
Compiling quantamorphisms for the IBM
Q-Experience

IFIP WG2.1 meeting #77

Brandenburg, Germany, July 2018

J.N. Oliveira
(joint work with A. Neri and R.S. Barbosa)

INESC TEC & University of Minho

Prelude Injectivity Complemented folds Quantamorphisms References

Context

• Bridging U.Minho / INESC TEC / INL (Braga, Portugal)

• Academic partner of the Quantum Network

Prelude Injectivity Complemented folds Quantamorphisms References

Is History going to repeat itself?

1944 (Colossus) 2018 (IBM Q Experience)

https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum computing

Phantasy — ?

“Threat” — ?

Opportunity —

FP folk apt for it, as I will try to show

Prelude Injectivity Complemented folds Quantamorphisms References

1978–2018

40 years of the algebra of programs

Prelude Injectivity Complemented folds Quantamorphisms References

1978–2018

Age of MapReduce predicted by John Backus

MapReduce in Backus’ notation

(/g) · (α f)

MapReduce in “modern” notation

(|g |) · (fmap f)

However,

we are spending too much energy in all this...

Thermodynamics — Landauer’s principle (“logically
irreversible manipulation of information leads to an increase in
entropy”).

Prelude Injectivity Complemented folds Quantamorphisms References

Reversible functions

Reversibility was not a concern in 1978.

Program design by source-to-source transformation (1980s)
sought efficiency only.

Function g in

f · g = id

is injective because it has a left inverse (which is surjective). Put
in another way, via the algebra of relations :

g ⊆ f ◦

— converse of functional (f ◦) is injective (and smaller than
injective is injective).

Prelude Injectivity Complemented folds Quantamorphisms References

Refine for injectivity

New concern — refine programs towards injective solutions.

Need for an injectivity (pre)order, e.g.

6

Since we need to compute non-injective operations anyway, these
have to run inside injective “envelopes” delaying their
observation as much as possible.

Complementation is one such possible envelope, behaving nicely
wrt the required preorder.

Prelude Injectivity Complemented folds Quantamorphisms References

Comparing functions / relations for injectivity

Given a function f : A→ B , define its converse as the relation
f ◦ : A← B such that a f ◦ b ⇔ b = f a. Then

f injective ⇔ f x = f x ′ ⇒ x = x ′

abbreviates to:

f ◦ · f ⊆ id

Moreover, g less injective than f

g 6 f ⇔ f x = f x ′ ⇒ g x = g x ′

simplifies to:

g 6 f ⇔ f ◦ · f ⊆ g◦ · g

Prelude Injectivity Complemented folds Quantamorphisms References

The whole picture (relation ’bestiary’)

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

where

R injective⇔ R◦ · R
︸ ︷︷ ︸

ker R

⊆ id R simple⇔ R◦ injective

R entire⇔ id ⊆ R · R◦
︸ ︷︷ ︸

img R

R surjective⇔ R◦ entire

Prelude Injectivity Complemented folds Quantamorphisms References

Relations as matrices

It helps if we depict relations using (Boolean) matrices, for

instance negation (a bijection) ¬ =

0 1

0 0 1
1 1 0

exclusive-or (surjective but not injective): (∨̇) =

0 0 1 1
0 1 0 1

0 1 0 0 1
1 0 1 1 0

and so on. Clearly:

• Function matrices have exactly one 1 in every column.

• Bijections are square matrices with exactly one 1 in every
column and in every row.

Prelude Injectivity Complemented folds Quantamorphisms References

Going (more) injective

We are interested in exploiting the injectivity preorder,

R 6 S ⇔ ker S ⊆ ker R

as a refinement ordering guiding us towards more and more
injective computations.

This ordering is rich in properties, for instance it is upper-bounded

R ▽ S 6 X ⇔ R 6 X ∧ S 6 X (1)

by relation pairing, which is defined in the expected way:

(b, c) (R ▽ S) a ⇔ b R a ∧ c S a

In the case of functions:

(f ▽ g) a = (f a, g a) (2)

Prelude Injectivity Complemented folds Quantamorphisms References

Going (more) injective

Cancellation via (1) means that pairing always increases
injectivity:

R 6 R ▽ S and S 6 R ▽ S . (3)

(3) unfolds to ker (R ▽ S) ⊆ (ker R) ∩ (ker S), which is in fact
an equality

ker (R ▽ S) = (ker R) ∩ (ker S) (4)

itself a corollary of the more general:

(R ▽ S)◦ · (Q ▽ P) = (R◦ · Q) ∩ (S◦ · P) (5)

Injectivity shunting laws also arise as Galois connections, e.g.

