
Data dependency theory made generic — by
calculation

J.N. Oliveira

Dept. Informática,

Universidade do Minho

Braga, Portugal

IFIP WG2.1 meeting #62
Dec. 2006

Namur, Belgium

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Motivation

• Computer science theories are (usually) pointwise.

• What do we gain by replaying them in the (relational)
pointfree style?

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Motivation

Significant gains are known in some CS theories, eg.

• Program calculation — esp. functional, recursive programs,
recall (cata,ana,hylo,...) -morphisms etc

• Abstract interpretation, polymorphism, unification etc

What about theories which “everybody has heard of”?

• Automata and transition systems

• Databases

• Parsing, compiling etc

• ...

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Motivation

Significant gains are known in some CS theories, eg.

• Program calculation — esp. functional, recursive programs,
recall (cata,ana,hylo,...) -morphisms etc

• Abstract interpretation, polymorphism, unification etc

What about theories which “everybody has heard of”?

• Automata and transition systems

• Databases

• Parsing, compiling etc

• ...

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

In this talk

• We will pick one such widespread body of knowledge

Relational database theory 1

and will start refactoring it in a ”let the symbols do the work”
calculation style.

• Is this concern for theory refactoring a new one?
No — it has a long tradition in mathematics and engineering:

1In fact, the data dependency part of it, as far as the talk is concerned

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

In this talk

• We will pick one such widespread body of knowledge

Relational database theory 1

and will start refactoring it in a ”let the symbols do the work”
calculation style.

• Is this concern for theory refactoring a new one?
No — it has a long tradition in mathematics and engineering:

1In fact, the data dependency part of it, as far as the talk is concerned

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

A “notation problem”

Mathematical modelling

requires descriptive notations, therefore:

• intuitive

• domain-specific

• often graphical, geometrical

Reasoning

requires elegant notations, therefore:

• simple and compact

• generic

• cryptic, otherwise clumsy to manipulate

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

A “notation problem”

Mathematical modelling

requires descriptive notations, therefore:

• intuitive

• domain-specific

• often graphical, geometrical

Reasoning

requires elegant notations, therefore:

• simple and compact

• generic

• cryptic, otherwise clumsy to manipulate

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Modelling? Reasoning?

Our civilization has a long tradition in (“al-djabr”) equational
reasoning:

• Examples of “al-djabr” rules: in arithmetics

x − z ≤ y ≡ x ≤ y + z

• in set theory

A − B ⊆ C ≡ A ⊆ C ∪ B

“Al-djabr” rules are known since the 9c. (They are nowadays
referred to as Galois connections.)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

By the way

“Al-djabr” reasoning rediscovered in Nunes’ Libro de Algebra en
Arithmetica y Geometria (1567)

(...) the inventor of this

art was a Moorish

mathematician, whose

name was Gebre, & in

some libraries there is a

small arabic treaty which

contains chapters that we

use

(fol. a ij r)

Reference to On the calculus of al-gabr and al-muqâbala by Abû
Al-Huwârizm̂ı, a famous 9c Persian mathematician.

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

A problem in CS teaching

CS students faced with a contradiction:

• at middle school they are trained in “al-djabr” reasoning
(linear equations, polynomials, etc)

• at high-school they are faced with modus ponens — massive
use of “implication-first” logic (if any)

Shouldn’t we all be concerned about this?

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

How does one bring “al-djabr” reasoning in?

Tradition (again) points to “math-space” transforms, eg.

t-space s-space

Given problem

y ′′ + 4y ′ + 3y = 0
y(0) = 3
y ′(0) = 1

//

Subsidiary equation

s2Y + 4sY + 3Y = 3s + 13

��
Solution of given problem

y(t) = −2e−3t + 5e−t

Solution of subs. equation

Y = −2
s+3

+ 5
s+1

oo

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

How does one bring “al-djabr” reasoning in?

