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Abstract
Free theorems feature prominently in the field of program trans-
formation for pure functional languages such as Haskell. How-
ever, somewhat disappointingly, the semantic properties of so
based transformations are often established only very superficially.
This paper is intended as a case study showing how to use the
existing theoretical foundations and formal methods for improv-
ing the situation. To that end, we investigate the correctness is-
sue for a new transformation rule in the short cut fusion family.
This destroy/build-rule provides a certain reconciliation between
the competing foldr/build- and destroy/unfoldr-approaches to elim-
inating intermediate lists. Our emphasis is on systematically and
rigorously developing the rule’s correctness proof, even while pay-
ing attention to semantic aspects like potential nontermination and
mixed strict/nonstrict evaluation.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Data types
and structures, Polymorphism; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Theory

Keywords correctness proofs, intermediate data structures, pro-
gram transformations, rank-2 types, relational parametricity, short-
cut deforestation, theorems for free

1. Introduction
Pure functional programming languages have a reputation for being
exceptionally amenable to automatic program transformation, both
because their efficient implementation is usually in dire need of
extra optimization effort, and because their semantic foundations
seem to support transformations (and corresponding correctness
proofs!) in unique ways not available in other paradigms. A par-
ticularly popular class of transformations in this context is formed
by those based on free theorems (Wadler 1989) as derived from
relational parametricity (Reynolds 1983). Starting with Gill et al.
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(1993), there has been a whole industry of manufacturing trans-
formations based on this methodology (Takano and Meijer 1995;
Chitil 1999; Johann 2002; Svenningsson 2002; Voigtländer 2002;
Domı́nguez and Pardo 2006; Coutts et al. 2007a,b; Fernandes et al.
2007; Ghani and Johann 2007). However, the semantic proper-
ties of these “short-cut-fusion-like” transformations have not al-
ways been established in as detailed and rigorous a manner as
one might want, and even expect, given the alleged cleanliness of
languages like Haskell (Peyton Jones 2003) in semantic regards.
Discrepancies have arisen from the differences between the the-
oretical world of the original polymorphic lambda calculus stud-
ied by Reynolds (1983) and the reality of programming languages
based on it. These differences mainly have to do with potential non-
termination through general recursion in a Turing-complete lan-
guage (which the original calculus is not) and with the choice be-
tween different evaluation strategies (a choice that is irrelevant in
the original calculus due to its strong normalization property). For
example, as first observed by Johann and Voigtländer (2004), in the
presence of general recursion the destroy/unfoldr-transformation of
Svenningsson (2002) can make a program more terminating than it
originally was, and the presence of a polymorphic strict evaluation
primitive in the otherwise nonstrict language Haskell brings fur-
ther complications for destroy/unfoldr, including a potential loss of
termination. For the foldr/build-transformation of Gill et al. (1993)
general recursion remains without consequences, but the poten-
tially mixed strict/nonstrict nature of evaluation in Haskell breaks
total correctness. More recently, Fernandes et al. (2007) describe
the correctness argument for their transformation rule as “fast and
loose” and only mention that further preconditions may be needed
to get correctness in the presence of selective strictness, and Coutts
et al. (2007b) remain similarly vague on strictness issues as related
to semantic correctness. For most of the other papers on transfor-
mation techniques cited above the situation is not much different.
It is a perfectly reasonable approach to first formulate and ana-

lyze new transformation techniques in an idealized setting without
paying too much attention to peculiarities of potentially nontermi-
nating computations. While such fast and loose reasoning (Daniels-
son et al. 2006) helps to form early intuition, and thus fosters the
conception of new ideas for program transformation, there is a clear
danger that semantic investigation stops there, and thus remains
somewhat detached from programming language reality. The lat-
ter has certainly happened in the past.
In this paper we want to argue that nowadays there is no reason,

or excuse, to refrain from thoroughly studying semantic properties
of free theorems-based program transformations even as regards
their interplay with general recursion and mixed strict/nonstrict
evaluation as found in Haskell. The required theoretical founda-
tions and formal methods have been developed. They are there to