R · g 6 S ⇔ R 6 S · g◦

Prelude Injectivity Complemented folds Quantamorphisms References

Ordering functions by injectivity

Restricted to functions, (6) is universally bounded by

! 6 f 6 id

where 1 A
!oo is the unique function of its type.

• A function is injective iff id 6 f . Thus f ▽ id is always
injective (3).

• Two functions f e g are said to be complementary wherever
id 6 (f ▽ g).1

For instance, the projections fst (a, b) = a , snd (a, b) = b are
complementary since fst ▽ snd = id .

1Cf. (Matsuda et al., 2007). Other terminologies are monic pair (Freyd and
Scedrov, 1990) or jointly monic (Bird and de Moor, 1997).

Prelude Injectivity Complemented folds Quantamorphisms References

Minimal complements

Minimal complements — Given f , suppose (a)
id 6 f ▽ g ; (b) if id 6 f ▽ h and h 6 g then g 6 h.

Then g is said to be a minimal complement of f
(Bancilhon and Spyratos, 1981).

Minimal complements (not unique in general) characterize “what
is missing” from the original function for injectivity to hold.

Example: Non-injective 2 2× 2
∨̇oo =

[
1 0 0 1
0 1 1 0

]

has

minimal complement 2 2× 2
fstoo =

[
1 1 0 0
0 0 1 1

]

.

Prelude Injectivity Complemented folds Quantamorphisms References

Complementing (∨̇)
As is well-known, by complementing (∨̇) with fst

2× 2 2× 2
fst▽(∨̇)oo =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

we get a bijection — the classical CNOT quantum gate:

a′

b′

a

b

t

♥

{
cnot (0, b) = (0, b)
cnot (1, b) = (1,¬ b)

Prelude Injectivity Complemented folds Quantamorphisms References

Generic fst-complementation

Generalize ∨̇ to monoid (A; θ, 0) such that:2

x θ x = 0 (6)

Then

x

(f x) θ y

x
U f

y

U f : (A→ B)→ (A× B)→ (A× B)
U f = fst ▽ (θ · (f × id))

is reversible for any f : A→ B .

2There should be a name for this but I can’t remember it now.

Prelude Injectivity Complemented folds Quantamorphisms References

Generic fst-complementation
x

(f x) θ y

x

U f
y

bijective because it is its self inverse:

(U f) · (U f) = id

⇔ { U f (x , y) = (x , (f x) θ y) }
U f (x , (f x) θ y) = (x , y)

⇔ { again U f (x , y) = (x , (f x) θ y) }
(x , (f x) θ ((f x) θ y)) = (x , y)

⇔ { θ is associative and x θ x = 0 }
(x , 0 θ y) = (x , y)

⇔ { 0 θ x = x }
(x , y) = (x , y)

Prelude Injectivity Complemented folds Quantamorphisms References

Chaining fst-complemented computations

Drawing

x1

y0 // f

OO

// y1

x1

OO instead of
x1

y0

//

// f
//

//

x1

y1

one may think of chaining such computations,

x1 x2

y0 // f

OO

// f

OO

// y2

x1

OO

x2

OO ,

x1 x2 x3

y0 // f

OO

// f

OO

// f

OO

// y3

x1

OO

x2

OO

x3

OO , ...

Prelude Injectivity Complemented folds Quantamorphisms References

Similar construction in neural networks

(RNN = accumulating maps3)

Yes — mapAccumR in Haskell

How is injectivity ensured?

3Source: Neural Networks, Types, and Functional Programming by C.
Olah, 2015.

http://colah.github.io/posts/2015-09-NN-Types-FP/

Prelude Injectivity Complemented folds Quantamorphisms References

The role of A A× B
fstoo

fst-complementation,

id 6 fst ▽ f

means

f (a, b) = f (a, b′)⇒ b = b′

i.e. it means f injective on the second argument once the first is
fixed.

Moreover, A× B
fst // A paired with a function of type

A× B // B makes room (type-wise) for a bijection of type

A× B // A× B .

