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Parametric polymorphism by example

Function

countBits : IN0← Bool⋆

countBits [ ] = 0
countBits(b:bs) = 1 + countBits bs

and

countNats : IN0← IN⋆

countNats [ ] = 0
countNats(b:bs) = 1 + countNats bs

are both subsumed by generic (parametric):

count : (∀a) IN0← a⋆

count [ ] = 0
count(a:as) = 1 + count as
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Parametric polymorphism: why?

• Less code ( specific solution = generic solution +
customization )

• Intellectual reward

• Last but not least, quotation from Theorems for free!, by
Philip Wadler [4]:

From the type of a polymorphic function we can
derive a theorem that it satisfies. (...) How useful
are the theorems so generated? Only time and
experience will tell (...)

• No doubt: free theorems are very useful!
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Polymorphic type signatures

Polymorphic function signature:

f : t

where t is a functional type, according to the following “grammar”
of types:

t ::= t ′← t ′′

t ::= F(t1, . . . , tn) type constructor F

t ::= v type variables v , cf. polymorphism

What does it mean for f to be parametrically polymorphic?
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Free theorem of type t

Let

• V be the set of type variables involved in type t

• {Rv}v∈V be a V -indexed family of relations (fv in case all
such Rv are functions).

• Rt be a relation defined inductively as follows:

Rt:=v = Rv (182)

Rt:=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) (183)

Rt:=t′←t′′ = Rt′ ← Rt′′ (184)

Questions: What does F in the RHS of (183) mean? What kind
of relation is Rt′ ← Rt′′? See next slides.
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Background: relators

Parametric datatype G is said to be a relator [2] wherever, given a
relation from A to B , GR extends R to G-structures: it is a relation

A

R

��

GA

GR

��

B GB

(185)

from GA to GB which obeys the following properties:

G id = id (186)

G (R · S) = (GR) · (GS) (187)

G (R◦) = (GR)◦ (188)

and is monotonic:

R ⊆ S ⇒ GR ⊆ GS (189)
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Relators: “Maybe” example

A

R

��

GA = 1 + A

GR=id+R

��

B GB = 1 + B

(Read 1 + A as “maybe A”)

Unfolding GR = id + R :

y(id + R)x

⇔ { unfolding the sum, cf. id + R = [i1 · id , i2 · R] }

y(i1 · i
◦
1 ∪ i2 · R · i

◦
2 )x

⇔ { relational union (68); image }

y(img i1)x ∨ y(i2 · R · i
◦
2 )x

⇔ { let NIL be the inhabitant of the singleton type }

y = x = i1NIL ∨ 〈∃ b, a : y = i2 b ∧ x = i2 a : b R a〉
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Relators: example

Take FX = X ⋆.

Then, for some B A
R

, relator B⋆ A⋆
R⋆

is the relation

s ′(R⋆)s ⇔ inds s ′ = inds s ∧ (190)

〈∀ i : i ∈ inds s : (s i)R(s ′ i)〉

Exercise 79: Check properties (186) and (188) for the list relator
defined above.

�



Free contracts

Background: “Reynolds arrow” operator

Define

f (R ← S)g ⇔ f · S ⊆ R · g A

f
��

B
Soo

g

��

C D
R

oo

(191)

That is to say, A B
S

C D
R

CA DB
R ← S

For instance, f (id ← id)g ⇔ f = g that is, id ← id = id
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Free theorem (FT) of type t

The free theorem (FT) of type t is the following (remarkable)
result due to J. Reynolds [3], advertised by P. Wadler [4] and
re-written by Backhouse [1] in the pointfree style:

Given any function θ : t, and V as above, then θ Rt θ

holds, for any relational instantiation of type variables in
V .

Note that this theorem

• is a result about t

• holds independently of the actual definition of θ.

• holds about any polymorphic function of type t
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First example (id)

The target function:

θ = id : a← a

Calculation of Rt=a←a:

Ra←a

⇔ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra← Ra

Calculation of FT (Ra abbreviated to R):

id(R ← R)id

⇔ { (191) }

id · R ⊆ R · id
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First example (id)

In case R is a function f , the FT theorem boils down to id ’s
natural property:

id · f = f · id

cf.

a

f
��

a
idoo

f
��

b b
id

oo

which can be read alternatively as stating that id is the unit of
composition.
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Second example (invl)

The target function: θ = invl : a⋆← a⋆.

