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• Design a tool capable of calculating database 
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• Design a tool capable of calculating database 
schemas which infers SQL relational meta-data from 
abstract data models specified in VDM-SL formal 
modeling notation.
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Motivations

• The need for splitting software design in two 
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• The need for splitting software design in two 
steps [1]:

1. Formal Specification (mathematical 
representation of the software + analysis and 
validation);

2. Implementation (production of machine code).

Tim Berners Lee “The Great Unveiling” TED2009 Slide Set

2. Implementation (production of machine code).

• “Improve Practice Through Theory” (HASLabs’ 
lemma).



• Term Rewriting is the transformation of terms 

Strategic Term Rewriting
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• Term Rewriting is the transformation of terms 
according to a set of rewrite rules of the form x ⇒ y

• Strategic means:

▫ The specification of a rewriting strategy (e.g. leftmost-

innermost) without affecting the rewriting rules

▫ Separation of concerns, reusability, and understandability

• Used to separate the individual conversion rules 
from the strategy of applying them to the abstract 
syntax terms



• Data refinement (or reification) by calculation strategy 
[2, 3] consisting of inequations of the form:

Database Design by Calculation (1)
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[2, 3] consisting of inequations of the form:

(read: “data type B implements, or refines data type A”)(read: “data type B implements, or refines data type A”)

• R: representation relation (injective and total);
• F: abstraction relation (surjective function).

F ⋅ R = idA



• This suggests that one may calculate implementations 
from specifications:

Database Design by Calculation (2)

7

from specifications:

Spec = X ≤≤≤≤ X’ ≤≤≤≤ X’’ ≤≤≤≤ ... ≤≤≤≤ Impl

• The inequations represent convertion laws, e.g.

which are the basis for the rewriting rules applied by 
VooDooM using Strategic Term Rewriting.  



The VooDooM Tool (1)
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• Uses Strategic Term Rewriting to apply the • Uses Strategic Term Rewriting to apply the 
database design by calculation refinement laws 
to VDM-SL source code

• Relies on Strafunski and SDF (Syntax Definition 
Formalism) software bundles, and the DrIFT
tool



The VooDooM Tool (2)
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1. Recognize a VDM-SL specification file and 
convert it to an Abstract Syntax Tree (AST)convert it to an Abstract Syntax Tree (AST)

2. Transformation of the AST into its relational 
equivalent, i.e. a refinement of the original model 
using the following rewriting rules:

3. Output the transformed specification either as VDM-SL or SQL



The VooDooM Tool – Transformation (1)
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Example:

1. Inlining and Recursion Removal (uses rec-elim)1. Inlining and Recursion Removal (uses rec-elim)



The VooDooM Tool – Transformation (2)
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2. Desugaring (uses seq2index, set2fm and opt-elim)

3. Conversion to Relational (uses unconjoin, unpeither and 

unnjoin)

4. Resugaring



The VooDooM Tool – SQL Translation
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Conclusions and Future Work 

• Conclusions:

▫ The VooDooM tool derives database SQL concrete 
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▫ The VooDooM tool derives database SQL concrete 
implementations from arbitrarily complex (as far as 
VDM-SL data constructors are concerned) formal 
specifications, including recursive data types

▫ Promotes the view of database design as a special 
case of data refinementcase of data refinement

• Future Work:

▫ Support the reverse process (relational to algebraic)

▫ Offer better support for VDM-SL invariants
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