Free contracts

“Theorems for free”: a (calculational)
introduction

J.N. Oliveira

Dept. Informatica,
Universidade do Minho
Braga, Portugal

2003 (last update: 2013)

Free contracts

Parametric polymorphism by example

Function
countBits : Ny < Bool*
countBits [= 0
countBits(b:bs) = 1 + countBits bs

and
countNats : INg < IN*
countNats [| = 0
countNats(b:bs) = 1 + countNats bs

are both subsumed by generic (parametric):

count : (Va) Ny < a*
count [| =0
count(a:as) = 1 + count as

Parametric polymorphism: why?

Less code (specific solution = generic solution +

customization)

Intellectual reward

Last but not least, quotation from Theorems for free!, by

Philip Wadler [4]:
From the type of a polymorphic function we can
derive a theorem that it satisfies. (...) How useful
are the theorems so generated? Only time and
experience will tell (...)

No doubt: free theorems are very useful!

Free contracts

Polymorphic type signatures

Polymorphic function signature:
f ot

where t is a functional type, according to the following “grammar”
of types:

t o= t«t"
t == F(t1,...,tn) type constructor F
t = v type variables v, cf. polymorphism

What does it mean for f to be parametrically polymorphic?

Free theorem of type t

Let

e V be the set of type variables involved in type t

e {R/},cy bea V-indexed family of relations (f, in case all
such R, are functions).

e R; be a relation defined inductively as follows:

Ri—v = R, (182)
Rt::F(th...,t,,) = F(Rtu CERE) an) (183)
Rt=t'e-tr = Ry Ry (184)

Questions: What does F in the RHS of (183) mean? What kind
of relation is Ry < Ry?7 See next slides.

Free contracts

Background: relators

Parametric datatype G is said to be a relator [2] wherever, given a
relation from A to B, G R extends R to G-structures: it is a relation

A GA (185)
R\L \LGR
B.wGB

from G A to G B which obeys the following properties:

Gid = id (186)
G(R-S) = (GR)-(GS) (187)
G(R®) = (GR) (188)

and is monotonic:

RCS = GRCGS (189)

Free contracts

Relators: “Maybe” example

A GA=1+A (Read 1 + A as “maybe A")
Rl \LG R=id+R
B GB=1+B

Unfolding GR = id + R:
y(id + R)x
& { unfolding the sum, cf. id + R=[h-id ,ih-R] }
y(in i Uiz R-i3)x
& { relational union (68); image }
y(imgi)x Vy(i-R-i3)x
& { let NIL be the inhabitant of the singleton type }

y=x=hgNILV{(I ba: y=hbAx=ha: bRa)

Free contracts

Relators: example

Take FX = X*.

*

R
Then, for some B <—— A, relator B* <——— A* is the relation

s'(R*)s <« inds s’ =inds s A (190)
(Vi:i€indss: (si)R(s i))

Exercise 79: Check properties (186) and (188) for the list relator
defined above.

O

Free contracts

Background: “Reynolds arrow” operator

Define
f(R«S)g & f-SCR-g A<>—B (191)
1
S
That is to say, ATB
C~——D
R«+S

CA<—DB

For instance, f(id <+ id)g < f =g thatis, id«id = id

Free theorem (FT) of type t

The free theorem (FT) of type t is the following (remarkable)
result due to J. Reynolds [3], advertised by P. Wadler [4] and
re-written by Backhouse [1] in the pointfree style:

Given any function 0 : t, and V' as above, then 0 R; 0

holds, for any relational instantiation of type variables in
V.

Note that this theorem
e is a result about ¢t
¢ holds independently of the actual definition of 6.
e holds about any polymorphic function of type t

Free contracts
First example (id)
The target function:
0=id:a<a
Calculation of Ri—s5:

Raea

= { rule Rt:t’<—t” = Rt’ — Rt”
Ry R,

Calculation of FT (R, abbreviated to R):

id(R + R)id
& { (191) }
id -RCR-id

First example (id)

In case R is a function f, the FT theorem boils down to id's
natural property:

id-f = f-id
cf.
id
a<——a
fl if

which can be read alternatively as stating that id is the unit of
composition.

