
Towards a Linear Algebra of Programming

J.N. Oliveira

HASLab — High Assurance Software Lab
INESC TEC and University of Minho, Portugal

IFIP WG2.1 meeting #68
February 2012

Rome, Italy

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Motivation

Formal methods are going quantitative — further to predicting “it
may happen” one wants to know “how often it will happen”

As happened with physics in the past, computer science is
becoming probabilistic

Probability theory particularly relevant in security analysis of
information flow

Haskell library PFP for probabilistic functional programming —
distribution monad, etc (Erwig and Kollmansberger, 2006)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

A new probability perspective

However, traditional notation for probabilities is too descriptive
and not meant for calculation as we understand it today.

Quoting Hehner (2011) — also wg2.1#64:

Perhaps a thousand years ago the philosophers of the time
[might give] reasons why their answer is right. Now we don’t
argue; we formalize, calculate, and unformalize.

From a functional programming perspective, one may identify

probabilistic functions

as something half way between relations and traditional
functions: they express the propensity, or likelihood of ambiguous
(or “bad”) outputs.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Example: fault-injected multiplication

Safe multiplication (over IN0):

(a∗) = for (a+) 0

that is,

a ∗ 0 = 0

a ∗ (n + 1) = a + a ∗ n

Bad multiplication, fault-injected — 5% probability of a wrong
base case (in extended functional notation):

a ∗ 0 =.95 0

a ∗ 0 =.05 a

a ∗ (n + 1) =1 a + a ∗ n

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Example: fault-injected multiplication

The same in Haskell’s PFP library (Erwig and Kollmansberger, 2006):

a * 0 = D [(0,0.95),(a,0.05)]

a * (n+1) = do x <- a * n

return $ a + x

monadic over distributions:

newtype Dist a = D {unD :: [(a,ProbRep)]}

instance Monad Dist where

return x = D [(x,1)]

d >>= f = D [(y,q*p) | (x,p) <- unD d, (y,q) <- unD (f x)]

fail _ = D []

Question: does the fault in the base case carry over to the overall

function? In what extent? (Quantify fault propagation.)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Non-deterministic functions

Nondeterministic outputs — set-valued functions are relations

f = ΛR ⇔ 〈∀ b, a :: b R a⇔ b ∈ f a〉 (1)

that is,

A→ PB

(∈·)
**∼= A→ B

Λ

jj (2)

where A→ B on the right hand side is the relational type A→ B
of all relations R ⊆ B × A.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Nondeterministic functions

An adjunction, offering two ways for reasoning — one relational
(Rel)

PA

B

f

OO PA
∈ // A

B

f

OO

R=∈·f

==

the other monadic (Set):

A

R
��

B

PA

ER
��

A
returnoo

f = ER · return
where (ER)s = {b|a← s; bRa}

}}
PB

The same choice in going probabilistic — monadic? what else?

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Probabilistic functions

Outputs become distributions,

A→ DB
**∼= A→ Bjj (3)

where DB is the B-distribution data type

DB = {µ ∈ [0, 1]B |
∑
b∈B

µ b = 1} (4)

and where [0, 1] is the interval of all non-negative reals at most 1.

However, what does A→ B on the right hand side of (3) mean?

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Probabilistic functions

One has:

A→ [0, 1]B

⇔ { uncurrying }

A× B → [0, 1]

⇔ { swapping }

B × A→ [0, 1]

where B × A→ [0, 1] can be identified with the set of all matrices
taking elements from [0, 1] with as many columns (resp. rows) as
elements in A (resp. B).

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Left stochastic matrices
In fact:

A→ DB
++

∼= A→LS Bjj (5)

where LS denotes the category of left-stochastic matrices
(columns in such matrices add up to 1).

Such a matrix-transform is captured by the universal property, for
all f :: A→ DB and LS-matrix M:

M = [[f]] ⇔ 〈∀ b, a :: M(b, a) = (f a)b〉 (6)

Research question:

Is LS “as useful” to probabilistic reasoning as Rel is to
non-deterministic reasoning in the AoP (Bird and
de Moor, 1997) ?

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Towards a LAoP

My answer:

I believe so.

