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Abstract

Tupling is a well-known transformation tactic to obtain new
efficient recursive functions by grouping some recursive func-
tions into a tuple. It may be applied to eliminate multiple
traversals over the common data structure. The major diffi-
culty in tupling transformation is to find what functions are
to be tupled and how to transform the tupled function into
an efficient one. Previous approaches to tupling transfor-
mation are essentially based on fold/unfold transformation.
Though general, they suffer from the high cost of keeping
track of function calls to avoid infinite unfolding, which pre-
vents them from being used in a compiler.

To remedy this situation, we propose a new method to
expose recursive structures in recursive definitions and show
how this structural information can be explored for calcu-
lating out efficient programs by means of tupling. Our new
tupling calculation algorithm can eliminate most of multiple
data traversals and is easy to be implemented.

1 Introduction

Tupling [Bir84, Chi93] is a well-known transformation tactic
to obtain new efficient recursive functions without multiple
traversals over the common data structure (or multiple data
traversals for short), which is achieved by grouping some
recursive functions into a tuple. As a typical example, con-
sider the function deepest, which finds a list of leaves that
are farthest away from the root of a given tree:

deepest (Leaf (a))
deepest (Node(l,r))

[a]

deepest(l), depth(l) > depth(r)

deepest(l) ++ deepest(r),
depth(l) = depth(r)

deepest(r), otherwise

0

1 + maz(depth(l), depth(r))

depth (Leaf (a))
depth (Node(l,r))

The infix binary function H concatenates two lists and the
function maz gives the maximum of the two arguments. Be-
ing concise, this definition is quite inefficient because deepest
and depth traverse over the same input tree, giving many
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repeated computations in computing the depth of subtrees.
It, however, can be improved with tupling transformation
by grouping deepest and depth to a new function (say dd),
ie. dd t = (deepest t, depth t), giving the following efficient
program.

deepest t = let (u,v) =ddtinu
dd (Leaf (a)) = ([a],0)
dd (Node(l,r)) = (dpl,1+dl), dl > dr
= (dpl +dpr,1+dl), di =dr
= (dpr,1+dr), otherwise

where (dpl,dl) = ddl
(dpr,dr) =ddr

The main problem in the tupling transformation is to
find what functions are to be tupled and how an efficient
definition for the tupled function is derived. Traditional
approaches [Pet87, PP91, Chi93] to solving this problem
are based on the well-known fold/unfold transformations
[BD77], using tupling analysis to discover an eureka tuple
and using fold/unfold transformation to derive an efficient
program for the tupled function. This is quite general but
comes at price. In the fold/unfold transformation, it has
to keep track of function calls and to use clever control to
avoid infinite unfolding. This process introduces substantial
cost and complexity, which is actually prevented from being
implemented in a real compiler of functional languages.

To remedy this situation, we turn to another transforma-
tion technique known as program calculation [MFP91, SF93,
MH95], which is based on the theory of Constructive Algo-
rithmics [Fok92]. Different from the previous fold/unfold
transformation whose emphasis is on the generality of trans-
formation process, program calculation deals with programs
in some specific recursive forms, such as catamorphism, ana-
morphism and hylomorphism [MFP91, TM95, HIT96b], and
performs transformation based on some local calculational
laws. Because of its simplicity of transformation process,
program calculation turns out to be easier to be imple-
mented.

This work is greatly inspired by the success of applying
the program calculation technique to the fusion transforma-
tion [GLJ93, LS95, TM95, HIT96b]. We would like to ex-
plore a further possibility to apply the technique of program
calculation to tupling transformation, which to the best of
our knowledge has never been examined. We are interested
in this exploration for two reasons. First, we believe that
tupling transformation tactic should be more practical to
be used in a compiler. Second, since tupling and fusion are
two most related transformation tactics [Chi95], it is quite



natural to study tupling transformation in the framework
where fusion transformation is studied.

In this paper, we demonstrate how to proceed tupling
transformation by means of program calculation. Our main
contributions are as follows.

e First, we propose a new tupling algorithm to remove
multiple data traversals in a program. It is applica-
ble to any lazy functional program. Two important
features of our tupling algorithm are:

— We identify a class of functions called tuplable
functions which are potentially suitable to be tu-
pled with other functions and enjoy many useful
transformation rules for tupling calculation.

— We calculate an efficient definition for the tupled
function in a rather cheap and mechanical way
rather than by the expensive fold/unfold trans-
formation,

e Second, our tupling algorithm is given in calculational
forms. Therefore, our tupling algorithm preserves the
advantages of transformation in calculational forms, as
we have seen in the discussion of shortcut deforesta-
tion in [GLJ93, TM95]. That is, our algorithm is very
general in that it can be applied to recursions over any
data structures other than lists, and our algorithm is
correct and is guaranteed to terminate.

e Third, our tupling algorithm can coexist well with the
shortcut deforestation. Both of them basically rely on
the manipulation over catamorphisms. Therefore, it is
natural to combine these two techniques in our frame-
work. In contrast, the previous study on this com-
bination based on fold/unfold transformation [Chi95]
requires more complicated control to avoid infinite un-
foldings in case fusion and tupling are applied simul-
taneously.

The organization of this paper is as follows. We begin by
reviewing in Section 2 the basic concepts of the constructive
algorithmics in order to explain the Mutu Tupling Theorem
which is the basis of our tupling algorithm. We then pro-
pose our main tupling theorem in Section 3. To prove our
main theorem, we first investigate on transformation prop-
erties of tuplable functions and find how to perform tupling
transformation for them in Section 4. And then we give our
tupling calculation algorithm in Section 5. Related work
and discussion are given in Section 6.

