Generic Point-free Lenses

Frederico Valente

Outline

Problem

Lenses Overview

PF Notation and Combinators
Recursion Patterns on Lenses
Related Work

Conclusions

Problem Overview

laptop brand | size | price
MacBook Air Apple | 13.3 | 1700
VAIO PMT9300 | Sony | 13.3 | 2200
ThinkPad Z61m | IBM 15.4 | 2000

"B

\'

S

/s{dabe

laptop

price

MacBook Air
VAIO PMT9300
ThinkPad Z61m

1700
2200
2000

Lenses

* Transforming a data format into another is

essencial to “bridge the gap” between
technologies

e Bi-directional transformations

* The naive approach is to assemble two one-

way transformations

Lenses - properties

* A well-behaved lens has the following
properties:
— get must be an abstraction function
— A lens should be acceptable
— A lens should be stable

Lenses - Definition

Definition 1 (Lens). A well-behaved lens I, denoted by [: C = A, is a bidi-
rectional transformation that comprises three total functions get : C' — A. put :
A x C = C and create : A — C, satisfying the following properties:

get o create = id CREATEGET
get o put = m PUTGET

put o (get /A id) = id GETPUT

PF combinators as lenses

* For complex data-formats the definition of a
“put” function that guarantees well-
behavedness becomes highly complex
— A combinatory approach is desirable
— This approach is also central to the point-free style

— The authors explore this connection and develop a
library of PF lens combinators

Point-free combinators as lenses

id - A—= A

c : (B=2C)=(A—=B)—=(4A—= ()
m: Ax B—= A

. Ax B—= B

e

N (A=-B) (A= C)—= (A= Bx C)

x 1 (A—=B)—=(C—=D)—=(AxC—=B x D)
i1 : A=+ A+ B

ic : B—+ A+ B
V:A=C)—=(B=0C)—=(A+B—=C)
+:(A—=B) - (C—=D)=(A+C—=B+D)
A= 1

. B— (A — B)

Lens Composability

* The point-free composability of two lenses
can be restated as:

Vi:BE2A g:CEB. (fog):Ck A
get = gety o get,
put = put, o (puty o(id x get,) L ma)
create = createy o createy

Lens sum

e We can lift the “sum” combinator into a lens:

Vf:CE2A g:DE2B. f+g:C+DE2A+B
get = gety + gety
put = {p?,rtf V createy o m + create, o m "'Fpmfy.] o dists
create = createy + createy

Where dists is defined as:

dists : (A+B)x (C+D) = (AxC+AxD)+(Bx C+B xD)]

Functor Mapping

* Functors are special mappings between
categories

* A functor Ffrom Cto D is a mapping that
associates each object X € C an object F(X) e D

* Must preserve identity morphisms and
composition of morphisms

Yfi:Ce2A Ff.:-FCERFA
get = F gety

put = F puty o fzipp createy
create = I createy

Recursion patterns as lenses

* |nstead of defining lenses by general recursion
the authors resort to recursion patterns

* Allows for lenses over inductive data types

— values that may contain other values of the same
type
— data List a = Nil | Cons a (List a)

Recursion patterns as lenses

— Catamorphism

e Generalization of folds on lists to arbitrary algebraic
data types

* Encodes the recursion pattern of iteration
e Filter left: [A+B] -> A
e Dual of anamorphisms

Recursion patterns as lenses

e Combinators

— Anamorphism

» generalizes the list-producing unfold functions to
arbitrary algebraic data types

* Must restrict to finite co-algebras -> guaranteed to halt
* Dual of catamorphism

Related Work

Lens over trees — Harmony

2LT framework by the authors
http://hackage.haskell.org -> pointless-lenses

Tokio researchers

http://hackage.haskell.org/

Conclusions

e Authors show how to lift most standard point-

free operators and recursion patterns to well-
behaved lenses

* An extendable Haskell library was created

using point-free lenses and the studied
combinators

* Poor performance for complex
transformations