Free contracts

Second example (inv/)

The target function: 0 = invl : a* + a*.

Calculation of Ri—axax:

Ryve o
& { rule Ri—yerv = Ry« Rw }
Rax < R«
& { rule Repe,t) = F(Ru,--- Ry) }
Ry + R,

where s R*s’ is given by (190). The calculation of FT follows.

Free contracts

Second example (inv/)

The FT itself will predict (R, abbreviated to R):

invl(R* < R*)invl
= { definition f(R+S)g & f-SCR-g }

invl - R* C R* - invl

In case R is a function r, the FT theorem boils down to invl's
natural property:

invl - r* = r*-invl
that is,

invl [rala«1I] = [rb|b<«invll]

Second example (inv/)

Further calculation (back to R):

invl - R* C R* - invl

= { shunting rule (54) }
R* C invl® - R* - invl
& { going pointwise (39, 47) }

(Vs,r it s R*r=(invl s)R*(invl r))

An instance of this pointwise version of inv/-FT will state that, for
example, inv/ will respect element-wise orderings (R :=<):

Free contracts

Second example (inv/)

length s = length r A(NV i : i €indss: (si)<(ri))
4
length(invl s) = length(inv r)
A
(Vj : jeindss: (invl s)j < (invl r)j)

(Guess other instances.)

Free contracts

Third example: FT of sort

Our next example calculates the FT of
sort : @ < a* < (Bool < (a x a))

where the first parameter stands for the chosen ordering relation,
expressed by a binary predicate:

sort(R(a*<—a*)<—(Bool<—(a>< a)))sort

o { (183, 182, 184); abbreviate R, := R }
sort((R* < R*) < (RBool + (R X R)))sort
& { Rt—Bool = id (constant relator) — cf. exercise 90 }

sort((R* «+— R*) « (id < (R x R)))sort

Free contracts

Third example: FT of sort

sort((R* + R*) + (id + (R x R)))sort

& { (191) }
sort - (id <~ (R x R)) C (R*< R*)-sort
= { shunting (54) }

(id <+ (Rx R)) C sort®-(R*+ R*)-sort
= { introduce variables f and g (39, 47) }

f(id < (R x R))g = (sort f)(R* + R*)(sort g)
& { (191) twice }

f-(RxR)Cg = (sort f)-R*C R*(sortg)

Free contracts

Third example: FT of sort
Case R:=r:

f-(rxr)=g = (sort f)-r*=r*-(sort g)

& { introduce variables }

< (e B) - s(a.b) > - < (ort)(r* 1) = (st . 1 >

Denoting predicates f, g by infix orderings <, <:

Y a, b Vo
< ra<rb&sa=xb > = < sort (L)(r* 1) = r*(sort (=) 1) >
That is, for r monotonic and injective,
sort (<) [rala+1]
is always the same list a

[ral|a+sort (=X)/]

Exercises

Exercise 80: Let C be a nonempty data domain and let and c € C. Let
¢ be the “everywhere ¢” function:

A—C

c
ca & ¢ (192)
Show that the free theorem of ¢ reduces to
(VR = RCT) (193)

O

Exercise 81: Calculate the free theorem associated with the projections
A< Ax B> B and instantiate it to (a) functions; (b)
coreflexives. Introduce variables and derive the corresponding pointwise
expressions.

