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Universidade do Minho

Braga, Portugal

IFIP WG2.1 meeting #62
Dec. 2006

Namur, Belgium



Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Motivation

• Computer science theories are (usually) pointwise.

• What do we gain by replaying them in the (relational)
pointfree style?
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Motivation

Significant gains are known in some CS theories, eg.

• Program calculation — esp. functional, recursive programs,
recall (cata,ana,hylo,...) -morphisms etc

• Abstract interpretation, polymorphism, unification etc

What about theories which “everybody has heard of”?

• Automata and transition systems

• Databases

• Parsing, compiling etc

• ...
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In this talk

• We will pick one such widespread body of knowledge

Relational database theory 1

and will start refactoring it in a ”let the symbols do the work”
calculation style.

• Is this concern for theory refactoring a new one?
No — it has a long tradition in mathematics and engineering:

1In fact, the data dependency part of it, as far as the talk is concerned
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A “notation problem”

Mathematical modelling

requires descriptive notations, therefore:

• intuitive

• domain-specific

• often graphical, geometrical

Reasoning

requires elegant notations, therefore:

• simple and compact

• generic

• cryptic, otherwise clumsy to manipulate
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Modelling? Reasoning?

Our civilization has a long tradition in (“al-djabr”) equational
reasoning:

• Examples of “al-djabr” rules: in arithmetics

x − z ≤ y ≡ x ≤ y + z

• in set theory

A − B ⊆ C ≡ A ⊆ C ∪ B

“Al-djabr” rules are known since the 9c. (They are nowadays
referred to as Galois connections.)



Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

By the way

“Al-djabr” reasoning rediscovered in Nunes’ Libro de Algebra en
Arithmetica y Geometria (1567)

(...) the inventor of this

art was a Moorish

mathematician, whose

name was Gebre, & in

some libraries there is a

small arabic treaty which

contains chapters that we

use

(fol. a ij r)

Reference to On the calculus of al-gabr and al-muqâbala by Abû
Al-Huwârizm̂ı, a famous 9c Persian mathematician.
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A problem in CS teaching

CS students faced with a contradiction:

• at middle school they are trained in “al-djabr” reasoning
(linear equations, polynomials, etc)

• at high-school they are faced with modus ponens — massive
use of “implication-first” logic (if any)

Shouldn’t we all be concerned about this?
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How does one bring “al-djabr” reasoning in?

Tradition (again) points to “math-space” transforms, eg.

t-space s-space

Given problem

y ′′ + 4y ′ + 3y = 0
y(0) = 3
y ′(0) = 1

//

Subsidiary equation

s2Y + 4sY + 3Y = 3s + 13

��
Solution of given problem

y(t) = −2e−3t + 5e−t

Solution of subs. equation

Y = −2
s+3

+ 5
s+1

oo
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Integration? Quantification?

An integral transform:

(L f )s =
∫

∞

0
e−st f (t)dt

f (t) L(f )

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

etc

A parallel:

〈

∫

x : 0 ≤ x ≤ 10 : x2 − x〉

〈∀ x : 0 ≤ x ≤ 10 : x2 ≥ x〉
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The pointfree (PF) transform

An “s-space analog” for logical quantification

φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S

〈∀ a : : a R a〉 id ⊆ R
〈∀ x : : x R b ⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a
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Road map in theory “PF-refactoring”

• Start with coreflexive models of the existing theory

• Generalize coreflexives to arbitrary binary relations “as much
as possible”

• Add to the theory by restricting to functions and “seeing what
happens”
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Predicates PF-transformed

• Binary predicates :

R = [[b]] ≡ (y R x ≡ b(y , x))

• Unary predicates become fragments of id (coreflexives) :

R = [[p]] ≡ (y R x ≡ (p x) ∧ x = y)

eg.

