
Free contracts

“Theorems for free”: a (calculational)
introduction

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

2003 (last update: 2013)

Free contracts

Parametric polymorphism by example

Function

countBits : IN0← Bool⋆

countBits [] = 0
countBits(b:bs) = 1 + countBits bs

and

countNats : IN0← IN⋆

countNats [] = 0
countNats(b:bs) = 1 + countNats bs

are both subsumed by generic (parametric):

count : (∀a) IN0← a⋆

count [] = 0
count(a:as) = 1 + count as

Free contracts

Parametric polymorphism: why?

• Less code (specific solution = generic solution +
customization)

• Intellectual reward

• Last but not least, quotation from Theorems for free!, by
Philip Wadler [4]:

From the type of a polymorphic function we can
derive a theorem that it satisfies. (...) How useful
are the theorems so generated? Only time and
experience will tell (...)

• No doubt: free theorems are very useful!

Free contracts

Polymorphic type signatures

Polymorphic function signature:

f : t

where t is a functional type, according to the following “grammar”
of types:

t ::= t ′← t ′′

t ::= F(t1, . . . , tn) type constructor F

t ::= v type variables v , cf. polymorphism

What does it mean for f to be parametrically polymorphic?

Free contracts

Free theorem of type t

Let

• V be the set of type variables involved in type t

• {Rv}v∈V be a V -indexed family of relations (fv in case all
such Rv are functions).

• Rt be a relation defined inductively as follows:

Rt:=v = Rv (182)

Rt:=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) (183)

Rt:=t′←t′′ = Rt′ ← Rt′′ (184)

Questions: What does F in the RHS of (183) mean? What kind
of relation is Rt′ ← Rt′′? See next slides.

Free contracts

Background: relators

Parametric datatype G is said to be a relator [2] wherever, given a
relation from A to B , GR extends R to G-structures: it is a relation

A

R

��

GA

GR

��

B GB

(185)

from GA to GB which obeys the following properties:

G id = id (186)

G (R · S) = (GR) · (GS) (187)

G (R◦) = (GR)◦ (188)

and is monotonic:

R ⊆ S ⇒ GR ⊆ GS (189)

Free contracts

Relators: “Maybe” example

A

R

��

GA = 1 + A

GR=id+R

��

B GB = 1 + B

(Read 1 + A as “maybe A”)

Unfolding GR = id + R :

y(id + R)x

⇔ { unfolding the sum, cf. id + R = [i1 · id , i2 · R] }

y(i1 · i
◦
1 ∪ i2 · R · i

◦
2)x

⇔ { relational union (68); image }

y(img i1)x ∨ y(i2 · R · i
◦
2)x

⇔ { let NIL be the inhabitant of the singleton type }

y = x = i1NIL ∨ 〈∃ b, a : y = i2 b ∧ x = i2 a : b R a〉

Free contracts

Relators: example

Take FX = X ⋆.

Then, for some B A
R

, relator B⋆ A⋆
R⋆

is the relation

s ′(R⋆)s ⇔ inds s ′ = inds s ∧ (190)

〈∀ i : i ∈ inds s : (s i)R(s ′ i)〉

Exercise 79: Check properties (186) and (188) for the list relator
defined above.

�

Free contracts

Background: “Reynolds arrow” operator

Define

f (R ← S)g ⇔ f · S ⊆ R · g A

f
��

B
Soo

g

��

C D
R

oo

(191)

That is to say, A B
S

C D
R

CA DB
R ← S

For instance, f (id ← id)g ⇔ f = g that is, id ← id = id

Free contracts

Free theorem (FT) of type t

The free theorem (FT) of type t is the following (remarkable)
result due to J. Reynolds [3], advertised by P. Wadler [4] and
re-written by Backhouse [1] in the pointfree style:

Given any function θ : t, and V as above, then θ Rt θ

holds, for any relational instantiation of type variables in
V .