Can (fst ▽) be extended recursively?

Prelude Injectivity Complemented folds Quantamorphisms References

Towards (constructive) recursive complementation

Suppose we want to offer arbitrary k : A→ B in a bijective

“envelope” (injectivity alone does not work for e.g. quantum
computing, as we shall see).

The “smallest” (generic) type for such an enveloped function is
A× B → A× B .

Now suppose k is a recursive function, e.g. k = foldr f b, for
f : A× B → B , that is

k : A∗ → B
k [] = b
k (a : x) = f (a, k x)

How do we “constructively” build the corresponding (recursive,
bijective) envelope of type A∗ × B → A∗ × B?

Prelude Injectivity Complemented folds Quantamorphisms References

Going general (folds)

Let us define $f% such that k = foldr f b x = $f% (x , b), that is:

$f% ([], b) = b

$f% (a : x , b) = f (a,$f% (x , b))

Thus

A∗ × B

$f%

��

B + A× (A∗ × B)
αoo

id+id×$f%

��
B B + A× B

[id ,f]
oo

As usual,

X + Y = { i1 x | x ∈ X } ∪ { i2 y | y ∈ Y }

is disjoint union of X and Y — assuming i1 · i◦2 = ⊥ — and [R , S]
is the unique relation X such that X · i1 = R and X · i2 = S .

Prelude Injectivity Complemented folds Quantamorphisms References

Towards reversible folds

NB:

A∗ × B B + A× (A∗ × B)
αoo

is the isomorphism

α = [nil ▽ id , (cons × id) · a] (7)

where

(A× B)× C A× (B × C)
aoo = (id × fst) ▽ (snd · snd) (8)

Functions

nil = []
cons (a, x) = a : x

are the components of the initial algebra of lists in = [nil , cons].

Prelude Injectivity Complemented folds Quantamorphisms References

Universal property

We actually need something more general:

A∗ × B

$h%

��

B + A× (A∗ × B)
αoo

id+id×$h%

��
C B + A× C

h

oo

Universal property

k = $h% ⇔ k · α = h · F k (9)

where F f = id + id × f .

From (9,8) one infers

A∗ A∗ × B
fstoo = $in% (10)

Prelude Injectivity Complemented folds Quantamorphisms References

Promoting complementation

Suppose non-injective f : A× B → B is complemented by
fst : A× B → A. The following diagram shows how to use
injective fst ▽ f to build an envelope for foldr f b:

A∗ × B

$h% ��

B + A× (A∗ × B)
αoo

id+id×$h%��
A∗ × B B + A× (A∗ × B)

Φ (fst▽f)ss
h

oo

B + A× (A∗ × B)

α
jj

where

Φ x = id + (xl · (id × x) · xl)

resorting to isomorphism A× (B × C)
xl // B × (A× C) .

Prelude Injectivity Complemented folds Quantamorphisms References

Promoting complementation

Note that fst ▽ $[id , f]% also has type A∗ × B → A∗ × B , recall

A∗ × B

k

��

B + A× (A∗ × B)
αoo

id+id×k=F k

��
B B + A× B

[id ,f]
oo

k = $[id , f]%

How do

$α · Φ (fst ▽ f)% and fst ▽ $[id , f]%

compare to each other?

Knowing by (10) that fst = $in% we appeal to the popular
loop-intercombination law known as “banana-split”:

$f% ▽ $g% = $(f × g) · (F fst ▽ F snd)% (11)

Prelude Injectivity Complemented folds Quantamorphisms References

Promoting complementation

We reason:

fst ▽ $[id , f]%

= { banana-split }
$(in× [id , f]) · (F fst ▽ F snd)%

= { pairing laws (products) }
$[nil , cons · (id × fst)] ▽ [id , f · (id × snd)]%

= { exchange law }
$[nil ▽ id , (cons · (id × fst)) ▽ (f · (id × snd))]%

= { products ; a · a◦ = id }
$α · a◦ · (id × fst) ▽ (f · (id × snd))

︸ ︷︷ ︸

Φ (fst▽f)

% (12)

Prelude Injectivity Complemented folds Quantamorphisms References

Promoting complementation

Thus

fst ▽ $[id , f]% = $α · (Φ (fst ▽ f))% (13)

Clearly, Φ preserves injectivity, as does $% (details in the
appendix).