[[1 ≤ x ≤ 4]] =
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Some definitions

The whole picture:
relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

where

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

ker R = R◦ · R
imgR = R · R◦
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Data dependency theory

Recall

• Data bases — collections of (large) sets on n-ary tuples

(“tables”)

• Attributes — names for indices in n-tuples

Data dependency theory:

• A data factorization (“fission”) theory — large sets of (long)
tuples are split into less redundant structures of smaller sets of
(shorter) tuples

• No loss of data if particular data dependencies hold

• Data dependencies can be functional (FDs) or multi-valued
(MVDs)
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FDs — Maier (1983) etc

Given subsets x , y ⊆ S of the
relation scheme S of a relation
R , this relation is said to satisfy
functional dependency x → y iff
all pairs of tuples t, t ′ ∈ R which
“agree” on x also “agree” on y :

R =

. . . x . . . y . . .

. . . . . . . . . . . . . . .

t a . . . c . . .

t ′ a . . . c . . .

. . . . . . . . . . . . . . .

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ] ⇒ t[y ] = t ′[y ] 〉 (1)

�

(Notation t[x ] means “the values in t of the attributes in x” )
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MVD definition — Maier (1983)

Given subsets x , y ⊆ S of the relation scheme
S of n-ary relation R , this relation is said to
satisfy multi-valued dependency (MVD)
x →→ y iff, for any two tuples t, t ′ ∈ R which

“agree” on x there exists a tuple t ′′ ∈ R which
“agrees” with t on xy and “agrees” with t ′ on
z = S − xy :

x y z

t a c b

t ′′ a c b′

t ′ a c ′ b′

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ]
⇓

〈∃ t ′′ : t ′′ ∈ R : t[xy ] = t ′′[xy ]∧
t ′′[z ] = t ′[z ]

〉

〉 (2)

holds. �
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MVD definition — Beeri, Fagin & Howard (1977)

Given subsets x , y ⊆ S of the relation scheme
S of an n-ary relation R , let z = S − xy . R is
said to satisfy the multi-valued dependency
(MVD) x →→ y iff, for every xz-value ab that
appears in R , one has Y (ab) = Y (a), where
for every k ⊆ S and k-value c , function Y is
defined as follows:

x y z

t a c b

t ′′′ a c ′ b

t ′′ a c b′

t ′ a c ′ b′

Y (c) = {v | 〈∃ t : t ∈ R : t[k] = c ∧ t[y ] = v〉}

�

Putting everything together, x
R
→→ Y means:

〈∀ a, b : 〈∃ t : t ∈ R : t[xz ] = ab〉 : YR,x(a) = YR,xz(ab)〉 (3)
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Standard FD theory

Inference rules for FD reasoning based on

• Armstrong axioms for computing closures of sets of FDs

However,

• base formulæ too complex

• no explicit proof of

Maier ≡ Beeri, Fagin & Howard (?)

Who has checked

Maier ⇒ Beeri, Fagin & Howard?
Maier ⇐ Beeri, Fagin & Howard?

We want to write less maths and. . . “let the symbols do the work”
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The role of functions

From Database Systems: The Complete Book by
Garcia-Molina, Ullman and Widom (2002), p. 87:

What Is “Functional” About Functional
Dependencies?

A1A2 · · ·An → B is called a “functional dependency” because in
principle there is a function that takes a list of values [...] and pro-
duces a unique value (or no value at all) for B [...] However, this
function is not the usual sort of function that we meet in mathemat-
ics, because there is no way to compute it from first principles. [...]
Rather, the function is only computed by lookup in the relation [...]

In fact, (partial) functions are everywhere in FD theory:

• as attributes

• as the FDs themselves

However,

• No advantage is taken of the rich calculus of functions



Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Functions in one slide

• A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

• Useful “al-djabr” rules (GCs):

f · R ⊆ S ≡ R ⊆ f ◦ · S (4)

R · f ◦ ⊆ S ≡ R ⊆ S · f (5)

(6)

• Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g
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Simple relations in one slide

• “Al-djabr” rules for simple R :

R · R ⊆ T ≡ (δ R) · R ⊆ R◦ · T (7)

R · R◦ ⊆ T ≡ R · δ R ⊆ T · R (8)

where δ R (=domain of R) is the coreflexive part of ker R
( δ R = ker R ∩ id ).