use, and they are easy to use. In order to demonstrate that ease,
we are going to formally investigate the correctness issue for a
new transformation rule in the short cut fusion family. This rule
is of some independent interest, as it provides a reconciliation be-
tween the competing foldr/build- and destroy/unfoldr-approaches to
eliminating intermediate lists. In fact, it is the somewhat elusive
destroy/build-rule that has so far been missing, but is required to
handle all meaningful combinations of consumers and producers
as occurring in classical short cut fusion and its dual. However,
our emphasis in this paper is on the systematic development of the
new transformation’s correctness proof, rather than on the rule’s
pragmatics. Using a yet unconsidered rule simply has the advan-
tage that we can start our semantic investigation without having
prejudices about whether or under which conditions total or partial
correctness in Haskell might hold, instead setting off just from our
intuitive transformation idea. We will show that, even while pay-
ing attention to aspects like potential nontermination and mixed
strict/nonstrict evaluation, the construction of a formal correctness
proof is nothing to shy away from. In particular, to construct such a
proof successfully, one does not even need to involve oneself with
the theoretical foundations of relational parametricity for the poly-
morphic lambda calculus (Reynolds 1983), the details of deriving
free theorems (Wadler 1989), or the modifications and extensions
to the theory required to properly account for general recursion and
mixed evaluation (Johann and Voigtländer 2004). Such “partial ig-
norance” is possible because much of the underlying theory can
be automated. In fact, we will have our Haskell-aware free theo-
rems be derived by a tool that was implemented under our super-
vision (Böhme 2007) and demonstrates that the “for free”-part of
free theorems is not just a slogan, but actual reality (and available
online1). The formal development that, as usual for free theorems-
based program transformations, remains to be done even after hav-
ing derived the underlying free theorem will be completely guided
by the form of the correctness statement that we want to prove. We
will perform this development step by step, showing how neces-
sary instantiations (the finding of which is usually considered the
tricky part) present themselves during the course of action, without
us having to pull any rabbits out of a hat. Throughout, we will also
identify what further tool support would be beneficial to simplify
the whole process even more.

2. The destroy/build-rule
Classical short cut fusion (Gill et al. 1993) uses the foldr/build-rule
to eliminate intermediate lists produced by build and consumed by
foldr, while its dual (Svenningsson 2002) uses the destroy/unfoldr-
rule to eliminate intermediate lists produced by unfoldr and con-
sumed by destroy. Here, foldr and unfoldr are functions from
Haskell’s standard libraries, while build and destroy are defined
as follows:

build :: (∀ β . (α → β → β) → β → β) → [α]
build prod = prod (:) []

destroy :: (∀ β . (β → MAYBE (α, β)) → β → γ) → [α] → γ
destroy cons xs = cons listpsi xs

listpsi :: [α] → MAYBE (α, [α])
listpsi (x :xs) = JUST (x , xs)
listpsi [] = NOTHING

In addition to the two rules mentioned above, there is also a
straightforward foldr/unfoldr-rule. What has been missing so far
is a destroy/build-rule. It would be applicable when an intermediate
1 http://linux.tcs.inf.tu-dresden.de/∼voigt/ft/

list produced by a function expressible via build but not (efficiently)
via unfoldr2 is consumed by a function expressible via destroy but
not via foldr (at least not in a way that benefits the efficiency of
the fused program). For such an application to be worthwhile, the
destroy/build-rule need not even completely eliminate an intermedi-
ate list in the same sense as the other three rules (together with sub-
sequent, lower-level compiler optimizations) do. Instead, it would
already be a win if the destroy/build-rule managed to reduce the
overhead originally introduced when expressing the producer and
consumer in terms of build and destroy, respectively. Let us explain.
The practical problem of how to handle a producer expressed in

