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Abstract

Confined separation logic is a new extension to sepa-

ration logic designed to deal with problems involving dan-

gling references within shared mutable structures. In par-

ticular, it allows for reasoning about confinement in object-

oriented programs. In this paper, we discuss the semantics

of such an extension by defining a relational model for the

overall logic, parametric on the shapes of both the store and

the heap. This model provides a simple and elegant inter-

pretation of the new confinement connectives and helps in

seeking for duals. A number of properties of this logic are

proved calculationally.

1. Introduction

Reference aliasing is a well known problem in object ori-
ented programming, where shared mutable structures are
pervasive and access to a particular object may break an-
other’s integrity or leak sensitive information of the whole
system 1. In this domain, the extensive body of research on
encapsulation mechanisms to support data abstraction is of
limited help because usually such mechanisms correspond
directly to language constructs, and such is not the case in
reference based programs.

Confinement of objects to specific partitions of the
global reference space has become, therefore, a major re-
search issue in object-orientation. Static access modifiers
found in current languages (such as the private and
protected tags in JAVA) restrict only the visibility of
methods, attributes, or variables, but do not constrain ob-
ject references. Confined types [7], ownership [15] and
universes [14] are fine-grained notions of confinement for

∗Supported by NNSFC (No. 60573081)
1Reference [26] reports on how the possibility of forging cryptographic

authentication in a particular system arose as an unexpected consequence
of a leaked reference to an internal data structure.

aliasing control by enforcing static scoping of dynamic ob-
ject references. However, they are either incomplete or too
restrictive. This entails the need for a formal approach to
confinement independent of syntactic restrictions and en-
abling one to assess different confinement schemes.

An interesting attempt in this direction is [4], which re-
sorts to denotational semantics. The approach formalises
type-based full encapsulation but only to address object rep-
resentation independence. Moreover, a number of strong
syntactic restrictions are imposed which exclude useful pro-
gram idioms.

Our own contribution, partly presented in this paper,
goes in a similar direction, but adopts a different approach.
Our starting point is separation logic [24], an extension of
Hoare Logic where formulæ are interpreted over suitable
models of stores and heaps. In particular, it introduces a
new form of conjunction, denoted p ∗ q, which asserts that
p and q hold for disjoint parts of the heap.

Separation logic has been extensively used to reason
about pointer-based programs [24, 23, 8], fine-grained con-
currency [16], and object orientation [21, 13]. It can guar-
antee domain disjointness of object heaps and, therefore,
prevent aliasing between objects laying in separated heaps.
However, no attention is paid to the behavior of outgoing
dangling references of separated heaps which may intro-
duce subtle forms of indirect aliasing. As an illustration
consider the following Hoare triple

{p} x := new C(. . .); {p ∗ x "→ {. . .}}

where {. . .} denotes the object created. C may be, for ex-
ample, a node type used as an element of a linked stack.
Then, the purpose of this piece of code is to allocate a node
and use it as a link to a stack. Note, however, that such an
object could not be put into a protection domain, because
the post-condition of new does not assert the absence of any
reference from the part of the heap which validates p to the
new object.

The point is that, besides the domain separation of two
heaps, we often need to express the restrictions upon out-



going references from heaps. In the example above, in fact
we have more information about the relationship between
the two heaps, ie., the original heap and the one where the
new object lives. In particular, we know, that as the object
has just been created, no older one has a reference to it.
Therefore it is safe to put the new object into a protection
domain, and not break confinement.

To express this sort of situations, we propose an ex-
tension to classical separation logic which introduces two
new forms of separating conjunction: a notIn variant, repre-
sented by ¬!, asserting that no outgoing reference from the
part of the heap where the first argument holds points to the
part where the second argument holds, and a In variant !,
which ensures that all outgoing references from the part of
the heap characterised by the first argument converge into
the one where the second argument holds. With this new
form of separating conjunction, the Hoare triple above can
be re-written as

{p} x := new C(. . .) {p ¬! x "→ {. . .}}

The new operator not only warranties heap domain disjoint-
ness, but also enforces the new post-condition.

Report [28] introduces the basic intuitions on such con-

fined separation logic and discusses its application to con-
crete programming problems. It also shows how a number
of formal schemes for confinement in the literature [10, 4,
7, 14], can be unified from a semantic point of view.

This paper goes further in this research direction by in-
troducing a semantic model for this logic which is generic

in the sense that it abstracts away from the specific heap
structure, regarded as a mapping from a type K of refer-
ences to a type parametric construction F(K) on K, for F

a polynomial relator [6]. Typical heap models used in both
classical separation logic [24] and its OO-extensions [21,
13] arise by instantiation. Moreover, instead of the usual
set-theoretic semantics, we propose binary relations be-
tween heaps and stores as semantic domain for predicates.
In this way, well known properties of separating conjunc-
tion (often presented without proof, as for example the ex-
istence of a formal dual implication) can be proved once and
for all in the generic model. In such a setting we give com-
pact and effective proofs of several properties of the logic
connectives of confined separation logic. In particular, all
conjunction variants proposed are shown to be adjoint to
specific forms of implication. Due to space limitations, it is
not possible to put together in a single paper the presenta-
tion of the semantic model and its application to handling
specific confinement problems in object-oriented program-
ming. Therefore, our focus in the sequel will be on formal
semantics, applications being deferred to a follow-up paper
[27].