Tradition (again) points to “math-space” transforms, eg.

t-space s-space

Given problem

y ′′ + 4y ′ + 3y = 0
y(0) = 3
y ′(0) = 1

//

Subsidiary equation

s2Y + 4sY + 3Y = 3s + 13

��
Solution of given problem

y(t) = −2e−3t + 5e−t

Solution of subs. equation

Y = −2
s+3

+ 5
s+1

oo

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Integration? Quantification?

An integral transform:

(L f)s =
∫

∞

0
e−st f (t)dt

f (t) L(f)

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

etc

A parallel:

〈

∫

x : 0 ≤ x ≤ 10 : x2 − x〉

〈∀ x : 0 ≤ x ≤ 10 : x2 ≥ x〉

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

The pointfree (PF) transform

An “s-space analog” for logical quantification

φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S

〈∀ a : : a R a〉 id ⊆ R
〈∀ x : : x R b ⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Road map in theory “PF-refactoring”

• Start with coreflexive models of the existing theory

• Generalize coreflexives to arbitrary binary relations “as much
as possible”

• Add to the theory by restricting to functions and “seeing what
happens”

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Predicates PF-transformed

• Binary predicates :

R = [[b]] ≡ (y R x ≡ b(y , x))

• Unary predicates become fragments of id (coreflexives) :

R = [[p]] ≡ (y R x ≡ (p x) ∧ x = y)

eg.

[[1 ≤ x ≤ 4]] =

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Some definitions

The whole picture:
relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

where

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

ker R = R◦ · R
imgR = R · R◦

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Data dependency theory

Recall

• Data bases — collections of (large) sets on n-ary tuples

(“tables”)

• Attributes — names for indices in n-tuples

Data dependency theory:

• A data factorization (“fission”) theory — large sets of (long)
tuples are split into less redundant structures of smaller sets of
(shorter) tuples

• No loss of data if particular data dependencies hold

• Data dependencies can be functional (FDs) or multi-valued
(MVDs)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

FDs — Maier (1983) etc

Given subsets x , y ⊆ S of the
relation scheme S of a relation
R , this relation is said to satisfy
functional dependency x → y iff
all pairs of tuples t, t ′ ∈ R which
“agree” on x also “agree” on y :

R =

. . . x . . . y . . .

.

t a . . . c . . .

t ′ a . . . c . . .

.

〈∀ t, t ′ : t, t ′ ∈ R : t[x] = t ′[x] ⇒ t[y] = t ′[y] 〉 (1)

�

(Notation t[x] means “the values in t of the attributes in x”)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

MVD definition — Maier (1983)

Given subsets x , y ⊆ S of the relation scheme
S of n-ary relation R , this relation is said to
satisfy multi-valued dependency (MVD)
x →→ y iff, for any two tuples t, t ′ ∈ R which

“agree” on x there exists a tuple t ′′ ∈ R which
“agrees” with t on xy and “agrees” with t ′ on
z = S − xy :

x y z

t a c b

t ′′ a c b′

t ′ a c ′ b′

〈∀ t, t ′ : t, t ′ ∈ R : t[x] = t ′[x]
⇓

〈∃ t ′′ : t ′′ ∈ R : t[xy] = t ′′[xy]∧
t ′′[z] = t ′[z]

〉

〉 (2)

holds. �

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

MVD definition — Beeri, Fagin & Howard (1977)

Given subsets x , y ⊆ S of the relation scheme
S of an n-ary relation R , let z = S − xy . R is
said to satisfy the multi-valued dependency
(MVD) x →→ y iff, for every xz-value ab that
appears in R , one has Y (ab) = Y (a), where
for every k ⊆ S and k-value c , function Y is
defined as follows:

x y z

t a c b

t ′′′ a c ′ b

t ′′ a c b′

t ′ a c ′ b′

Y (c) = {v | 〈∃ t : t ∈ R : t[k] = c ∧ t[y] = v〉}

�

Putting everything together, x
R
→→ Y means:

〈∀ a, b : 〈∃ t : t ∈ R : t[xz] = ab〉 : YR,x(a) = YR,xz(ab)〉 (3)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Standard FD theory

Inference rules for FD reasoning based on

• Armstrong axioms for computing closures of sets of FDs

However,

• base formulæ too complex

• no explicit proof of

Maier ≡ Beeri, Fagin & Howard (?)