Summary:

fst ▽ f injective ⇒ $α · (Φ (fst ▽ f))% injective

That is, fst-complementation of f in k = foldr f b is promoted to
the fst-complementation of the fold itself.

fst-complement propagated inductively.

Prelude Injectivity Complemented folds Quantamorphisms References

In standard Haskell

In standard Haskell, we can rely on the reversibility of

rfold :: (a→ b → b)→ ([a], b)→ ([a], b)
rfold f ([], b) = ([], b)
rfold f (a : x , b) = (a : x , f a b)

provided f is complemented by fst:

x

b foldr f b x

x
rfold f

x

b // rfold f

OO

// foldr f b x

x

OO

Prelude Injectivity Complemented folds Quantamorphisms References

Going quantum

Recall that functions can be represented by matrices, eg.
controlled-not:

{
cnot (0, b) = (0, b)
cnot (1, b) = (1,¬ b)

=

(0
,0
)

(0
,1
)

(1
,0
)

(1
,1
)

(0, 0) 1 0 0 0
(0, 1) 0 1 0 0
(1, 0) 0 0 0 1
(1, 1) 0 0 1 0

Now think of a
probabilistic

“evolution” of cnot:
(0
,0
)

(0
,1
)

(1
,0
)

(1
,1
)

(0, 0) 1 0 0 0
(0, 1) 0 1

2
0 0

(1, 0) 0 1

2
0 1

(1, 1) 0 0 1 0

Prelude Injectivity Complemented folds Quantamorphisms References

Going quantum

Moving further to quantum corresponds to generalizing
probabilities to amplitudes, for instance

bell =

(0
,0
)

(0
,1
)

(1
,0
)

(1
,1
)

(0, 0) 1√
2

0 1√
2

0

(0, 1) 0 1√
2

0 1√
2

(1, 0) 0 1√
2

0 − 1√
2

(1, 1) 1√
2

0 − 1√
2

0

Amplitudes are complex numbers indicating the superposition of
information at quantum information level.

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum information

0

1

Qubits

‘1’

‘0’

‘0’ + ‘1’

Bits

Credits: IBM Research AI & Q

Prelude Injectivity Complemented folds Quantamorphisms References

Going quantum

Quantum programs (QP) are made of elementary units called
quantum gates, for instance the so-called Hadamard gate,

had =

0 1

0 1√
2

1√
2

1 1√
2
− 1√

2

which is a component of the previous example.

The approach is compositional, using two main combinators —
composition (·) and (tensor) product (⊗).

Functional programmers (FP) familiar with pointfree (or monadic)
notation are particularly well-positioned to understand QP.

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum abstraction

Bird’s-eye view of the structure of a famous example (the “Alice”
part of the teleportation protocol):

|ψ⟩
• H

A
H • #$%&'()*

B
#$%&'()*

(Cf. entangled photon pairs)

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum abstraction

|ψ⟩
• H

A
H • #$%&'()*

B
#$%&'()*

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum abstraction

|ψ⟩
• H

A
H • #$%&'()*

B
#$%&'()*

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum abstraction

|ψ⟩
• H

A
H • #$%&'()*

B
#$%&'()*

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum abstraction

|ψ⟩
• H

A
H • #$%&'()*

B
#$%&'()*

h

h

c

c

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum abstraction

|ψ⟩
• H

A
H • #$%&'()*

B
#$%&'()*

bell

unbell

So

alice = (unbell ⊗ id) · a · (id ⊗ bell) (14)

where bell = cnot · (had ⊗ id).

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum abstraction (monadic)

It turns out that

alice = (unbell ⊗ id) · a · (id ⊗ bell)

can also be written

alice (c , (a, b)) =
do {

(a′, b′)← bell (a, b);
(c ′, a′′)← unbell (c , a′);
return (c ′, (a′′, b′))
}

— just standard monadic programming

Where is the quantum part gone? Details next.

Prelude Injectivity Complemented folds Quantamorphisms References

Monads for quantum programming

Back to the Hadamard gate,

had =

0 1

0 1√
2

1√
2

1 1√
2
− 1√

2

note that it can be written
pointwise as

had :: 2→ Vec 2

had 0 =

[
1√
2
1√
2

]

had 1 =

[
1√
2

− 1√
2

]

or even as

had :: 2→ Vec 2

had 0 =
|0〉+ |1〉√

2

had 1 =
|0〉 − |1〉√

2

defining

|0〉 =
[
1
0

]

|1〉 =
[
0
1

]

— the two possible states of
a bit (Dirac’s notation).