2 Mutu Tupling Theorem

Generally, tupling transformation is very complicated while
its termination is far from being trivial [Chi93]. The cal-
culational approach that will be taken here is less general,
but should be more practical. We don’t guarantee to re-
move multiple traversals over the same data structures by
all functions (indeed in a general program we could not hope
to do so), but we do allow all legal programs as input and
the transformed program will be expected to be made more
efficient. Basically, our tupling transformation is based on
a single simple rule, the Mutu Tupling Theorem [Fok89],
which is well-known in the community of Constructive Al-
gorithmics.

2.1 Constructive Algorithmics

To understand the Mutu Tupling Theorem, the basis of
our tupling algorithm, we should briefly review the previous
work [Hag87, MFP91, Fok92] on Constructive Algorithmics,
explaining the basic concepts and the notations that will be
used in the rest of this paper.

Functors

In Constructive Algorithmics, polynomial endofunctors are
used to capture the structure of data types, which are built
up only by the following four basic functors.

e The identity functor I on type X and its operation
on functions are defined as follows.

IX=X, If=f

e The constant functor !A on type X and its operation
on functions are defined as follows.

IAX=A, Af=id

where id stands for the identity function.

e The product X x Y of two types X and Y and its
operation to functions are defined as follows.

X xY = {(my |lzeX yeY}
(fxg) (@,y) = (fz,9y)

71 (a,b) = a

™2 (a,b) = b

(f2g)a = (fa, ga)

e The separated sum X + Y of two types X and YV
and its operation to functions are defined as follows.

X+Y = {1} xX U{2} xY
(f+9) (L) = (1, fz)

(f+9) 2y) = (2,99

(fvyg) (L) = fx

(fvg) Ly = gy

Although the product and the separated sum are defined
over two parameters, they can be naturally extended for n
parameters. For example, the separated sum over n pa-
rameters can be defined by X7_; X; = U, ({i} x X;) and
(S11 £2) Gyw) = G, @) for 1<) < m.

Data Types

Rather than being involved in theoretical study which can
be found in [Hag87, MFP91, Fok92], we illustrate by some
examples how data types can be captured by endofunctors.
In fact, from a common data type definition, an endofunctor
can be automatically derived to capture its structure [SF93].
As a concrete example, consider the data type of cons lists
with elements of type A, which is usually defined by!

List A = Nil | Cons(A, List A).

INote that for notational convenience, we sometimes use [] for Nil
and infix operator : for Cons. Thus, for example, z : xs stands for
Cons(z,zs) and [a] for Cons(a, Nil).



In our framework, we shall use the following endofunctor to
describe its recursive structure:

Fr,=1+14AxI

where 1 denotes the final object, corresponding to (). Be-
sides, we use ianA to denote the data constructor in List A:

ianA = Nil v Cons.

In fact, the List A is the least solution of X to the equation
X =inp,, (FL, X) as discussed in [Hag87]. The ing,
has its inverse, denoted by outr, , : List A — Fr, (List AS’,
which captures the data destructor of List A, i.e.,

outpLA = A\zs. case xs of
Nil — (1,());
Cons (a,as) = (2, (a,as)).

Another example is the data type of binary trees with
leaves of type A usually defined by

Tree A = Leaf A | Node (Tree A, Tree A).

The corresponding functor Frr, and data constructor inFTA
are:

Fr, ='A + I'x1I, inp,, = Leafv Node.

Catamorphisms

Catamorphisms [MFP91, SF93], one of the most important
concepts in Constructive Algorithmics, form a class of im-
portant recursive functions over a given data type. They
are the functions that promote through the type construc-
tors. For example, for the cons list, given e and @ , there
exists a unique catamorphism, say cata, satisfying the fol-
lowing equations.

cata [] = e
cata (x:xs) = z@ (cata xs)

In essence, this solution is a relabeling: it replaces every
occurrence of [] with e and every occurrence of : with @
in the cons list. Because of the uniqueness property of
catamorphisms (i.e., for this example ¢ and @ uniquely de-
termines a catamorphism over cons lists), we are likely to
use special braces to denote this catamorphism as cata =
(e v ®)r,,- In general, a catamorphism over any data
type captured by functor F is characterized by:

h=(¢)r =

With catamorphisms many functions can be defined. For
example, the function sum, which sums up all the elements
in a list, can be defined as (0 v plus])®.

hoinp = ¢o Fh.

Catamorphisms are efficient and manipulable: they are
efficient in the sense that they traverse over the input data
structure once; they are manipulable because they enjoy
many useful transformation properties [MFP91, SF93]. To
help readers to get used to the notation in this paper, we

2St;rict;ly speaking, Nil should be written as Nil(). In this paper,
the form of ¢ () will be simply denoted as t.
3When no ambiguity happens, we usually omit the subscript of F

in (¢Dr-

demonstrate how to inline sum = ([0 v plus]) into a familiar
program by the following calculation.

sum = (0 v plus))

{ catamorphism charaterization }
sumoinp, , = (0 v plus) o Fi, sum

{ ing, = (Nil v Cons), Fr, , f=1id+idx [ }
sumo (Nil v Cons) = (0 v plus) o (id + id X sum)

{ Laws for v, + and o }
(sum Nil) v (sumo Cons) = 0 v (plus o (id X sum))
= { bylawsof v }

sum Nil=0; sumo Cons = pluso (id X sum)
That is,
sum Nil = 0
sum (Cons(x,xs)) = plus(z, sum xs).

2.2 Mutual Recursions and Tupling

Just like that the fusion in calculational forms relies on a
single Acid Rain Theorem [TM95], our tupling algorithm
basically depends on the Mutu Tupling Theorem [Fok89,
Fok92].

