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How to spell ”MathIS”

Quoting Jeff Kramer [1]:

Why is it that some software engineers and computer
scientists are able to produce clear, elegant designs and
programs, while others cannot? Is it possible to improve
these skills through education and training? Critical to
these questions is the notion of abstraction.
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How to spell ”MathIS”

Still Jeff Kramer [1]:

Abstraction is widely
used in other disciplines
such as art and music.
For instance (...) Henri
Matisse manages to clearly
represent the essence of
his subject, a naked
woman, using only simple
lines or cutouts. His
representation removes all
detail yet conveys much.



MathIS Matisse e = m + c Geometry Calculating programs Numbers For-loops Whole division Wrapping up

From the project’s abstract

• Modern IT-driven societies demand highly skilled professionals
[able] to resort to mathematical language and method to
build models of problems and situations and reasoning
effectively about them.

• Such an ability is at the heart of what it means ”to
understand” and it may be considered a fundamental
ingredient of democratic citizenship.

• There is little hope, however, that such expectations and
demands be met by current standards in school maths
education. [...] Worst of all, mathphobia (which seems to be
spreading everywhere) has become a hot spot for the media.

• This situation calls for emergency policies capable of
reinvigorating maths education and its effective application at
all problem-solving levels.
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Scientific? Pre-scientific?

In an excellent book on the history of scientific technology (“How
Science Was Born in 300BC and Why It Had to Be Reborn), Lucio
Russo [2] writes:

The immense usefulness of exact science consists in providing
models of the real world within which there is a guaranteed
method for telling false statements from true. (...) Such
models, of course, allow one to describe and predict natural
phenomena, by translating them to the theoretical level via
correspondence rules, then solving the “exercises” thus
obtained and translating the solutions obtained back to the
real world.

Disciplines unable to build themselves around “exercises” are
regarded as pre-scientific.
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e = m + c

Also quoted from Russo’s book :

Vertical lines mean abstraction, horizontal ones mean calculation:

engineering = model first, then calculate (e = m + c)

Emphasis on calculation — as acknowledged by many scientists
and philosophers in the past:
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Ut faciant opus signa

[Symbolisms] “have invariably been introduced to make
things easy.
[...] by the aid of symbolism, we can make transitions in
reasoning almost mechanically by the eye, which
otherwise would call into play the higher faculties of the
brain.
[...] Civilisation advances by extending the number of
important operations which can be performed without
thinking about them.”

(Alfred Whitehead, 1911)
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Ut faciant opus signa

“Certaines personnes ont [l’affectation] d’éviter en
apparence toute espèce de calcul, en traduisant par des
phrases fort longues ce qui s’exprime très brèvement par
l’algèbre, et ajoutant ainsi à la longueur des opérations,
les longueurs d’un langage qui n’est pas fait pour les
exprimer.
Ces personnes-là sont en arrière de cent ans.”

(Evariste Galois, 1831)
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Ut faciant opus signa

(...) De manera, que
quien sabe por Algebra,
sabe scientificamente.

... in this way, who knows by Algebra knows
scientifically

(Pedro Nunes, 1567)
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Ut faciant opus signa

I feel that controversies can never be finished . . . unless we give
up complicated reasonings in favour of simple calculations,
words of vague and uncertain meaning in favour of fixed
symbols . . . every argument is nothing but an error of
calculation. [With symbols] when controversies arise, there will
be no more necessity for disputation between two philosophers
than between two accountants. Nothing will be needed but
that they should take pen and paper, sit down with their
calculators, and say ‘Let us calculate’.

Gottfried Wilhelm Leibniz (1646-1716)
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What should we do?

• Despite all this good advice, calculational techniques and
constructive proofs are not taught at school, in general.

• What’s the strategy to follow to ”re-factor” the whole thing
from beginning to end?

• When should it start? higher education is too late!

• Why not from the actual beginning of symbolism in
middle-school maths textbooks?

• This will lead us to the ±7th year of maths education (12-13
year old kids).
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Precautions

In dealing with middle school teaching we’ve been warned to bear
in mind the following guiding principles:

• Don’t disturb the normal flow of things.

• (Re)use existing problems in the textbooks to ”smuggle” the
good thinking habits.

