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Motivation

• Computer science theories are (usually) pointwise.

• What do we gain by replaying them in the (relational)
pointfree style?



Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Motivation

Significant gains are known in some CS theories, eg.

• Program calculation — esp. functional, recursive programs,
recall (cata,ana,hylo,...) -morphisms etc

• Abstract interpretation, polymorphism, unification etc

What about theories which “everybody has heard of”?

• Automata and transition systems

• Databases

• Parsing, compiling etc

• ...
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In this talk

• We will pick one such widespread body of knowledge

Relational database theory 1

and will start refactoring it in a ”let the symbols do the work”
calculation style.

• Is this concern for theory refactoring a new one?
No — it has a long tradition in mathematics and engineering:

1In fact, the data dependency part of it, as far as the talk is concerned
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A “notation problem”

Mathematical modelling

requires descriptive notations, therefore:

• intuitive

• domain-specific

• often graphical, geometrical

Reasoning

requires elegant notations, therefore:

• simple and compact

• generic

• cryptic, otherwise clumsy to manipulate
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Modelling? Reasoning?

Our civilization has a long tradition in (“al-djabr”) equational
reasoning:

• Examples of “al-djabr” rules: in arithmetics

x − z ≤ y ≡ x ≤ y + z

• in set theory

A − B ⊆ C ≡ A ⊆ C ∪ B

“Al-djabr” rules are known since the 9c. (They are nowadays
referred to as Galois connections.)
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By the way

“Al-djabr” reasoning rediscovered in Nunes’ Libro de Algebra en
Arithmetica y Geometria (1567)

(...) the inventor of this

art was a Moorish

mathematician, whose

name was Gebre, & in

some libraries there is a

small arabic treaty which

contains chapters that we

use

(fol. a ij r)

Reference to On the calculus of al-gabr and al-muqâbala by Abû
Al-Huwârizm̂ı, a famous 9c Persian mathematician.
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A problem in CS teaching

CS students faced with a contradiction:

• at middle school they are trained in “al-djabr” reasoning
(linear equations, polynomials, etc)

• at high-school they are faced with modus ponens — massive
use of “implication-first” logic (if any)

Shouldn’t we all be concerned about this?
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How does one bring “al-djabr” reasoning in?

Tradition (again) points to “math-space” transforms, eg.

t-space s-space

Given problem

y ′′ + 4y ′ + 3y = 0
y(0) = 3
y ′(0) = 1

//

Subsidiary equation

s2Y + 4sY + 3Y = 3s + 13

��
Solution of given problem

y(t) = −2e−3t + 5e−t

Solution of subs. equation

Y = −2
s+3

+ 5
s+1

oo
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Integration? Quantification?

An integral transform:

(L f )s =
∫

∞

0
e−st f (t)dt

f (t) L(f )

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

etc

A parallel:

〈

∫

x : 0 ≤ x ≤ 10 : x2 − x〉

〈∀ x : 0 ≤ x ≤ 10 : x2 ≥ x〉
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The pointfree (PF) transform

An “s-space analog” for logical quantification

φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S

〈∀ a : : a R a〉 id ⊆ R
〈∀ x : : x R b ⇒ x S a〉 b(R \ S)a
〈∀ c : : b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a
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Road map in theory “PF-refactoring”

• Start with coreflexive models of the existing theory

• Generalize coreflexives to arbitrary binary relations “as much
as possible”

• Add to the theory by restricting to functions and “seeing what
happens”
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Predicates PF-transformed

• Binary predicates :

R = [[b]] ≡ (y R x ≡ b(y , x))

• Unary predicates become fragments of id (coreflexives) :

R = [[p]] ≡ (y R x ≡ (p x) ∧ x = y)

eg.