Who has checked

Maier ⇒ Beeri, Fagin & Howard?
Maier ⇐ Beeri, Fagin & Howard?

We want to write less maths and. . . “let the symbols do the work”

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

The role of functions

From Database Systems: The Complete Book by
Garcia-Molina, Ullman and Widom (2002), p. 87:

What Is “Functional” About Functional
Dependencies?

A1A2 · · ·An → B is called a “functional dependency” because in
principle there is a function that takes a list of values [...] and pro-
duces a unique value (or no value at all) for B [...] However, this
function is not the usual sort of function that we meet in mathemat-
ics, because there is no way to compute it from first principles. [...]
Rather, the function is only computed by lookup in the relation [...]

In fact, (partial) functions are everywhere in FD theory:

• as attributes

• as the FDs themselves

However,

• No advantage is taken of the rich calculus of functions

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Functions in one slide

• A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

• Useful “al-djabr” rules (GCs):

f · R ⊆ S ≡ R ⊆ f ◦ · S (4)

R · f ◦ ⊆ S ≡ R ⊆ S · f (5)

(6)

• Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Functions in one slide

• A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

• Useful “al-djabr” rules (GCs):

f · R ⊆ S ≡ R ⊆ f ◦ · S (4)

R · f ◦ ⊆ S ≡ R ⊆ S · f (5)

(6)

• Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Simple relations in one slide

• “Al-djabr” rules for simple R :

R · R ⊆ T ≡ (δ R) · R ⊆ R◦ · T (7)

R · R◦ ⊆ T ≡ R · δ R ⊆ T · R (8)

where δ R (=domain of R) is the coreflexive part of ker R
(δ R = ker R ∩ id).

• Equality

R = S ≡ R ⊆ S ∧ δ S ⊆ δ R (9)

follows from (7, 8).

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Simple relations in one slide

• “Al-djabr” rules for simple R :

R · R ⊆ T ≡ (δ R) · R ⊆ R◦ · T (7)

R · R◦ ⊆ T ≡ R · δ R ⊆ T · R (8)

where δ R (=domain of R) is the coreflexive part of ker R
(δ R = ker R ∩ id).

• Equality

R = S ≡ R ⊆ S ∧ δ S ⊆ δ R (9)

follows from (7, 8).

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

FDs PF transformed (1)

Pointwise

〈∀ t, t ′ : t, t ′ ∈ R : t[x] = t ′[x] ⇒ t[y] = t ′[y] 〉

Pointfree:

R · (x◦ · x) · R ⊆ y◦ · y

≡ { shunting }

(y · R · x◦) · (x · R · y◦) ⊆ id

≡ { R is coreflexive }

(y · R · x◦) · (y · R · x◦)◦ ⊆ id

≡ { define projection πg ,f = g · R · f ◦ }

πy ,xR is simple

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

FD generalization

We let R be any binary relation and f , g arbitrary functions in

πg ,f R
def
= g · R · f ◦ A

g

��

B
Roo

f
��

C D
πg,f R
oo

(10)

and define:

f
R
→ g ≡ projection πg ,f R is simple

Our aim :

• Calculate the standard Armstrong axioms from this PF
definition

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

FDs PF-transformed (2): injectivity

Pointwise

〈∀ t, t ′ : t, t ′ ∈ R : t[x] = t ′[x] ⇒ t[y] = t ′[y] 〉

Pointfree:

R · (x◦ · x) · R ⊆ y◦ · y

≡ { converses ; R is coreflexive }

(R · x◦) · (x · R◦)◦ ⊆ y◦ · y

≡ { kerR = R◦ · R }

ker (x · R◦) ⊆ ker y

≡ { y is less injective than x “inside R” }

y ≤ x · R◦

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Injectivity preorder

• Definition

R ≤ S
def
= ker S ⊆ ker R (11)

(R ≤ S ≡ “R is less injective than S”)

• “Al-djabr” rules, eg:

R · g ≤ S ≡ R ≤ S · g◦ (12)

— the “injectivity derivative” of the corresponding “at most”
rule (5).

