
Strategic Term Rewriting and Its Strategic Term Rewriting and Its

Application to a VDM-SL to SQL

Convertion

T.L. Alves, P.F. Silva, J. Visser,
and J.N. Oliveiraand J.N. Oliveira

Presentation: Nuno Luz

October 2010

• Aims

Content

2

• Aims

• Motivations

• Strategic Term Rewriting

• Database Design by Calculation

• The VooDooM Tool

• Conclusions and Future Work• Conclusions and Future Work

• Design a tool capable of calculating database

Aims

3

• Design a tool capable of calculating database
schemas which infers SQL relational meta-data from
abstract data models specified in VDM-SL formal
modeling notation.

Abstract Concrete Abstract
Model

(VDM-SL)

Refinement /
Reification

Concrete
Model (SQL
Meta-data)

Motivations

• The need for splitting software design in two

4

• The need for splitting software design in two
steps [1]:

1. Formal Specification (mathematical
representation of the software + analysis and
validation);

2. Implementation (production of machine code).

Tim Berners Lee “The Great Unveiling” TED2009 Slide Set

2. Implementation (production of machine code).

• “Improve Practice Through Theory” (HASLabs’
lemma).

• Term Rewriting is the transformation of terms

Strategic Term Rewriting

5

• Term Rewriting is the transformation of terms
according to a set of rewrite rules of the form x ⇒ y

• Strategic means:

▫ The specification of a rewriting strategy (e.g. leftmost-

innermost) without affecting the rewriting rules

▫ Separation of concerns, reusability, and understandability

• Used to separate the individual conversion rules
from the strategy of applying them to the abstract
syntax terms

• Data refinement (or reification) by calculation strategy
[2, 3] consisting of inequations of the form:

Database Design by Calculation (1)

6

[2, 3] consisting of inequations of the form:

(read: “data type B implements, or refines data type A”)(read: “data type B implements, or refines data type A”)

• R: representation relation (injective and total);
• F: abstraction relation (surjective function).

F ⋅ R = idA

• This suggests that one may calculate implementations
from specifications:

Database Design by Calculation (2)

7

from specifications:

Spec = X ≤≤≤≤ X’ ≤≤≤≤ X’’ ≤≤≤≤ ... ≤≤≤≤ Impl

• The inequations represent convertion laws, e.g.

which are the basis for the rewriting rules applied by
VooDooM using Strategic Term Rewriting.

The VooDooM Tool (1)

8

• Uses Strategic Term Rewriting to apply the • Uses Strategic Term Rewriting to apply the
database design by calculation refinement laws
to VDM-SL source code

• Relies on Strafunski and SDF (Syntax Definition
Formalism) software bundles, and the DrIFT
tool

The VooDooM Tool (2)

9

1. Recognize a VDM-SL specification file and
convert it to an Abstract Syntax Tree (AST)convert it to an Abstract Syntax Tree (AST)

2. Transformation of the AST into its relational
equivalent, i.e. a refinement of the original model
using the following rewriting rules:

3. Output the transformed specification either as VDM-SL or SQL

The VooDooM Tool – Transformation (1)

10

Example:

1. Inlining and Recursion Removal (uses rec-elim)1. Inlining and Recursion Removal (uses rec-elim)

The VooDooM Tool – Transformation (2)

11

2. Desugaring (uses seq2index, set2fm and opt-elim)

3. Conversion to Relational (uses unconjoin, unpeither and

unnjoin)

4. Resugaring

The VooDooM Tool – SQL Translation

12

Conclusions and Future Work

• Conclusions:

▫ The VooDooM tool derives database SQL concrete

13

▫ The VooDooM tool derives database SQL concrete
implementations from arbitrarily complex (as far as
VDM-SL data constructors are concerned) formal
specifications, including recursive data types

▫ Promotes the view of database design as a special
case of data refinementcase of data refinement

• Future Work:

▫ Support the reverse process (relational to algebraic)

▫ Offer better support for VDM-SL invariants

References

• 1. C. Necco. Polytypic data processing. Master’s
Thesis, Facultad de Cs. Físico Matemáticas y

14

Thesis, Facultad de Cs. Físico Matemáticas y
Naturales, University of San Luis, Argentina, 2005.
(Submitted)

• [2] J.N. Oliveira. A reification calculus for model-
oriented software specification. Formal Aspects of
Computing, 2(1):1-23, April 1990.

• [3] J.N. Oliveira. Software reification using the SETS
calculus. In Proc. of the BCS FACS 5th Refinement
Workshop, Theory and Practice of Formal Software
Development, London, UK, pp. 140-171. Springer-
Verlag, 8-10 January 1992. (Invited Paper).

