
A Look at Program Galculation

J.N. Oliveira
(joint work with Paulo Silva)

Dept. Informática,
Universidade do Minho

Braga, Portugal

IFIP WG2.1 meeting #65
January 2010

Braga, Portugal



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

The ‘G’alculator Project

The ‘G’alculator is not the GTK 2 based calculator which Google
offers you in the first place. . .



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Context

• ‘G’alculator Project — design of a proof assistant solely
based on Galois connections (GCs), eg.

〈∀ x , y :: f x ≤ y ⇔ x ≤ g y〉

and indirect equality (IE)

n = m ⇔ 〈∀ x :: x ≤ n⇔ x ≤ m〉

See PhD thesis by Paulo Silva on his implementation of a
prototype of the ‘G’alculator in Haskell and our PPDP’08
paper (Silva and Oliveira, 2008).

• MathIS project — are GCs a good recipe for teaching MPC
culture at (late) middle-school level?



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Why Galois connections?

• GCs in “natural language”:

Software requirements normally full of superlatives
such as ... best solution .... smallest such number
... longest such list ...

• Superlatives always mean suprema or infima in some
ordered domain.

• Very often, such limits can be identified with adjoints of a
GC.

• Conclusion: “CGcs are specifications”

How about:

• calculating properties from them?

• calculating algorithms from them?



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

CGcs are specifications

Example — requirements for whole division x ÷ y :

• write a program which computes number z which, multiplied
by y , approximates x .

• check your program with the following test data:
x , y , z = 7, 2, 1
x , y , z = 7, 2, 2

• ups! Forgot to tell that one wants the largest such number
(sorry!):
x , y , z = 7, 2, 3

Deriving the algorithm: ok, but...

... where is the formal specification of x ÷ y?



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

CGcs are specifications

Example — requirements for whole division x ÷ y :

• write a program which computes number z which, multiplied
by y , approximates x .

• check your program with the following test data:
x , y , z = 7, 2, 1
x , y , z = 7, 2, 2

• ups! Forgot to tell that one wants the largest such number
(sorry!):
x , y , z = 7, 2, 3

Deriving the algorithm: ok, but...

... where is the formal specification of x ÷ y?



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

CGcs are specifications

First version (literal):

x ÷ y = 〈
∨

z :: z × y ≤ x〉 (1)

Second version (involved):

z = x ÷ y ⇔ 〈∃ r : 0 ≤ r < y : x = z × y + r〉 (2)

Third version (clever!):

z × y ≤ x ⇔ z ≤ x ÷ y (y > 0) (3)

— a Galois connection.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Why (3) is better than (1,2)

It captures the requirements:

• It is a solution: x ÷ y multiplied by y approximates x

(x ÷ y)× y ≤ x

(ie., upper cancellation of (3) — let z := x ÷ y and simplify)

• It is the best solution (provides largest such number):

z × y ≤ x ⇒ z ≤ x ÷ y (y > 0)

(the ⇒ part of ⇔).

Advantages:

Highly calculational!



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Anticipating properties of algorithm

Easy ones, of the kind instantiate & simplify — from

z × y ≤ x ⇔ z ≤ x ÷ y (y > 0)

infer:

0 ≤ x ÷ y (z := 0)

y ≤ x ⇔ 1 ≤ x ÷ y (z := 1)

However,

x ÷ 1 = x

not so immediate. How do we go about this?



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Indirect equality (IE) principle

Well-known in set theory to define set equality:

A = B ⇔ 〈∀ x :: x ∈ A⇔ x ∈ B〉

Another form is:

A = B ⇔ 〈∀ X :: X ⊆ A⇔ X ⊆ B〉

In general: any partial order can be used to establish equality by
indirection. In case of numbers, for instance:

n = m ⇔ 〈∀ x :: x ≤ n⇔ x ≤ m〉 (4)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

GC + IE = ‘G’alculator

Calculation of x ÷ 1 = x :

z × 1 ≤ x ⇔ z ≤ x ÷ 1

⇔ { 1 unit of × }

z ≤ x ⇔ z ≤ x ÷ 1

:: { indirect equality }

x ÷ 1 = x

Easy — any child will do it! (Recall MathIS project context.)
Another example of proof in the same vein:

(n ÷m)÷ d = n ÷ (d ×m) (5)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

‘G’alculator proof

(For m, d > 0):

x ≤ (n ÷m)÷ d

⇔ { GC (3) }

x × d ≤ n ÷m

⇔ { GC (3) }

(x × d)×m ≤ n

⇔ { × is associative }

x × (d ×m) ≤ n

⇔ { GC (3) }

x ≤ n ÷ (d ×m)