Note that this theorem

• is a result about t

• holds independently of the actual definition of θ.

• holds about any polymorphic function of type t

Free contracts

First example (id)

The target function:

θ = id : a← a

Calculation of Rt=a←a:

Ra←a

⇔ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra← Ra

Calculation of FT (Ra abbreviated to R):

id(R ← R)id

⇔ { (191) }

id · R ⊆ R · id

Free contracts

First example (id)

In case R is a function f , the FT theorem boils down to id ’s
natural property:

id · f = f · id

cf.

a

f
��

a
idoo

f
��

b b
id

oo

which can be read alternatively as stating that id is the unit of
composition.

Free contracts

Second example (invl)

The target function: θ = invl : a⋆← a⋆.

Calculation of Rt=a⋆←a⋆ :

Ra⋆←a⋆

⇔ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra⋆ ← Ra⋆

⇔ { rule Rt=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) }

Ra
⋆← Ra

⋆

where s R⋆s ′ is given by (190). The calculation of FT follows.

Free contracts

Second example (invl)

The FT itself will predict (Ra abbreviated to R):

invl(R⋆← R⋆)invl

⇔ { definition f (R ← S)g ⇔ f · S ⊆ R · g }

invl · R⋆ ⊆ R⋆ · invl

In case R is a function r , the FT theorem boils down to invl ’s
natural property:

invl · r⋆ = r⋆ · invl

that is,

invl [r a | a← l] = [r b | b← invl l]

Free contracts

Second example (invl)

Further calculation (back to R):

invl · R⋆ ⊆ R⋆ · invl

⇔ { shunting rule (54) }

R⋆ ⊆ invl◦ · R⋆ · invl

⇔ { going pointwise (39, 47) }

〈∀ s, r :: s R⋆r ⇒ (invl s)R⋆(invl r)〉

An instance of this pointwise version of invl-FT will state that, for
example, invl will respect element-wise orderings (R :=<):

Free contracts

Second example (invl)

length s = length r ∧ 〈∀ i : i ∈ inds s : (s i) < (r i)〉

⇓

length(invl s) = length(inv r)

∧

〈∀ j : j ∈ inds s : (invl s)j < (invl r)j〉

(Guess other instances.)

Free contracts

Third example: FT of sort

Our next example calculates the FT of

sort : a⋆← a⋆← (Bool ← (a× a))

where the first parameter stands for the chosen ordering relation,
expressed by a binary predicate:

sort(R(a⋆←a⋆)←(Bool←(a×a)))sort

⇔ { (183, 182, 184); abbreviate Ra := R }

sort((R⋆← R⋆)← (RBool ← (R × R)))sort

⇔ { Rt:=Bool = id (constant relator) — cf. exercise 90 }

sort((R⋆← R⋆)← (id ← (R × R)))sort

Free contracts

Third example: FT of sort

sort((R⋆← R⋆)← (id ← (R × R)))sort

⇔ { (191) }

sort · (id ← (R × R)) ⊆ (R⋆← R⋆) · sort

⇔ { shunting (54) }

(id ← (R × R)) ⊆ sort◦ · (R⋆← R⋆) · sort

⇔ { introduce variables f and g (39, 47) }

f (id ← (R × R))g ⇒ (sort f)(R⋆← R⋆)(sort g)

⇔ { (191) twice }

f · (R × R) ⊆ g ⇒ (sort f) · R⋆ ⊆ R⋆ · (sort g)

Free contracts

Third example: FT of sort
Case R := r :

f · (r × r) = g ⇒ (sort f) · r⋆ = r⋆ · (sort g)

⇔ { introduce variables }
〈

∀ a, b ::
f (r a, r b) = g(a, b)

〉

⇒

〈

∀ l ::
(sort f)(r⋆ l) = r⋆(sort g l)

〉

Denoting predicates f , g by infix orderings ≤,�:

〈

∀ a, b ::
r a ≤ r b⇔ a � b

〉

⇒

〈

∀ l ::
sort (≤)(r⋆ l) = r⋆(sort (�) l)

〉

That is, for r monotonic and injective,

sort (≤) [r a | a← l]

is always the same list a

[r a | a← sort (�) l]

Free contracts

Exercises

Exercise 80: Let C be a nonempty data domain and let and c ∈ C . Let
c be the “everywhere c” function:

c : A C
c a △ c

(192)

Show that the free theorem of c reduces to

〈∀ R :: R ⊆ ⊤〉 (193)

�

Exercise 81: Calculate the free theorem associated with the projections

A A× B
π1oo

π2 // B and instantiate it to (a) functions; (b)
coreflexives. Introduce variables and derive the corresponding pointwise
expressions.

�

Free contracts

Exercises

Exercise 82: Consider higher order function const: a -> b -> a

such that, given any x of type a, produces the constant function const x .
Show that the equalities

const(f x) = f · (const x) (194)

(const x) · f = const x (195)

(const x)◦ · (const x) = ⊤ (196)

arise as corollaries of the free theorem of const.

�

Free contracts

Exercises

Exercise 83: The following is a well-known Haskell function

filter :: forall a. (a -> Bool) -> [a] -> [a]

Calculate the free theorem associated with its type

filter : a⋆← a⋆← (Bool ← a)

and instantiate it to the case where all relations are functions.

�

Exercise 84: In many sorting problems, data are sorted according to a
given ranking function which computes each datum’s numeric rank (eg.
students marks, credits, etc). In this context one may parameterize
sorting with an extra parameter f ranking data into a fixed numeric
datatype, eg. the integers: serial : (a→ IN)→ a⋆ → a⋆.
Calculate the FT of serial .

�

Free contracts

Exercises

Exercise 85: Consider the following function from Haskell’s Prelude:

findIndices :: (a -> Bool) -> [a] -> [Int]

findIndices p xs = [i | (x,i) <- zip xs [0..], p

x]

which yields the indices of elements in a sequence xs which satisfy p. For
instance, findIndices (< 0) [1,−2, 3, 0,−5] = [1, 4]. Calculate the FT of
this function.

�

Exercise 86: Choose arbitrary functions from Haskell’s Prelude and
calculate their FT.

�

Free contracts

Exercises

Exercise 87: Wherever two equally typed functions f , g such that
f a ≤ g a, for all a, we say that f is pointwise at most g and write

f
.

≤ g . In symbols:

f
.

≤ g △ f ⊆ (≤) · g cf. diagram A

f

����
��
�� g

��
//
//
//

⊆

B B
≤

oo

(197)

Show that implication

f
.

≤ g ⇒ (map f)
.

≤⋆ (map g) (198)

follows from the FT of the function map : (a→ b)→ a⋆ → b⋆.

�

Free contracts

Automatic generation of free theorems (Haskell)

See the interesting site in Janis Voigtlaender’s home page:

http: // www-ps. iai. uni-bonn. de/ ft

Relators in our calculational style are implemented in this
automatic generator by structural lifting.

Exercise 88: Infer the FT of the following function, written in Haskell
syntax,

while :: (a -> Bool) -> (a -> a) -> (a -> b) -> a -> b

while p f g x = if not(p x) then g x else while p f g

(f x)

which implements a generic while-loop. Derive its corollary for functions
and compare your result with that produced by the tool above.