Theorem 1 (Mutu Tupling)

foinp =¢oF(f 2g), goinp =v¢oF(f 4 g)
frg=0¢2¢hr

This theorem was originally devised for the purpose of
manipulating mutual recursions by turning them into sin-
gle catamorphisms. However, from the viewpoint of tupling
transformation, it provides a simple calculational rule. It
not only tells which functions should be tupled — f and g
should be tupled if they are mutually defined traversing over
the same data structure in a specific reqular way, but also
tells how to calculate out the definition for the tupled func-
tion — tupling ¢ and v within a catamorphism. Therefore,
a direct advantage of applying the Mutu Tupling Theorem
is that any possible multiple traversals over the same data
structure by f and g in the original program can be suc-
cessfully eliminated, leading to an efficient program. As an
example, recall the definition of deepest given in the intro-
duction, where deepest and depth are mutually defined and
traverse over the same input tree. We can apply the Mutu
Tupling Theorem to obtain an efficient version. First, we
rewrite them into the form as required in the theorem:

deepest o inpy, = ¢ o Fr,,, (deepest & depth)
where ¢ = ¢1 v ¢2
¢1 a = [a]

o2 ((t, D), (tr,hr)) = t, if hl > hr
= tl++tr, if hl = hr
= tr, otherwise

depth oinp, = o Fr,,, (deepest ~ depth)
where ¢ =11 v 12

1/)1 a = 0
Yo ((t, hl), (tr,hr)) = 1 + max(hl, hr)

Note that Fr,,,, f =id+ f x f and inp,, , = Leaf v Node.

Now applying the Mutu Tupling Theorem soon gives the

following efficient linear recursion:

deepest = w1 o (deepest ~ depth) = m1 0 (¢ 2 Y)Dr,, ,

which can be inlined to the efficient program as given in the
introduction with some simplification.
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Figure 1. The language

3 A Practical Tupling Theorem

The Mutu Tupling Theorem is attractive in the sense that
tupling transformation turns out to be a simple symbolic
manipulation, as seen in its application to deepest in Sec-
tion 2. It, however, still far from being practical. The most
serious problem is that the functions to be tupled must be
defined in a specified restrictive way, which cannot be ac-
cepted in our functional programming. Nevertheless, the
Mutu Tupling Theorem actually guides us to give our main
tupling theorem, which can be applied to any lazy functional
program for eliminating multiple data traversals.

3.1 Programs

To demonstrate our techniques, we use the lazy functional
language given in Figure 1. A program is a sequence of
function definitions. Functions may be non-recursive or re-
cursive, and recursive functions are defined in a pattern-
matching style. This language is nothing special except that
we assume that our recursive functions are inductively de-
fined over a single (not multiple) recursive parameter and
this recursive parameter is (without loss of generality) the
first parameter of the function, though we expect our algo-
rithm to have a natural extension to the more general case.
To enhence readability, we take liberty to use some familiar
syntactic sugars, such as the infix notation, function com-
position and even case analysis structure as in the definition
of deepest. In addition, we assume that the renaming has
been done whenever there is any danger of name-conflicts.

As an example, consider the following program in our
language naively solving the well-known repsort problem
[Bir84]: transforming a binary tree into one of the same
shape in which the leaf values have to be replaced with those
of the original tree but arranged in increasing order.

repsort t = rep t (sort (leaves t []))

where

rep (Leaf (n)) ms = Leaf (head ms)

rep (Node(l,r)) ms = Node(rep | (take (size l) ms),
rep v (drop (size ) ms))

n:as

s = leaves 1 (leaves r xs)

leaves (Leaf (n)) xs
leaves (Node(l,r)) x
size (Leaf (n)) =1
size (Node(l,r)) = plus(size I, size 1)

In this program the tree is traversed a first time in order
to discover and sort the list of leaf values. The tree is then
traversed a second time with function rep. This function
selects appropriate thunks of the sorted sequence in order
to pass them on to the left and right subtrees (take k x
takes the first k elements from list x and drop k x drops
the first k elements from list x). At each step, the number
of values selected depends on the size of the left subtree,
so implicit in the algorithm is a third traversal determining
sizes. This is a O(n*) algorithm in the worst case, n being
the number of leaves.

This problem is of interest because there are efficient but
non-obvious programs as given in [Bir84, Tak87]. We shall
adopt it as our running example and demonstrate how our
tupling calculation can provide a systematic way to derive
a similar efficient version without multiple data traversals,
while only informal studies were given before.

3.2 Main Theorem

To propose our main theorem, we should be more precise
about multiple data traversals that are expected to be re-
moved by our tupling calculation.

Definition 1 (Multiple Data Traversal) An expression
e is said to have multiple data traversals if there exist at
least two occurrences of recursive calls like:

fp and f'p

where p and p’ are pattern expressions? and p is equal to or
a sub-pattern of p’. |

The intuitive observation behind this definition is that
the common data p would be traversed twice; once by f and
again by f'. Particularly, if f is the same as f’, we usually
say that the expression e has redundant recursive calls to f.
For example, the following two expressions

rep t (sort (leaves t []))
Node (rep 1 (take (size 1) ms), rep v (drop (size 1) ms))

in our running program have multiple data traversals as un-
derlined.

1A pattern expression is an expression constructed by variables
and data constructors, looking like a pattern. That’s why we’d like
to use p to represent a pattern expression.



We don’t guarantee to eliminate multiple data traversals
by any functions in a program, because it is impossible to
tuple any two arbitrary recursive functions. Therefore some
restrictions on recursions should be placed. To this end,
we shall define our tuplable functions that are potentially
tuplable with other functions and enjoy many useful trans-
formation properties (see Section 4) for calculating efficient
versions for themselves and for a tuple of themselves.