Calculation of Rt=a⋆←a⋆ :

Ra⋆←a⋆

⇔ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra⋆ ← Ra⋆

⇔ { rule Rt=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) }

Ra
⋆← Ra

⋆

where s R⋆s ′ is given by (190). The calculation of FT follows.
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Second example (invl)

The FT itself will predict (Ra abbreviated to R):

invl(R⋆← R⋆)invl

⇔ { definition f (R ← S)g ⇔ f · S ⊆ R · g }

invl · R⋆ ⊆ R⋆ · invl

In case R is a function r , the FT theorem boils down to invl ’s
natural property:

invl · r⋆ = r⋆ · invl

that is,

invl [ r a | a← l ] = [ r b | b← invl l ]
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Second example (invl)

Further calculation (back to R):

invl · R⋆ ⊆ R⋆ · invl

⇔ { shunting rule (54) }

R⋆ ⊆ invl◦ · R⋆ · invl

⇔ { going pointwise (39, 47) }

〈∀ s, r :: s R⋆r ⇒ (invl s)R⋆(invl r)〉

An instance of this pointwise version of invl-FT will state that, for
example, invl will respect element-wise orderings (R :=<):
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Second example (invl)

length s = length r ∧ 〈∀ i : i ∈ inds s : (s i) < (r i)〉

⇓

length(invl s) = length(inv r)

∧

〈∀ j : j ∈ inds s : (invl s)j < (invl r)j〉

(Guess other instances.)
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Third example: FT of sort

Our next example calculates the FT of

sort : a⋆← a⋆← (Bool ← (a× a))

where the first parameter stands for the chosen ordering relation,
expressed by a binary predicate:

sort(R(a⋆←a⋆)←(Bool←(a×a)))sort

⇔ { (183, 182, 184); abbreviate Ra := R }

sort((R⋆← R⋆)← (RBool ← (R × R)))sort

⇔ { Rt:=Bool = id (constant relator) — cf. exercise 90 }

sort((R⋆← R⋆)← (id ← (R × R)))sort
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Third example: FT of sort

sort((R⋆← R⋆)← (id ← (R × R)))sort

⇔ { (191) }

sort · (id ← (R × R)) ⊆ (R⋆← R⋆) · sort

⇔ { shunting (54) }

(id ← (R × R)) ⊆ sort◦ · (R⋆← R⋆) · sort

⇔ { introduce variables f and g (39, 47) }

f (id ← (R × R))g ⇒ (sort f )(R⋆← R⋆)(sort g)

⇔ { (191) twice }

f · (R × R) ⊆ g ⇒ (sort f ) · R⋆ ⊆ R⋆ · (sort g)
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Third example: FT of sort
Case R := r :

f · (r × r) = g ⇒ (sort f ) · r⋆ = r⋆ · (sort g)

⇔ { introduce variables }
〈

∀ a, b ::
f (r a, r b) = g(a, b)

〉

⇒

〈

∀ l ::
(sort f )(r⋆ l) = r⋆(sort g l)

〉

Denoting predicates f , g by infix orderings ≤,�:

〈

∀ a, b ::
r a ≤ r b⇔ a � b

〉

⇒

〈

∀ l ::
sort (≤)(r⋆ l) = r⋆(sort (�) l)

〉

That is, for r monotonic and injective,

sort (≤) [ r a | a← l ]

is always the same list a

[ r a | a← sort (�) l ]



Free contracts

Exercises

Exercise 80: Let C be a nonempty data domain and let and c ∈ C . Let
c be the “everywhere c” function:

c : A C
c a △ c

(192)

Show that the free theorem of c reduces to

〈∀ R :: R ⊆ ⊤〉 (193)

�

Exercise 81: Calculate the free theorem associated with the projections

A A× B
π1oo

π2 // B and instantiate it to (a) functions; (b)
coreflexives. Introduce variables and derive the corresponding pointwise
expressions.

�
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Exercises

Exercise 82: Consider higher order function const: a -> b -> a

such that, given any x of type a, produces the constant function const x .
Show that the equalities

const(f x) = f · (const x) (194)

(const x) · f = const x (195)

(const x)◦ · (const x) = ⊤ (196)

arise as corollaries of the free theorem of const.

�



Free contracts

Exercises

Exercise 83: The following is a well-known Haskell function

filter :: forall a. (a -> Bool) -> [a] -> [a]

Calculate the free theorem associated with its type

filter : a⋆← a⋆← (Bool ← a)

and instantiate it to the case where all relations are functions.

�

Exercise 84: In many sorting problems, data are sorted according to a
given ranking function which computes each datum’s numeric rank (eg.
students marks, credits, etc). In this context one may parameterize
sorting with an extra parameter f ranking data into a fixed numeric
datatype, eg. the integers: serial : (a→ IN)→ a⋆ → a⋆.
Calculate the FT of serial .

�
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Exercises

Exercise 85: Consider the following function from Haskell’s Prelude:

findIndices :: (a -> Bool) -> [a] -> [Int]

findIndices p xs = [ i | (x,i) <- zip xs [0..], p

x ]

which yields the indices of elements in a sequence xs which satisfy p. For
instance, findIndices (< 0) [1,−2, 3, 0,−5] = [1, 4]. Calculate the FT of
this function.

�

Exercise 86: Choose arbitrary functions from Haskell’s Prelude and
calculate their FT.