terms of build that does not pair up for fusion with a foldr-consumer
was already encountered for the original short cut fusion rule. In
order to avoid the runtime overhead incurred by (then unneces-
sarily) defining the producer via build, the solution proposed by
Peyton Jones et al. (2001) is to define two versions of each pro-
ducer: one via build and a more direct one. An appropriate “back-
ing out” mechanism ensures that any build-version remaining after
all fusion has taken place is automatically replaced by the corre-
sponding direct one. An analogous approach is possible for the dual
destroy/unfoldr-rule, but does not scale for consumers of more than
one list. Consider, for example, the case zip exp1 exp2 with list-
producing expressions exp1 and exp2. This is exactly the standard
example for destroy/unfoldr-fusion, which works very nicely when
zip consumes both its input lists via destroy and both exp1 and exp2
are written in terms of unfoldr. But assume the latter is possible only
for one of the two, say for exp1, but not for exp2. Then, after the
program has undergone fusion, the intermediate list corresponding
to exp1 will not be created anymore, while the one corresponding to
exp2 will still be created and, moreover, essentially an isomorphic
copy of it in terms of JUST ( , ) and NOTHING will be built inside
zip when that function uses destroy, and thus listpsi , to scrutinize
its second argument. This duplication could even ruin the gain ob-
tained from eliminating the intermediate list in the first argument.
The “backing out” solution to this problem would be to provide a
version of zip that consumes its first argument via destroy, but its
second argument in direct style. However, since elsewhere in the
program we could also have cases zip exp1 exp2 where exp2 is ex-
pressible in terms of unfoldr while exp1 is not, or where indeed both
are not, we would altogether need to define four correlated versions
of zip (as opposed to just two versions in the above scenario for
foldr/build). This clearly becomes impractical. An alternative solu-
tion would be viable if we had an appropriate destroy/build-rule.
Then, if a situation zip exp1 exp2 were encountered where, for ex-
ample, exp1 is expressible in terms of unfoldr while exp2 is not, but
the latter is at least expressible in terms of build (which will be the
case much more often), we could expect destroy/unfoldr-fusion to
eliminate the first intermediate list and destroy/build-fusion to deal
with the second one in a way that cancels the extra effort related to
the creation of JUST ( , )- and NOTHING-structures solely to express
zip in terms of destroy on both arguments in the first place.
How, then, should the destroy/build-rule look like? The defini-

tions tell us that
destroy cons (build prod )

is equivalent to
cons (λys → case ys of {x :xs → JUST (x , xs); [] → NOTHING})

(prod (:) [])

This makes it very evident how a standard list is created by prod us-
ing the constructors (:) and [], that list is then taken apart and essen-
tially repackaged in JUST ( , )- and NOTHING-structures, and finally
2Conversely, unfoldr is straightforwardly written in terms of build, as well as
foldr in terms of destroy, so the combination destroy/build is really the worst
that can happen with respect to fusion opportunities.



cons works with those JUST ( , )- and NOTHING-structures.3 The al-
most obvious optimization idea would thus be to avoid the repack-
aging altogether and have prod immediately create JUST ( , )- and
NOTHING-structures, i.e., to replace the above as follows:

cons id (prod (λx xs → JUST (x , xs)) NOTHING) (1)

Unfortunately, this is not directly possible because of an “infinite
type”-error. However, Haskell provides a workaround in terms of
type isomorphisms as introduced by newtype-declarations. So we
can define

newtype L α = L {unL :: MAYBE (α, L α)}

and let our rule replace

destroy cons (build prod )

by

cons unL (prod (λx xs → L (JUST (x , xs))) (L NOTHING))

Due to the nature of newtype-declarations, unL and L are opera-
tionally identity functions, so the result of our destroy/build-rule is
essentially the same as the ideal (1) above.
As indicated already in the introduction, we do not want to

go into further detail about the pragmatics of destroy/build-fusion,
instead turning toward the semantic investigation now. One thing
that should be noted here is that there is no reason to expect
any proof about the above rule to be simpler than those for other
free theorems-based program transformations in the literature. The
reason is that each of these earlier transformations revolves around
a single rank-2 polymorphic function only, while here we have to
deal with two of them at once.

3. The correctness proof
Let T1 and T2 be arbitrary, but from now on fixed, types and let

prod :: ∀ β . (T1 → β → β) → β → β

and
cons :: ∀ β . (β → MAYBE (T1, β)) → β → T2

We want to prove a semantic connection between, preferably
equivalence of,

cons listpsi (prod (:) []) (2)
and

cons unL (prod (λx xs → L (JUST (x , xs))) (L NOTHING)) (3)

We do not ponder an advance roadmap for the proof, as we hope
to be guided towards our goal by simply following the directions
and necessities encountered on the way. Clearly, the first thing to
do is to derive the free theorems corresponding to the types of prod
and cons . But actually there are not “the” free theorems, because
several choices have to be made here.