[[1 ≤ x ≤ 4]] =
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Some definitions

The whole picture:
relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

where

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

ker R = R◦ · R
imgR = R · R◦
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Data dependency theory

Recall

• Data bases — collections of (large) sets on n-ary tuples

(“tables”)

• Attributes — names for indices in n-tuples

Data dependency theory:

• A data factorization (“fission”) theory — large sets of (long)
tuples are split into less redundant structures of smaller sets of
(shorter) tuples

• No loss of data if particular data dependencies hold

• Data dependencies can be functional (FDs) or multi-valued
(MVDs)
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FDs — Maier (1983) etc

Given subsets x , y ⊆ S of the
relation scheme S of a relation
R , this relation is said to satisfy
functional dependency x → y iff
all pairs of tuples t, t ′ ∈ R which
“agree” on x also “agree” on y :

R =

. . . x . . . y . . .

. . . . . . . . . . . . . . .

t a . . . c . . .

t ′ a . . . c . . .

. . . . . . . . . . . . . . .

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ] ⇒ t[y ] = t ′[y ] 〉 (1)

�

(Notation t[x ] means “the values in t of the attributes in x” )
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MVD definition — Maier (1983)

Given subsets x , y ⊆ S of the relation scheme
S of n-ary relation R , this relation is said to
satisfy multi-valued dependency (MVD)
x →→ y iff, for any two tuples t, t ′ ∈ R which

“agree” on x there exists a tuple t ′′ ∈ R which
“agrees” with t on xy and “agrees” with t ′ on
z = S − xy :

x y z

t a c b

t ′′ a c b′

t ′ a c ′ b′

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ]
⇓

〈∃ t ′′ : t ′′ ∈ R : t[xy ] = t ′′[xy ]∧
t ′′[z ] = t ′[z ]

〉

〉 (2)

holds. �
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MVD definition — Beeri, Fagin & Howard (1977)

Given subsets x , y ⊆ S of the relation scheme
S of an n-ary relation R , let z = S − xy . R is
said to satisfy the multi-valued dependency
(MVD) x →→ y iff, for every xz-value ab that
appears in R , one has Y (ab) = Y (a), where
for every k ⊆ S and k-value c , function Y is
defined as follows:

x y z

t a c b

t ′′′ a c ′ b

t ′′ a c b′

t ′ a c ′ b′

Y (c) = {v | 〈∃ t : t ∈ R : t[k] = c ∧ t[y ] = v〉}

�

Putting everything together, x
R
→→ Y means:

〈∀ a, b : 〈∃ t : t ∈ R : t[xz ] = ab〉 : YR,x(a) = YR,xz(ab)〉 (3)
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Standard FD theory

Inference rules for FD reasoning based on

• Armstrong axioms for computing closures of sets of FDs

However,

• base formulæ too complex

• no explicit proof of

Maier ≡ Beeri, Fagin & Howard (?)

Who has checked

Maier ⇒ Beeri, Fagin & Howard?
Maier ⇐ Beeri, Fagin & Howard?

We want to write less maths and. . . “let the symbols do the work”
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The role of functions

From Database Systems: The Complete Book by
Garcia-Molina, Ullman and Widom (2002), p. 87:

What Is “Functional” About Functional
Dependencies?

A1A2 · · ·An → B is called a “functional dependency” because in
principle there is a function that takes a list of values [...] and pro-
duces a unique value (or no value at all) for B [...] However, this
function is not the usual sort of function that we meet in mathemat-
ics, because there is no way to compute it from first principles. [...]
Rather, the function is only computed by lookup in the relation [...]

In fact, (partial) functions are everywhere in FD theory:

• as attributes

• as the FDs themselves

However,

• No advantage is taken of the rich calculus of functions
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Functions in one slide

• A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

• Useful “al-djabr” rules (GCs):

f · R ⊆ S ≡ R ⊆ f ◦ · S (4)

R · f ◦ ⊆ S ≡ R ⊆ S · f (5)

(6)

• Equality:

f ⊆ g ≡ f = g ≡ f ⊇ g
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Simple relations in one slide

• “Al-djabr” rules for simple R :

R · R ⊆ T ≡ (δ R) · R ⊆ R◦ · T (7)

R · R◦ ⊆ T ≡ R · δ R ⊆ T · R (8)

where δ R (=domain of R) is the coreflexive part of ker R
( δ R = ker R ∩ id ).

