Software Reuse by Model Reification

F. Luis Neves * and José N. Oliveira T

INESC Group 2361 and Dep. Informatica, Universidade do Minho
Campus de Gualtar, 4700 Braga, Portugal
Tel: 351+53-604470
Fax: 351453-612954

Abstract

This paper builds upon earlier work on systematically calculating implementations from
model-oriented specifications based on abstract data types. The calculation process is called
reification and is usually done by “hand”, requiring some ingenuity and time.

The adoption of model-oriented software specification encompasses the ability to classify
and compare data structures. The reification of such data models (specifications of software
data structures) also provides a powerful reuse mechanism up to isomorphic and inequational
refinements. Following the underlying formal calculus (Sets), one can easily demonstrate that,
for instance, a certain C++ class can be implemented by the composition of already available
ones.

Our aim is to develop an automatic “reificator”, based on term-rewriting theory, which is
intended to take the specification of a data structure, written in the Sets notation, and to refine
it until a collection of reusable data models are identified.

We also refer that genetic algorithms have the potential to support inequational term-
rewriting, such as is required in animating the Sets calculus. This topic is briefly presented.

Keywords: Software reuse, model-oriented specification, reification, rewrite, genetic algori-
thms.

Workshop Goals: Learning; presenting reuse experiments.

Workshop Groups: Reuse and formal methods, tools and environments.

*Email: in@di.uminho.pt; Http: http://s700.uminho.pt/~fln
tEmail: jno@di.uminho.pt; Http: http://www.di.uminho.pt/~jno



1  Background

The authors were involved in the SOUR ! project for comparing, classifying and retrieving in-
formation about large software systems. SOUR attempts to improve software developers produc-
tivity by introducing techniques for reusing pre-existing software components. Related research
on software component knowledge elicitation and classification using the Sets reification Calcu-
lus [Oli92a, Oli92b] is reported in [OCI3].

2  Position

This paper sketches the idea that software reification calculi such as Sets [01i92a, Oli92b] can be of
some help in formalizing a simple yet powerful software reuse discipline based on a mathematical
notion of a software component. In the approach, a software component is understood as a speci-
fication of the component’s internal state space (described by set-theoretical constructs) together
with a pre-/post-condition pair for each action which can change or observe the component’s inter-
nal state. A repository of such abstract components has been academically built up [O1i91] which

follows a classify by state structure partial-order based on the Sets-term instantiation ordering
[0C93] 2.

The Sets Calculus is based on set-theory up to isomorphism. A collection of Z-equalities forms
the so-called =-Subcalculus. When partial data-structure transformations are present, abstraction
invariants arise according to the so-called <-Subcalculus. (Informally, while A 2 B means that A
and B are interchangeable data structures, A < B means that only B can replace (implement) A.)

The Sets model-reification process uses the laws of these two subcalculi to derive new data models
from existing ones, with correctness warranty.

Attempts to animate the Sets Calculus have been made recently [NRO19]. A “reificator” is expected
soon made of two fundamental components: first, a description language for input of relevant data
such as axioms, models, type of reification and so on; second, the “engine” of the calculus which
incorporates, in the current prototype, the hybridization of two theories: genetic algorithms [Gol89]
and rewriting systems [Hue80].

3 Instantiation and Reuse

The notion of instantiation is closely related with the reuse problem. It exploits the capability of
identifying expressions (in our case, Sets terms specifying software data structures) as particular
cases of others.

In this paper’s setting, software reuse consists basically of applying rewrite rules obtained directly
from the Sets laws, in order to rewrite (reify) a software model and decompose it in a collection of
sub-models which instantiate pre-existent components (see also [OM95] in this respect).

!SouR is the acronym of EUREKA 379 project “Software Use and Reuse” [SS94].
2See [0C93] also for details on ER (“Entity-Relationship”) diagram inversion and classification using this approach.



3.1 Instantiation

We proceed to a brief illustration of our strategy, whereby an instantiation rule will be induced
from the concrete example which follows. Suppose that we want to implement the following C++
class which associates to each OR (Object Reference) its type and a set of attribute values:

#define MAX_A 3 // Cardinal of _A
enum _A {OR1,0R2,0R3};

#define MAX_D 1 // Cardinal of _D
enum _D {TYPEO};

#define MAX_B 3 // Cardinal of _B
enum _B {ATT1,ATT2,ATT3};

#define MAXSTR 255 // String lenght

typedef char _C[MAXSTRI;

class X
{
private:
struct
{
_A A // A
_D D; // D
struct {_B B; _C C;} ffBtoC[MAX_B]; // B -> C
} ffAtoDxffBtoC[MAX_A]; // A ->Dx (B->C)
public:
/...
};

In Sets, data structures of this class can be expressed by instatiating the Sets-term 3
A—Dx(B=C)

Now, consider the following C++ class, which is presumed to be available in the repository *:

class Y
{
private:
_A setA[MAX_AT; // 2°A
struct
{
_A A; /] A
_B B; // B
-C C; // C

} ffAxBtoC[MAX_A*MAX_B]; // (A x B) ->¢C

9 A x B denotes the cartesian product of A and B; A — B denotes the set of all partial mappings from A to B.
See [01i92b] for details.

