
Variations on an Alloy-centric

Tool-Chain in Verifying a

Journaled File System Model

Authors: Miguel A. Ferreira and

 José N. Oliveira

Presented by: Carlos Eduardo Silva

Introduction

• Grand
Challenge(GC)

• Verified File System
(VFS):

▫ Verified subset of

POSIX suitable for
flash-memory hardware
with strict fault-tolerant
requirements to be used
by forthcoming NASA’s
JPL missions.

Introduction

• Tool-chain:
▫ Promote incremental development and verification of

specifications;

▫ Be agile enough to encourage users to verify even the smallest
unit of their specifications;

▫ Be capable of producing immediate feedback on the problems
unveiled;

▫ Be capable of performing fully automated proofs;

▫ Be amenable to automatic code generation.

• Presented in M. A. Ferreira and J.N. Oliveira - An integrated formal
methods tool-chain and its application in verifying a file system model. In
Oliveira and Woodcock.

• This paper contribution is towards catering for refinement proofs.

Introduction

• Refinement of:

▫ The file store model

 Addition of a journaling mechanism (higher
performance and reliability)

▫ The delete operation

Tool-Chain

• Relational algebra
▫ Pointfree notation
▫ Pen and paper proof strategy

• Alloy
▫ Model Checker to generate uninterpreted,

unexpected counter examples

• VDMTools
▫ Interpreter for semantically meaningful

animation and testing

• HOL
▫ Theorem prover (overture proof obligations

system)

Tool-Chain

• Satisfiability

Tool-Chain

o Refinement Proofs
• No subjective user

requirements
• Rendering execution and

animation unnecessary
• Remove VDM++

• Problems sewing Alloy to
HOL

Tool-Chain

o Simplified Version
• PF-calculation less error

prone
• Difficult steps (lemmas)

are model-checked in
Alloy

Journaled file system

Journaled file system

• Backlog of the operations (journal)

▫ Rebuild meta-data as before the fault

▫ Added complexity to the model and invariant

• File Store

▫ Finite and univocal (simple) relation between
paths and files

▫ fileStore is depicted as relation R

▫ Path is defined by K

▫ File is defined by D

Journaled file system

• Data Structures

▫ FI (Flash Index)

▫ J (Journal – Sequence of addresses)

▫ RI (RAM Index)

▫ FS (Flash Store)

Journaled file system

• A – Memory addresses

• D+1 – Maybe data or DEL mark (1)

• K×(D+1) – Pairs of keys and maybe values

Abstraction Invariant

Delete Operation

Post-FS_DeleteFileDir_Fstore(S,R’,R) R’ = R · Ф (∉ 𝑆)

S – paths to be deleted
Ф - correflexive relation associated to predicate 𝑥 ∉ 𝑆

Not covering:

• Wear levelling
• Power loss recovery

Conclusions

• Refinement steps
▫ Can be carried out in a shorter, reduced life-cycle

• Added model complexity
▫ Non functional requirements

 Wear levelling
 Power-loss recovery

• Cost to be paid by simplification
▫ Seamless integration of Alloy models with PF math

• New combinator thinning (↾)
▫ Converts a given relation R into a smaller, simple

relation by looking at particular elements of its
range relative to some ordering.

Conclusions

• Sucessfully proved the refinement of an abstract
file store model into its journaled implementation

▫ No need for mechanical theorem proving

▫ Using the simplified tool-chain

▫ Use of combinators was central