Thus,

(n ÷m)÷ d ⇔ n ÷ (d ×m)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Algebra � “al-jabr”

The tradition: numeric GCs of school algebra, such as eg.

x + z

“al-jabr”

≤ y ⇔ x ≤ y − z

x × z

“al-hatt”

≤ y ⇔ x ≤ y × z−1 (z > 0)

are known since 9c AD, cf. Al-Khwarizmi’s Compendious Book on
Calculation by Completion and Balancing.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Galculation of x ÷ y algorithm

z ≤ x ÷ y

⇔ { GC (3) assuming y > 0 }

z × y ≤ x

⇔ { cancellation }

z × y − y ≤ x − y

⇔ { distribution }

(z − 1)× y ≤ x − y

⇔ { GC (3) }

z − 1 ≤ (x − y)÷ y

⇔ { GC (−1) ` (+1) }

z ≤ (x − y)÷ y + 1



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Galculation of x ÷ y algorithm

Thus

x ÷ y = (x − y)÷ y + 1 (6)

— the inductive step of the algorithm.

The base step will be galculated in a similar way, leading to the
well-known algorithm:

x -:- y | x < y = 0
| x >= y = 1 + (x - y) -:- y

Note the intuition shift: x ÷ y means (after all) counting the
number of times y “fits” in x .



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

PF-transformed GCs

z (×y)︸ ︷︷ ︸
f

≤ x ⇔ z ≤ x (÷y)︸ ︷︷ ︸
g

Equivalence becomes relational equality, thus GC

f x ≤ y ⇔ x v g y

becomes

f ◦ · ≤ = v · g (7)

Abbreviated notation

f ` g (8)

for (7) wherever the orderings are implicit in the context.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

PF-transformed IE

Indirect equality principle

f = g ⇔ 〈∀ y , x :: y ≤ (f x)⇔ y ≤ (g x)〉

becomes, once PF-transformed

f = g ⇔ ≤ · f = ≤ · g (9)

Thus the only inference rule needed is substitution of equals for
equals.

The ‘G’alculator (proof-of-concept prototype implemented in
Haskell) is a proof assistant which works at this level.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Program Galculation

The approach is more general than first thought because

• GCs abound in mathematics and modeling

• There is an algebra of GCs enabling one to build new
connections from old (composition, converse, forks, relators,
etc)

• Using relational products, adjoints can have an arbitrary
number of parameters

• See Paulo’s thesis for a comprehensive account.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

GC Algebra

Assume f ` g and f ′ ` g ′ hold in:

Identity

id ` id

Composition

f · f ′ ` g ′ · g

Converse (symmetry)

f ` g ⇔ g ` f

Functors (preorders)

Ff ` Fg

Splitting (lattices)

〈f , f ′〉 ` u · (g × g ′)

In particular, for f , f ′ := id ,
g , g ′ := id :

4` u (10)

for 4x = (x , x).



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Example of GC derivation — splits of adjoints

Given f ` g and f ′ ` g ′, calculate GC whose lower adjoint is 〈f , f ′〉:

〈f , f ′〉◦ · (≤×≤′) = v·?

⇔ { add variables }

f x ≤ y ∧ f ′ x ≤′ y ′⇔ x v?(y , y ′)

⇔ { shunt on f ` g , f ′ ` g ′ }

x v g y ∧ x v g ′ y ′⇔ x v?(y , y ′)

⇔ { lub u exists if lattice }

x v (g y u g ′ y ′)⇔ x v?(y , y ′)

:: { IE }

?(y , y ′) = (g y u g ′ y ′)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

GCs over lists

AoP reasoning about list processing algorithms (eg. fusion, tupling
etc) assumes that the functions of interest have been understood
as folds (catamorphisms), unfolds (anamorphisms) or
hylomorphisms.

Type information can be of help in guiding one in such a
constructive approach to programming, but it doesn’t help in many
contexts.

How does one justify that a particular ana, or hylo, meets its
specification?

Below we will see that our life is easier if GCs are used as specs, in
particular if based on well-known orderings such as prefix.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

GCs over lists

In fact, GCs combine with inductive (relational) definitions of such
orderings in a nice way, enabling the galculation of algorithmic
solutions to the adjoints involved.

Example: longest common prefix (lcp) of two lists specified by GC

ys � xs ∧ ys � xs ′ ⇔ ys � lcp(xs, xs ′) (11)

— that is, lcp is the glb of the prefix ordering �, cf.

4 ` lcp (12)

using compact notation (8) — recall (10).