But — many things to be explained:

• categories of matrices — what’s this?

• category of LS matrices — what’s this?

• the AoP is pointfree — universal property (6) above is
pointwise...

Answering these questions will generalize the AoP into something
one may identify as a Linear Algebra of Programming (LAoP).

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Linear algebra for software verification

Could not agree more on...

“(...) our key idea is to adopt linear algebra as the lingua
franca of software verification”

quoted from

LAP: Linear Algebra of bounded resources Programs

— a project of SQIG at the Telecommunications Institute (IT) in
Lisbon (http://sqig.math.ist.utl.pt/work/LAP).

However — old-fashioned matrix calculus needs to be spruced
up... ;-)

http://sqig.math.ist.utl.pt/work/LAP

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Uups!

“Using matrix notation such a set of
simultaneous equations takes the form
A · x = b where x is the vector of unknown
values, A is the matrix of coefficients and b
is the vector of values on the right side of
the equation.”

“In this way a set of equations has been
reduced to a single equation.”

“This is a tremendous improvement in
concision that does not incur any loss of
precision!”

Roland Backhouse (2004)

“I cannot believe that
anything so ugly as
multiplication of matrices
is an essential part of the
scheme of nature”

Sir Arthur Eddington
(1936)

— Thanks, Jeremy, for this
quote :-)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Linear algebra in computer science

Trend towards quantitative methods in computer science (using
LA in particular):

• Read Baroni and Zamparelli (2010) suggestive paper: Nouns
are vectors, adjectives are matrices in semantics of natural
language.

• “Quantum inspiration” in Sernadas et al. (2008) who regard
probabilistic programs as linear transformations over suitable
vector spaces.

Our own trend: PhD thesis by Hugo Macedo (2012) — just
submitted — entitled

”Matrices as Arrows” — Why Categories of Matrices
Matter”

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Arrow notation for functions

Used everywhere for declaring functions, eg.

f : IN → IR

n 7→ n

π

The first line is the type of the function (syntax) and the second
line is the rule of correspondence (semantics).

Compositionality — functions compose with each other:

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(7)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Arrow notation for (binary) relations

Binary relations are typed: arrow A
R // B denotes a binary

relation from A (source) to B (target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Compositionality — relations compose with each other:

B A
Roo C

Soo

R·S

gg (8)

b(R · S)c ⇔ 〈∃ a :: b R a ∧ a S c〉 (9)

Example: uncle = brother · parent

Motivation Functions Relations Matrices Probabilistic programming Recursion References

From binary relations to matrices

As binary relations are Boolean matrices, eg.

Relation R: Matrix M:

why not represent matrices as arrows too, cf.

11 11
Moo ?

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Compositionality — matrix-matrix multiplication

Index-wise definition

Cij =
2∑

k=1

Aik × Bkj

Arrows hide indices i , j , k :

3 2
Aoo 3

Boo

C=A·B

ff Index-free

C = A · B

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Typed linear algebra

Composition of matrices obeys to the typing rule

k n
Aoo m

Boo

A·B

ff

For matrices A and B of the same type n moo , we can
extend cell level algebra to matrix level, eg. by adding and
subtracting matrices,

A + B , A− B

multiplying matrices (the Hadamard product)

A× B

and so on.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Typed linear algebra

Expressions such as eg. A + B, A× B for A and B of different
types won’t typecheck.

The underlying type system is polymorphic and type inference
proceeds by unification, as in programming languages.

For instance, the identity matrix

n n
idnoo =

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

n×n

is polymorphic on type n. This could help in equipping tools such
as Matlab and Mathematica with a type system saving the
burden of always checking for matrix dimensions.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Converse

Given matrix n m
Moo , notation m n

M◦oo denotes its
transpose, or converse.

Operation whereby M changes shape by turning its rows into
columns and vice-versa.

The following idempotence and contravariance laws hold:

(M◦)◦ = M (10)

(M · N)◦ = N◦ ·M◦ (11)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Polymorphic (block) combinators

Two ways of putting matrices together to build larger ones:

• X = [M|N] — M and N side by side (“‘junc”)

• X =
[
P
Q

]
— P on top of Q (“‘split”).