Definition 2 (Tuplable Function) Assume that fi, -,
fm are mutually defined by equations:

fipij Us1 * " Usn, = €ij, (Z:L,mz ]:Lall)

The fi,---, fm are called tuplable (recursive) functions, if
for every occurrence of recursive calls to fi,---, f, in all
ei;’'s,say fr e e1 -+ en,, € is a sub-pattern of p;;. O

The restriction we impose on the definition of tuplable
functions is that the recursive parameter of the tuplable
functions should be sirictly decreasing (i.e., a sub-pattern)
across successive recursive calls to themselves. For example,
it is easy to check the two equations for the definition of rep
and see that rep is a tuplable function; e.g., for the second
equation:

rep (Node (L,r)) ms = Node(rep | (take (size I) ms),
rep t (drop (size l) ms))

the parameters of all the recursive calls to rep in the RHS
as underlined are sub-patterns of Node(l,r), the pattern in
the LHS. But it excludes the function like foo defined by

foo(x1 : x2: Ts) = x1 + foo (2 * xo : xs) + foo(x1 : x5)

because two underlined parts are not sub-patterns of (z: :
T2 :XS).

Though restricted, tuplable functions cover most of in-
tersting recursive functions in our usual functional program-
ming. As a matter of fact, they cover so-called mutumor-
phisms [Fok89, Fok92] which are considered to be the most
general and powerful recursive form over data structures,
including catamorphisms and paramorphisms (primitive re-
cursive functions) [Mee92] as their special cases.

Now we are ready to give our main theorem.

Theorem 2 (Main) All multiple data traversals by tup-
lable functions in a program can be eliminated by tupling
calculation. ]

In other words, our main theorem says that given a pro-
gram we can perform tupling calculation to obtain another
equivalent version without multiple data traversals by tupla-
ble functions. We will prove the theorem later by proposing
our tupling calculation algorithm. Returning to our running
example, we can calculate the following efficient version for
repsort in which all multiple traversals over the tree struc-
ture by tuplable functions rep, leaves and size are eliminated.

repsortt = let (t11,t12) =gg, t
in t11 (SO’I’t (t12 []))

where

go, ¢ = et ((r,5),1) = g5, ¢ in (1,1)
gg, (Leaf (n)) = ((Ams. Leaf (head ms),1), A\xs. n : xs)
g6, (Node(l,7)) = let ((rl,sl),ll) = g'g}l l

((rr,sr),lr) = 9o, T
in ((Ams. Node(rl (take sl ms),
rr (drop sl ms)),
plus (sl sr)),
Azs. (Il (Ir zs)))

4 Manipulating Tuplable Functions

Before addressing the proof of the main theorem, we should
investigate transformation properties of tuplable functions
in order to manipulate them.

4.1 Standardizing Tuplable Functions into Manip-
ulable Form

First of all, we standardize tuplable functions into a ma-
nipulable form by making full use of functors in capturing
recursive calls to tuplable functions in their definitions.

Lemma 3 (Standardizing) Every tuplable function f can
be transformed into the following form:

f=¢o(Fhooutp & F’hoouty » --- & F'hoouty) (1)

where

() h=fi s ofagea &g, whee fi
denote functions mutually defined with f and one of
them is f, and gi1,---,gm denote tuplable functions
in the definition of f while traversing over the same
recursive data as f;

(ii) F™ = F" ! o F and out®% = F" outr o out}™;
(iii) I is a finite natural number.

Proof Sketch: Intuitively, out can be considered as un-
folding i steps of input data, and F'f o outy can be con-
sidered as mapping f to all recursive parts of the input data
that has been unfolded i steps. Therefore, this lemma reads
that one can extract all the recursive calls to the tuplable
functions in the definition of f and embed them in the ex-
pression
Fhooutp & F2hoout% AL A Flhooutlp.

According to the restriction in the definitions of tuplable
functions that the parameters of recursive calls to mutually-
defined functions, fi,---, fn, should be sub-parts of input,
it soon follows that every recursive calls to f; in the RHS
can be embedded in a term

Fi(fi o - & fu)oouts,

for j € {1,2,--,1}, where [ denotes the maximum number
of unfolding steps of the input data for all recursive calls to
fi,+-+, fn in the definition. Similarly, the recursive calls to
other tuplable functions, say ¢1, -+, gm, which are on the
same data as f can be embedded in an term

Fi(gi & - 2 gn)oout),



for j € {1,2,---,1}°. To summarize, all recursive calls on

the same data as f in the original definition body can be

covered by the expression °
Fhooutp & F*hoouth & --- & Flho outlF.

Thus f can be transformed into the form of (1) by using ¢

to combine recursive calls with other parts forming the body
of the original definition. m|

As an example, consider how to standardize the defini-
tion of tuplable function rep into the form of (1). First,
we move the non-recursive parameters from the LHS to the
RHS by lambda abstraction:

rep (Leaf (n)) = Ams. Leaf (head ms) (2)
rep (Node(l,7)) = Ams. Node(rep | (take (size ) ms)(3)
rep v (drop (size l) ms))

From the patterns in the LHS, we see that the input data
need at most one step of unfolding, thus we have [ = 1. The
Standardizing Lemma tells us that rep can be described in
the following form:

rep = ¢rep o (Frh o outp;) (4)

Here, h should be a tuple of two parts; all functions mutually
defined with rep and all other tuplable functions traversing
over the same tree as rep does, and thus h = rep & size.
Let’s see how to calculate ¢rep. Assume drep = ¢1 v ¢2.
rep (Leaf (n)) = { Equation (4) }
(¢rep o (Frhooutp,)) (Leaf (n))
= { Definition of outp, }
(¢rep o Frh) (1,n)
= {Fr f=id+fxf}
prep (1,1)
= { Assumption }
¢1 n
{ Equation (4) }
(¢prep o (Frhooutr,)) (Node(l, 1))
= { Definition of outp, }
(¢rep o Frh) (2,(1,1))
= {Fr f=id+fxf}
¢rep (2,(h L,k 7))
= { Assumption }
g2 (h1hr)
= { Definition of h }
@2 ((rep & size) I, (rep & size) r)
= { Expansion }
o2((repl, sizel), (repr, sizer))

rep (Node (I,1))

Comparing the above with Equations (2) and (3) gives:

$1n = Ams. Leaf (head ms)
¢2 ((rl,sl), (rr,sr)) = Ams. Node(rl (take sl ms),
rr (drop sl ms)).