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

PF-transformed FD: injectivity

We let R be any binary relation and f , g arbitrary functions in

f
R
→ g ≡ g ≤ f · R◦ A

g

��

f ·R◦

$$H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H B
Roo

f

��
C D

(13)

This PF-version is

• simple and elegant

• particularly agile in calculations

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Example of reasoning

The following fact — FD composition — is absent from the
standard theory:

f
S·R
→ h ⇐ f

R
→ g ∧ g

S
→ h (14)

Calculation: f
R
→ g ∧ g

S
→ h

≡ { (13) twice }

g ≤ f · R◦ ∧ h ≤ g · S◦

⇒ { ≤-monotonicity of (· S◦) ; converses }

g · S◦ ≤ f · (S · R)◦ ∧ h ≤ g · S◦

⇒ { ≤-transitivity }

h ≤ f · (S · R)◦

≡ { (13) again }

f
S·R
→ h

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Rôle of injectivity

1. After all, what matters about f and g in (13) is their “degree
of injectivity” — as measured by ker f and ker g — in
opposite directions:

• more injective f
• less injective g

will strengthen a given FD f
R
→ g .

2. Limit cases (for all f , g):
• “Most injective” antecendent

id
R
→ g (15)

• “Least injective” consequent

f
R
→ ! (16)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Rôle of definedness

Kernel ker R also measures definedness (otherwise δ R = ker R ∩ id
would be a contradiction). Then, for all f , g

f
⊥
→ g

holds (where ⊥ denotes the empty relation) and — of course —

f
id
→ f (17)

Side topic: (17) and (14) together set up a category whose

objects are functions f , g , etc. and whose arrows f
R // g are

relations satisfying f
R
→ g .

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Sets of attributes

In the standard theory, x and y in (1) are sets of observable
attributes, as in eg. the following Armstrong axioms:

• F3. Additivity (or Union):

x
T
→ y ∧ x

T
→ z ⇒ x

T
→ yz (18)

• F4. Projectivity:

x
T
→ yz ⇒ x

T
→ y ∧ x

T
→ z (19)

Our generic theory interprets “set” yz as function 〈y , z〉, where

(a, b)〈R ,S〉c ≡ a R c ∧ b S c (20)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Relational splits

Below we calculate F3,F4 in one go, for arbitrary (suitably typed)
R , f , g , h:

f
R
→ gh ≡ f

R
→ g ∧ f

R
→ h (21)

Calculation:

f
R
→ gh

≡ { (13) ; expansion of shorthand gh }

〈g , h〉 ≤ f · R◦

≡ { split is lub (22) — see next slide }

g ≤ f · R◦ ∧ h ≤ f · R◦

≡ { (13) twice }

f
R
→ g ∧ f

R
→ h

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Split injectivity (little) theory

Relevance of GC

〈R ,S〉 ≤ T ≡ R ≤ T ∧ S ≤ T (22)

which is the ker -derivative of

T ⊆ R ∩ S ≡ T ⊆ R ∧ T ⊆ S (23)

Thus we can rely on cancellation laws

R ≤ 〈R ,S〉 and S ≤ 〈R ,S〉 (24)

(compare with set inclusion).

Abbreviation
To keep up with the standard theory, we will write fg instead of
〈f , g〉.

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Generic Armstrong axioms

Thanks to the ≤-ordering, our PF-calculations show that

• Checking the axioms is almost not work at all

• Four of these axioms generalize to arbitrary binary relations

• Alternative versions of some axioms are no longer equivalent
in the general case

• Co-transitivity (R ⊆ R · R) emerges as interesting property

• Coreflexives (sets) generalize to pers (“sets with axioms”)

(Details in [4])

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

MVDs

Recall Maier’s definition:

〈∀ t, t ′ : t, t ′ ∈ R : t[x] = t ′[x]
⇓

〈∃ t ′′ : t ′′ ∈ R : t[xy] = t ′′[xy]∧
t ′′[z] = t ′[z]

〉

〉

This PF-transforms to

x
R
→→ y = R · (ker x) · R ⊆ (ker xy) · R · ker z (25)

where z is the projection function associated to the attributes in
S − xy .