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Dissecting the prefix ordering

Galculation of lcp calls for knowledge about the behaviour of the
prefix (�) ordering.

Let us take (Bird and de Moor, 1997)’s definition of prefix as a
relational fold on lists,

� = (|[nil , nil ∪ cons]|) (13)

where nil = [ ] and cons(h, t) = h : t — cf. diagram

A?

�
��

[nil ,cons]◦

**
∼= 1 + A× A?

id+id×�
��

[nil ,cons]

ii

A? 1 + A× A?
[nil ,nil∪cons]

oo



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Dissecting the prefix ordering

PF (fixpoint) equation

� · [nil , cons] = [nil , nil ∪ cons] · (id + id ×�) (14)

means the following properties:

[ ]� [ ] (15)

[ ]� (h : t) (16)

s � (h : t) ⇔ s = [ ] ∨ 〈∃ s ′ : s = (h : s ′) : s ′ � t〉 (17)

From (17) we infer:

(h : k)� (h : t) ⇔ k � t (18)

(substitution s := (h : k) + simplification)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Calculating lcp

Base case xs := [ ] (xs ′ := [ ] the same):

ys � lcp([ ], xs ′)

⇔ { GC (11) }

ys � [ ] ∧ ys � xs ′

⇔ { prefix (16), thus ys = [ ]; (15) }

ys � [ ]

:: { IE }

lcp([ ], xs ′) = [ ]



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Calculating lcp

Inductive case:

ys � lcp(a : as, b : bs)

⇔ { GC (11) }

ys � (a : as) ∧ ys � (b : bs)

⇔ { prefix (17) twice; ∧-∨ distribution }

ys = [ ] ∨ ys = (a : ys ′) ∧ ys ′ � as ∧ ys = (b : ys ′′) ∧ ys ′′ � bs

⇔ { list reflection ; one-point (ys ′′ := yx ′ }

ys = [ ] ∨ ys = (a : ys ′) ∧ a = b ∧ ys ′ � as ∧ ys ′ � bs

⇔ { GC (11) }



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Calculating lcp

ys = [ ] ∨ ys = (a : ys ′) ∧ a = b ∧ ys ′ � lcp(as, bs)

⇔ { (18) ; substitution }

ys = [ ] ∨ ys = (a : ys ′) ∧ a = b ∧ ys � (a : lcp(as, bs))

Two cases: for a 6= b,

ys = [ ] ∨ False

⇔ { ys � [ ]⇔ ys = [ ] }

ys � [ ]

Thus, by IE, lcp(a : as, b : bs) = [ ] for this case.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Calculating lcp

Otherwise (a = b):

ys = [ ] ∨ ys = (a : ys ′) ∧ ys � a : lcp(as, bs)

⇔ { [ ]� a : lcp(as, bs) }

ys � a : lcp(as, bs)

Thus, lcp(a : as, b : bs) = a : lcp(as, bs) in this case. Altogether, we’ve
calculated an algorithm for lcp — in Haskell, below:

lcp :: (Eq a) => [a] -> [a] -> [a]
lcp [] _ = []
lcp _ [] = []
lcp (a:l) (b:m) | a == b = a:(lcp l m)

| a /= b = []



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Another example — take

The specification of take is GC (identified by Roland Backhouse)

(len× id) · 4 ` take (19)

which has a slightly more elaborate lower adjoint when compared
to that of lcp,

(len ys, ys) (≤ × �) (n, xs) ⇔ ys � take(n, xs) (20)

that is,

len ys ≤ n ∧ ys � xs ⇔ ys � take(n, xs) (21)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Another example — take

Before implementing this function, let us exploit its property space
— standard procedure thanks to spec being GC

len ys ≤ n ∧ ys � xs ⇔ ys � take(n, xs)

Upper cancellation (ys := take(n, xs)):

len (take(n, xs)) ≤ n ∧ take(n, xs)� xs (22)

Lower cancellation (ys := xs, then simplify; upper cancellation
(22)):

xs = take(n, xs) ⇔ len xs ≤ n (23)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Another example — take

Composition:

take(n, take(m, xs)) = take(min(n,m), xs) (24)

cf.

ys � take(n, take(m, xs))

⇔ { GC (20) }

len ys ≤ n ∧ ys � take(m, xs)

⇔ { GC (20) again }

len ys ≤ n ∧ len ys ≤ m ∧ ys � xs

⇔ { GC of min of two numbers (25) }

len ys ≤ min(n,m) ∧ ys � xs

⇔ { GC (20) again, now folding }

ys � take(min(n,m), xs)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

By the way — min

Calculation of min is trivial but illustrates strategy useful wherever the
ordering underlying calculation is to be tested in the algorithm:

x ≤ n ∧ x ≤ m ⇔ x ≤ min(n,m) (25)