• Be careful not to generate “antibodies”.

• Teachers likely to be less receptive than the students
themselves.

My personal feeling is that the earlier in the syllabus the more
”MPC” should mean: programs (and proofs) are already (hidden)
in your maths textbook — shall we calculate them?
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Difficulties

I’ve started looking into maths textbooks as preparation for the
work of a research assistant to join the project soon. Enough to
realize that:

• Logic reasoning is missing as a proper topic (though it can be
found in the philosophy course, 10-11th year).

• Proofs virtually absent from middle school curricula.

• Geometry still an exception.

Challenge:

• Train students to do (alternative) constructive proofs (eg. in
geometry)

What do we mean by “constructive” in this setting ? Let us see an
example.
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From a textbook (vector calculus)

The problem
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From a textbook (vector calculus)

The given proof:
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From a textbook (vector calculus)

Comments:

• verification, not calculation

• not goal oriented

• not “constructive” enough

• tricky? cf. final question “Are you able to replay this
proof?”...

In a constructive proof, the starting point will be the goal itself:

Goal: B, P and M on the same line

equivalent to

~BP = k ~BM for some k

Proof amounts to calculating such k, if any
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“Constructive proof” (modeling)

~BP = k ~BM

⇔ { vector sums }

~BO + ~OP = k( ~BO + ~OA + ~AM)

⇔ { let ~OP = k1
~OC , ~AM = k2

~AC }

~BO + k1
~OC = k( ~BO + ~OA + k2

~AC )

⇔ { let ~OA = ~a, ~OB = ~b }

−~b + k1(~a + ~b) = k(−~b +~a + k2
~b)
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“Constructive proof” (calculation)

−~b + k1(~a + ~b) = k(−~b +~a + k2
~b)

⇔ { “al-muqâbala” (1,2,3) }

k1~a + (k1 − 1)~b = k~a + k(k2 − 1)~b

⇔ { equality rule (4) }

k1 = k ∧ k1 − 1 = k(k2 − 1)

⇔ { “calculus of al-gabr and al-muqâbala” }

k = k1 =
1

2− k2

Given problem corresponds to k2 = 1
2 and k1 = 2

3 .

Other cases: k2 = k1 = 1 (P = M = C ), k2 = 0 ∧ k1 = 1
2 (M = A), etc
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Thanks to

Vector calculus:

k(~a + ~b) = k~a + k~b (1)

(k + j)~a = k~a + j~a (2)

k(j~a) = (kj)~a (3)

and, for non co-linear ~a,~b, the equality rule:

k~a + j~b = m~a + n~b ⇔ k = m ∧ j = n (4)

Summary

Constructive proof means calculating a (often necessary and)
sufficient condition for the goal to hold.
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From a 7th year maths textbook

• Let’s now go to
the point where
symbolic notation
turns up for the
first time.

• First page of
chapter on
multiplying and
dividing rational
numbers:
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From a 7th year maths textbook

Draw your attention to the text-box at the bottom, on the left:
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First program: multiplication

The properties of multiplication are enough for letting students to
derive programs involving addition and multiplication, eg.

a× 0 = 0 (5)

a× 1 = a (6)

a× (b + c) = (a× b) + (a× c) (7)

For c = 1 one has

a× 0 = 0

a× 1 = a

a× (b + 1) = (a× b) + (a× 1)

(Haskell 1st year students do this all the time without noticing)
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First program: multiplication

To make sure it’s the student program which is will be running and
not the native operation (∗), invite her/him to prefix ”*” by a ”.”

a .* 0 = 0
a .* (b+1) = (a .* b) + a

while doing obvious simplifications (a× 1 replaced by a according
to the second clause, which can then be omitted.)

Main learning outcome

Students see programs arising from their own maths books, not
invented or coming out of the blue.
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Repeating the experiment

Later in the book, the following properties of exponentials turn up:

a0 = 1

a1 = a

ab+c = ab × ac

Students will easily repeat the previous experiment, thus writing an
Haskell program which computes ax — where they can re-use their
own (.∗).