Prelude Injectivity Complemented folds Quantamorphisms References

Physics (again) making it happen...

but this time it sounds far more challenging — particle spins, ion
traps, ...

”(...) the implementation of quantum computing machines
represents a formidable challenge to the communities of
engineers and applied physicists.” (Yanofsky and Mannucci,
2008)

IBM, Google, Microsoft are all investing a lot on such
(quantum) physics!

Prelude Injectivity Complemented folds Quantamorphisms References

Monads for quantum programming

Vec A represents the datatype of all complex-valued vectors with base A.

Thus A→ Vec B is a function representing a matrix of type A→ B .

In QP there is a restriction, thought: f : A→ Vec B must represent a
unitary transformation.

A C-valued matrix U is unitary iff U · U† = U† · U = id, where
U† is the conjugate transpose of U.

Compare with

f · f ◦ = f ◦ · f = id

— isomorphisms are exactly the classical unitrary transformations.

Prelude Injectivity Complemented folds Quantamorphisms References

Quantamorphisms

Vec A is a monad whose Kleisli arrows are the matrices that we
have seen before.

Everything goes smoothly when we interpret the diagrams before
in the Kleisli, extending bijections to unitary transformations.

We can encode the categorial operations monadically, as we know,
namely the tensor product

⊗ : (A→ Vec X)→ (B → Vec Y)→ (A× B)→ Vec (X × Y)
(f ⊗ g) (a, b) = do {
x ← f a;
y ← g b;
return (x , y)}

Note that return a = |a〉.

Prelude Injectivity Complemented folds Quantamorphisms References

Quantamorphisms

So we can encode “quantamorphisms” as monadic programs, for
instance

$ ·% :: ((a, b)→ Vec (c , b))→ ([a], b)→ Vec ([c], b)
$ f % ([], b) = return ([], b)
$ f % (h : t, b) = do {

(t ′, b′)← $ f % (t, b);
(h′′, b′′)← f (h, b′);
return (h′′ : t ′, b′′)
}

It controls qubit b according to a list of classical bits using the
quantum operator f (unitary). The outcome is unitary.

Prelude Injectivity Complemented folds Quantamorphisms References

Quantamorphisms

Suppose we use bell to control the input qubit (much
superposition expected!). We may check what comes out, for
instance, in GHCi:

$bell % ([0, 1, 1, 1], 0) =

([0, 0, 0, 0], 0) 0.24999997
([1, 0, 0, 0], 0) −0.24999997
([0, 1, 0, 0], 0) −0.24999997
([1, 1, 0, 0], 0) 0.24999997
([0, 0, 1, 0], 0) −0.24999997
([1, 0, 1, 0], 0) 0.24999997
([0, 1, 1, 0], 0) 0.24999997
([1, 1, 1, 0], 0) −0.24999997
([0, 0, 0, 1], 0) 0.24999997
([1, 0, 0, 1], 0) −0.24999997
([0, 1, 0, 1], 0) −0.24999997
([1, 1, 0, 1], 0) 0.24999997
([0, 0, 1, 1], 0) −0.24999997
([1, 0, 1, 1], 0) 0.24999997
([0, 1, 1, 1], 0) 0.24999997
([1, 1, 1, 1], 0) −0.24999997

Instead of simulating, how does one “compile” $bell% towards a
quantum device?

Prelude Injectivity Complemented folds Quantamorphisms References

How does it compile?

Tool-chain:

// GHCi // Quipper //QISKittm // IBM Q

• GHCi — depending on the resources (number of qubits
available), we select a range of values of the input that can be
represented in such resources, generate the corresponding
unitary matrix

• Quipper (Green et al., 2013) — generates the quantum

circuit from such a matrix

• QISKit — Python interface to the hardware, adding
error-correction extra circuitry

• IBM-Q — the actual hardware where QISKit runs its code.

