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Abstract. We constructed a tool, called VooDooM, which converts datatypes in
VDM-SL into SQL relational data models. The conversion involves transforma-
tion of algebraic types to maps and products, and pointer introduction.

The conversion is specified as a theory of refinement by calculation. The im-
plementation technology is strategic term rewriting in Haskell, as supported by
the Strafunski bundle. Due to these choices of theory and technology, the road
from theory to practise is straightforward.
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1 Introduction

The information system community is indebted to Codd for his pioneering work on the
foundations of the relational data model [9]. Since then, relational database theory has
been thoroughly studied [24, 34, 12]. At the heart of this we find normalization, a theory
whereby efficient collections of (relational) files are derived from the original design,
which can be encoded in a data-processing language such as SQL [16].

Functional dependency theory and normalization deviate from standard model-ori-
ented formal specification and reification techniques [17, 10]. In the latter, designs start
from abstract models which are abstract enough to dispense with normalization. Does
one arrive at similar database designs by using data reification techniques?

References [29, 30, 31, 32] address a formal calculus which has been put forward
as an alternative to standard normalization theory, by framing database design into the
wider area of data refinement [17]. Data models, such as described by E-R diagrams,
for instance, are turned into systems of equations involving set-theoretic notions such as
finite mappings, sets, and sequences. Integrity constraints and business rules are iden-
tified with abstraction invariants [25] and datatype invariants [17], respectively, whose
structural synthesis (analysis) by calculation is at the core of the calculus.

The main purpose of this paper is to describe the design of a database schema
calculator which, inspired by [32], infers SQL relational meta-data from abstract data
models specified in the ISO standard VDM-SL formal modelling notation [10]. The cal-
culus is implemented using Haskell-based strategic term rewriting [23], and embedded
in a full fledged source code processing tool following a grammar-centered approach to
language tool development [18]. This database calculator, named VooDooM, is being
used in the Information Knowledge Fusion (Σ!2235) project, to generate the database
of a knowledge representation management system.
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1.1 Related Work

Most work on formal methods in relational database design is concerned with formal
models of relational data. This interest dates back to (at least) [6], where a formalization
of a relational data model is given using the VDM notation.

The formal specification and design of a program implementing simple update op-
erations on a binary relational database called NDB is described in [38]. This single
level description of NDB is the starting point of [11], where a case study in the mod-
ular structuring of this “flat” specification is presented. The authors present a second
specification which makes use of an n-ary relation module, and a third one which uses
an n-ary relation module with type and normalization constraints. They demonstrate
the reusability of their modules, and also outline specifications of an n-ary relational
database with normalization constraints, and an n-ary relational database with a two-
level type hierarchy and no normalization constraints. However, their emphasis is on
the modularization techniques adopted to organize VDM specifications into modules.

Samson and Wakelin [33] present a comprehensive survey about the use of algebraic
methods to specify databases. They compare a number of approaches according to the
features covered and enumerate some features not normally covered by such methods.

Barros [5] describes an extension to the traditional database design aimed at for-
malizing the development of (relational) database applications. A general method for
the specification of relational database applications using Z is presented. A prototype is
built to support the method. It provides for editing facilities and is targeted at the DBPL
database management system.

The purpose of Baluta [4] is to rigorously specify the basic features of the relational
data model version 2 (RM/V2) as defined by Codd [8], using the Z language.

More recently, Necco [26] exploits aspects of data processing which are functional
in nature and can take advantage of recent developments in the area of generic func-
tional programming and calculi. Generic Haskell is used to animate a generic model
of a subset of the standard relational database calculus, written in the style of model-
oriented formal specification.

2 Strategic Term Rewriting

In traditional term rewriting, one can distinguish the rewriting equations of a particular
term rewriting system (TRS) from the strategy that is used to apply these equations
to an input term. Most commonly, term rewriting environments have a fixed rewriting
strategy, such as the leftmost-innermost strategy. In some rewriting environments, for
instance those where the equations may be governed by conditions and may be stratified
into default and regular equations, more sophisticated strategies may be employed. But
in any case, these strategies are fixed, i.e. hard-wired into the environment.