• Equality

R = S ≡ R ⊆ S ∧ δ S ⊆ δ R (9)

follows from (7, 8).
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FDs PF transformed (1)

Pointwise

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ] ⇒ t[y ] = t ′[y ] 〉

Pointfree:

R · (x◦ · x) · R ⊆ y◦ · y

≡ { shunting }

(y · R · x◦) · (x · R · y◦) ⊆ id

≡ { R is coreflexive }

(y · R · x◦) · (y · R · x◦)◦ ⊆ id

≡ { define projection πg ,f = g · R · f ◦ }

πy ,xR is simple
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FD generalization

We let R be any binary relation and f , g arbitrary functions in

πg ,f R
def
= g · R · f ◦ A

g

��

B
Roo

f
��

C D
πg,f R
oo

(10)

and define:

f
R
→ g ≡ projection πg ,f R is simple

Our aim :

• Calculate the standard Armstrong axioms from this PF
definition
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FDs PF-transformed (2): injectivity

Pointwise

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ] ⇒ t[y ] = t ′[y ] 〉

Pointfree:

R · (x◦ · x) · R ⊆ y◦ · y

≡ { converses ; R is coreflexive }

(R · x◦) · (x · R◦)◦ ⊆ y◦ · y

≡ { kerR = R◦ · R }

ker (x · R◦) ⊆ ker y

≡ { y is less injective than x “inside R” }

y ≤ x · R◦
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Injectivity preorder

• Definition

R ≤ S
def
= ker S ⊆ ker R (11)

(R ≤ S ≡ “R is less injective than S”)

• “Al-djabr” rules, eg:

R · g ≤ S ≡ R ≤ S · g◦ (12)

— the “injectivity derivative” of the corresponding “at most”
rule (5).
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PF-transformed FD: injectivity

We let R be any binary relation and f , g arbitrary functions in

f
R
→ g ≡ g ≤ f · R◦ A

g

��

f ·R◦

$$H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H B
Roo

f

��
C D

(13)

This PF-version is

• simple and elegant

• particularly agile in calculations
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Example of reasoning

The following fact — FD composition — is absent from the
standard theory:

f
S·R
→ h ⇐ f

R
→ g ∧ g

S
→ h (14)

Calculation: f
R
→ g ∧ g

S
→ h

≡ { (13) twice }

g ≤ f · R◦ ∧ h ≤ g · S◦

⇒ { ≤-monotonicity of ( · S◦) ; converses }

g · S◦ ≤ f · (S · R)◦ ∧ h ≤ g · S◦

⇒ { ≤-transitivity }

h ≤ f · (S · R)◦

≡ { (13) again }

f
S·R
→ h
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Rôle of injectivity

1. After all, what matters about f and g in (13) is their “degree
of injectivity” — as measured by ker f and ker g — in
opposite directions:

• more injective f
• less injective g

will strengthen a given FD f
R
→ g .

2. Limit cases (for all f , g):
• “Most injective” antecendent

id
R
→ g (15)

• “Least injective” consequent

f
R
→ ! (16)
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Rôle of definedness

Kernel ker R also measures definedness (otherwise δ R = ker R ∩ id
would be a contradiction). Then, for all f , g

f
⊥
→ g

holds (where ⊥ denotes the empty relation) and — of course —

f
id
→ f (17)

Side topic: (17) and (14) together set up a category whose

objects are functions f , g , etc. and whose arrows f
R // g are

relations satisfying f
R
→ g .
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Sets of attributes

In the standard theory, x and y in (1) are sets of observable
attributes, as in eg. the following Armstrong axioms:

• F3. Additivity (or Union):

x
T
→ y ∧ x

T
→ z ⇒ x

T
→ yz (18)

• F4. Projectivity:

x
T
→ yz ⇒ x

T
→ y ∧ x

T
→ z (19)

Our generic theory interprets “set” yz as function 〈y , z〉, where

(a, b)〈R ,S〉c ≡ a R c ∧ b S c (20)
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Relational splits