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

“Al-djabr”ing MVDs

x
R
→→ y ≡ R · (ker x) · R ⊆ (ker xy) · R · ker z (26)

≡ { kernels ; (4 and 5) }

(xy · R · x◦) · (x · R · z◦) ⊆ xy · R · z◦ (27)

≡ { (10) three times }

(πxy ,xR) · (πx ,zR) ⊆ πxy ,zR (28)

cf.

A

xy

��

x ++WWWWWWWWWWWWWWWWWW A
Roo

x

sshhhhhhhhhhhhhhhh

z

��

X

πxy,xR

wwoooooooooooooooooo

⊆

X × Y Z
πxy,zR

oo

πx,zR

ffMMMMMMMMMMMMMMMMM

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

MVD “meaning”

PF version

(πxy ,xR) · (πx ,zR) ⊆ πxy ,zR

requires R to be an endo-relation and provides a simple meaning

for MVDs: x
R
→→ y holds iff projection πxy ,zR “factorizes” through

x , for instance:

x y x

t a c a

t ′ a c ′ a

·

x z

t a b

t ′ a b′

⊆

x y z

t a c b

t ′′′ a c ′ b

t ′′ a c b′

t ′ a c ′ b′

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Lossless decomposition

We are pretty close to one of the main results in RDB theory, the

theorem of lossless decomposition of MVDs: x
R
→→ y holds iff R

decomposes losslessly into two relations with schemata xy and xz ,
respectively:

x
R
→→ y ≡ (πy ,xR) ⋊⋉ (πz ,xR) = πyz ,xR

Maier [3] proves this in “implication-first” logic style, in two parts
— if + only if — involving existential and universal quantifications
over no less than six tuple variables t, t1, t2, t

′
1, t

′
2, t3:

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Lossless decomposition (Maier)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Alternative PF calculation

Sequence of equivalences based on the following facts:

• joining two projections which share the same antecedent
function, say x , is nothing but binary relation split (20):

(πy ,xR) ⋊⋉ (πz ,xR)
def
= 〈y · R · x◦, z · R · x◦〉 (29)

• lossless decomposition can be expressed parametrically wrt
consequent functions y and z ,

πyz ,xR = (πy ,xR) ⋊⋉ (πz ,xR)

that is

〈y , z〉 · R · x◦ = 〈y · R · x◦, z · R · x◦〉

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

By the way

The following special case of lossless decomposition is known to
every AoP practitioner:

〈y , z〉 · f = 〈y · f , z · f 〉 (30)

— split-fusion — a consequence of isomorphism

(A × B)C ∼= (AC) × (BC)

(functions yielding pairs “decompose losslessly” into pairs of
functions)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Alternative PF calculation

(πy,xR) ⋊⋉ (πz,xR) = πyz,xR

≡ { (29) ; (10) three times }

〈y · R · x◦

, z · R · x◦〉 = yz · R · x◦

≡ { since 〈X , Y 〉 · Z ⊆ 〈X · Z , Y · Z 〉 holds by monotonicity }

〈y · R · x◦

, z · R · x◦〉 ⊆ yz · R · x◦

≡ { “split twist” rule (31) — twice ; converses }

〈y · R · x◦

, id〉 · x · R◦ · z◦ ⊆ 〈y , x · R◦〉 · z◦

≡ { instances of split-fusion: (32) and (34) }

〈y · R · x◦

, x · x◦〉 · x · R · z◦ ⊆ 〈y , x〉 · R · z◦

≡ { instances of split-fusion: (33) and (34) }

(〈y , x〉 · R · x◦) · (x · R · z◦) ⊆ 〈y , x〉 · R · z◦

≡ { (27) }

x
R

→→ y

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

PF calculation details

“Split twist” rule

〈R ,S〉 · T ⊆ 〈U,V 〉 · X ≡ 〈R ,T ◦〉 · S◦ ⊆ 〈U,X ◦〉 · V ◦ (31)