1. Which language or calculus should we consider as the semantic
base? Do we want to derive statements valid only for the origi-
nal polymorphic lambda calculus of Reynolds (1983)? Or do we
want to take an extension to general recursion into account as
does Wadler (1989, Section 7)? Do we even want to be prepared
for the additional presence of mixed strict/nonstrict evaluation
as per the primitive seq in Haskell, with technical adjustments
necessary as detailed by Johann and Voigtländer (2004, 2008)
and Voigtländer and Johann (2006, 2007)?

3Of course, due to lazy evaluation, these three “phases” occur intermingled.

2. Do we want general relational free theorems, or more special-
ized versions where the roles of relations are as far as possible
taken over by functions?

3. Do we want free theorems in the traditional “symmetric”
fashion (Wadler 1989; Voigtländer and Johann 2006) or do
we prefer “asymmetric” ones (Johann and Voigtländer 2004;
Voigtländer and Johann 2007) that allow to prove semantic in-
equations rather than equations?

All these variations are supported by the tool of Böhme (2007)
as described in Appendix A. Here we decide to start from free
theorems derived for the language including both general recursion
and mixed evaluation, because those are a reality in Haskell, to
work with the general case of relations prior to any specialization to
functions, because such generality avoids premature commitment
to instantiations that might turn out to be too specific in the further
course of the proof, and to go for symmetric/equational statements,
because ideally we would like to prove the semantic equivalence
of (2) and (3).4 The free theorems derived with these settings
from the types of prod and cons are given in Figures 1 and 2,
respectively. We emphasize that producing such statements comes
with practically zero effort. We simply entered the type signatures
for prod and cons , made our choices with regard to which kind
of free theorems we want, copied the tool’s textual output into
our LATEX source, and relied on a slightly adapted version of the
λTEX style (Zadarnowski 2003) to obtain the pleasing typesetting
in Figures 1 and 2. The textual output as emitted by the tool itself
is shown in Appendix A.

∀ t1,t2 ∈ TYPES, R ∈ REL(t1,t2), R strict , continuous ,
and bottom−reflecting .
∀ p :: T1 → t1 → t1.

∀ q :: T1 → t2 → t2.
(((p /= ⊥) ⇔ (q /= ⊥))
∧ (∀ x :: T1.

((p x /= ⊥) ⇔ (q x /= ⊥))
∧ (∀ (y , z) ∈ R. (p x y , q x z) ∈ R)))

⇒ (∀ (v , w ) ∈ R. (prod p v , prod q w ) ∈ R)

Figure 1. Free theorem derived for prod.

Note the conditions imposed on the relations in Figures 1 and 2,
as well as the conditions relating to ⊥. These are exactly the kinds
of technical details that need to be taken into account when wanting
to produce results that also hold in the presence of general recursion
and mixed evaluation, i.e., results that are meaningful for Haskell,
rather than just for the polymorphic lambda calculus. Here, follow-
ing the foundational work of Johann and Voigtländer (2004, 2008)
and Voigtländer and Johann (2006, 2007), the appropriate condi-
tions are automatically generated by the tool we use, and we only
need to properly keep track of them in the remainder of the cor-
rectness proof. For reference, Table 1 gives the definitions of strict ,
continuous , and bottom−reflecting on relations, as well as of strict
and total on functions. Only the latter two definitions will explic-
itly be needed in what follows, as the former ones (on relations)
will eventually be reduced to them automatically.

4 Inequational free theorems typically enter the stage when equational ones
either cannot be proved at all or only under severe preconditions. So switch-
ing to an asymmetric setting remains an option in case the further proof con-
struction fails to deliver a satisfying equational result. Or, one could use the
more abstract approach of Johann and Voigtländer (2008), which requires
no a priori commitment to either equational or inequational free theorems.



∀ t1,t2 ∈ TYPES, R ∈ REL(t1,t2), R strict , continuous ,
and bottom−reflecting .
∀ p :: t1 → MAYBE (T1, t1).

∀ q :: t2 → MAYBE (T1, t2).
(((p /= ⊥) ⇔ (q /= ⊥))

∧ (∀ (x , y ) ∈ R.
(p x , q y ) ∈ lift{MAYBE}(lift{(,)}(id,R))))

⇒ (∀ (z , v ) ∈ R. cons p z = cons q v )

where

lift{MAYBE}(lift{(,)}(id,R))
= {(⊥, ⊥), (NOTHING, NOTHING)}
∪ {(JUST x1, JUST y1) (x1, y1) ∈ lift{(,)}(id,R)}

lift{(,)}(id,R)
= {(⊥, ⊥)}
∪ {((x1, x2), (y1, y2)) (x1 = y1) ∧ ((x2, y2) ∈ R)}

Figure 2. Free theorem derived for cons.