By contrast, strategic term rewriting generalizes the traditional term rewriting para-
digm by making rewriting strategies programmable, just as the equations are. Among
the first rewriting environments to offer such programmable rewriting strategies are
Stratego [35] and the Rewriting Calculus [7]. Such environments offer a small set of
basic strategy combinators, which can be combined with each other and with rewrit-
ing equations to construct term rewriting systems with arbitrarily complex strategies.
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Combinators

s ::= id Identity strategy
| fail Failure strategy
| seq(s, s) Sequential composition
| choice(s, s) Left-biased choice
| all(s) All immediate components
| one(s) One immediate component
| adhoc(s, a) Type-based dispatch

Notation

d ... data
c ... data constructors

d ... data with failure “↑”
a ... type-specific actions
s ... strategies
a@d ... application of a to d
s@d ... application of s to d

d ⇒ d ... big-step semantics
a : t ... type handled by a
d : t ... type of a datum d
[d] ... indivisible data
c(d1 · · · dn) ... compound data

Meaning

id@d ⇒ d
fail@d ⇒ ↑
seq(s, s′)@d ⇒ d if s@d ⇒ d′ ∧ s′@d′ ⇒ d
seq(s, s′)@d ⇒ ↑ if s@d ⇒ ↑
choice(s1, s2)@d ⇒ d′ if s1@d ⇒ d′

choice(s1, s2)@d ⇒ d if s1@d ⇒ ↑ ∧ s2@d ⇒ d
all(s)@[d] ⇒ [d]
all(s)@c(d1 · · · dn) ⇒ c(d′

1 · · · d
′

n) if s@d1 ⇒ d′

1,. . . ,s@dn ⇒ d′

n

all(s)@c(d1 · · · dn) ⇒ ↑ if ∃i. s@di ⇒ ↑
one(s)@[d] ⇒ ↑
one(s)@c(d1 · · · dn) ⇒ c(· · · d′

i · · ·) if ∃i. s@d1 ⇒ ↑ ∧ · · · ∧ s@di−1 ⇒ ↑ ∧ s@di ⇒ d′

i

one(s)@c(d1 · · · dn) ⇒ ↑ if s@d1 ⇒ ↑,. . . ,s@dn ⇒ ↑
adhoc(s, a)@d ⇒ a@d if a : t and d : t
adhoc(s, a)@d ⇒ s@d if a : t ∧ d : t′ ∧ t %= t′

Identities

[unit] s ≡ seq(id, s) ≡ seq(s, id) ≡ choice(fail, s) ≡ choice(s, fail)
[zero] fail ≡ seq(fail, s) ≡ seq(s, fail) ≡ one(fail)
[skip] id ≡ choice(id, s) ≡ all(id)
[nested type dispatch]
adhoc(adhoc(s, a), a′) ≡ adhoc(s, a′) if a : t ∧ a′ : t
adhoc(adhoc(s, a), a′) ≡ adhoc(adhoc(s, a′), a) if a : t ∧ a′ : t′ ∧ t %= t′

adhoc(adhoc(fail, a), a′) ≡ choice(adhoc(fail, a), adhoc(fail, a′)) if a : t ∧ a′ : t′ ∧ t %= t′

Fig. 1. Specification of a guideline set of basic strategy combinators

Figure 1 shows a set of such basic strategy combinators, along with their operational
semantics.

Using the basic strategy combinators, more elaborate ones can easily be constructed.
Consider for instance the following definitions:

try(s) = choice(s, id)
repeat(s) = try(seq(s, repeat(s)))
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full topdown(s) = seq(s, all(full topdown(s)))
innermost(s) = seq(all(innermost(s)), try(seq(s, innermost(s))))

The try combinator takes a potentially failing strategy as argument, and attempts to
apply it. When failure occurs, the identity strategy id is used to recover. The repeat
combinator repeatedly applies its argument strategy, until it fails. The full topdown
combinator applies its argument once to every node in a term, in pre-order. Finally, the
innermost strategy applies its argument in left-most innermost fashion to a term, until
it is not applicable anywhere anymore, i.e. until a fixpoint is reached.

The challenge of combining strategic term rewriting with strong typing was first met
by the Haskell-based Strafunski bundle [23], which we will use in this paper, and the
Java-based JJTraveler framework [36, 19]. A formal semantics of typed strategic pro-
gramming was constructed subsequently [20]. Further generalizations were provided in
the Haskell context [22, 21].