Mind the (polymorphic) types:

m

n

M

>>

n + p

[M|N]

OO

p

N

``

t

P

``
[
P
Q

]OO
Q

>>

(A biproduct)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Blocked linear algebra

Rich set of laws, for instance

• Divide-and-conquer:

[A|B] ·
[

C

D

]
= A · C + B · D (12)

• “Fusion”-laws:

C · [A|B] = [C · A|C · B] (13)[
A

B

]
· C =

[
A · C
B · C

]
(14)

Block-matrix-algebra is at the heart of parallelism in LA — this is
why LA-based approaches are so important today.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Vectors

Vectors are special cases of matrices in which one of the types is
1, for instance

v =

v1
...

vm

 and w =
[
w1 . . . wn

]

Column vector v is of type m 1oo (m rows, one column) and
row vector w is of type 1 noo (one row, n columns).

Our convention is that lowercase letters (eg. v ,w) denote vectors
and uppercase letters (eg. A, M) denote arbitrary matrices.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Special matrices

The following (Boolean) matrices are relevant:

• The bottom matrix n m
⊥oo — wholly filled with 0s

• The top matrix n m
>oo — wholly filled with 1s

• The identity matrix n n
idoo — diagonal of 1s

• The bang (row) vector 1 m
!oo — wholly filled with 1s

Thus, (typewise) bang matrices are special cases of top matrices:

1 m
>oo = !

Also note that, on type 1 1oo :

> = ! = id

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Type generalization

As is standard is relational mathematics (Schmidt, 2010), matrix
types can be generalized from numeric dimensions (n, m ∈ IN0) to
arbitrary denumerable types (X , Y), taking disjoint union X + Y
for m + n, Cartesian product X × Y for mn, etc.

We will restrict ourselves to matrices taking elements from IR+
0 ,

the non-negative reals.

The interval [0, 1] will be particularly at target in the case of
probabilistic functions.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Doing elementary set theory with LA

Clearly, any Boolean vector of type 1 X
!oo for some type X

represents a subset of X , for instance

John Mary Henry
1
(

1 0 1
)

represents set {John,Henry} ⊆ {John,Mary ,Henry}.

Let [[A]] denote the vector which represents A ⊆ X . Then:

[[∅]] = ⊥ , [[A]] = !

[[A ∩ B]] = [[A]]× [[B]]

[[¬A]] = !− [[A]]

[[A ∪ B]] = [[A]] + [[B]]− [[A ∩ B]] (15)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Example of LA set theory calculation

State that A and B form a partition of X simply by writing

[[A]] + [[B]] = !

Infer that, necessarily, A and B are disjoint:

[[A]]× [[B]] = ⊥

For this, we only need to recall why LA is referred to as linear:

M × (N + P) = M × N + M × P (16)

M · (N + P) = M · N + M · P (17)

(N + P) ·M = N ·M + P ·M (18)

etc, and drop the [[]] parentheses for saving ink:

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Example of LA set theory calculation

A + B = !

⇒ { multiply both sides by A (Leibniz) }

A× (A + B) = A× !

⇔ { Hadamard: linearity (16), A× A = A ∩ A = A and unit ! }

A + A× B = A

⇔ { subtract A from both sides of the equation }

A× B = A− A

⇔ { cancellation of inverses }

A× B = ⊥
⇔ { definition }

A and B are disjoint

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Doing elementary probability theory in LA

Recall standard definition of a distribution:

DX = {µ : X → [0, 1] |
∑
x∈X

µ(x) = 1} (19)

as, for example,

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Elementary probability theory in LA

The same in matrix format (for discrete µ) is column vector

X 1
[[µ]]oo

(over non-negative reals) such that ! · [[µ]] = !.

Why? The sum of all entries of vector X 1
voo is vector (cell)

1 X
!oo 1

voo

!·v

ff

and 1 1
!oo is real number 1.

Thus the pointfree style starts to happen (no need for
∑

etc)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Elementary probability theory in LA

Let X
µ // [0, 1] be a discrete probability distribution over

sample space X .