�

http://www-ps.iai.uni-bonn.de/ft

Free contracts

Fourth example: FT of (| |)

Recall the catamorphism (fold) combinator:

F a

(|g |)

��

B (a,F a)
inF aoo

B (id ,(|g |))

��

b B (a, b)
g

oo

So (| |) has generic type

(| |) : b← F a← (b← B (a, b))

where F a ∼= B (a,F a). Then (| |)-FT is

(| |) · (Rb← B (Ra,Rb)) ⊆ (Rb← FRa) · (| |)

Free contracts

Fourth example: FT of (| |)

This unfolds into (Ra,Rb abbreviated to R , S):

(| |) · (S ← B (R , S)) ⊆ (S ← FR) · (| |)

⇔ { shunting (54) }

(S ← B (R , S)) ⊆ (| |)◦(S ← FR) · (| |)

⇔ { introduce variables f and g (39, 47) }

f (S ← B (R , S))g ⇒ (|f |)(S ← FR)(|g |)

⇔ { definition f (R ← S)g ⇔ f · S ⊆ R · g }

f · B (R , S) ⊆ S · g ⇒ (|f |) · FR ⊆ S · (|g |)

Free contracts

(| |)-FT corollaries

From

f · B (R , S) ⊆ S · g ⇒ (|f |) · FR ⊆ S · (|g |) (199)

we can infer:

• (| |)-fusion (R , S := id , s):

f · B (id , s) = s · g ⇒ (|f |) = s · (|g |) (200)

• (| |)-absorption (R , S := r , id):

f · B (r , id) = g ⇒ (|f |) · F r = (|g |) (201)

Substituting g := f · B (r , id):

(|f |) · F r = (|f · B (r , id)|) (202)

Free contracts

Exercises

Exercise 89: Let iprod = (|[1 , (×)]|) be the function which multiplies all
natural numbers in a given list; even be the predicate which tests natural
numbers for evenness; and exists = (|[False , (∨)]|).
From (199) infer

even · iprod = exists · even⋆

meaning that product n1 × n2 × . . .× nm is even iff some ni is so.

�

Free contracts

Exercises

Exercise 90: Show that the identity relator Id, which is such that
Id R = R and the constant relator K (for a given data type K)
which is such that K R = idK are indeed relators.

�

Exercise 91: Show that product

A

R

��

C

S

��

G(A,C) = A× C

G(R,S)=R×S

��

B D G(B ,D) = B × D

is a (binary) relator.

�

Free contracts

Last but not least

“Free contracts” in DbC:

• Many functional contracts arise naturally as corollaries of
free theorems.

• This has the advantage of saving us from proving such
contracts explicitly.

• The following exercises provide ample evidence of this.

Exercise 92: The type of functional composition (·) is

(.) :: (b -> c) -> (a -> b) -> a -> c

Show that contract composition (151) is a corollary of the free theorem
(FT) of this type.

�

Free contracts

Exercises

Exercise 93: Show that contract Ψ⋆ Φ⋆

map f
holds provided contract

Ψ Φ
f

holds.

�

Exercise 94: Suppose a functional programmer wishes to prove the
following property of lists:

〈

∀ a, s
(φ a) ∧ 〈∀ a′ : a′ ∈ elems s : φ a′〉 :
〈∀ a′′ : a′′ ∈ elems(a : s) : φ a′′〉

〉

Show that this property is a contract arising (for free) from the
polymorphic type of operation (:) on lists.

�

Free contracts

Background

Going pointwise (39):

R ⊆ S ⇔ 〈∀ b, a :: b R a⇒ b S a〉

Function converses (47):

(f b)R(g a) ⇔ b(f ◦ · R · g)a

Shunting rule (54):

f · R ⊆ S ⇔ R ⊆ f ◦ · S

Shunting rule (55):

R · f ◦ ⊆ S ⇔ R ⊆ S · f

Free contracts

K. Backhouse and R.C. Backhouse.
Safety of abstract interpretations for free, via logical relations
and Galois connections.
SCP, 15(1–2):153–196, 2004.

R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S.
Voermans, and J. van der Woude.
Polynomial relators.
In AMAST’91, pages 303–362. Springer, 1992.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
Information Processing 83, pages 513–523, 1983.

P.L. Wadler.
Theorems for free!
In 4th International Symposium on Functional Programming
Languages and Computer Architecture, pages 347–359,
London, Sep. 1989. ACM.

	Free contracts