Below we calculate F3,F4 in one go, for arbitrary (suitably typed)
R , f , g , h:

f
R
→ gh ≡ f

R
→ g ∧ f

R
→ h (21)

Calculation:

f
R
→ gh

≡ { (13) ; expansion of shorthand gh }

〈g , h〉 ≤ f · R◦

≡ { split is lub (22) — see next slide }

g ≤ f · R◦ ∧ h ≤ f · R◦

≡ { (13) twice }

f
R
→ g ∧ f

R
→ h
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Split injectivity (little) theory

Relevance of GC

〈R ,S〉 ≤ T ≡ R ≤ T ∧ S ≤ T (22)

which is the ker -derivative of

T ⊆ R ∩ S ≡ T ⊆ R ∧ T ⊆ S (23)

Thus we can rely on cancellation laws

R ≤ 〈R ,S〉 and S ≤ 〈R ,S〉 (24)

(compare with set inclusion).

Abbreviation
To keep up with the standard theory, we will write fg instead of
〈f , g〉.
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Generic Armstrong axioms

Thanks to the ≤-ordering, our PF-calculations show that

• Checking the axioms is almost not work at all

• Four of these axioms generalize to arbitrary binary relations

• Alternative versions of some axioms are no longer equivalent
in the general case

• Co-transitivity (R ⊆ R · R) emerges as interesting property

• Coreflexives (sets) generalize to pers ( “sets with axioms” )

(Details in [4])
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MVDs

Recall Maier’s definition:

〈∀ t, t ′ : t, t ′ ∈ R : t[x ] = t ′[x ]
⇓

〈∃ t ′′ : t ′′ ∈ R : t[xy ] = t ′′[xy ]∧
t ′′[z ] = t ′[z ]

〉

〉

This PF-transforms to

x
R
→→ y = R · (ker x) · R ⊆ (ker xy) · R · ker z (25)

where z is the projection function associated to the attributes in
S − xy .
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“Al-djabr”ing MVDs

x
R
→→ y ≡ R · (ker x) · R ⊆ (ker xy) · R · ker z (26)

≡ { kernels ; (4 and 5) }

(xy · R · x◦) · (x · R · z◦) ⊆ xy · R · z◦ (27)

≡ { (10) three times }

(πxy ,xR) · (πx ,zR) ⊆ πxy ,zR (28)

cf.

A

xy

��

x ++WWWWWWWWWWWWWWWWWW A
Roo

x

sshhhhhhhhhhhhhhhh

z

��

X

πxy,xR

wwoooooooooooooooooo

⊆

X × Y Z
πxy,zR

oo

πx,zR

ffMMMMMMMMMMMMMMMMM
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MVD “meaning”

PF version

(πxy ,xR) · (πx ,zR) ⊆ πxy ,zR

requires R to be an endo-relation and provides a simple meaning

for MVDs: x
R
→→ y holds iff projection πxy ,zR “factorizes” through

x , for instance:







x y x

t a c a

t ′ a c ′ a






·







x z

t a b

t ′ a b′






⊆

x y z

t a c b

t ′′′ a c ′ b

t ′′ a c b′

t ′ a c ′ b′
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Lossless decomposition

We are pretty close to one of the main results in RDB theory, the

theorem of lossless decomposition of MVDs: x
R
→→ y holds iff R

decomposes losslessly into two relations with schemata xy and xz ,
respectively:

x
R
→→ y ≡ (πy ,xR) ⋊⋉ (πz ,xR) = πyz ,xR

Maier [3] proves this in “implication-first” logic style, in two parts
— if + only if — involving existential and universal quantifications
over no less than six tuple variables t, t1, t2, t

′
1, t

′
2, t3:



Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Lossless decomposition (Maier)
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Alternative PF calculation

Sequence of equivalences based on the following facts:

• joining two projections which share the same antecedent
function, say x , is nothing but binary relation split (20):

(πy ,xR) ⋊⋉ (πz ,xR)
def
= 〈y · R · x◦, z · R · x◦〉 (29)

• lossless decomposition can be expressed parametrically wrt
consequent functions y and z ,