The probability P(S) of event S ⊆ X under µ will be given by

P(S) = 1 S
[[S]]oo 1

[[µ]]oo

[[S]]·[[µ]]

jj
(20)

Then a random variable T X
voo on probability space (X , µ)

induces a new probability distribution on T by composition,

[[µ′]] = [[v]] · [[µ]] (21)

generating a new probability space (T , µ′).

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Elementary probability theory in LA

That µ′ is indeed a distribution can be easily calculated:

! · [[µ′]]

= { (21) }

! · ([[v]] · [[µ]])

= { v is a function, therefore Dirac-probabilistic }

! · [[µ]]

= { µ is a distribution }

!

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Elementary probability theory in LA

Easy to get basic probability theory from the LA encoding, for
instance the addition law of probability

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

coming straight from vectorial set union (15) and linearity (18).

Example: calculating the law of total probability

P(A) = P(A ∩ B1) + P(A ∩ B2)

where {B1,B2} form a partition (B1 + B2 = !) of the sample
space X (next slide).

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Law of total probability

P(A ∩ B1) + P(A ∩ B2)

= { (20) twice }

(A× B1) · µ+ (A× B2) · µ

= { composition and Hadamard product are bilinear }

(A× (B1 + B2)) · µ

= { partition : B1 + B2 = ! }

(A× !) · µ

= { ! = > is the unit of Hadamard ×; definition (20) }

P(A)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Matrix transformed probabilistic functions

Recall that, given probabilistic function A
f // DB , its matrix

transform is a matrix of type A
[[f]] // B such that

! · [[f]] = ! (22)

that is, all columns of [[f]] add up to one.

For A = B, probabilistic function f can be regarded as a Markov
chain.

Example — probabilistic negation:

True False
True
False

(
0.1 0.8
0.9 0.2

)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Linear algebra of probabilistic functions

Every sharp function is probabilistic — it offers the Dirac
distribution for every input. This includes the identity function id
represented by the identity matrix [[id]].

Compositionality: probabilistic functions compose, under
monad-flavoured definition

[[f • g]] = [[f]] · [[g]] (23)

In monad-speak:

[[λa. do {b← g a; f b}]] = [[f]] · [[g]]

Let us not forget checking the 100% constraint (22).

Motivation Functions Relations Matrices Probabilistic programming Recursion References

f • g is a probabilistic function

⇔ { (22) }

! · [[f • g]] = !

⇔ { definition (23) }

! · [[f]] · [[g]] = !

⇔ { f is probabilistic (22) }

! · [[g]] = !

⇔ { g is probabilistic (22) }

! = !

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Probabilistic “junc”

Probabilistic A + B
[f ,g] // DC — run either f or g — transposes

into

[[[f , g]]] = [[[f]]|[[g]]] (24)

where (recall) [M|N] denotes M and N put side by side.

Checking the 100% constraint (22):

! · [[[f]]|[[g]]]

⇔ { fusion-+ (13) }

[! · [[f]]|! · [[g]]]

⇔ { f and g probabilistic (22) }

[!|!]

⇔ { [!|!] = ! }

!

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Probabilistic choice

In their programming language pGCL, McIver and Morgan (2005)
introduce notation

prog p� prog ′

as a form of probabilistic choice between two branches of a
program, prog chosen with probability p and prog ′ with probability
1− p.

This corresponds to the choice between two probabilistic functions
f and g of the same type defined by

[[f p� g]] = p[[f]] + (1− p)[[g]] (25)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Probabilistic choice

Probabilistic choice “is probabilistic”:

! · [[f p� g]]

= { definition (25) ; bilinearity }

! · (p[[f]]) + ! · ((1− p)[[g]])

= { p is a scalar }

p(! · [[f]]) + (1− p)(! · [[g]])

= { f and g are probabilistic }

p! + (1− p)!

= { bilinearity }

(p + 1− p)!

= { cancellation }

!