Strategic term rewriting has several benefits over traditional term rewriting. The
most important benefits derive from the fact that many applications require rewrite
equations that together do not form a confluent and terminating TRS. A program refac-
toring system, for instance, may require equations both for “extract method” and for
“inline method”. A document processing system may include equations that change
mark-up only inside the context of certain document tags. In a traditional term rewriting
environment, the only option to obtain sufficient control over when and where equations
are applied, is to switch to so-called ‘functional style’. This means that every rewrite
rule t !→ . . . s . . . is reformulated to include function symbols to control rewriting:
f(t) !→ . . . g(s) . . .. This way, the rewriting strategy in fact becomes explicit in the
additional function symbols, but is thoroughly entangled with the rewrite equations.
In strategic programming, the rewrite equations can stay as they are, the strategy can
be specified separately, and both equations and strategies can be used and reused in
different combinations to obtain different TRSs. So, apart from full control over when
and where equations are applied, strategic rewriting enhances separation of concerns,
reusability, and understandability.

In this paper, we will rely on strategic term rewriting to cleanly separate the indi-
vidual conversion rules from the strategy of applying them to the abstract syntax terms.
We will use the Strafunski bundle as strategic term rewriting environment in which to
implement the conversion tool.

3 Database Design by Calculation

The calculation method which underlies our VDM-SL to SQL conversion tool finds its
roots in a “data refinement by calculation” strategy which originated in [29, 30] and
has been focussed towards relational database design more recently [31, 32]. Reference
[28] describes its application to reverse engineering legacy databases.

3.1 Abstraction and Representation

The calculus consists of inequations of the form A ≤ B (read: “data type B implements,
or refines data type A”) which abbreviates the fact that there is a surjective, possibly
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partial function A B
F!! (the abstraction relation) and an injective, total relation

A
R "" B (the representation relation) such that

F · R = idA (1)

where idA is the identity function on datatype A. (F is traditionally referred to as a re-
trieve function [17].) Since the equality R = S of two relations R and S is bi-inclusion
R ⊆ S∧S ⊆ R, we have two readings of equation (1): idA ⊆ F ·R, which ensures that
every inhabitant of the abstract datatype A gets represented at B-level; and F ·R ⊆ idA,
which prevents “confusion” in the representation process:

〈∀ b ∈ B, a ∈ A : b R a : 〈∀ a′ ∈ A : a′ F b : a′ = a〉〉

(“Never forget whom you are representing”.)
Below we will present a series of particular ≤-equations which together specify a

data model refinement calculus. The types of the refinement relations will be mapped
onto rewrite rules in the implementation.

3.2 Preorder

It can be shown that ≤ is a preorder, reflexivity meaning that any datatype represents it-
self (R = F = id) and transitivity meaning that ≤-steps can be chained by sequentially
composing abstractions and representations:

A

R

##
≤ B

F

$$ ∧ B

S

##
≤ C

G

$$ ⇒ A

S·R

##
≤ C

F ·G

$$ (2)

This suggests that one may calculate implementations from specifications

Spec = X ≤ X ′ ≤ X ′′ ≤ · · · ≤ Imp

by adding implementation details in a controlled manner. This also makes sense wher-
ever the representation of a parameter of a datatype needs to be promoted to the overall
parametric datatype by structural data refinement:

A

R

##
≤ B

F

$$ ⇒ F A

F R

%%
≤ F B

F F

&& (3)

where F is such a parametric type, e.g. setofA in VDM-SL notation. (Technically, F

is named a relator [3].) This is valid also for parametric types of higher arity, such as
those of standard VDM-SL:

– binary product types A × B and n-ary ones
∏n

i=0
Ai, which can be specified in

VDM-SL as (nested) tuples or via record types, (semantically equivalent modulo
selectors). E.g. A*B or compose AB of a: A b: B end, respectively.

– sum types A + B, which in VDM-SL are specified by writing A | B for suitably
specified (disjoint) A and B, extensible to finitary sums

∑n
i=0

Ai.
– finite mappings A ⇀ B, written map A toB in VDM-SL, in which case the ab-

straction of the domain datatype is required to be injective (otherwise the outcome
may not be a mapping).
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3.3 Conversion Laws

It is often the case that the abstraction (resp. representation) relation is a (total) function,
in which case it is an injection (resp. surjection). As an example of this we present law

A!

seq2index

''

≤ IN ⇀ A

list

&& (4)

which indexes a finite sequence, for instance,

seq2index([a, b, a]) = {1 !→ a, 2 !→ b, 3 !→ a}

list({11 !→ a, 12 !→ b, 33 !→ a}) = [a, b, a]