Instances of (relational) split-fusion

• For simple (thus difunctional) S :

〈R ,T 〉 · S = 〈R ,T · S · S◦〉 · S (32)

〈R ,S〉 · S◦ = 〈R · S◦,S · S◦〉 (33)

• Split pre-conditioning rule:

〈R ,S〉 · Φ = 〈R ,S · Φ〉 ≡ Φ is coreflexive (34)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Checking Beeri, Fagin & Howard’s definition

(First step in the calculation is based on the fact that y and z are
interchangeable in MVDs, see [4] for details):

Maier’s def. ≡ xy · R · x◦ · x · R · z◦ ⊆ xy · R · z◦

≡ { swap y and z and take converses }

y · R · x◦ · x · R · xz◦ ⊆ y · R · xz◦

≡ { R = R · R◦ since R is coreflexive }

y · R · x◦ · π1 · xz · R · R◦ · xz◦ ⊆ y · R · xz◦

≡ { please turn over }

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

MVDs PF-transformed

y · R · x◦ · π1 · xz · R · R◦ · xz◦ ⊆ y · R · xz◦

≡ { introduce image and the power-transpose }

Λ(y · R · x◦ · π1) · img (xz · R) ⊆ Λ(y · R · xz◦)

≡ { define γf ,gR = Λ(f · R · g◦) ; “al-djabr” (shunting) }

img (xz · R) ⊆ (γy ,xR · π1)
◦ · (γy ,xzR)

Finally, we go back to points (third step of a typical PF-transform
argument):

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

MVDs PF-transformed

img (xz · R) ⊆ (γy,xR · π1)
◦ · γy,xzR

≡ { reverse PF-transform (for R coreflexive, xz · R is simple) }

〈∀ k : k img (xz · R) k : (γy,xR · π1)k = (γy,xzR)k〉

≡ { reverse PF-transform of the image of xz · R }

〈∀ k : 〈∃ t : t ∈ R : xz(t) = k〉 : (γy,xR · π1)k = (γy,xzR)k〉

≡ { rename k := (b, a) and simplify }

〈 ∀ a, b :
〈∃ t : t ∈ R : (x t) = a ∧ (z t) = b〉 :

(γy,xR) a = (γy,xzR)(a, b)

〉

≡ { recognize (γy,xR)a as Y (a) }

Beeri, Fagin & Howard definition

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Difficulties

Some MVD rules are hard to PF-transform, eg.

• M5. Transitivity:

x
R
→→ y ∧ y

R
→→ z ⇒ x

R
→→ (z − y) (35)

• M6. Pseudotransitivity:

x
R
→→ y ∧ yw

R
→→ z ⇒ xw

R
→→ (z − yw) (36)

Question
Given two functions f , g , what is the generic meaning of “f − g” ?

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Richer theory

Promoting attributes to functions brings about richer results such
as eg.

x
R
→ y ≡ f · x

R
→ f · y ⇐ f is injective

eg. structural FDs:

x
R
→ y ≡ Fx

FR
→ Fy

eg. specific results on functional dependences on “the functions
themselves”,

f
g
→ id ≡ f

id
→ g

etc.

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Current work

• Basic: analyse the impact of a richer definition of kernel (by
Jeremy)

ker R = (R \ R) ∩ (R \ R)◦

on the injectivity preorder. (Both coincide on functions).

• Extension: NULL values (!)

• Applied: replay Mark Jones’ Type Classes with Functional

Dependencies [2] in our approach — the most well-known
(non-trivial) application of FDs outside the database domain.
This is likely to benefit from our generalization (interplay with
extra ingredients such substitutions and unification).