• Equality

R = S ≡ R ⊆ S ∧ δ S ⊆ δ R (9)

follows from (7, 8).
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FDs PF transformed (1)

Pointwise

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ] ⇒ t[y ] = t ′[y ] 〉

Pointfree:

R · (x◦ · x) · R ⊆ y◦ · y

≡ { shunting }

(y · R · x◦) · (x · R · y◦) ⊆ id

≡ { R is coreflexive }

(y · R · x◦) · (y · R · x◦)◦ ⊆ id

≡ { define projection πg ,f = g · R · f ◦ }

πy ,xR is simple
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FD generalization

We let R be any binary relation and f , g arbitrary functions in

πg ,f R
def
= g · R · f ◦ A

g

��

B
Roo

f
��

C D
πg,f R
oo

(10)

and define:

f
R
→ g ≡ projection πg ,f R is simple

Our aim :

• Calculate the standard Armstrong axioms from this PF
definition
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FDs PF-transformed (2): injectivity

Pointwise

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ] ⇒ t[y ] = t ′[y ] 〉

Pointfree:

R · (x◦ · x) · R ⊆ y◦ · y

≡ { converses ; R is coreflexive }

(R · x◦) · (x · R◦)◦ ⊆ y◦ · y

≡ { kerR = R◦ · R }

ker (x · R◦) ⊆ ker y

≡ { y is less injective than x “inside R” }

y ≤ x · R◦
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Injectivity preorder

• Definition

R ≤ S
def
= ker S ⊆ ker R (11)

(R ≤ S ≡ “R is less injective than S”)

• “Al-djabr” rules, eg:

R · g ≤ S ≡ R ≤ S · g◦ (12)

— the “injectivity derivative” of the corresponding “at most”
rule (5).
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PF-transformed FD: injectivity

We let R be any binary relation and f , g arbitrary functions in

f
R
→ g ≡ g ≤ f · R◦ A

g

��

f ·R◦

$$H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H B
Roo

f

��
C D

(13)

This PF-version is

• simple and elegant

• particularly agile in calculations
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Example of reasoning

The following fact — FD composition — is absent from the
standard theory:

f
S·R
→ h ⇐ f

R
→ g ∧ g

S
→ h (14)

Calculation: f
R
→ g ∧ g

S
→ h

≡ { (13) twice }

g ≤ f · R◦ ∧ h ≤ g · S◦

⇒ { ≤-monotonicity of ( · S◦) ; converses }

g · S◦ ≤ f · (S · R)◦ ∧ h ≤ g · S◦

⇒ { ≤-transitivity }

h ≤ f · (S · R)◦

≡ { (13) again }

f
S·R
→ h
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Rôle of injectivity

1. After all, what matters about f and g in (13) is their “degree
of injectivity” — as measured by ker f and ker g — in
opposite directions:

• more injective f
• less injective g

will strengthen a given FD f
R
→ g .

2. Limit cases (for all f , g):
• “Most injective” antecendent

id
R
→ g (15)

• “Least injective” consequent

f
R
→ ! (16)
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Rôle of definedness

Kernel ker R also measures definedness (otherwise δ R = ker R ∩ id
would be a contradiction). Then, for all f , g

f
⊥
→ g

holds (where ⊥ denotes the empty relation) and — of course —

f
id
→ f (17)

Side topic: (17) and (14) together set up a category whose

objects are functions f , g , etc. and whose arrows f
R // g are

relations satisfying f
R
→ g .



Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Sets of attributes

In the standard theory, x and y in (1) are sets of observable
attributes, as in eg. the following Armstrong axioms:

• F3. Additivity (or Union):

x
T
→ y ∧ x

T
→ z ⇒ x

T
→ yz (18)

• F4. Projectivity:

x
T
→ yz ⇒ x

T
→ y ∧ x

T
→ z (19)

Our generic theory interprets “set” yz as function 〈y , z〉, where

(a, b)〈R ,S〉c ≡ a R c ∧ b S c (20)
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Relational splits

Below we calculate F3,F4 in one go, for arbitrary (suitably typed)
R , f , g , h:

f
R
→ gh ≡ f

R
→ g ∧ f

R
→ h (21)

Calculation:

f
R
→ gh

≡ { (13) ; expansion of shorthand gh }

〈g , h〉 ≤ f · R◦

≡ { split is lub (22) — see next slide }

g ≤ f · R◦ ∧ h ≤ f · R◦

≡ { (13) twice }

f
R
→ g ∧ f

R
→ h
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Split injectivity (little) theory

Relevance of GC

〈R ,S〉 ≤ T ≡ R ≤ T ∧ S ≤ T (22)

which is the ker -derivative of

T ⊆ R ∩ S ≡ T ⊆ R ∧ T ⊆ S (23)

Thus we can rely on cancellation laws

R ≤ 〈R ,S〉 and S ≤ 〈R ,S〉 (24)

(compare with set inclusion).

Abbreviation
To keep up with the standard theory, we will write fg instead of
〈f , g〉.
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Generic Armstrong axioms

Thanks to the ≤-ordering, our PF-calculations show that

• Checking the axioms is almost not work at all

• Four of these axioms generalize to arbitrary binary relations

• Alternative versions of some axioms are no longer equivalent
in the general case

• Co-transitivity (R ⊆ R · R) emerges as interesting property

• Coreflexives (sets) generalize to pers ( “sets with axioms” )

(Details in [4])
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MVDs

Recall Maier’s definition:

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ]
⇓

〈∃ t ′′ : t ′′ ∈ R : t[xy ] = t ′′[xy ]∧
t ′′[z ] = t ′[z ]

〉

〉

This PF-transforms to

x
R
→→ y = R · (ker x) · R ⊆ (ker xy) · R · ker z (25)

where z is the projection function associated to the attributes in
S − xy .
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“Al-djabr”ing MVDs

x
R
→→ y ≡ R · (ker x) · R ⊆ (ker xy) · R · ker z (26)

≡ { kernels ; (4 and 5) }

(xy · R · x◦) · (x · R · z◦) ⊆ xy · R · z◦ (27)

≡ { (10) three times }

(πxy ,xR) · (πx ,zR) ⊆ πxy ,zR (28)

cf.

A

xy

��

x ++WWWWWWWWWWWWWWWWWW A
Roo

x

sshhhhhhhhhhhhhhhh

z

��

X

πxy,xR

wwoooooooooooooooooo

⊆

X × Y Z
πxy,zR

oo

πx,zR

ffMMMMMMMMMMMMMMMMM
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MVD “meaning”

PF version

(πxy ,xR) · (πx ,zR) ⊆ πxy ,zR

requires R to be an endo-relation and provides a simple meaning

for MVDs: x
R
→→ y holds iff projection πxy ,zR “factorizes” through

x , for instance:







x y x

t a c a

t ′ a c ′ a






·







x z

t a b

t ′ a b′






⊆

x y z

t a c b

t ′′′ a c ′ b

t ′′ a c b′

t ′ a c ′ b′
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Lossless decomposition

We are pretty close to one of the main results in RDB theory, the

theorem of lossless decomposition of MVDs: x
R
→→ y holds iff R

decomposes losslessly into two relations with schemata xy and xz ,
respectively:

x
R
→→ y ≡ (πy ,xR) ⋊⋉ (πz ,xR) = πyz ,xR

Maier [3] proves this in “implication-first” logic style, in two parts
— if + only if — involving existential and universal quantifications
over no less than six tuple variables t, t1, t2, t

′
1, t

′
2, t3:
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Lossless decomposition (Maier)
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Alternative PF calculation

Sequence of equivalences based on the following facts:

• joining two projections which share the same antecedent
function, say x , is nothing but binary relation split (20):

(πy ,xR) ⋊⋉ (πz ,xR)
def
= 〈y · R · x◦, z · R · x◦〉 (29)