A more structural law is

A ⇀ (B + C)

uncojoin
((

≤ (A ⇀ B) × (A ⇀ C)

cojoin

))
(5)

whereby mappings of sums are represented as products of mappings. (Definitions for
cojoin and uncojoin are easy to guess.) In a situation where the abstraction is also a
representation and vice-versa we have an isomorphism A ∼= B, a special case of the
≤-law which works in both directions. For example, the abstraction/representation pair
of the following isomorphism

A × (B + C)

distr
((

∼= (A × B) + (A × C)

undistr

))
(6)

(product distributes through sum) is well-known from set-theory.
The VDM-SL finite mapping dom function witnesses a very useful isomorphism

between finite sets and partial finite mappings,

2A

set2fm

''
∼= A ⇀ 1

dom

&& (7)

which expresses the equivalence between data models set of A and map A to
nil. (The inhabitants of A ⇀ 1, often called right-conditions [13], obey a number
of interesting properties.) Another basic isomorphism tells us how “singleton” finite
mappings disguise “pointers” (guess opt-intro and opt-elim):

A + 1

opt-intro

''
∼= 1⇀ A

opt-elim

**
(8)
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The following isomorphism law

(B + C)⇀ A

unpeither
((

∼= (B ⇀ A) × (C ⇀ A)

peither

))
(9)

is a companion of (5).
Two important ≤-rules from [32] are still missing from our catalog: the representa-

tion function of one of these,

A ⇀ (B × (C ⇀ D))

unnjoin
((

≤ (A ⇀ B) × (A × C ⇀ D)

njoin

))
(10)

enables us to infer composite keys out of nested finite mappings. (See [30, 31] concern-
ing abstraction njoin and representation unnjoin.) In the abstraction direction (from
right to left) it merges two tables which share a common (sub)key.

The other rule missing has to do with datatype “derecursivation”. Suppose we are
given a recursive datatype definition µF ∼= F µF where F is polynomial [3, 30]. Then
any “tree” in µF can be represented by a “heap” and a “pointer” to it,

µF

rec-elim
++

≤ (K ⇀ F K) × K

rec-intro

,, (11)

for K a data type of “heap addresses”, keys or “pointers”, such that K ∼= IN . For
example, the binary tree on the left-hand side of (12) below will be represented — via
(11) followed by (5) — by address 5 pointing at the tables on the right-hand side:

(12)

See [30, 31, 32] for several important details we have to skip at this point about
this generic data representation technique, in particular in what concerns the complex
abstraction invariant imposed by (11), which requires “well-founded heaps”.

3.4 Normal Form

A pattern common to equations (4, 5, 7, 8, 9, 10 and 11) is that right-hand-sides do not
involve functors other than product (×) and finite mapping (⇀). It so happens that these
are exactly the functors admissible in the following abstract model

DB =
n∏

i=1

(
ni∏

j=0

Kj ⇀

mi∏

k=0

Dk) (13)
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of a relational database, whereby every db ∈ DB is a collection of n relational tables
(index i = 1, n) each of which is a mapping from a tuple of keys (index j) to a tuple of
relevant data (index k). Wherever mi = 0 we have

∏0

k=0
Dk

∼= 1, meaning — via (7)
— that we have a finite set of tuples in

∏ni

j=0
Kj . (These are called entity relationships

in the standard terminology.) Wherever ni = 0 we are in presence of a singleton rela-
tional table. Last but not least, all Kj and Dk are “atomic” types, otherwise db would
fail first normal form (1NF) compliance [24].

To derive such normal forms, the above calculation laws can be used in combination
with appropriate laws for commutativity and associativity of tuples, and laws for intro-
duction and elimination of empty tuples. To avoid these additional bookkeeping laws,
we can generalize law (10) to:

A ⇀ (
∏

i Bi×
∏

j(Cj⇀Dj))

g-njoin
--

≤ (A⇀
∏

i Bi)×
∏

j(A×Cj ⇀ Dj)

g-unnjoin

..
(14)

In the implementation, we will make use of this generalization.
Thus, with this collection of calculation rules we are able to unravel (polynomial)

recursive datatypes and decompose complex/nested mappings or sequences into tuples
of simpler mappings, leading to models in relational normal form (13). In the upcoming
section we will show how a term rewriting system can be constructed and implemented
that performs such unraveling in a deterministic and confluent manner.