NB: pattern scales up to lists, cf. for instance

mul [ ] = 1

mul [a] = a

mul (b ++ c) = (mul b)× (mul c)
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For loops — a natural evolution

• Programs like (a∗) provide a nice way to introduce students
to the derivation (later in the course) of for-loops.

• Why? Folds over natural numbers “are” for-loops. Think eg.
of

n = succn 0

— you calculate n by looping over succ with initial value 0.

• In general, (foldN f i)n = f n i . In other words, foldN “is” the
for-loop combinator:

for b i 0 = i
for b i (n+1) = b (for b i n)

(This is quite often ignored in the teaching.)
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For-loops for free

In other words, students’ calculations above already deploy a CbC
(correct by construction) ”for-loop” implementation of
multiplication:

a .* n = for (a+) 0 n

something to be encoded (much later!) imperatively, eg. in C:

int mul(int a, int n)
{
int s=0; int i;
for (i=1;i<n+1;i++) {s += a;}
return s;
};
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Not so immediate for-loops

Now consider the challenge of encoding the square function,
sq n = n2. Following the same approach, let students first recall
known facts about squares, including Newton’s binomial formula:

02 = 0

12 = 1

(a + b)2 = a2 + 2ab + b2

Playing the same game, the following will be obtained:

sq 0 = 0

sq (n + 1) = sq n + 2n + 1︸ ︷︷ ︸
odd n

By the way: students aware that n2 is the sum of the first n odd
numbers.
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Not so immediate for-loops

• However, sq is not a for-loop because each additive
contribution odd n = 2n + 1 is dependent on n.

• What about odd itself? Ask the students to try and exploit
“its maths”,

odd 0 = 1

odd(n + 1) = 2 + odd n

which lead immediately to for-loop for (2+) 1.

• Still, students don’t know what to do with sq. What can we
do about this?
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Two-variable for-loops

By putting sq and odd side by side,

sq 0 = 0
sq (n + 1) = sq n + odd n

odd 0 = 1
odd (n+1) = 2 + odd n

observe that both functions share the same input pattern and can thus
run “together”, co-operating with each other. Thus proceed to tupling,

(sq, odd)x = (sq x , odd x)

only to exploit “the maths” of this pair of functions:

(sq,odd) 0 = (0,1)
(sq,odd)(i+1) = let (s,o) = (sq,odd) i in (s+o, 2+o)

Clearly, this is for-loop for(0, 1)((s, o) 7→ (s + o, 2 + o)) which computes

i2 on variable s and odd i on variable o. Thus the code which follows:
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Two-variable for-loops

C code for sq (and odd , implicitly):

int sq(int n)
{
int s=0; int i; int o=1;
for (i=1;i<n+1;i++) {s+=o; o+=2;}
return s;
};

Learning outcome

The number of variables required by a for-loop implementation of
a given function over the natural numbers is the number of
mutually recursive functions which such given function
“unfolds” into once “their maths” are inspected.
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Three-variable for-loops

Later on, arithmetic/geometric progressions turn up. For
instance, consider the computation of the number of squares one
can draw on a n × n-tiled wall, given by

ns n
def
=

n∑
i=1

i2

Besides i2, it involves a summation. Once i2 is already done,
students should check “the maths” of what’s new — summation:

0∑
i=1

i2︸ ︷︷ ︸
ns 0

= 0 and
n+1∑
i=1

i2︸ ︷︷ ︸
ns(n+1)

=
n∑

i=1

i2︸ ︷︷ ︸
ns n

+(n + 1)2
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Three-variable for-loops

Proceeding as in the previous example will lead to

ns 0 = 0

ns(n + 1) = ns n + (n + 1)2︸ ︷︷ ︸
sq1 n

sq1 0 = 1

sq1(n + 1) = sq1 n + 2n + 3︸ ︷︷ ︸
lin n

lin 0 = 3

lin(n + 1) = 2 + lin n

Let them check the (n + 1) steps:

((n + 1) + 1)2 = (n + 1)2 + 2(n + 1) + 1

2(n + 1) + 3 = (2n + 3) + 2
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Three-variable for-loops