Prelude Injectivity Complemented folds Quantamorphisms References

IBM Q-experience devices

Prelude Injectivity Complemented folds Quantamorphisms References

Compiling for 5 qubits

Matrix sent to Quipper for $bell%:
([
],
0
)

([
],
1
)

([
0
],
0
)

([
0
],
1
)

([
0
,
0
],
0
)

([
0
,
0
],
1
)

([
1
,
0
],
0
)

([
1
,
0
],
1
)

([
1
],
0
)

([
1
],
1
)

([
0
,
1
],
0
)

([
0
,
1
],
1
)

([
1
,
1
],
0
)

([
1
,
1
],
1
)

([], 0) 1 0 0 0 0 0 0 0 0 0 0 0 0 0
([], 1) 0 1 0 0 0 0 0 0 0 0 0 0 0 0

([0], 0) 0 0 1
√

2
0 0 0 0 0 1

√

2
0 0 0 0 0

([0], 1) 0 0 0 1
√

2
0 0 0 0 0 1

√

2
0 0 0 0

([0, 0], 0) 0 0 0 0 1

2
0 1

2
0 0 0 1

2
0 1

2
0

([0, 0], 1) 0 0 0 0 0 1

2
0 1

2
0 0 0 1

2
0 1

2

([1, 0], 0) 0 0 0 0 0 1

2
0 −

1

2
0 0 0 1

2
0 −

1

2

([1, 0], 1) 0 0 0 0 1

2
0 −

1

2
0 0 0 1

2
0 −

1

2
0

([1], 0) 0 0 0 1
√

2
0 0 0 0 0 −

1
√

2
0 0 0 0

([1], 1) 0 0 1
√

2
0 0 0 0 0 −

1
√

2
0 0 0 0 0

([0, 1], 0) 0 0 0 0 0 1

2
0 1

2
0 0 0 −

1

2
0 −

1

2

([0, 1], 1) 0 0 0 0 1

2
0 1

2
0 0 0 −

1

2
0 −

1

2
0

([1, 1], 0) 0 0 0 0 1

2
0 −

1

2
0 0 0 −

1

2
0 1

2
0

([1, 1], 1) 0 0 0 0 0 1

2
0 −

1

2
0 0 0 −

1

2
0 1

2

Prelude Injectivity Complemented folds Quantamorphisms References

Quantum circuit

First part of quantum circuit generated from the given program:

E
N

T
E

R
:

ex
ac

t_
sy

n
th

es
is

_
al

t

q[0]

q[1]

q[2]

q[3]

q[4]

0

E
N

T
E

R
:

cc
_

iX c1.-

c2.+

q
H

T*

T

T*

T

H

E
X

IT
:

cc
_

iX c1.-

c2.+

q

0

E
N

T
E

R
:

cc
_

iX

c1.+

c2.-

q
H

T

T

T*

T*

H

E
X

IT
:

cc
_

iX

c1.+

c2.-

q

Simpler example — $had ⊗ id% compiles to a much simpler
circuit:

E
N

T
E

R
: e

xa
ct

_s
yn

th
es

is q[0]

q[1]

q[2]

q[3]

q[4]

H H H

H

H

H

H

H

H H

E
X

IT
: e

xa
ct

_s
yn

th
es

is q[0]

q[1]

q[2]

q[3]

q[4]

(With thanks to: Ana Neri, Afonso Rodrigues, Rui S. Barbosa)

Prelude Injectivity Complemented folds Quantamorphisms References

Running the circuits on IBM-Q

Each job
performs 1000
runs for the
given input
provided and
returns the
outcome of the
mesurements,
see aside.

Relatively high
percentage of
errors, still.

2 em máquina real:

In [34]: backend = 'ibmqx2' # Backend where you execute your progra

circuits = ['Circuit'] # Group of circuits to execute

shots = 1024 # Number of shots to run the program

max_credits = 3 # Maximum number of credits to spen

qp.set_api(Qconfig.APItoken, Qconfig.config['url']) # set th

result_real = qp.execute(circuits, backend, shots=shots, max_credi

In [35]: result_real.get_counts('Circuit')

Out[35]: {'00000': 79,

'00001': 47,

'00010': 285,

'00011': 92,

'00100': 80,

'00101': 42,

'00110': 328,

'00111': 71}

"00110" 32.0%

"00010" 27.8%

"00011" 9.0%

"00100" 7.8%

"00000" 7.7%

"00111" 6.9%

"00001" 4.6%

"00101" 4.1%

Prelude Injectivity Complemented folds Quantamorphisms References

Wrapping up

Quantamorphisms —
recursive quantum
programming strategies
dispensing with
measurements.