5Genera11y it is possible for j < 0. But this case can be easily
removed through simple unfoldings of g1, -, g, because g1, , gm
are tuplable functions.

61f these data are applied by some non-tuplable function, say k e
where k is a non-tuplable function, we insert the special tuplable
function id = (ing)F, identity function, between them as k (id e).

In fact, the above standardizing procedure can be made
automatic without much difficulty, although the exact algo-
rithm is omitted here. Below are some other examples.

o Fr leaves o out pp,
leaves = (ANATs.n: xs) v
(A, r). xzs. 1l (rzs))
size = (gize © Fr sizeo outr,
where ¢, =17 plus

leaves = Poapes

where

An example that needs unfolding of input data more than
one step is the naive definition for fib function over the Nat-
ural Numbers (see Section 4.4).

4.2 Calculating Tuplable Functions

The main advantage we take from the above standardization
process is that tuplable functions become manipulable.

Figure 2 gives some useful transformation rules for ma-
nipulating tuplable functions in the form of (1). Rule (R1)
shows how to increase [, Rule (R2) shows how to add a new
function hn41 to k', and Rule (R3) shows how to exchange
positions of functions inside h. Furthermore, Rule (R4) gen-
eralizes the Mutu Tupling Theorem.

In the rest of this section, we shall show how to improve
tuplable functions through the elimination of multiple data
traversals by calculation. Let f be a tuplable function and x
be the data over which f traverses. Take a look at a tuplable
function f in our standard form:

f=¢o(Fhoouty 2 Fhooutt & ... & F'hoouth).
There are two possibilities that the definition may have mul-
tiple traversals over x:

(a) his a tuple of several tuplable functions some of which
are different from f. In this case, these tuplable func-
tions traverse over the same x as f.

(b) 1> 1. In this case, the computation of Fh' o out} po-
tentially covers that of F**'hoout';" (i.e., redundant
recursive calls).

Therefore, to remove multiple data traversals of x in the
definition of f requires us to find a suitable way to remove
these two possibilities.

To remove the possibility (a), we derive from f a new
tuplable function Amq.. It tuples all tuplable functions that
traverse over the same data structures as f, including f as
part of its computation, i.e.,

f:Hohma:l:

where II denotes a projection function” . To do so, assuming
that h = f1 & --- & fI, wereexpress every tuplable function
in h into our standard form:

fl =¢io(Fh;ooutr & F?h;0outh & -+ & Flih;o outllé)
Repeat this procedure for the new h; until we find

Pmaz =f1 8 - o fin ..o fl

"We define a projection function as an expression built by the
projections w;s, the identity function id, the function composition o
and the product X.




f=¢o(Fhooutr & --- & F'hoouth) (R1)
f=(po(m 2 - 2m))o(Fhoouty & - & Flhooutl, 2 Fl*+1h o out’}")
f=¢o(F(h12 - 2hy)ooutr & --- 8 Fl(hy & ... & hy,) 0 outh) (R2)
f = (po(FIIx---x F'II)) o (FH o outp & --- & F'H o outh)
whereHzmA---ATrn,H:hlA---AhnAhn_H
f=¢0(F(h & ha)ooutr & - & Fl(hy & h) o outl) ®3)
f = (¢po(Fexx---x Flex)) o (F(hs & hi)ooutr & --- & F'(hy & h1) o outh)
where ez (z,y) = (y, )
f = ¢o(F(f2g)ooutr o FX(f 5 g)ooulr & - 5 F(f & g)o outly)
g = Yo(F(fag)ooutp & F*(f 2 g)ooutp & --- & F'(f & g)ooutl) (R4)
feg=(p2)o(F(f2g)ooutr 2 F*(f 2 g)ooutp & -+ & FI(f & g) o outly)

Figure 2. Basic Rules for Manipulating Tuplable Functions

covering all functions in h’s part of each f;s definition.

Now we may assume that f = m; 0 hpmqee for some 7. By
Rule (R1), (R2) and (R3), we adapt each definition of f; to
the form of

fi = ¢ o (Fhmax 0 0utr & F?hpmaz 0 outs & --. &
Flmazp, o outlFm”).

According to the generalized Mutu Tupling Theorem (i.e.,
Rule (R4)), we can tuple all of them and obtain:

hmaz = ¢ o (Fhmam [¢] outF AN
F?hopas 0 outh &
. A

Flmaehy 0 0 outlyes)

where ¢ = ¢ & -+ & .
After solving (a), we are able to deal with (b) by intro-
ducing lmez — 1 new functions ui, -, w

maz—1*

Uy
U2

Fhmaz ooutp
Fuq ooutp

Ulpan—1 = Fuy, . —200utp
It follows from the later proof that

hmaz:¢°noF(hmazAulA"'A’IM )OO’ILtF (5)

maz—1

where n = Fmqy & -+ &2 Frmy, ..
Theorem, we can easily derive that

By the Mutu Tupling

hma:l: Aup b o b Ulpaz—1

=(¢ons Fm & - & Fm,, ., 1)F.
Therefore, f is transformed to

f=(miom)o(ponas Fm & .- & Fm, . 1]r

a composition of a projection function and a catamorphism.