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Properties

Probabilistic choice enjoys many properties easy to derive from the
definition, eg. basic

f p� f = f (26)

f 0� g = g (27)

f p� g = g 1−p� f (28)

fusion-laws

(f p� g) • h = (f • h) p� (g • h) (29)

h • (f p� g) = (h • f) p� (h • g) (30)

and the exchange law:

[f , g] p� [h, k] = [f p� h, g p� k] (31)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Probabilistic sums

The direct sum of two matrices,

M ⊕ N = [i1 ·M|i2 · N] =

[
M · π1

N · π2

]
=

[
M 0
0 N

]
(32)

which has type A
M ��

B
N ��

A + B
M⊕N��

C D C + D

(a bifunctor) enables us to

sum probabilistic functions:

[[f ⊕ g]] = [[f]]⊕ [[g]]

Distribution over choice

h ⊕ (f p� g) = (h ⊕ f) p� (h ⊕ g) (33)

is central to probabilistic function calculation.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Probabilistic recursion

Recall the algorithm for performing multiplication by iterated
addition (over IN0),

(a∗) = for (a+) 0

which we wrote in two clauses

a ∗ 0 = 0

a ∗ (n + 1) = a + a ∗ n

earlier on, only to inject a fault into the base case:

a ∗ 0 =.95 0

a ∗ 0 =.05 a

a ∗ (n + 1) =1 a + a ∗ n

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Probabilistic recursion

Now that we have probabilistic choice (p�) we can encode the
faulty version as follows (also parametric on the probability p of
the fault),

faulty = for (a+) (0 p� a)

and try and quantify how bad it is if compared to the original
version,

good = for (a+) 0

or to one definitely bad:

bad = for (a+) a

Motivation Functions Relations Matrices Probabilistic programming Recursion References

(Matrix) catamorphisms
Note the slight abuse of notation, as we don’t have a choice for
values — only for functions. It should be:

faulty = (|[0 p� a|(a+)]|)
bad = (|[a|(a+)]|)

good = (|[0|(a+)]|)

Here is how good looks like in a diagram:

IN0

in◦=
[

[[0]]◦
[[succ]]◦

]
**

[[good]]

��

∼= 1 + IN0

in=[[[0]]|[[succ]]]

hh

id⊕[[good]]

��
IN0 1 + IN0

[[[0]]|[[(a+)]]]

hh

Motivation Functions Relations Matrices Probabilistic programming Recursion References

(Matrix) catamorphisms

Parsing the diagram, one has:

[[good]] = [[[0]]|[[(a+)]]] · (id ⊕ [[good]] ·
[

[[0]]◦

[[succ]]◦

]
= { absorption (34) ; dropping parentheses for better parsing }

good = [0|(a+) · good] ·
[

0◦

succ◦

]
= { divide and conquer (12) }

good = 0 · 0◦ + (a+) · good · succ◦

Note how the matrix for good is recursively filled up: first the

outer-product 0 · 0◦ (that is, the everywhere-0 matrix apart from the 1 in

cell (0, 0)), which is added to (a+) · 0 · 0◦ · succ◦ = a · 1◦ (matrix with a

1 in cell labeled (a, 1) and 0 otherwise), and so on.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Checking assertion
Conjecture: is it true that

faulty = good p� bad

We reason:

faulty = good p� bad

⇔ { definition of faulty }

(|[0 p� a|(a+)]|) = good p� bad

⇔ { cata-universal property, for FX = id ⊕ X }

(good p� bad) · [0|succ] = [0 p� a|(a+)] · F(good p� bad)

The calculation of this equality will resort to ⊕-absorption:

[M|N] · (P ⊕ Q) = [M · P|N · Q] (34)

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Checking assertion

(good p� bad) · [0|succ]

= { p�-fusion (29) }

(good · [0|succ]) p� (bad · [0|succ])

= { cata-cancellation (twice: good and bad) }

([0|(a+)] · Fgood) p� ([a|(a+)] · Fbad)

= { absorption (34) over FX = id ⊕ X }

[0|(a+) · good] p� [a|(a+) · bad]

= { exchange-law: [f , g] p� [h, k] = [f p� h, g p� k] (31) }

[0 p� a | ((a+) · good) p� ((a+) · bad)]

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Checking assertion

= { fusion (30) }

[0 p� a | (a+) · (good p� bad)]

= { ⊕-absorption (34), in the reverse direction }

[0 p� a|(a+)] · F(good p� bad)

�

Note how exchange-law (31)

[f , g] p� [h, k] = [f p� h, g p� k]

plays the central role above, on top of bilinearity.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Closing

The research question which motivated this talk splits in two other
questions, in fact two sides of the same coin:

(a) Can the AoP be extended quantitatively in some useful way?