Strategy consists in finding conditions for rendering one of the conjuncts
of the lower adjoint redundant, thus enabling IE over the other: since

x ≤ n ∧ n < m ⇒ x ≤ m

in case n < m, GC shrinks to

x ≤ n ⇔ x ≤ min(n,m) (26)

Therefore:

min(n,m) | n < m = n
| n >= m = m



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Another example — take

Finally galculating the algorithm. Base cases take(0, xs) and
take(n, [ ]) are immediate. Case take(n + 1, h : xs) follows:

ys � take(n + 1, h : xs)

⇔ { GC (20) ; len (h : t) = 1 + len t ; prefix (17) }

len ys ≤ n + 1 ∧ (ys = [ ] ∨ ys = (h : ys ′) ∧ ys ′ � xs)

⇔ { distribution ; len (h : t) = 1 + len t ; simplification }

ys = [ ] ∨ len ys ′ ≤ n ∧ ys = (h : ys ′) ∧ ys ′ � xs)

⇔ { GC (20) }

ys = [ ] ∨ ys ′ � take(n, xs) ∧ ys = (h : ys ′)

⇔ { prefix (18) ; substitution }

ys = [ ] ∨ ys � h : take(n, xs) ∧ ys = (h : ys ′)

⇔ { list reflection ; further simplification }

ys � h : take(n, xs))



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Another example — take

Putting everything together:

take :: (Integral t) => t -> [a] -> [a]
take 0 _ = []
take _ [] = []
take (n+1) (h:xs) = h:(take n xs)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Fold / Unfold

From the given galculations, note how base GC is used in basically
two ways, one in the beginning unfolding the target adjoint and
another, at some stage, folding back again.

Compared to classical fold/unfold transformation (Burstall and
Darlington, 1977), such steps are always safe since we stay with
equivalences all the time.

Algorithmic structure of the calculated (functional) program follows
the inductive structure implicit in the definition of the ordering.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Conclusions & current work

• GC+IE reasoning is very systematic and easy to teach

• For simple (eg. numeric) GCs this is teachable to kids at
school because they are familiar with “shunting” in linear
algebra

• Things become less easy when the underlying ordered
structures become less tractable

• Currently experimenting with mapping lists to relations “a la
Alloy” and using GC+IE at relational level (eg. functions such
as nub)

• For a comprehensive account of the role of GCs in computing
see eg. (Backhouse, 2004)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Postscriptum

After Zhenjiang’s and Jeremy’s talks, and answering to Michel’s
“exercise” proposal, here is my (tentative!) GC approach to
bidirectional programming:

(get × id) · 4 ` put (27)

Deja vu? Yes, just make get, put := len, take and you get the GC
specification of take (19).

Details: for ≤v and ≤s preorders on views and states, respectively,
(27) expands to

〈get, id〉◦ · (≤v ×≤s) = ≤s · put

and to the pointwise:

get s ′ ≤v v ∧ s ′ ≤s s ⇔ s ′ ≤s put(v , s) (28)

for all views v and sources s, s ′.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Postscriptum

After Zhenjiang’s and Jeremy’s talks, and answering to Michel’s
“exercise” proposal, here is my (tentative!) GC approach to
bidirectional programming:

(get × id) · 4 ` put (27)

Deja vu? Yes, just make get, put := len, take and you get the GC
specification of take (19).

Details: for ≤v and ≤s preorders on views and states, respectively,
(27) expands to

〈get, id〉◦ · (≤v ×≤s) = ≤s · put

and to the pointwise:

get s ′ ≤v v ∧ s ′ ≤s s ⇔ s ′ ≤s put(v , s) (28)

for all views v and sources s, s ′.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Postscriptum

After Zhenjiang’s and Jeremy’s talks, and answering to Michel’s
“exercise” proposal, here is my (tentative!) GC approach to
bidirectional programming:

(get × id) · 4 ` put (27)

Deja vu? Yes, just make get, put := len, take and you get the GC
specification of take (19).

Details: for ≤v and ≤s preorders on views and states, respectively,
(27) expands to

〈get, id〉◦ · (≤v ×≤s) = ≤s · put

and to the pointwise:

get s ′ ≤v v ∧ s ′ ≤s s ⇔ s ′ ≤s put(v , s) (28)

for all views v and sources s, s ′.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Postscriptum

After Zhenjiang’s and Jeremy’s talks, and answering to Michel’s
“exercise” proposal, here is my (tentative!) GC approach to
bidirectional programming:

(get × id) · 4 ` put (27)

Deja vu? Yes, just make get, put := len, take and you get the GC
specification of take (19).