• Generic: synergies with other disciplines

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Current work

Relationship between function divisibility and the injectivity
preorder: two preorders on functions

• “Left divisibility” — g ⊑ f iff exists k such that

f = g · k (37)

• “Right divisibility” — g � f iff exists k such that

f = k · g (38)

Clearly, � is the converse of the injectivity preorder, restricted to
functions (next slide)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Current work

f ≤ g

≡ { FDs on functions: f ≤ g ≡ g
id
→ f ; projections [4] }

f · g◦ is simple

≡ { simple relations are fragments of functions (and vice versa) }

〈∃ k : : f · g◦ ⊆ k〉

≡ { “al-djabr” (shunting) }

〈∃ k : : f ⊆ k · g〉

≡ { function equality }

g � f

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Synergies with other CS diciplines

• Bisimulations — FD d
R
→ c holds wherever R is

a simple bisimulation from coalgebra d to
coalgebra c . In other words: c can be less
injective than d as far as “allowed by” R .
So (implementation) d is allowed to distinguish
states which (specification) c does not.

• Algebra of Programming — possible impact in
reasoning about specifications. Example: from
the sorting spec in [1]

Sort = [[ordered]] · ker bagify

infer FD bagify
Sort
→ bagify , etc

F B B
coo

F A

FR

OO

A

R

OO

d
oo

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Conclusions

• “Ut faciant opus signa” is great

• How could “they” survive for so long only at point-level?

• PF-refactoring of existing theories is useful

• It develops the PF-transform (Algebra of Programming) itself

Rôle of generic pointfree patterns in the reasoning:

• Projection:

f · R · g◦

• Selection (Greek letters denote coreflexives):

Ψ · R · Φ

and so on

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Epilogue

“Algebra (...) is thing causing admiration”

(...) “Mainly because we see often a great Mathematician
unable to resolve a question by Geometrical means, and
solve it by Algebra, being that same Algebra taken from
Geometry, which is thing causing admiration.”

[Pedro Nunes (1502-1578) in Libro de Algebra en Arithmetica y

Geometria, 1567, fol. 270.]

— my (literal, not literary) translation of:

(...) Principalmente que vemos algumas vezes, no poder vn
gran Mathematico resoluer vna question por medios
Geometricos, y resolverla por Algebra, siendo la misma Algebra
sacada de la Geometria, q̃ es cosa de admiraciõ.

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Epilogue

“Algebra (...) is thing causing admiration”

(...) “Mainly because we see often a great Mathematician
unable to resolve a question by Geometrical means, and
solve it by Algebra, being that same Algebra taken from
Geometry, which is thing causing admiration.”

[Pedro Nunes (1502-1578) in Libro de Algebra en Arithmetica y

Geometria, 1567, fol. 270.]

— my (literal, not literary) translation of:

(...) Principalmente que vemos algumas vezes, no poder vn
gran Mathematico resoluer vna question por medios
Geometricos, y resolverla por Algebra, siendo la misma Algebra
sacada de la Geometria, q̃ es cosa de admiraciõ.

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Verdict

(...) De manera, que
quien sabe por Algebra,

sabe scientificamente.

((...) In this way, who knows by Algebra knows
scientifically)

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

R. Bird and O. de Moor.
Algebra of Programming.
Series in Computer Science. Prentice-Hall International, 1997.
C.A.R. Hoare, series editor.

Mark P. Jones.
Type classes with functional dependencies.
In Gert Smolka, editor, Programming Languages and Systems,
9th European Symposium on Programming, ESOP 2000, Held
as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS 2000, Berlin, Germany, March 25
- April 2, 2000, Proceedings, volume 1782 of LNCS, pages
230–244. Springer, 2000.

D. Maier.
The Theory of Relational Databases.
Computer Science Press, 1983.

J.N. Oliveira.
Pointfree foundations for lossless decomposition, 2006.

http://www.phptr.com/ptrbooks/ptr_013507245x.html

Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Draft of paper in preparation.

	Context
	Notation
	PF transform
	FDs
	MVDs
	Difficulties
	Synergies
	Conclusions
	Epilogue