Since both projection functions and catamorphisms con-
tain no multiple data traversals of the input data, we come
to a new version of f without multiple data traversals over
the input.

Now we return to prove Equation (5) by the following
calculation.

hmam:¢onoF(hmazAulA
{ Definition of n }
hmaz = ¢po (Fm & --- & Fmy, . )o
F(hmaz 2u1 & -+ 2wy, —1)0outr
{ A
hma:(::d)o((FWloF(hma:l:AulA
RN

Ay, o _1)ooutp

T )

(Flmas

) o outr
{ Functor F and projection functions m;’s }
Pmaz = d) o (Fhma:b &

AN

o F(hmaz ® u1 2+ 2 Ulpay—1))

Fuy,,,.—1)0coutp

{21

hma:ﬂ = ¢ o (Fhmarc o OUtF AL FUlmam_l o Outp)
{ Expanding the definitions of u;’s }

True

In summary, we have the following theorem.

Theorem 4 (Optimizing Tuplable Function) Let f be
a tuplable function and z be the data over which f traverses.
f can be calculated into an efficient version in the form of the
composition of a projection function and a catamorphism,
where multiple traversals over = by tuplable functions are
eliminated. O

To make our idea be more concrete, we apply the above
algorithm for calculating an efficient version of the tuplable
function rep. Recall that we have reached the point where

rep
size

¢rep o Fr(rep & size) o outry,
¢size © Frr size o outpy.

We then know that hpmq. is Tep 2 size for this case. To find
solution t0 Amaz, we use Rule (R2) for adapting size to the
form so that the (generalized) Mutu Tupling Theorem can
be applied:

sz = size © Frma o Fr (rep & size) o outry .
It follows from the Mutu Tupling Theorem that
Tep = T 0 ([¢T6p o (¢size o FTW?)DFT :



4.3 Tupling Tuplable Functions

Tuplable functions can be optimized by calculation as shown
in Theorem 4, resulting in a form of composition of a projec-
tion function with a catamorphism. The tuplable functions
in this form are suitable to be tupled among each other.
That is, tupling these tuplable functions will give a tupla-
ble function in this form again, as stated in the following
theorem.

Theorem 5 (Tupling Tuplable Functions) Let
fi=Tio(¢dr, i=1,---,n

be n tuplable functions where II; stands for a projection
function. Then,

fra oo fu=To(4)r

where II =1I; x-- - xIL, and ¢ = p10Fm & -+ & ¢p,0Fm,.

O

4.4 Another Example

In this section, we consider a classical example often used
to illustrate the super-linear speedup achieved by the tradi-
tional tupling with the invention of a tuple of two functions.
We shall demonstrate that such speedup can be obtained
mechanically by our calculation over tuplable functions.

A naive definition of the fibonacci function is:

Zero
Succ(Zero)
plus(fib(Suce(n)), fib(n))

where fib is a recursion over the natural number data type:

fib Zero
fib (Succ(Zero))
fib (Suce(Suce(n)))

N = Zero | Succ(N)
which is defined by the functor Fi:
Fy=11+41.

Obviously, this definition gives an inefficient exponential al-
gorithm because of many redundant recursive calls to fib.
Checking that fib is a tuplable function, we soon know
that all redundant recursive calls to fib can be removed. To
do so, as the first step, we standardize the definition. The
LHS of the definition of fib tells us that we need at most
two steps of unfolding of its input. Therefore, according to
Lemma 3, fib should be standardized to the following.

fib= ¢ o (Fxfibo outpy 2 F}fibo outy,)

Noting that

Fy =11 +1

F% =114+ M+

outpy, = Ax. case z of Zero— (1,())
Succ(n) — (2,n)

outp,, = Az.casez of Zero— (1,())

Succ(n) —
(2, case n of Zero— (1,())
Suce(n') = (2,n'))

we replace them and get
fib= ¢ o (Az. case z of Zero — ((1,()),(1,()))

Succ(n) —

(2, fibn),
(2, case n of Zero — (1,())
Suce(n') — (2, fibn')))

On the other hand, note that the original definition of fib can
be transformed into the following using the case structure:

fib = Az. case z of Zero — Zero
Suce(n) —
case n of Zero — Succ(Zero)
Suce(n') — plus(fibn, fibn').

Matching the above two definitions of fib gives the definition
for ¢:

), (1,0)) = Zero
f1),2,9) =
case y' of (1,()) — Succ(Zero)

(2, f2) = plus(f1, f2).

¢ = Ma,y). case (z,y) of

—~

Now according to Theorem 4, we get the result of
fiv=mo(po(Fnm & Fyma) & Fnmi)ry .-

A little simplification and inlining of the catamorphism will
lead to the following efficient linear program:

fibn = =z
where (z,9) = f' n
£ zero = (Zero,(L()
f' (Suce(n)) = (casey’ of (1,()) = Succ(Zero)
(2, f2) = plus(f1, f2),
(Qa fl))

where (f1,y) = f' n

in which all redundant recursive calls to fib due to multiple
traversals of the input have been successfully eliminated.

5 Tupling Calculation Algorithm

We are now ready to prove our main theorem given in Sec-
tion 3.2. We shall propose a tupling calculation algorithm
which can eliminate all multiple data traversals by tuplable
functions by means of calculation.

5.1 The Algorithm

Our tupling calculation algorithm has been summarized in
Figure 5. It starts with the function to be optimized, aim-
ing to attain a new version from it such that there are no
multiple data traversals by any two tuplable functions.

If the function to be optimized is a tuplable function,
this is easy; just applying Theorem 4 to its definition to
turn it into a composition of a projection function and a
catamorphism. Again we should remember to optimize the
function inside the catamorphism.