Simpler semantics.

Emphasis on structural

control. But the concept is
still very experimental. Source: IBM Q Experience website

Towards correct by construction reversible/quantum programs.

https://www.research.ibm.com/ibm-q/

Prelude Injectivity Complemented folds Quantamorphisms References

Wrapping up

Current MSc work by Ana Neri — “proof of concept”.

Experimental — needs a lot of work on both the theory and
practical sides.

Carries further previous WG2.1 work in this field, recall e.g.
Quantum functional programming by Mu and Bird (2001).

Many open questions, eg.

How far can we go without measuring quantum states?

Cf. if then else ’s...

Prelude Injectivity Complemented folds Quantamorphisms References

Conditionals: to measure or not to measure...

Compare4

with

fig7 4 h (p, q) = do {
q′ ← had q;
p′ ← if q′

then return (¬ p)
else had p;

return (p′, q′)
}

Conditional on the left does not interfere with the quantum effect
— but, it is the same thing as measuring the state and taking
decisions?

4Fig.7.4 of (Yanofsky and Mannucci, 2008), page 236.

Prelude Injectivity Complemented folds Quantamorphisms References

Annex

Prelude Injectivity Complemented folds Quantamorphisms References

Proof of (10)

fst = $in%

⇔ { (9) }
fst · α = in · (id + id × fst)

⇔ { in; coproducts }
fst · α = [nil , cons · (id × fst)]

⇔ { definition of α and a }
true

2

Prelude Injectivity Complemented folds Quantamorphisms References

Annex — $% preserves injectivity

Let k = $f%. By the UP (9), k = f · (F k) · α◦. We calculate K = ker k
assuming ker f = id :

K = k
◦ · k

⇔ { unfold f · F k · α◦ }

K = α · F k
◦ · f ◦ · f · F k · α◦

⇔ { assumption: f ◦ · f = id }

K = α · F k
◦ · F k · α◦

⇔ { F (R · S) = (F R) · (F S) and F R◦ = (F R)◦ }

K = α · F (k◦ · k) · α◦

⇔ { K = k◦ · k ; UP (for relations) }

K = $α%

⇔ { Reflexion: $α% = id }

K = id

Prelude Injectivity Complemented folds Quantamorphisms References

Checking g (12)

Recall g (a, (x , b)) = (a, (x , f (a, b))) in:

a◦ ((id × fst) ▽ (f · (id × snd)) (a, (x , b))

= { composition; fst and snd projections }
a◦ ((a, x), f (a, b))

= { associate to the righ isomorphism a◦ }
(a, (x , f (a, b)))

2

Prelude Injectivity Complemented folds Quantamorphisms References

Proof of (10)

fst · α = [nil , cons · fst · a]
⇔ { (8) }

fst · α = [nil , cons · (id × fst)]

⇔ { +-absorption }
fst · α = [nil , cons] · (id + id × fst))

⇔ { in = [nil , cons]; universal property (9) }

A∗ A∗ × B
fstoo = $in%

2

Prelude Injectivity Complemented folds Quantamorphisms References

References

Prelude Injectivity Complemented folds Quantamorphisms References

F. Bancilhon and N. Spyratos. Update semantics of relational
views. ACM TDS, 6(4):557–575, December 1981.

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall, 1997.

P.J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of
Mathematical Library. North-Holland, 1990.

A.S. Green, P.L. Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron.
An introduction to quantum programming in Quipper. CoRR,
cs.PL(arXiv:1304.5485v1), 2013.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions, 2007. 12th ACM
SIGPLAN International Conference on Functional Programming
(ICFP 2007), Freiburg, Germany, October 1-3.

S.C. Mu and R. Bird. Quantum functional programming, 2001.
2nd Asian Workshop on Programming Languages and Systems,
KAIST, Dajeaon, Korea, December 17-18, 2001.

Prelude Injectivity Complemented folds Quantamorphisms References

N.S. Yanofsky and M.A. Mannucci. Quantum Computing for
Computer Scientists. Cambridge University Press, 2008. doi:
10.1017/CBO9780511813887.

	Prelude
	Injectivity
	Complemented folds
	Quantamorphisms