Thus the triple function which follows,

(ns,sq1,lin) 0 = (0,1,3)
(ns,sq1,lin)(i+1) =

let (n,s,l) = (ns,sq1,lin) i
in (n+s, s+l, l+2)

leading straight into (if required) the following code, in C:

int ns(int x)
{
int n=0;int s=1;int l=3;int i;
for (i=1;i<x+1;i++) {n+=s;s+=l;l+=2;}
return n;
};
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Further up the ladder

Eventually, Taylor series and the like will be part of our fictional
students maths education. They will then be able to derive the
following code

float exp(float x, int n)
{
float h=x; float e=1; int s=2; int i;
for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}
return e;

};

from the n-term approximation to Taylor (in fact: Maclaurin)
series for the exponential function

ex =
∞∑
i=0

x i

i !
(8)
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Not so immediate calculations

Let us finally consider the challenge of calculating whole division,
that is, the operation ÷ such that eg.

7 2
1 3

2× 3 + 1 = 7 , “ie.” 7÷ 2 = 3

that is,

n d
r q

q = n ÷ d ⇔ d × q + r = n ∧ q is largest (r
smallest)

Is this a “good” specification of n ÷ d?
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“Al-gabr rules

• Perhaps not: it involves a supremum, which is hard to reason
about. A more subtle and more interesting specification is
that of the following “al-gabr” rule,

q × d ≤ n ⇔ q ≤ n ÷ d (d > 0) (9)

where universal quantification over the natural numbers is left
implicit.

• Note how the ⇐ side of (9) ensures n ÷ d as the largest d
such that q × d ≤ n.

• Rule (9), however, calls for an effective way of calculating
with binary relation n ≤ m. Can this replace equality, as in
the previous CbC examples?
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Indirect equality principle

Yes, in an indirect way:

n = m ⇔ 〈∀ x :: x ≤ n ⇔ x ≤ m〉 (10)

This resembles a similar device in set theory to define set equality,

A = B ⇔ 〈∀ x :: x ∈ A ⇔ x ∈ B〉

of which another variant is:

A = B ⇔ 〈∀ X :: X ⊆ A ⇔ X ⊆ B〉

Let us see how indirection (10) leads to the algorithm:
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CbC using “al-gabr” rules and indirect equality

q ≤ n ÷ d

⇔ { rule (9) assuming d > 0 }

q × d ≤ n

⇔ { cancellation }

q × d − d ≤ n − d

⇔ { distribution law }

(q − 1)× d ≤ n − d

⇔ { (9) again, assuming n ≥ d }

q − 1 ≤ (n − d)÷ d

⇔ { trading −1 to the right }

q ≤ (n − d)÷ d + 1
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CbC using “al-gabr” rules and indirect equality

That is, every natural number q which is at most n ÷ d (for
n ≥ d) is also at most (n − d)÷ d + 1 and vice versa. We
conclude that the two expressions are the same

n ÷ d = (n − d)÷ d + 1 (11)

for n ≥ d . For n < d , we reason in the same style:

q ≤ n ÷ d

⇔ { (9) and transitivity, since n < d }

q × d ≤ n ∧ q × d < d

⇔ { since d 6= 0 }

q × d ≤ n ∧ q ≤ 0

⇔ { q ≤ 0 entails q × d ≤ n, since 0 ≤ n }

q ≤ 0
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If-then-else’s — eventually!

Thus students have calculated the then and else-parts of the
algorithm:

n ÷ d = if n < d then 0 else (n − d)÷ d + 1

Side comment: if-then-else combinator considered harmful if
introduced to early in the training — it enables students to start
taking arbitrary decisions.
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Basic skills so far

“Design patterns” to master in getting programs out of textbooks,
besides indirection and basic arithmetics:

• distribute

a

c |d
=

a

c
| a
d

• assoc

a|(b|c) = (a|b)|c

• abide

a|b
c |d

=
a

c
|b
d

(cf. matrices)
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Wrapping up

• Matisse much wider than shown in this talk (just a task of the
project)

• Emphasis on algorithmic problem solving — cf. work by
Roland’s student João Ferreira

• Includes support technology development — cf. work by
Alexandra Mendes, also at Nottingham

• Added after Eric’s talk: lots of probability stuff in textbooks
— an opportunity for new calculation approaches !

• Matisse is just starting — everybody welcome to collaborate
and report on their own experience.
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