Otherwise, the function to be optimized is a non-recursive
function, i.e.,

fpvs, -+ Us,1 =€



Tupling Calculation Algorithm 7:

1. Start with the function to be optimized.
2. If the function to be optimized has been done, then return.

3. If the function to be optimized is a tuplable function, according to Theorem 4 we can perform tupling
calculation to turn it into the form of II o (¢]) where II denotes a projection function. Then, apply 7 for
optimizing function ¢.

4. If the function to be optimized is a non-tuplable function, for each equation

fpus, v, =e
select out all calls to recursive functions in the form of f' €’ in e and classify them into two sets: C; for the
calls to non-tuplable functions; C» for the calls to tuplable functions.

e For each function in Cy, if it has not been optimized, apply T for its optimization.

e For each function in Cs, if it has not been optimized, apply 7 for its optimization. We then group
recursive functions in Cz; in each group functions are applied to the same expression. Let G1,---,G, be

ggi = ¢gi1 A ...
turn the original equation into:

.fp’Usl

groups we have got. For every group G; = {¢i1 €i, -, gin; €i}, we can calculate an efficient version for
A gin,; according to Theorem 5. Let ¢;1,---

vs,, = let (tu, - tin,) =gg, €1

(trlv"'7trnr) = 96, €r

in e[gijei = ti, fori=1,---;randj=1,---,n]

,tin; be fresh variables for each group, we

Figure 3. The Tupling Calculational Algorithm

where e contains no occurrences of f, or is a recursive but
not a tuplable function, i.e.,
fpz Vsp " Vs, = €, (1/: 17"'7")'

We then step to eliminate multiple data traversals by tupla-
ble functions in e (or ;). This is achieved by optimizing all
non-tuplable functions used in e (i.e., the functions in the
set C1) as well as all tuplable functions (i.e., the functions in
the set C2), and then grouping optimized tuplable functions
in Cy. Several remarks should be made on this grouping
process.

First, for the sake of simplicity we have assumed that all
expressions being applied by the tuplable functions in C» are
not overlapped. In other words, for any two calls fi e; and
f2e2 in Ca, e1 is not a subpattern of e» and vice versa. For
example, we do not allow the two calls of

fi xs, fo (x:xs)

because xs is a subpattern of x : xs. But this restriction can
be removed. Recalling that any tuplable function f can be
turned into Il o f’ where f' = (#)r according to Theorem
4, for a call like f (ing (e1,---,en)), we can promote the
tuplable function f into the expression ing (e1,---,en), i.e.,

f (ZnF (613"'5671)) :H(¢(Ff, (61,-~~,6n)))

distributing f' to some e;’s by F.

Second, thanks to the above assumption, we are able to
restrict ourselves to the tupling of the functions that are
applied to the same expressions in C», as shown in the algo-
rithm.

To see how the algorithm works practically, consider our
running example repsort. We start with optimizing repsort.
As it is not a recursive definition, we go to Step 2. For the
equation

repsort t = rep t (sort(leaves t))

we select out all calls to recursive functions in RHS and
get two recursive calls, namely rep t and leaves t. As they
are tuplable functions, we then have C; = {} and C, =
{rep t, leaves t}.

Now we process on C». First, we should optimize all
tuplable functions, rep and leaves, that appear in C>. To
optimize rep, we go to Step 3. As shown in Section 4.2, we
have got the following solution for rep (after a straightfor-
ward simplification):

rep m o (61 v 65
ot n (Ams. Leaf (head ms), 1)
o5 ((rl, sl), (rr,sr)) = (Ams. Node(rl (take sl ms),
rr (drop sl ms)),
plus (sl, sr))

Here we need to optimize ¢} and ¢, in order to get the final
efficient version for rep. We don’t address this optimization
here, which is similar to repsort. In fact, if take and drop
are defined as tuplable functions, we can tuple them when
optimizing ¢5. So much for rep. Similarly, we can optimize
leaves and have the result given in Section 4.2. Next, we
should group recursive calls in C>. Here we only have a single
group G1 = {rep t,leaves t} in which all tuplable functions
are applied to the same . So we define gg, = rep & leaves.



Table 1. Experimental Results (repsort)

Input Size Time (secs/10 times) Allocations (bytes)
(leaves no.) | before tupling | after tupling | before tupling | after tupling
800 0.08 0.06 95,920 157,544
1,600 0.18 0.08 198,100 313,740
3,200 0.38 0.18 410,068 626,060
6,400 0.84 0.30 849,364 1,250,700
12,800 1.76 0.58 1,758,916 2,500,136

According to Theorem 5, we can calculate that

(71'1 X Zd) o
(((¢1 v ¢5) 0 Frm1) & (reapes © Frm2)) pr

By introducing two new variables ¢11 and t12, we thus have
obtained our result:

961

let (t11,t12) =gg, ¢
in ¢y, (sort (ti2 [])).

repsort t

Summarizing all above, inlining the definition of gg, and a
little simplification will lead to the familiar program given
in Section 3.2, where all multiple traversals over trees have
been successfully eliminated, which is as efficient as those in
[Bir84, Tak87].

5.2 Properties of the Algorithm

Our tupling calculational algorithm enjoys many important
properties. First, our algorithm is correct. This follows
from the fact that each step of our transformation is based
on meaning-preserved transformation rules and theorems.

Second, our algorithm terminates. This is because (i) the
number of functions to be optimized by our algorithm is lim-
ited for a given program. Basically, our algorithm optimizes
those functions which are used directly or indirectly by the
main function, and (ii) each application of transformation
rules in the algorithm terminates; e.g., the two significant
transformations based on Theorem 4 and 5 terminate as
easily verified.