4 Design and Implementation of the VooDooM Tool

This section describes the implementation of the VooDooM tool, which uses strategic
term rewriting to apply the refinement laws described above to VDM-SL source code.
The overall architecture of the tool is shown in Figure 2. The architecture mirrors the
phases needed to tackle the problem:

1. Recognize a specification file written in VDM-SL and convert it to a format that can
be used for processing: abstract syntax tree (AST);

2. Apply transformations to the AST to convert the input model into its relational
equivalent; and

3. Output the transformed specification either as VDM-SL or to SQL concrete syntax.

Fig. 2. Overall architecture of the VooDooM tool
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Fig. 3. Grammar-centric approach diagram

To handle each of these steps, the following modules were developed:

VDM-SL and SQL front-ends Deal with the language issues, namely parsing, pretty-
printing and abstract representation.

Transformation engine Receives a VDM-SL AST representing the original specifica-
tion and applies the calculation laws in order to compute a relational model that
refines it (also a VDM-SL AST).

VDM-SL to SQL translator Maps a relational model in VDM-SL AST format to an
equivalent SQL AST.

In the upcoming sections we will describe the implementation of these modules in more
detail. We will use the following specification of a tiny bank account management sys-
tem (BAMS) as example input1:

types
BAMS = map AccId to Account;
Account :: H: set of AccHolder

B: Amount;
AccId = seq of char;
AccHolder = seq of char;
Amount = int

4.1 Technology

We followed a grammar-centered approach to language tool development, where vari-
ous kinds of functionality are automatically generated from concrete syntax definitions
of the languages involved [18]. In particular, we relied on the Haskell-based Strafun-
ski [23] bundle to generate parsers, pretty-printers, and support libraries for abstract
syntax representation and traversal from SDF grammars of VDM-SL and SQL. Figure 3
illustrates this approach. SDF is the formalism in which both grammars are expressed.
Parse tables are automatically generated by the sdf2table tool from the SDF software

1 The intermediate steps will be presented in concrete VDM-SL syntax for clarity, although the
tool actually uses ASTs.
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Table 1. Catalog of rewriting rules. These rules are based on the various equations and inequa-

tions of the calculational data refinement theory presented in Section 3

Function Rewrite rule Law

seq2index A! ⇒ IN ⇀ A (4)
unconjoin A ⇀ (B + C) ⇒ (A ⇀ B) × (A ⇀ C) (5)

distr A × (B + C) ⇒ (A × B) + (A × C) (6)
set2fm 2A ⇒ A ⇀ 1 (7)

opt-elim A + 1 ⇒ 1 ⇀ A (8)
unpeither (B + C) ⇀ A ⇒ (B ⇀ A) × (C ⇀ A) (9)
unnjoin A ⇀ (B × (C ⇀ D)) ⇒ (A ⇀ B) × (A × C ⇀ D) (10)
rec-elim µF ⇒ (K ⇀ F K) × K (11)

bundle, which corresponds to the Parser ellipses of Figure 3. The AST Haskell data
type definition and the pretty-printer are generated with the Sdf2Haskell tool from Stra-
funski. They correspond to the Syntax and SyntaxPP ellipses from the picture.

From the abstract syntax, further components are generated in the form of Haskell
Class instances, using the DrIFT tool. The ATerm instances support serialization to
the ATerm format, which is used as interchange format between the generated parser
and other components. The Term instances support generic traversal and strategic term
rewriting over ASTs. The last two (Eq and Show), are not mandatory: they add compar-
ison and printing functions to the Haskell data types.

As SQL grammar, we were able to employ a previously developed grammar. The
VDM-SL grammar was developed by reconstructing the concrete syntax definition of
the ISO standard [15] in SDF, as reported elsewhere [2].

4.2 Transformation

The transformation engine is the core module of the VooDooM tool. It is responsible
for the refinement of the VDM-SL data types to a relational form, in accordance with
the refinement laws presented above.

We make ample use of strategic term rewriting techniques in its implementation.
The overall approach is as follows. First, we formulate individual term rewriting rules
on the basis of the type signatures of the representation functions of the refinement laws.
Table 1 lists these individual rules. Secondly, we use strategy combinators to compose
these individual rules into a transformation engine that applies the individual rules in a
way that a normal form is reached in a deterministic and confluent manner.