*As a software component implementation, the code of this class should include all the intrinsic functionality,
which is omitted here for economy of space.



public:
/...
};

The corresponding Sets specification is the following expression: 24 x ((4 x B) — (). From
[01i92b] we know that
A= (B—=C) 4 2°x((Ax B)— () (1)
holds, as a particular case of instantiating D = 1 in
A—=Dx(B—=C) 4 (A= D)X ((AxB)—=(C) (2)

that is to say °:
A—1x(B— () (A—=1)x((Ax B)—= C) by (2)

24X x ((A x B) — C) by law A — B < 2(4x5)

24 x ((AXx B) — () by law A x 1 = A

R 1A TA

which shows that Class Y can be reused in order to implement Class X.

3.2 Reuse

The reuse concept may be compared to the resolution of a mathematic equation (or inequation).
Suppose we have the following equation

r+2y—2=0 (3)

in which, given the values of y and z, we want to know the values of & which satisfy the equation.
Using some basic mathematical rules, we can write z in function of y and z, i.e., by rewriting (3)
in the form =z = f(y, z). In the above equation, this is equivalent to having

r=-2y+=z (4)

From this point on, we just have to use the well known arithmetical operations to finally obtain
the x value.

This is the approach we propose for reuse, in particular for data models reuse, i.e., the notion of
writing something in function of. From the “reificator” point of view, we will have that a set of
Sets models may be kept in a repository, which is basically a store of reusable material [Oli19].
This is much in the tradition of the classical handbooks in Mathematics, for example in helping to
solve integral /differential equations. In the above example, reasoning will proceed by instantiating
variables y and z in terms of available information in the repository. The striking difference is
that we are dealing with discrete mathematics, a topic rarely found in traditional engineering
curricula, which are too much concerned with the mathematics of continuity to leave room for the
mathematics of discreteness [Cua94]. This may explain why many “conventional” engineers are so
bad software designers.

®Note that MAX_D = 1, which in Sets is equivalent to saying that _D 2 1.



References

[Cua94] J. Cuadrado. Teach Formal Methods. Byte, page 292, December 1994.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

[HueR0] Gérard Huet. Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems. Journal of the ACM, 27(4):797-821, October 1980.

[NRO19] F. L. Neves, J. V. Ranito, and J. N. Oliveira. Implementation Studies about Automatic
Model Reification based on the SETS Calculus. 19?77 (In preparation).

[0C93] J.N. Oliveira and A. M. Cruz. Formal Calculi Applied to Software Component Knowledge
Elicitation. Technical Report C19-WP2D, DI/INESC, December 1993. IMI Project C.1.9.
Sviluppo di Metodologie, Sistemi e Servizi Innovativi in Rete.

[O1i19]  J. N. Oliveira. A Reification Handbook. 1977 (In preparation).

[01i91] J. N. Oliveira. Fspecificagio Formal de Programas. Univ of Minho, 1** edition, 1991.
Lecture Notes for the UM M.Sc. Course in Computing (in Portuguese; incl. extended
abstract in English).

[Oli92a] J. N. Oliveira. A reification Calculus for Model-Oriented Software Specification. Formal
Aspects of Computing, Vol.2, 1-23, 1992.

[01i92b] J. N. Oliveira. Software reification using the sets calculus. In Proc. of the BCS FACS 5th
Refinement Workshop, Theory and Practice of Formal Software Development, London,
UK, pages 140-171. Springer-Verlag, 8-10 January 1992.

[OM95] J. N. Oliveira and F. S. Moura. Can Distribution Be (Statically) Calculated? Technical
report, DI/INESC, 1995. (In preparation).

[SS94]  Systena and Syntax Sistemi Software. Integrated SOUR Software System—Demo Session
Manual. Technical report, SOUR Project, 1994. Ver.1.2, (© Systena & SSS, Via Zanardelli
34, Rome & Via Fanelli 206-16, Bari, Italy.

4 Biography

F. Luis Neves holds a degree in Mathematics and Computer Science from Minho University (1992).
He is currently a research assistant at INESC group 2361 (Programming and Formal Methods),
sited at the University of Minho Campus, Braga, Portugal. For the last two years, he was fully
engaged in the INESC participation in the SOUR Project (EU 379). His main interests are graphical
environments, formal methods and genetic algorithms.

José N. Oliveira is a senior lecturer at the Computer Science Department of Minho University
at Braga, Portugal. He obtained his Msc degree (1980) and PuD (1984) in Computer Science
from Manchester University, UK. His main research areas are formal specification of software and
program calculi.

He is also a senior member of INESC and leader of INESC group 2361. He was responsible for the
INESC partnership in the SOUR project.