πyz ,xR = (πy ,xR) ⋊⋉ (πz ,xR)

that is

〈y , z〉 · R · x◦ = 〈y · R · x◦, z · R · x◦〉
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By the way

The following special case of lossless decomposition is known to
every AoP practitioner:

〈y , z〉 · f = 〈y · f , z · f 〉 (30)

— split-fusion — a consequence of isomorphism

(A × B)C ∼= (AC ) × (BC )

(functions yielding pairs “decompose losslessly” into pairs of
functions)



Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

Alternative PF calculation

(πy,xR) ⋊⋉ (πz,xR) = πyz,xR

≡ { (29) ; (10) three times }

〈y · R · x◦

, z · R · x◦〉 = yz · R · x◦

≡ { since 〈X , Y 〉 · Z ⊆ 〈X · Z , Y · Z 〉 holds by monotonicity }

〈y · R · x◦

, z · R · x◦〉 ⊆ yz · R · x◦

≡ { “split twist” rule (31) — twice ; converses }

〈y · R · x◦

, id〉 · x · R◦ · z◦ ⊆ 〈y , x · R◦〉 · z◦

≡ { instances of split-fusion: (32) and (34) }

〈y · R · x◦

, x · x◦〉 · x · R · z◦ ⊆ 〈y , x〉 · R · z◦

≡ { instances of split-fusion: (33) and (34) }

(〈y , x〉 · R · x◦) · (x · R · z◦) ⊆ 〈y , x〉 · R · z◦

≡ { (27) }

x
R

→→ y
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PF calculation details

“Split twist” rule

〈R ,S〉 · T ⊆ 〈U,V 〉 · X ≡ 〈R ,T ◦〉 · S◦ ⊆ 〈U,X ◦〉 · V ◦ (31)

Instances of (relational) split-fusion

• For simple (thus difunctional) S :

〈R ,T 〉 · S = 〈R ,T · S · S◦〉 · S (32)

〈R ,S〉 · S◦ = 〈R · S◦,S · S◦〉 (33)

• Split pre-conditioning rule:

〈R ,S〉 · Φ = 〈R ,S · Φ〉 ≡ Φ is coreflexive (34)
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Checking Beeri, Fagin & Howard’s definition

(First step in the calculation is based on the fact that y and z are
interchangeable in MVDs, see [4] for details):

Maier’s def. ≡ xy · R · x◦ · x · R · z◦ ⊆ xy · R · z◦

≡ { swap y and z and take converses }

y · R · x◦ · x · R · xz◦ ⊆ y · R · xz◦

≡ { R = R · R◦ since R is coreflexive }

y · R · x◦ · π1 · xz · R · R◦ · xz◦ ⊆ y · R · xz◦

≡ { please turn over }
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MVDs PF-transformed

y · R · x◦ · π1 · xz · R · R◦ · xz◦ ⊆ y · R · xz◦

≡ { introduce image and the power-transpose }

Λ(y · R · x◦ · π1) · img (xz · R) ⊆ Λ(y · R · xz◦)

≡ { define γf ,gR = Λ(f · R · g◦) ; “al-djabr” (shunting) }

img (xz · R) ⊆ (γy ,xR · π1)
◦ · (γy ,xzR)

Finally, we go back to points (third step of a typical PF-transform
argument):



Context Notation PF transform FDs MVDs Difficulties Synergies Conclusions Epilogue

MVDs PF-transformed

img (xz · R) ⊆ (γy,xR · π1)
◦ · γy,xzR

≡ { reverse PF-transform (for R coreflexive, xz · R is simple ) }

〈∀ k : k img (xz · R) k : (γy,xR · π1)k = (γy,xzR)k〉

≡ { reverse PF-transform of the image of xz · R }

〈∀ k : 〈∃ t : t ∈ R : xz(t) = k〉 : (γy,xR · π1)k = (γy,xzR)k〉

≡ { rename k := (b, a) and simplify }

〈 ∀ a, b :
〈∃ t : t ∈ R : (x t) = a ∧ (z t) = b〉 :

(γy,xR) a = (γy,xzR)(a, b)

〉

≡ { recognize (γy,xR)a as Y (a) }

Beeri, Fagin & Howard definition
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Difficulties

Some MVD rules are hard to PF-transform, eg.