The key technique in our approach is the so-called point-

free (PF) transform [20], which essentially means the con-

version of predicate logic formulæ into binary relations by
removing bound variables and quantifiers — a technique
which, initiated in the 19c 2, eventually leads to what is
known today as the algebra of programming [6, 2]. Such
technique, which has been found fruitful for “theory refac-
toring” in other domains [19, 20], is based on the principle
that “everything is a binary relation” once logical expres-
sions are PF-transformed. One thereafter resorts to the pow-
erful calculus of binary relations [1, 6] until a solution for
the problem is found, which is mapped back to logics if re-
quired. At this point, another calculus — the Eindhoven
quantifier calculus [2, 3] — is applied. In proceeding this
way, as we expect the reader will appreciate in the sequel,
elegant expressions replace lengthy formulæ and easy-to-
follow calculations replace pointwise proofs with lots of
“· · · ” notation, case analyses and natural language expla-
nations for “obvious” steps.

This paper is structured as follows. After a brief intro-
duction to the relational calculus and the pointfree trans-
form in section 2, section 3 introduces a generic model for
confined separation logic upon which its semantic proper-
ties can be established. This is done in sections 4 and 5.
Conclusions and pointers to future work are discussed in
sections 6 and 7.

2 Relational calculus

This section is a self-contained introduction to the frag-
ment of the relational calculus, and the pointfree transform,
used in the paper. The reader is referred to [6, 2] for a de-
tailed account.

Relations. Let B A
R!! denote a binary relation on

datatypes A (source) and B (target). The underlying partial
order on relations is written R ⊆ S (read: “R is at most

S”), meaning that S is either more defined or less deter-
ministic than R, that is, b R a ⇒ b S a holds, for all a, b.

R ∪ S denotes the union of two relations and ' is the
largest relation of its type. Its dual is ⊥, the smallest such
relation (the empty one). Equality on relations is established
by ⊆-antisymmetry.

Relations can be combined by three basic operators:
composition (R · S), converse (R◦) and meet (R ∩ S). R◦,
the converse of R is such that a(R◦)b iff bRa holds. Meet
corresponds to set-theoretical intersection and composition

2The idea of encoding predicates in terms of relations was initiated by
De Morgan in the 1860s and followed by Peirce who, in the 1870s, found
interesting equational laws of the calculus of binary relations [22]. The
pointfree nature of the notation which emerged from this embryonic work
was later further exploited by Tarski and his students [25]. In the 1980’s,
Freyd and Scedrov [11] developed the notion of an allegory (a category
whose morphisms are partially ordered) which finally accommodates the
binary relation calculus as special case.



is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that ' is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and -, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · - ⊆ ≤ · g (3)

f◦
· - = ≤ · g (4)

Actually, (3) is equivalent to - ⊆ f◦
· ≤ · g . For

f = g, this establishes - to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) - a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,- := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b ' a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) ( / R) read “. . . over R”

difference ( − R) (R ∪ )

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) - a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p ! q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬! q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #! q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.



Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v "→ e | p ∗ p | p −∗ p

| p ! p | p #! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v "→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ "

Aliases = ∈·σ

"

Atom + Address

∈

#!!!!!!!!!!!!!

Address
H

# Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ "#

∈G·σ

$$"
"

"
"

"
" G(B, K)

∈G

%"
K

K

∈F·H

&%
#

#
#

#
#

H

" F(A, B, K)

∈F

'&

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B,K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2 )a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2 )a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not neces-
sarily simple) relations:

R ‖ S
def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For ex-
ample, we have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }

R ‖ T ∧ S ‖ T



Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·. (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·. (15)

In words, H1 ! H2 requires all outgoing references of H1

go into separated H2, and H1 #! H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(kerσ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v /→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬" · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬# is the coreflexive associ-
ated to predicate ¬! (13) on heap pairs.) A consequence of
Φ¬# being coreflexive is that p¬!q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ" · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ#" · 〈[[p]], [[q]]〉 (23)

Clearly ! ⊆ #! and therefore, p ! q → p #! q holds.
Moreover, since Φ#,Φ$# are coreflexive, we have p #! q →
p∗q and p!q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).



We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { % definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬#, Φ# and Φ$#) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬! y]]σ
def
= (37)

〈∀ H0 : H0 ¬! H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬# by either
Φ$# or Φ# respectively, we establish #!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−#!y and p−!y as the upper
adjoints of (p#!) and (p!), respectively.

H[[p −#! y]]σ
def
= (38)

〈∀H0 : H0 #! H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −! y]]σ
def
= (39)

〈∀H0 : H0 ! H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉



When compared with standard separated implication, all of
the above place extra restrictions on the augmented heap, in
terms of how dangling references are handled. Note that all
properties derived for (p∗) hold for free for all its confined
versions, thanks to the ’machinery’ of Galois connections.