R is strict if (⊥, ⊥) ∈ R
R is continuous if (∀ i . (x i, y i) ∈ R) ⇒ (

⊔
x i,

⊔
y i) ∈ R

R is bottom−reflecting if (x , y ) ∈ R ⇒ ((x /= ⊥) ⇔ (y /= ⊥))
f is strict if f ⊥ = ⊥
f is total if (x /= ⊥) ⇒ (f x /= ⊥)

Table 1. Restrictions on relations and functions.

Of the two statements currently at our disposal, the one in
Figure 2 seems more immediately useful for proving the equiv-
alence of (2) and (3), simply by the form of its conclusion
cons p z = cons q v . If we instantiate as follows:

p = listpsi
z = prod (:) []
q = unL
v = prod (λx xs → L (JUST (x , xs))) (L NOTHING)

we get exactly the desired equivalence.5 Of course, given the
quantifications in Figure 2, this requires that listpsi is of type
t1 → MAYBE (T1, t1) and unL is of type t2 → MAYBE (T1, t2), i.e.,
that t1 = [T1] and t2 = L T1. Instantiating the statement from Fig-
ure 2 accordingly gives:6

∀ R ∈ REL([T1],L T1), R strict , continuous ,
and bottom−reflecting .

(((listpsi /= ⊥) ⇔ (unL /= ⊥))
∧ (∀ (x , y ) ∈ R.

(listpsi x , unL y ) ∈ lift{MAYBE}(lift{(,)}(id,R))))
⇒ ((prod (:) [],

prod (λx xs → L (JUST (x , xs))) (L NOTHING)) ∈ R
⇒ cons listpsi (prod (:) [])

= cons unL (prod (λx xs → L (JUST (x , xs)))
(L NOTHING)))

5Note that, thanks to our decision to start from general relational free the-
orems, the statement in Figure 2 (as well as that in Figure 1) is completely
symmetric with respect to taking the inverse of R. Thus, it is irrelevant
whether we choose to match cons p z against (2) and cons q v against (3) or
vice versa. There can be no premature commitment here.
6We do not yet concern ourselves with the details of the lift-relations here.

Here we have performed the instantiations manually in our text
editor (with the output again being pretty-printed via λTEX), but
clearly some tool support for such tasks would be beneficial and
should not be all too complicated to implement.
Since both listpsi and unL are by themselves partial applica-

tions, i.e., semantically equivalent to lambda-abstractions, they are
clearly different from ⊥. Thus, the

(listpsi /= ⊥) ⇔ (unL /= ⊥)

precondition is true and can be omitted. (Again, more tool support
would be welcome to perform such nearly trivial simplifications.)
This means that we could conclude our desired equivalence if
we knew of an R ∈ REL([T1],L T1) that is strict , continuous , and
bottom−reflecting , and for which both

∀ (x , y ) ∈ R.
(listpsi x , unL y ) ∈ lift{MAYBE}(lift{(,)}(id,R)) (4)

and
(prod (:) [],
prod (λx xs → L (JUST (x , xs))) (L NOTHING)) ∈ R (5)

hold.
Note that the conclusion of the statement in Figure 1 already has

a form matching that of (5). So if we could find an appropriate R
such that for

p = (:)
v = []
q = λx xs → L (JUST (x , xs))
w = L NOTHING

the preconditions from Figure 1 were fulfilled and additionally we
could establish (4), then we would be done. Unfortunately, this in-
formation does not yet really help us to come up with a concrete R
fulfilling those needs. But we know that an often successful heuris-
tics in working with free theorems is to consider the special case
where functions take the roles of relations. Hence, we might want
to investigate the special cases of R being the graph of a function or
the inverse thereof. Instead of doing such specializations manually,
we can resort to tool support once more.
Instructing the tool described in Appendix A to specialize R

in the statement from Figure 1 to a function automatically yields
the statement in Figure 3. In order to use that new statement to do
away with the condition (5) encountered above, we now have two
choices: either to instantiate it in such a way that

p = (:)
z = []
q = λx xs → L (JUST (x , xs))
f z = L NOTHING

or in such a way that
p = λx xs → L (JUST (x , xs))
z = L NOTHING
q = (:)
f z = []

This decision corresponds to whether the R we are looking for to
satisfy (5), and (4), is expected to be the graph of function f from
Figure 3 or the inverse thereof. Let us investigate the two choices
separately.