Before transformation begins, a single traversal is made over the AST that represents
the complete VDM-SL input specification, to collect all sub-ASTs that represent data
type definitions into a list. The transformation process itself operates on this collection.
The transformation process is organized into the following sequential phases:

Inlining and Recursion Removal. The rewrite rules for conversion operate on datatypes,
not on systems of named data type definitions. To avoid needing to perform lookups of
data type names during transformation, we start by inlining, i.e. replacing all data type
names by their definitions. This technique leads to the loss of the top level data type
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names, which in some cases are useful. To overcome this problem, singleton composes
are introduced before inlining those types.

Of course, this substitution process would run into cycles if we did not treat recursive
definitions differently. For this reason, the recursion removal rewrite rule rec-elim is
used in combination with inlining. After these rules have exhaustively been applied,
a set of non-recursive, independent datatypes is obtained that is amenable to further
transformation. Exhaustive application is realized by using the repeat combinator.

After the inlining step, our example specification will look as follows:

types
BAMS = map compose AccId of seq of char end to

compose Account of
H: set of compose AccHolder of seq of char end
B: compose Amount of int end

end

Though our example does not contain recursive datatypes, the tree example of Section 3
illustrates recursion removal. More examples are given in [30, 31].

Desugaring. We limit the language of data type definitions by removing those con-
structs for which we have a simple elimination rule: sets, sequences, and optionals.
Sequences of characters are viewed as atomic and excluded from desugaring, because
we want to map them to native SQL strings (varchar). Also, we rewrite all tuples to
VDM-SL’s compose construct. This desugaring step is performed by applying the rules
seq2index, set2fm, and optElim, in a single traversal.

In the same traversal, we rewrite tuples to VDM-SL compose constructs. Alterna-
tively, we could have desugared composes to nested tuples, but that would lead to the
loss of names of composes and their fields. Of course, if all tuples are eliminated in
favour of composes, this has the consequence that all calculation laws involving prod-
ucts should be mapped to rewrite rules involving composes. This has as additional ben-
efit that various rules (e.g. 14) can be generalized, because composes are n-ary, rather
than binary.

After desugaring, our example specification looks as follows:

types
BAMS = map compose AccId of seq of char end to

compose Account of
H: map compose AccHolder of seq of char end to NIL
B: compose Amount of int end

end

This expression contains only maps and products (compose), but is not yet in relational
form.

Conversion to Relational Form. After having the desugared structure, further trans-
formation rules can now be applied. At this stage, the needed rules are unconjoin, un-
peither, and the generalized version of unnjoin. In addition, a rule for flattening nested
composes is needed to bring expressions into the best form to be rewritten with that
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Table 2. Correspondence between VDM-SL and SQL92 data types

VDM-SL data type SQL data type SQL Constraint

bool SMALLINT CHECK (.. IN (0,1))
nat INT CHECK .. >= 0
nat1 INT CHECK .. >= 1
int INT
rat REAL
real REAL
char CHAR ( 1 )
token VARCHAR ( 128 )
seq of char VARCHAR ( 128 )

generalized rule. These rewrite rules need to be applied exhaustively throughout the
AST. The innermost combinator is suitable for this.

After conversion, our example specification is in the relational normal form which
follows:

types
BAMS = compose mapAggr of

map compose AccId of seq of char end
to compose Amount of int end

map compose tuple of
seq of char
seq of char

end
to NIL

end

Resugaring. Finally, sets are reintroduced into the expression, using the dom rule.
Thus, any occurrence of the form map x to NIL is converted to set of x. This
occurs when further simplification was not possible. This is justified, because these can
be represented directly in SQL. When VDM-SL is targeted as output language, tuples
are reintroduced where binary composes with anonymous fields occur.

4.3 SQL Translation

During transformation, an initial specification is transformed into a relational normal
form. In the translation process these VDM-SL data types are converted to SQL tables
and attributes.

The translation of normal forms to SQL is straightforward. The relational equivalent
of a map is a table in which the domain of the map is the primary key. The relational
counterpart of a set is a table with a compound primary key on all columns to guarantee
uniqueness. The elements of maps and sets, which are products of elementary VDM-SL

data types, are converted to SQL column attributes (that are also of elementary types).
Because basic VDM-SL and SQL data types are not compatible, a correspondence

between them must be made. Table 2 shows the correspondence implemented in the
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VooDooM tool. The table also shows constraints to be added to the SQL data model to
better preserve the semantics of some VDM-SL data types. Only Standard SQL92 [16]
data types were chosen, to provide a solution that works for all SQL vendor dialects.