(b) What happens to the discipline once we generalize from
relations to matrices?

The answer leads us into linear algebra, which eventually provides
a surprisingly simple framework for calculating with set-theory,
probabilities, functions and relations, provided it is typed — as
advocated by Macedo (2012).

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Closing

The comment by Sir Arthur Eddington in his Relativity Theory of
Electrons and Protons (already quoted) can be understood as a
call for better laid out linear algebra — perhaps typed :-)?

Is this kind of foundation sought in 1967, in the Garmisch NATO
workshop:

In late 1967 the Study Group recommended the holding of a
working conference on Software Engineering. The phrase
‘software engineering’ was deliberately chosen as being
provocative, in implying the need for software manufacture to
be based on the types of theoretical foundations and
practical disciplines, that are traditional in the established
branches of engineering. (Naur and Randell, 1969)

Only time and experience will tell.

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Future work

Topic in its very start (very recent research, a couple of months),
much to be done:

• LAoP needs to be pushed forward to realistic case-studies.

• Typed LA framework applied to OLAP and data-mining —
follow up of work already carried out by (Macedo and
Oliveira, 2011). Links to parallel programming

• Extension of the GNU Octave
(http://www.gnu.org/software/octave) matrix
sub-language with types and a type checker along the lines
of this talk.

http://www.gnu.org/software/octave

Motivation Functions Relations Matrices Probabilistic programming Recursion References

References

Motivation Functions Relations Matrices Probabilistic programming Recursion References

R.C. Backhouse. Mathematics of Program Construction. Univ. of
Nottingham, 2004. Draft of book in preparation. 608 pages.

M. Baroni and R. Zamparelli. Nouns are vectors, adjectives are
matrices: representing adjective-noun constructions in semantic
space. In Proceedings, EMNLP ’10, pages 1183–1193,
Morristown, NJ, USA, 2010. Association for Computational
Linguistics.

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall International, 1997.

Arthur Eddington. Relativity Theory of Electrons and Protons.
Cambridge University Press, 1936.

M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic
functional programming in Haskell. J. Funct. Program., 16:
21–34, January 2006.

E. Hehner. A probability perspective. Formal Aspects of
Computing, 23:391–419, 2011.

H. Macedo. Matrices as Arrows — Why Categories of Matrices
Matter. PhD thesis, University of Minho, 2012. (Submitted
Jan. 2012).

Motivation Functions Relations Matrices Probabilistic programming Recursion References

H.D. Macedo and J.N. Oliveira. Do the middle letters of “OLAP”
stand for linear algebra (“LA”)? Technical Report
TR-HASLab:04:2011, INESC TEC and University of Minho,
Gualtar Campus, Braga, 2011.

A. McIver and C. Morgan. Abstraction, Refinement And Proof For
Probabilistic Systems. Monographs in Computer Science.
Springer-Verlag, 2005. ISBN 0387401156.

P. Naur and B. Randell, editors. Software Engineering: Report on
a conference sponsored by the NATO SCIENCE COMMITTEE,
Garmisch, Germany, 7th to 11th October 1968, 1969. Scientific
Affairs Division, NATO. URL http://www.cs.ncl.ac.uk/

people/brian.randell/home.formal/NATO/.

G. Schmidt. Relational Mathematics. Number 132 in Encyclopedia
of Mathematics and its Applications. Cambridge University
Press, November 2010. ISBN 9780521762687.

A. Sernadas, J. Ramos, and P. Mateus. Linear algebra techniques
for deciding the correctness of probabilistic programs with
bounded resources. Technical report, SQIG - IT and IST - TU

http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/
http://www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/

Motivation Functions Relations Matrices Probabilistic programming Recursion References

Lisbon, 1049-001 Lisboa, Portugal, 2008. Short paper presented
at LPAR 2008, Doha, Qatar. November 22-27.

	Motivation
	Functions
	Relations
	Matrices
	Probabilistic programming
	Recursion