• M5. Transitivity:

x
R
→→ y ∧ y

R
→→ z ⇒ x

R
→→ (z − y) (35)

• M6. Pseudotransitivity:

x
R
→→ y ∧ yw

R
→→ z ⇒ xw

R
→→ (z − yw) (36)

Question
Given two functions f , g , what is the generic meaning of “f − g” ?
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Richer theory

Promoting attributes to functions brings about richer results such
as eg.

x
R
→ y ≡ f · x

R
→ f · y ⇐ f is injective

eg. structural FDs:

x
R
→ y ≡ Fx

FR
→ Fy

eg. specific results on functional dependences on “the functions
themselves”,

f
g
→ id ≡ f

id
→ g

etc.
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Current work

• Basic: analyse the impact of a richer definition of kernel (by
Jeremy)

ker R = (R \ R) ∩ (R \ R)◦

on the injectivity preorder. (Both coincide on functions).

• Extension: NULL values (!)

• Applied: replay Mark Jones’ Type Classes with Functional

Dependencies [2] in our approach — the most well-known
(non-trivial) application of FDs outside the database domain.
This is likely to benefit from our generalization (interplay with
extra ingredients such substitutions and unification).

• Generic: synergies with other disciplines
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Current work

Relationship between function divisibility and the injectivity
preorder: two preorders on functions

• “Left divisibility” — g ⊑ f iff exists k such that

f = g · k (37)

• “Right divisibility” — g � f iff exists k such that

f = k · g (38)

Clearly, � is the converse of the injectivity preorder, restricted to
functions (next slide)
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Current work

f ≤ g

≡ { FDs on functions: f ≤ g ≡ g
id
→ f ; projections [4] }

f · g◦ is simple

≡ { simple relations are fragments of functions (and vice versa) }

〈∃ k : : f · g◦ ⊆ k〉

≡ { “al-djabr” (shunting) }

〈∃ k : : f ⊆ k · g〉

≡ { function equality }

g � f
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Synergies with other CS diciplines

• Bisimulations — FD d
R
→ c holds wherever R is

a simple bisimulation from coalgebra d to
coalgebra c . In other words: c can be less
injective than d as far as “allowed by” R .
So (implementation) d is allowed to distinguish
states which (specification) c does not.

• Algebra of Programming — possible impact in
reasoning about specifications. Example: from
the sorting spec in [1]

Sort = [[ordered ]] · ker bagify

infer FD bagify
Sort
→ bagify , etc

F B B
coo

F A

FR

OO

A

R

OO

d
oo
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Conclusions

• “Ut faciant opus signa” is great

• How could “they” survive for so long only at point-level?

• PF-refactoring of existing theories is useful

• It develops the PF-transform (Algebra of Programming) itself

Rôle of generic pointfree patterns in the reasoning:

• Projection:

f · R · g◦

• Selection (Greek letters denote coreflexives):

Ψ · R · Φ

and so on
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Epilogue

“Algebra (...) is thing causing admiration”

(...) “Mainly because we see often a great Mathematician
unable to resolve a question by Geometrical means, and
solve it by Algebra, being that same Algebra taken from
Geometry, which is thing causing admiration.”

[ Pedro Nunes (1502-1578) in Libro de Algebra en Arithmetica y

Geometria, 1567, fol. 270. ]

— my (literal, not literary) translation of:

(...) Principalmente que vemos algumas vezes, no poder vn
gran Mathematico resoluer vna question por medios
Geometricos, y resolverla por Algebra, siendo la misma Algebra
sacada de la Geometria, q̃ es cosa de admiraciõ.
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Verdict

(...) De manera, que
quien sabe por Algebra,

sabe scientificamente.

((...) In this way, who knows by Algebra knows
scientifically)
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Draft of paper in preparation.
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