The SQL generated for our running BAMS example is as follows:

CREATE TABLE table1 ( CREATE TABLE table2 (
AccId VARCHAR (128) NOT NULL, Attr1 VARCHAR (128) NOT NULL,
Amount INT NOT NULL, Attr2 VARCHAR (128) NOT NULL,
PRIMARY KEY (AccId) PRIMARY KEY (Attr1, Attr2)

) )

As can be seen, a composite type (the outer compose) with a map and a set (reintro-
duced for map ... to NIL) is translated to two tables in SQL. Because none of
the compose elements have tags, they have been automatically generated as table1
and table2. The fields of the inner composes have been converted to SQL attribute
columns. In case of the map there are two tags: AccId and Amount. This led to the
creation of two attributes with those names. The primary key of the generated table is
AccID because it represents the domain of the map. In case of the set there are no
tags, so attribute names are automatically generated: Attr1 and Attr2. These two
attributes together form a compound primary key, because combined they represent the
domain of the set.

Thus, table1 associates an amount to the identifier of each account in the system,
while table2 uniquely relates accounts identifiers with account holders. These two
tables implement the original specification in which account identifiers are mapped to
accounts, and each account has a set of account holders and an amount. The actual
retrieve function that witnesses the abstraction relation between the original VDM-SL

specification and this pair of SQL tables is given in [1].

5 Concluding Remarks

A decade ago, Barros [5] referred to the derivation of database programs directly from
formal specifications as an unsolved problem. By contrast, deriving the database struc-
ture was regarded as a trivial aspect. However, his specifications are Z schemata whose
internal states are already close to the relational model (e.g. power-sets of products).

This is in contrast with our approach, in which the source data-model can be arbi-
trarily complex (as far as VDM-SL data constructors are concerned), including recursive
datatypes. Our “derecursivation” law (rec-elim), which relationally expresses the main
result of [37], bears some resemblance (at least in spirit) with “defunctionalization”
[14], a technique which is used in program transformation and compilation.

On the other hand, our approach shares with [5] the view that database design should
be regarded as special case of data refinement. It is orthogonal to [5] in the sense that
we are not concerned with database dynamics (transactions, etc).

Another advantage of our approach is the prospect of synthesizing abstraction in-
variants generated by each refinement step, which is still in the to-do list of the project.
These include abstraction / representation functions and concrete invariants. The former
can be used for data-migration between the original VDM-SL source and the generated
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relational model, in a way similar to [28] and to what is done manually in [1]. The latter
can be (at least in part) incorporated as SQL constraints.

Strategic term rewriting provides a realistic solution to database schema calcula-
tion when compared with previous attempts to animate the same calculus using genetic
algorithm-based term-rewriting techniques [27].

5.1 Future Work

We plan to extend the VooDooM tool in several ways. Firstly, in addition to the con-
version of VDM-SL to SQL, we want to support the reverse process of obtaining an
algebraic set of datatypes from a relational model, as already suggested by the dashed
lines in the architecture overview in Figure 2.

Reversing a database to VDM-SL is not a novelty. This problem was already tackled
in [28], in which the authors describe an implemented functional prototype and its appli-
cation using a real world example. However that implementation has several drawbacks.
The process has to be assisted manually, the initial relational model must be specified in
VDM-SL, the transformation rules were coded with explicit recursion, and all traversals
were hard-coded leading to a inflexibility in the implementation. With the strategic term
rewriting approach, the same problem can be solved in a more pragmatic way.

Secondly, we intend to offer better support for invariants to the tool. The transfor-
mation and translation processes in both directions lack support for VDM-SL invariants.
To more accurately preserve semantics, invariants should be added during the transfor-
mation process when a data type is split in two or more. However, invariants pose some
difficulties when performing transformations since the data definitions which they refer
are changing. Thus, invariants need also to reflect this change. When the transforma-
tions are simple rearrangements of data fields this can be easy but, since invariants can
be as complicated as any function mapping the type to a boolean, the general case is not.
Transforming arbitrary functionality in an automated manner is a challenging subject
which would involve investigation beyond the scope of this tool. However, we intend to
develop some invariant support, namely to referential integrity constraints, by providing
a small subset of VDM-SL that can be mapped into SQL constraints in an automated
way.

Availability

The VooDooM tool is developed as open source software and is available from its
project web page: http://voodoom.sourceforge.net/.
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