Third, our algorithm guarantees that all multiple data
traversals by tuplable function can be eliminated. It expects
spectacular efficiency improvement under the lazy evalua-
tion, in the sense that the new program obtained from the
algorithm is faster than the original. But this speedup comes
at the price of using some extra memory for tupling and with
an assumption of existence of an efficient implementation of
tuple.

The most significant speedup attained from our tupling
calculation algorithm is due to the removal of all redundant
recursive calls to tuplable functions in a program. Take a
look at the examples in this paper. Our algorithm:

e climinates the redundant recursive calls to depth in
deepest, giving a linear algorithm from the original
quadratic one;

e eliminates the redundant recursive calls to fib, giving
a linear algorithm from the original exponential one;

e eliminates the redundant recursive calls to size in rep,
giving a linear rep from the original quadratic one.
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To be more concrete, we evaluate two versions of repsort
before and after tupling transformation in this paper using
the Glasgow Haskell compiler (version ghc-0.29). Table 1
shows the experimental results. The input to the programs
for our testing are balanced binary trees, thus the number
of their leaves can be used as a measure of input size. The
execution time and the allocations are obtained using the
profiling mechanism provided by the Glasgow Haskell Com-
piler. It can be seen that with the size of the input tree
going larger the new version obtained by our tupling trans-
formation becomes much more faster than the original one,
but with about 50% additional allocations.

It is worth noting that by the ordinary implementation of
the tuple data structure [Pey88] our algorithm do not guar-
antee spectacular efficiency improvements. This is a com-
mon problem among all existing tupling methods. Consider
for example the following average function:

sumzx /| lengthx
where

sum = foldr (+) 0
length = foldr (AxAy.1+1y) 0

average x

which can be transformed into the following by our algo-
rithm:

average’ x =let (s,1) = sl x in s/l
where sl = foldr (AzA(s,l).(x + 5,1+ 1)) (0,0).

Obviously, average’wins over average in that it reduces twice
traversals of the input list by sum and length respectively
into once. On the other hand it also increases time cost
(besides space cost) for unpacking and packing a pair when
sl traverses over z. If the cost is bigger than what we gain
by tupling transformation, the transformed program will be
slower than the original. The average indeed gives such an
example.

We will not be involved in solving this problem in this
paper. It would be interesting to see that average should
lead to efficiency improvement (in time) under the assump-
tion that the program

(¢ o Fm1 2 ¢ o Frms))

can be more efficiently implemented than

(@Dr 2 (Dr.

This assumption requires an efficient implementation of tu-
ple, avoiding the cost for packing and unpacking of the tu-
pled value.



6 Related Work and Discussion

The use of generic control structures which capture patterns
of recursions in a uniform way is of great significance in
program transformation and optimization [MFP91, Fok92,
SF93, TM95]. Our work is much related to these studies. In
particular, our work was greatly inspired by the success of
applying this approach to fusion transformation as studied
in [SF93, GLJ93, LS95, TM95].

We made the first attempt to apply this calculational
approach to the tupling transformation. Previous work, as
intensively studied by Chin [Chi93], tries to tuple arbitrary
functions by fold/unfold transformations. In spite of its gen-
erality, it has to keep track of all the function calls and devise
clever control to avoid infinite unfolding, resulting in high
runtime cost which prevents it from being employed in a real
compiler system. We follow the experience of work of fusion
in calculational forms [TM95, HIT96b] and base our tupling
theorem on a simple calculational rule: the Mutu Tupling
Theorem. We define a class of tuplable functions which is
more general than Chin’s TO Class[Chi93] in that we allow
the parameters other than the recursive one to be arbitrary.
Chin needs such restriction in order to guarantee the ter-
mination of fold/unfold transformation, while termination
is not a problem in our approach. In [Chi93], Chin focused
on the tupling analysis to find what functions should be tu-
pled but he didn’t show how the efficient program can be
obtained in a more systematic way. In sharp contrast, we
propose a concrete tupling algorithm to calculate efficient
version eliminating multiple data traversals. Though being
simple and less general than Chin’s, our tupling transfor-
mation, as demonstrated, can be applied to improve a wide
class of functions. More important, our algorithm should be
easily implemented, which promises to be used in a practical
compiler.

Tupling and fusion are two much related transformations
for improving functional programs. It is worth noting that
our tupling algorithm can well coexist with fusion under
the transformation in calculational form. Our tupling al-
gorithm improves the recursion by constructing a catamor-
phism (Theorem 4), making ease for fusion transformation.
A relevant study can be found in [HIT96a] where tupling
and fusion are used together to derive list homomorphisms
(i.e., catamorphisms over append lists).

Elimination of multiple traversals over data structures
has been studied for a long time. Our work is related to
these works. Bird [Bir84] suggested the use of circular pro-
grams. Takeichi [Tak87] used a different technique called
lambda hoisting with introduction of common higher order
functions. In particular, we are much influenced by Pet-
torossi’s work [Pet87] of using lambda abstraction in con-
junction with the tupling tactic. However, the transfor-
mations in the previous work require more or less human-
insights, which are hard to be made automatic. Other re-
lated work includes memoization [Mic68, Hug85], tabulation
[Bir80, Coh83, CH95] and incremental algorithms [Liu96].

All transformation algorithms introduced in this paper
have been implemented in a rapid prototyped way. It is
completely mechanical and does not rely on heuristics. Al-
though we have to wait for the detailed experimental results
to say that this system is effective for practical programs,
we are absolutely convinced that our calculational approach
to tupling transformation makes a good progress in code op-
timization of functional programs. In addition, our tupling
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calculational transformation is expected to be added to the
HYLO system [OHIT97], a calculational system for improv-
ing functional programs, which is now under development
in the University of Tokyo.
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