5 Modelling and reasoning

The strength of a semantic model is assessed through
both its expressive power and suitability for formal reason-
ing. This section illustrates how properties in separation
logic, either in the standard or confined variants, can be for-
mulated and established by calculating their interpretations
in the relational model. It further illustrates how reasoning
is conducted within the model in a calculational way. We
just give two examples. (The interested reader is referred to
report [27] for a full account.)

The first example checks the semantics of confinement
against what happens to standard property

emp ∗ p ↔ p ↔ p ∗ emp (40)

In the confined variants semantic rules entail

H[[p]]S ∧ Φα(H,⊥) ≡ H[[p]]S

or

H[[p]]S ∧ Φα(⊥, H) ≡ H[[p]]S

where α ranges over the three given variants. Checking
Φα(⊥,H) and Φα(H,⊥) for α := ! leads to:

emp ! p ↔ p and p ! emp ↔ p ⇐ p → emp

as the reader can easily verify. Furthermore, it is immediate
to conclude that the two other variants trivially preserve the
standard rule.

As exemplified above, confined variants of separating
conjunction behave in particular ways even wrt some stan-
dard properties. In [27] we prove, for example, that ! is
only semi-associative, ie., (p1 ! p2) ! p3 → p1 ! (p2 ! p3).

For further illustrating the potential of the relational
model to express and reason in separation logic, our second
example re-visits J. Reynolds characterization of classes of
assertions in [24]. An alternative, but equivalent, charac-
terization is introduced in Figure 2, where ≤ denotes the
injectivity preorder on relations [18]. Notice that a relation
R is a right-condition iff it can be expressed as R = ' · Φ
for some coreflexive Φ.

Finally, as a calculational example, we prove the follow-
ing theorem which involves confined In conjunction and a
side condition on the assertions involved:

(p ∧ q) ! r ↔ p ∧ (q ! r) when p is pure (41)

Intuitionistic p: [[p]] = ⊇ · [[p]]
Strictly-exact p: [[p]] is simple, that is [[p]] · [[p]]◦ ⊆ id
Domain-exact p: δ ≤ [[p]]◦

Pure p: [[p]] is a right-condition

Figure 2. Reynolds’ classes re-visited.

The proof reads as follows:

[[p ∧ (q ! r)]]

= { p := . · Φ since p is pure }

. · Φ ∩ (∗) · Φ" · 〈[[q]], [[r]]〉

= { right-conditions: R ∩ . · Φ = R · Φ [2] }

(∗) · Φ" · 〈[[q]], [[r]]〉 · Φ

= { splits: 〈R, S〉 · Φ = 〈R, S · Φ〉 ≡ Φ coreflexive [18] }

(∗) · Φ" · 〈[[q]] · Φ, [[r]]〉

= { right-conditions: R ∩ . · Φ = R · Φ [2] }

(∗) · Φ" · 〈. · Φ ∩ [[q]], [[r]]〉

= { . · Φ := p ; definitions }

[[(p ∧ q) ! r]]

This is an example of a result which extends from standard
separating conjunction to all confined variants.

6 Conclusions

This paper’s contribution is twofold. On the one hand
it provides a semantic characterisation of a new extension
to separation logic designed to reason about confinement

of references in programming models. On-going work in-
cludes the encoding of an object-oriented programming lan-
guage in the semantic model proposed here. Preliminary re-
search (in [28] and [27]) suggests the potential of confined
separation logic to express and reason about confinement
problems in object-oriented programs. We believe this may
be an interesting alternative or complement to the range of
syntactic mechanisms recently proposed to achieve confine-
ment resorting to, eg., static annotations or extended type
systems.

On the other hand, the paper illustrates how the calcu-
lus of binary relations can be regarded as a handy alterna-
tive for carrying out calculational proofs which are succinct
and easy to follow, nicely complemented by the Eindhoven
quantifier calculus in mapping relational expressions to log-
ics back and forth. The ’discovery’ of new operators by cal-
culation along Galois connections — namely the notIn and
inBoth implications — is particularly instructive. Moreover,
since heaps and stores are modeled also as binary relations,



we take double advantage of the PF-transform which, as in
[17], works smoothly across logic and data semantics.

7 Related and Future Work

Confined separation logic belongs to a family of recent
extensions to standard separation logic already cited in the
introduction. Reference [29], and before that [5], focus on
obtaining a good language for specifying how two pointer
programs are related, and effective rules for proving such
specifications. Actually, the starting point of [29] is the ob-
servation that specifications in mainstream separation logic,
given by a Hoare triple, are appropriate for specifying the
input and output relation of a single command, but not for
the equivalence between two programs. Contrary to what
may be suggested by the title of [29], our use of relational
methods has a completely different aim: to provide an alter-
native to the usual set-theoretic semantics for (variants of)
classical separation logic in terms of binary relationships
between heaps and stores as semantic domains for predi-
cates.

Both the logic and the relational approach to its se-
mantics discussed here are relevant to other application
domains. One of them is concerned with data representa-
tion. In particular, our current research targets a theory of
refinement of polynomial data structures into heap-based
implementations [17]. Relating confined separation logic
with the theory of pointers and records developed in [9]
using Unified Theories of Programming is another topic for
future research.
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