Details: for ≤v and ≤s preorders on views and states, respectively,
(27) expands to

〈get, id〉◦ · (≤v ×≤s) = ≤s · put

and to the pointwise:

get s ′ ≤v v ∧ s ′ ≤s s ⇔ s ′ ≤s put(v , s) (28)

for all views v and sources s, s ′.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Postscriptum

Upper-cancellation:

get(put(v , s)) ≤v v ∧ put(v , s) ≤s s (29)

Lower-cancellation:

s ≤s put(get s, s)

In fact, it turns up (by monotonicity of get) that

s = put(get s, s) (30)

is ensured (next slide), provided ≤s is a partial order.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Postscriptum

s ′ ≤s put(get s, s)

⇔ { (28) }

get s ′ ≤v get s ∧ s ′ ≤s s

⇔ { get monotonic }

s ′ ≤s s

:: { IE }

put(get s, s) = s



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Annex



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Going pointfree

Success of the ‘G’alculator method crucially depends on the
tractability of GC orderings.

In some situations, it may pay the effort to transform (inductive)
data-structures into non-inductive ones so as to work with simpler
orderings.

Lists, for instance, can be transformed into simple relations from
positions to elements. This enables a relational, pointfree way of
expressing properties about lists, for instance

• ordered list means increasing relation

• no duplicates in list means injective relation

• infinite list means a function (stream)

Particularly relevant when using declarative (abstract) notations
such as Alloy’s.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Example — nub

a L i meaning L holds a in position i , we could say that nub L is
the largest sublist of L such that

〈∀ a, i : a(nub L)i : 〈∀ j : aLj : j ≥ i〉〉

In PF- notation, this corresponds to GC

L◦ · X ⊆ ≥ ∧ X ⊆ L ⇔ X ⊆ nub L (31)

(Note in passing that this GC shares the same “pattern” as that of
make, put etc.)



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Example — nub

Function nub found to be a particular case of “range thining”
operator adopted to perform non-inductive proofs on a particular
structure of a NAND flash model in Alloy (Ferreira and Oliveira,
2010):

X ⊆ R ↑ S ⇔ X ⊆ R ∧ X · R◦ ⊆ S (32)

which ensures that R ↑ S is the largest sub-relation X of R such
that 〈∀ b′, b : 〈∃ a :: b′Xa ∧ bRa〉 : b′Sb〉.

NB: (32) can be found in the AoP book (Bird and de Moor, 1997)
as the universal property of unary min S .



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

Example — nub

It follows that, for S antisymmetric, R ↑ S is always simple.

Properties:

R ↑ ⊥ = ⊥ (33)

R ↑ > = R (34)

R ↑ Φ = largest deterministic fragment of Φ · R (35)

(R ∪ S) ↑ U = (R ↑ U) ∪ (S ↑ U) ⇐ R · S◦ ⊆ ⊥ (36)

How does one derive the algorithm of nub from the given
“indirect” GC? Working on this at the moment.



‘G’alculator GCs as specs Examples Fold/Unfold Conclusions Postscriptum Annex References

R.C. Backhouse. Mathematics of Program Construction. Univ. of
Nottingham, 2004. Draft of book in preparation. 608 pages.

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall International, 1997. C.A.R.
Hoare, series editor.

R.M. Burstall and J. Darlington. A transformation system for
developing recursive programs. JACM, 24(1):44–67, January
1977.

M.A. Ferreira and J.N. Oliveira. Variations on an Alloy-centric
tool-chain in verifying a journaled file system model, 2010. (To
be submitted to Springer’s Formal Aspects of Computing).

P.F. Silva and J.N. Oliveira. ’Galculator’: functional prototype of a
Galois-connection based proof assistant. In PPDP ’08:
Proceedings of the 10th international ACM SIGPLAN conference
on Principles and practice of declarative programming, pages
44–55, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-117-0. doi:
http://doi.acm.org/10.1145/1389449.1389456. .

http://progtools.comlab.ox.ac.uk/members/oege/publications/aop97
http://portal.acm.org/citation.cfm?id=1389456&jmp=cit&coll=portal&dl=GUIDE&CFID=39121848&CFTOKEN=50253653##
http://portal.acm.org/citation.cfm?id=1389456&jmp=cit&coll=portal&dl=GUIDE&CFID=39121848&CFTOKEN=50253653##

	`G'alculator
	GCs as specs
	Examples
	 Fold/Unfold 
	Conclusions
	Postscriptum
	Annex
	References