Choice 1. This would mean that in the statement from Figure 3
we must instantiate t1 = [T1] (due to the type of p) and t2 = L T1

(due to the type of q ). Also, since p and q , as well as their ap-
plications to an arbitrary single argument, are partial applications,
they all are different from ⊥, which allows simplifications simi-
lar to what we did before when working with the statement from
Figure 2. Here, this leads to:



∀ t1,t2 ∈ TYPES, f :: t1 → t2, f strict and total .
∀ p :: T1 → t1 → t1.

∀ q :: T1 → t2 → t2.
(((p /= ⊥) ⇔ (q /= ⊥))

∧ (∀ x :: T1.
((p x /= ⊥) ⇔ (q x /= ⊥))
∧ (∀ y :: t1. f (p x y ) = q x (f y ))))

⇒ (∀ z :: t1. f (prod p z) = prod q (f z))

Figure 3. Specialized free theorem for prod.

∀ f :: [T1] → L T1, f strict and total .
(∀ x :: T1, y :: [T1].

f ((:) x y ) = (λx xs → L (JUST (x , xs))) x (f y ))
⇒ f (prod (:) []) = prod (λx xs → L (JUST (x , xs))) (f [])

The precondition of the implication in this statement together with
the fact that we expect f [] = L NOTHING essentially leave no room
other than to consider the following definition for f (after two beta-
reductions):

f :: [T1] → L T1

f (x :y ) = L (JUST (x , f y ))
f [] = L NOTHING

It remains to check that this f is strict and total , which it is, and we
obtain from the above that for this f :

f (prod (:) [])
= prod (λx xs → L (JUST (x , xs))) (L NOTHING) (6)

Choice 2. In a completely analogous fashion, this choice would
mean that in the statement from Figure 3 we must instantiate
t1 = L T1 and t2 = [T1], so that then:

∀ f :: L T1 → [T1], f strict and total .
(∀ x :: T1, y :: L T1.

f ((λx xs → L (JUST (x , xs))) x y ) = (:) x (f y ))
⇒ f (prod (λx xs → L (JUST (x , xs))) (L NOTHING))

= prod (:) (f (L NOTHING))

which together with the requirement f (L NOTHING) = [] suggests
to consider the following definition for f :

f :: L T1 → [T1]
f (L (JUST (x , y ))) = x :(f y )
f (L NOTHING) = []

It turns out, however, that this function is not total , since one has
f (L (JUST ⊥)) = ⊥. Fortunately, it is easy to obtain a strict and
total function from it that still satisfies the precondition in the
implication above, by introducing an irrefutable pattern as follows:

f :: L T1 → [T1]
f (L (JUST ˜(x , y ))) = x :(f y )
f (L NOTHING) = []

For this f we then obtain from the above that:
f (prod (λx xs → L (JUST (x , xs))) (L NOTHING)) = prod (:) []

Through investigation of the two choices, we have now come
up with two candidates for the relation R we were seeking to
satisfy (4) and (5). We could proceed manually from here, working
out what the remaining condition (4) translates to when taking R
to be the graph of f in Choice 1, or the inverse of the graph of
f in Choice 2. But actually it seems easier to yet again use tool
support and perform an automatic “functional specialization” of
the statement from Figure 2 (as we did before for the one from
Figure 1, leading to Figure 3), and to work onwards from there.
The tool’s output is shown in Figure 4.

∀ t1,t2 ∈ TYPES, f :: t1 → t2, f strict and total .
∀ p :: t1 → MAYBE (T1, t1).

∀ q :: t2 → MAYBE (T1, t2).
(((p /= ⊥) ⇔ (q /= ⊥))
∧ (∀ x :: t1.

(p x , q (f x )) ∈ lift{MAYBE}(lift{(,)}(id,f ))))
⇒ (∀ y :: t1. cons p y = cons q (f y ))

where

lift{MAYBE}(lift{(,)}(id,f ))
= {(⊥, ⊥), (NOTHING , NOTHING)}
∪ {(JUST x1, JUST y1) (x1, y1) ∈ lift{(,)}(id,f )}

lift{(,)}(id,f )
= {(⊥, ⊥)}
∪ {((x1, x2), (y1, y2)) (x1 = y1) ∧ (f x2 = y2)}

Figure 4. Specialized free theorem for cons.

