Example:

1. Inlining and Recursion Removal (uses rec-elim)

Lypes
BAMS = map Accld to Account;
Account :: H: set of AccHolder
B: Amount;
AccId = seqg of char;
AccHolder = seq of char;
Amount = 1nt

Lypes
BAMS

H:
B:
end

map compose Accld of seg of char end to

compose Account of

set of compose AccHolder of seq of char end

compose Amount of int end

The VooDooM Tool - Transformation (2)

2. Desugaring (uses seq2index, set2fm and opt-elim)

Lypes

end

compose Amount of 1nt end

BAMS = map compose Accld of seq of char end to

compose Account of

H: map compose AccHolder of seq of char end to NIL
B:

3. Conversion to Relational (uses unconjoin, unpeither and

unnjoin)

4. Resugaring

Cypes
BAMS

compose mapAggr of
map compose AccIlId of seq of char end
to compose Amount of int end
map compose tuple of
seq of char
seq of char
end
to NIL
end

The VooDooM Tool - SQL Translation

Lypes
BAMS = compose mapAggr of
map compose AccId of seq of char end
to compose Amount of int end
map compose tuple of
seq of char
seq of char

end
to NIL
end
CREATE TABLE tablel (CREATE TARLE tableZ (
Accld VARCHAR (128) NOT NULL, Attrl VARCHAR (128) NOT NULL,
Amount INT NOT NULL, AttrZz VARCHAR (128) NOT NULL,

PRIMARY KEY (AccId) PRIMARY KEY (Attrl, Attr2)
))

Conclusions and Future Work

» Conclusions:

» The VooDooM tool derives database SQL concrete
implementations from arbitrarily complex (as far as
VDM-SL data constructors are concerned) formal
specifications, including recursive data types

= Promotes the view of database design as a special
case of data refinement

- Future Work:
= Support the reverse process (relational to algebraic)
= Offer better support for VDM-SL invariants

References

1. C. Necco. Polytypic data processing. Master’s
Thesis, Facultad de Cs. Fisico Matematicas y

Naturales, University of San Luis, Argentina, 2005.
(Submitted)

[2] J.N. Oliveira. A reification calculus for model-
oriented software specification. Formal Aspects of
Computing, 2(1):1-23, April 1990.

[3] J.N. Oliveira. Software reification using the SETS
calculus. In Proc. of the BCS FACS 5th Refinement
Workshop, Theory and Practice of Formal Software
Development, London, UK, pp. 140-171. Springer-
Verlag, 8-10 January 1992. &)nvited Paperg).