�
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Exercises

Exercise 87: Wherever two equally typed functions f , g such that
f a ≤ g a, for all a, we say that f is pointwise at most g and write

f
.

≤ g . In symbols:

f
.

≤ g △ f ⊆ (≤) · g cf. diagram A

f

����
��
�� g

��
//
//
//

⊆

B B
≤

oo

(197)

Show that implication

f
.

≤ g ⇒ (map f )
.

≤⋆ (map g) (198)

follows from the FT of the function map : (a→ b)→ a⋆ → b⋆.

�
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Automatic generation of free theorems (Haskell)

See the interesting site in Janis Voigtlaender’s home page:

http: // www-ps. iai. uni-bonn. de/ ft

Relators in our calculational style are implemented in this
automatic generator by structural lifting.

Exercise 88: Infer the FT of the following function, written in Haskell
syntax,

while :: (a -> Bool) -> (a -> a) -> (a -> b) -> a -> b

while p f g x = if not(p x) then g x else while p f g

(f x)

which implements a generic while-loop. Derive its corollary for functions
and compare your result with that produced by the tool above.

�

http://www-ps.iai.uni-bonn.de/ft
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Fourth example: FT of (| |)

Recall the catamorphism (fold) combinator:

F a

(|g |)

��

B (a,F a)
inF aoo

B (id ,(|g |))

��

b B (a, b)
g

oo

So (| |) has generic type

(| |) : b← F a← (b← B (a, b))

where F a ∼= B (a,F a). Then (| |)-FT is

(| |) · (Rb← B (Ra,Rb)) ⊆ (Rb← FRa) · (| |)
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Fourth example: FT of (| |)

This unfolds into (Ra,Rb abbreviated to R , S):

(| |) · (S ← B (R , S)) ⊆ (S ← FR) · (| |)

⇔ { shunting (54) }

(S ← B (R , S)) ⊆ (| |)◦(S ← FR) · (| |)

⇔ { introduce variables f and g (39, 47) }

f (S ← B (R , S))g ⇒ (|f |)(S ← FR)(|g |)

⇔ { definition f (R ← S)g ⇔ f · S ⊆ R · g }

f · B (R , S) ⊆ S · g ⇒ (|f |) · FR ⊆ S · (|g |)
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(| |)-FT corollaries

From

f · B (R , S) ⊆ S · g ⇒ (|f |) · FR ⊆ S · (|g |) (199)

we can infer:

• (| |)-fusion (R , S := id , s):

f · B (id , s) = s · g ⇒ (|f |) = s · (|g |) (200)

• (| |)-absorption (R , S := r , id):

f · B (r , id) = g ⇒ (|f |) · F r = (|g |) (201)

Substituting g := f · B (r , id):

(|f |) · F r = (|f · B (r , id)|) (202)
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Exercises

Exercise 89: Let iprod = (|[1 , (×)]|) be the function which multiplies all
natural numbers in a given list; even be the predicate which tests natural
numbers for evenness; and exists = (|[False , (∨)]|).
From (199) infer

even · iprod = exists · even⋆

meaning that product n1 × n2 × . . .× nm is even iff some ni is so.

�
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Exercises

Exercise 90: Show that the identity relator Id, which is such that
Id R = R and the constant relator K (for a given data type K )
which is such that K R = idK are indeed relators.

�

Exercise 91: Show that product

A

R

��

C

S

��

G(A,C ) = A× C

G(R,S)=R×S

��

B D G(B ,D) = B × D

is a (binary) relator.

�
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Last but not least

“Free contracts” in DbC:

• Many functional contracts arise naturally as corollaries of
free theorems.

• This has the advantage of saving us from proving such
contracts explicitly.

• The following exercises provide ample evidence of this.

Exercise 92: The type of functional composition (·) is

(.) :: (b -> c) -> (a -> b) -> a -> c

Show that contract composition (151) is a corollary of the free theorem
(FT) of this type.

�
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Exercises

Exercise 93: Show that contract Ψ⋆ Φ⋆

map f
holds provided contract

Ψ Φ
f

holds.

�

Exercise 94: Suppose a functional programmer wishes to prove the
following property of lists:

〈

∀ a, s
(φ a) ∧ 〈∀ a′ : a′ ∈ elems s : φ a′〉 :
〈∀ a′′ : a′′ ∈ elems(a : s) : φ a′′〉

〉

Show that this property is a contract arising (for free) from the
polymorphic type of operation ( : ) on lists.

�
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Background

Going pointwise (39):

R ⊆ S ⇔ 〈∀ b, a :: b R a⇒ b S a〉

Function converses (47):

(f b)R(g a) ⇔ b(f ◦ · R · g)a

Shunting rule (54):

f · R ⊆ S ⇔ R ⊆ f ◦ · S

Shunting rule (55):

R · f ◦ ⊆ S ⇔ R ⊆ S · f
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