Doing things this way means that we have to essentially redo
some of the manipulation steps that we already did on the rela-
tional free theorem from Figure 2. But all this goes through very
smoothly, given what we already know. In particular, for Choice 1,
i.e., for

f :: [T1] → L T1

f (x :y ) = L (JUST (x , f y ))
f [] = L NOTHING

and thus t1 = [T1] and t2 = L T1, we clearly still want that
p :: [T1] → MAYBE (T1, [T1]) and q :: L T1 → MAYBE (T1, L T1)
are listpsi and unL, respectively. Also as before, this does away
with the (p /= ⊥) ⇔ (q /= ⊥) condition, leaving us now with:

(∀ x :: [T1]. (listpsi x , unL (f x )) ∈ lift{MAYBE}(lift{(,)}(id,f )))
⇒ (∀ y :: [T1]. cons listpsi y = cons unL (f y ))

Either from our original motivation of proving the equivalence
of (2) and (3), or from what we did earlier for the relational free
theorem from Figure 2, it is clear that next we want to instantiate
y = prod (:) [], which gives:

(∀ x :: [T1]. (listpsi x , unL (f x )) ∈ lift{MAYBE}(lift{(,)}(id,f )))
⇒ cons listpsi (prod (:) []) = cons unL (f (prod (:) []))

Together with (6) this gives the desired equivalence of (2) and (3),
provided we can establish the precondition, i.e., that for every
x :: [T1],

(listpsi x , unL (f x )) ∈ lift{MAYBE}(lift{(,)}(id,f ))



But with the definition of lift{MAYBE}(lift{(,)}(id,f )) from Figure 4,
and taking the definitions of listpsi , unL, and f into account as well,
this is easily shown by case distinction on x as follows.
• If x = ⊥, then (listpsi x , unL (f x )) = (⊥, ⊥).
• If x = [], then (listpsi x , unL (f x )) = (NOTHING, NOTHING).
• If x=z :zs for some z :: T1 and zs :: [T1], then

listpsi x = JUST (z , zs)
unL (f x ) = JUST (z , f zs)

and the pair of these is in lift{MAYBE}(lift{(,)}(id,f )) due to
((z , zs), (z , f zs)) ∈ lift{(,)}(id,f ).

This completes the proof!
It is instructive to consider also what would have happened for

Choice 2, i.e., for

f :: L T1 → [T1]
f (L (JUST ˜(x , y ))) = x :(f y )
f (L NOTHING) = []

After some steps completely analogous to those above, we would
finally have had to argue that for this function it holds that for every
x :: L T1,

(unL x , listpsi (f x )) ∈ lift{MAYBE}(lift{(,)}(id,f ))
But actually this does not hold for x = L (JUST ⊥), since then

unL x = JUST ⊥
listpsi (f x ) = JUST (⊥, ⊥)

and the pair of these is not in lift{MAYBE}(lift{(,)}(id,f )). This sub-
tlety clearly underscores the importance of remaining “⊥-aware”
while analyzing the semantics of program transformations for a
language like Haskell. It also shows that it is wise to proceed in
a systematic fashion about constructing corresponding proofs, in
particular by not prematurely committing to certain instantiations,
and by conclusively investigating alternatives as we did by consid-
ering both choices of specializing R down to function level.

4. Conclusion
We hope to have convinced the reader that constructing rigorous
correctness proofs for free theorems-based program transforma-
tions, even while taking semantic intricacies of a language like
Haskell into full account, is not as scary a task as one might think.
In particular, the tool support available today is quite good already.
It should be easy to add, as an additional output format beside tex-
tual output and pretty-printed LATEX, support for output in the syn-
tax of some proof assistant, so that existing facilities for manipulat-
ing proofs could be leveraged instead of resorting, e.g., to manual
substitutions in a text editor as we have done here.
As it turned out, and in contrast to its older siblings, the