• lossless decomposition can be expressed parametrically wrt
consequent functions y and z ,

πyz ,xR = (πy ,xR) ⋊⋉ (πz ,xR)

that is

〈y , z〉 · R · x◦ = 〈y · R · x◦, z · R · x◦〉
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By the way

The following special case of lossless decomposition is known to
every AoP practitioner:

〈y , z〉 · f = 〈y · f , z · f 〉 (30)

— split-fusion — a consequence of isomorphism

(A × B)C ∼= (AC ) × (BC )

(functions yielding pairs “decompose losslessly” into pairs of
functions)
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Alternative PF calculation

(πy,xR) ⋊⋉ (πz,xR) = πyz,xR

≡ { (29) ; (10) three times }

〈y · R · x◦

, z · R · x◦〉 = yz · R · x◦

≡ { since 〈X , Y 〉 · Z ⊆ 〈X · Z , Y · Z 〉 holds by monotonicity }

〈y · R · x◦

, z · R · x◦〉 ⊆ yz · R · x◦

≡ { “split twist” rule (31) — twice ; converses }

〈y · R · x◦

, id〉 · x · R◦ · z◦ ⊆ 〈y , x · R◦〉 · z◦

≡ { instances of split-fusion: (32) and (34) }

〈y · R · x◦

, x · x◦〉 · x · R · z◦ ⊆ 〈y , x〉 · R · z◦

≡ { instances of split-fusion: (33) and (34) }

(〈y , x〉 · R · x◦) · (x · R · z◦) ⊆ 〈y , x〉 · R · z◦

≡ { (27) }

x
R

→→ y
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PF calculation details

“Split twist” rule

〈R ,S〉 · T ⊆ 〈U,V 〉 · X ≡ 〈R ,T ◦〉 · S◦ ⊆ 〈U,X ◦〉 · V ◦ (31)

Instances of (relational) split-fusion

• For simple (thus difunctional) S :

〈R ,T 〉 · S = 〈R ,T · S · S◦〉 · S (32)

〈R ,S〉 · S◦ = 〈R · S◦,S · S◦〉 (33)

• Split pre-conditioning rule:

〈R ,S〉 · Φ = 〈R ,S · Φ〉 ≡ Φ is coreflexive (34)
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Checking Beeri, Fagin & Howard’s definition

(First step in the calculation is based on the fact that y and z are
interchangeable in MVDs, see [4] for details):

Maier’s def. ≡ xy · R · x◦ · x · R · z◦ ⊆ xy · R · z◦

≡ { swap y and z and take converses }

y · R · x◦ · x · R · xz◦ ⊆ y · R · xz◦

≡ { R = R · R◦ since R is coreflexive }

y · R · x◦ · π1 · xz · R · R◦ · xz◦ ⊆ y · R · xz◦

≡ { please turn over }
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MVDs PF-transformed

y · R · x◦ · π1 · xz · R · R◦ · xz◦ ⊆ y · R · xz◦

≡ { introduce image and the power-transpose }

Λ(y · R · x◦ · π1) · img (xz · R) ⊆ Λ(y · R · xz◦)

≡ { define γf ,gR = Λ(f · R · g◦) ; “al-djabr” (shunting) }

img (xz · R) ⊆ (γy ,xR · π1)
◦ · (γy ,xzR)

Finally, we go back to points (third step of a typical PF-transform
argument):
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MVDs PF-transformed

img (xz · R) ⊆ (γy,xR · π1)
◦ · γy,xzR

≡ { reverse PF-transform (for R coreflexive, xz · R is simple ) }

〈∀ k : k img (xz · R) k : (γy,xR · π1)k = (γy,xzR)k〉

≡ { reverse PF-transform of the image of xz · R }

〈∀ k : 〈∃ t : t ∈ R : xz(t) = k〉 : (γy,xR · π1)k = (γy,xzR)k〉

≡ { rename k := (b, a) and simplify }

〈 ∀ a, b :
〈∃ t : t ∈ R : (x t) = a ∧ (z t) = b〉 :

(γy,xR) a = (γy,xzR)(a, b)

〉

≡ { recognize (γy,xR)a as Y (a) }

Beeri, Fagin & Howard definition
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Difficulties

Some MVD rules are hard to PF-transform, eg.