destroy/build-rule does not need to be equipped with special pre-
conditions in order to be valid as a semantic equivalence even in
the presence of general recursion and mixed strict/nonstrict evalua-
tion. This is interesting news, which clearly could not have become
known without actually doing the work of constructing a proof that
carefully keeps track of (and indicates where to successfully do
away with) those conditions internal to the correctness argument
that are mandated by the presence of fix and seq.
Like earlier short-cut-fusion-like techniques, the destroy/build-

rule can be generalized from lists to other algebraic data types. For
example, consider the following tree type:

data TREE α = NODE (TREE α) (TREE α) LEAF α

It gives rise to the following two rank-2 polymorphic functions:

buildT :: (∀ β . (β → β → β) → (α → β) → β) → TREE α
buildT prod = prod NODE LEAF

destroyT :: (∀ β . (β → F α β) → β → γ) → TREE α → γ
destroyT cons t = cons treepsi t

where

data F α β = N β β L α

treepsi :: TREE α → F α (TREE α)
treepsi (NODE t1 t2) = N t1 t2
treepsi (LEAF x ) = L x

The destroyT/buildT-rule then replaces
destroyT cons (buildT prod )

by
cons unT (prod (λt1 t2 → T (N t1 t2)) (λx → T (L x )))

where

newtype T α = T {unT :: F α (T α)}

That rule’s unconditional total correctness can be established in the
same manner as demonstrated for the destroy/build-rule in this pa-
per. In particular, Figure 8 in Appendix A shows that free theorems
can also be automatically generated for functions involving user-
defined data types, such as for

cons :: ∀ β . (β → F T1 β) → β → T2

A. Tool support
Böhme (2007) implemented a library and a shell-based application
using it for generation and manipulation of free theorems. A web
interface providing some of its functionality is accessible at

http://linux.tcs.inf.tu-dresden.de/∼voigt/ft

This web interface presents the user with an input form as shown
in Figure 5. Entering the type signature of prod and selecting
the sublanguage of Haskell offered as third choice leads to the
output shown in Figure 6, which corresponds to Figures 1 and 3
in the body of the paper. Likewise, entering the type signature of
cons leads to the output shown in Figure 7, which corresponds to
Figures 2 and 4.
The mentioned web page also provides the source code of the

library and shell-based application. The latter offers a number of
features not accessible via the web interface. For example, it allows
to selectively specialize relations to graphs of functions or inverses
thereof, instead of the all-or-none approach present in the web
interface. It also enables the user to declare their own algebraic data
types, type synonyms, type renamings, and type classes, which are
then taken into account when deriving free theorems. For example,
Figure 8 shows a sample session that first loads a file trees.hs
which contains the declarations from the previous section (plus
dummy declarations for the fixed types T1 and T2). For simplicity
of interaction, the user of the web interface is instead restricted to
predefined declarations from the Haskell standard libraries.
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Figure 5. Input form of the web interface.

Figure 6. Tool output for prod.
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> :load trees.hs
Loading ‘trees.hs’ ... found 10 declarations.
> :declaration F
data F alpha beta

= N beta beta
| L alpha

> :seq-equational
The current language subset is ‘seq-equational’.
> cons :: forall beta. (beta -> F T1 beta) -> beta -> T2
The free theorem for the type signature

cons :: forall beta . (beta -> F T1 beta) -> beta -> T2

in the language subset ‘seq-equational’ is:

forall t1,t2 in TYPES, R in REL(t1,t2), R strict, continuous,
and bottom-reflecting.
forall p :: t1 -> F T1 t1.
forall q :: t2 -> F T1 t2.
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==> (forall (z, v) in R. cons p z = cons q v)

cons > :specialise R
The free theorem for the type signature

cons :: forall beta . (beta -> F T1 beta) -> beta -> T2

in the language subset ‘seq-equational’ is:

forall t1,t2 in TYPES, f :: t1 -> t2, f strict and total.
forall p :: t1 -> F T1 t1.
forall q :: t2 -> F T1 t2.
(((p /= _|_) <=> (q /= _|_))
&& (forall x :: t1. (p x, q (f x)) in lift{F}(id,f)))
==> (forall y :: t1. cons p y = cons q (f y))

cons > :lifts

lift{F}(id,f)
= {(_|_, _|_)}
u {(N x1 x2, N y1 y2) | (f x1 = y1) && (f x2 = y2)}
u {(L x1, L y1) | x1 = y1}

Figure 8. The shell-based application in action.
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