• M5. Transitivity:

x
R
→→ y ∧ y

R
→→ z ⇒ x

R
→→ (z − y) (35)

• M6. Pseudotransitivity:

x
R
→→ y ∧ yw

R
→→ z ⇒ xw

R
→→ (z − yw) (36)

Question
Given two functions f , g , what is the generic meaning of “f − g” ?
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Richer theory

Promoting attributes to functions brings about richer results such
as eg.

x
R
→ y ≡ f · x

R
→ f · y ⇐ f is injective

eg. structural FDs:

x
R
→ y ≡ Fx

FR
→ Fy

eg. specific results on functional dependences on “the functions
themselves”,

f
g
→ id ≡ f

id
→ g

etc.
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Current work

• Basic: analyse the impact of a richer definition of kernel (by
Jeremy)

ker R = (R \ R) ∩ (R \ R)◦

on the injectivity preorder. (Both coincide on functions).

• Extension: NULL values (!)

• Applied: replay Mark Jones’ Type Classes with Functional

Dependencies [2] in our approach — the most well-known
(non-trivial) application of FDs outside the database domain.
This is likely to benefit from our generalization (interplay with
extra ingredients such substitutions and unification).

• Generic: synergies with other disciplines
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Current work

Relationship between function divisibility and the injectivity
preorder: two preorders on functions

• “Left divisibility” — g ⊑ f iff exists k such that

f = g · k (37)

• “Right divisibility” — g � f iff exists k such that

f = k · g (38)

Clearly, � is the converse of the injectivity preorder, restricted to
functions (next slide)
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Current work

f ≤ g

≡ { FDs on functions: f ≤ g ≡ g
id
→ f ; projections [4] }

f · g◦ is simple

≡ { simple relations are fragments of functions (and vice versa) }

〈∃ k : : f · g◦ ⊆ k〉

≡ { “al-djabr” (shunting) }

〈∃ k : : f ⊆ k · g〉

≡ { function equality }

g � f
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Synergies with other CS diciplines

• Bisimulations — FD d
R
→ c holds wherever R is

a simple bisimulation from coalgebra d to
coalgebra c . In other words: c can be less
injective than d as far as “allowed by” R .
So (implementation) d is allowed to distinguish
states which (specification) c does not.

• Algebra of Programming — possible impact in
reasoning about specifications. Example: from
the sorting spec in [1]

Sort = [[ordered ]] · ker bagify

infer FD bagify
Sort
→ bagify , etc

F B B
coo

F A

FR

OO

A

R

OO

d
oo
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Conclusions

• “Ut faciant opus signa” is great

• How could “they” survive for so long only at point-level?

• PF-refactoring of existing theories is useful

• It develops the PF-transform (Algebra of Programming) itself

Rôle of generic pointfree patterns in the reasoning:

• Projection:

f · R · g◦

• Selection (Greek letters denote coreflexives):

Ψ · R · Φ

and so on
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Epilogue

“Algebra (...) is thing causing admiration”

(...) “Mainly because we see often a great Mathematician
unable to resolve a question by Geometrical means, and
solve it by Algebra, being that same Algebra taken from
Geometry, which is thing causing admiration.”

[ Pedro Nunes (1502-1578) in Libro de Algebra en Arithmetica y

Geometria, 1567, fol. 270. ]

— my (literal, not literary) translation of:

(...) Principalmente que vemos algumas vezes, no poder vn
gran Mathematico resoluer vna question por medios
Geometricos, y resolverla por Algebra, siendo la misma Algebra
sacada de la Geometria, q̃ es cosa de admiraciõ.
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Verdict

(...) De manera, que
quien sabe por Algebra,

sabe scientificamente.

((...) In this way, who knows by Algebra knows
scientifically)
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Draft of paper in preparation.
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