O

Free contracts

Exercises

Exercise 82: Consider higher order function const: a -> b -> a

such that, given any x of type a, produces the constant function const x.
Show that the equalities

const(f x) = f-(const x) (194)
(const x)-f = const x (195)
(const x)° - (const x) = T (196)

arise as corollaries of the free theorem of const.
O

Exercises

Exercise 83: The following is a well-known Haskell function

filter :: forall a. (a -> Bool) -> [a] -> [al
Calculate the free theorem associated with its type
filter : a* < a* « (Bool + a)

and instantiate it to the case where all relations are functions.
O

Exercise 84: In many sorting problems, data are sorted according to a
given ranking function which computes each datum’s numeric rank (eg.
students marks, credits, etc). In this context one may parameterize
sorting with an extra parameter f ranking data into a fixed numeric
datatype, eg. the integers: serial : (a — N) — a* — a*.

Calculate the FT of serial.

d

Free contracts

Exercises

Exercise 85: Consider the following function from Haskell's Prelude:

findIndices :: (a -> Bool) -> [a] -> [Int]
findIndices p xs = [i | (x,i) <- zip xs [0..], p
x]

which yields the indices of elements in a sequence xs which satisfy p. For
instance, findIndices (< 0) [1,—2,3,0,—5] = [1,4]. Calculate the FT of
this function.

O

Exercise 86: Choose arbitrary functions from Haskell's Prelude and
calculate their FT.
O

Exercises

Exercise 87: Wherever two equally typed functions f, g such that
f a<g a, for all a, we say that f is pointwise at most g and write

f < g. In symbols:

f<g 2o fCc(<)-g cf. diagram A (197)
aN
B<~—B
<
Show that implication
f<g = (mapf)<*(mapg) (198)

follows from the FT of the function map : (a — b) — a* — b*.
(]

Free contracts

Automatic generation of free theorems (Haskell)

See the interesting site in Janis Voigtlaender's home page:

http: //wuww-ps. 1at. uni-bonn. de/ ft

Relators in our calculational style are implemented in this
automatic generator by structural /ifting.

Exercise 88: Infer the FT of the following function, written in Haskell

syntax,
while :: (a -> Bool) -> (a -> a) > (a ->b) ->a > b
while p f g x = if not(p x) then g x else while p f g
(£

which implements a generic while-loop. Derive its corollary for functions
and compare your result with that produced by the tool above.

O

http://www-ps.iai.uni-bonn.de/ft

Free contracts

Fourth example: FT of (_])

Recall the catamorphism (fold) combinator:

inFa

Fa B(a,Fa)
(gD lB(id:(g))
b<~————B(ab)

So (|-)) has generic type
() : b+ Fa« (b+ B(a,b))
where Fa = B (a,Fa). Then (|_|)-FT is

(-)-(Ro<=B(RaRb)) S (Rp<FRa)-(-)

Fourth example: FT of (_])

This unfolds into (R,, Ry abbreviated to R, S):

(-)-(5<B(RS) S (S<FR)-()

& { shunting (54) }
($<B(R.S) < (D(S<FR)-()

& { introduce variables f and g (39, 47) }
f(S<B(R.S)g = (f)(S«<FR)g)

& { definition f(R+S)g & f-SCR-g }

f-B(R,S)CS-g = (f)-FRCS-(g)

Free contracts

(_)-FT corollaries

From
f-B(R,S)CS-g = (f)-FRCS- (g (199)

we can infer:
e (_)-fusion (R,S :=id,s):

f-B(id,s)=s-g = (f)=s-(g) (200)
o (_)-absorption (R, S := r, id):
f-B(rid)=g = (f)-Fr={(g) (201)
Substituting g := f - B(r, id):

(f)-Fr=(f-B(r,id)) (202)

Exercises

Exercise 89: Let iprod = (|[1,(x)]]) be the function which multiplies all
natural numbers in a given list; even be the predicate which tests natural
numbers for evenness; and exists = (|[FALSE , (V)])).

From (199) infer

even - iprod = exists - even*

meaning that product ny X ny X ... X n,, is even iff some n; is so.
O

Exercises

Exercise 90: Show that the identity relator Id, which is such that
Id R = R and the constant relator K (for a given data type K)
which is such that K R = idk are indeed relators.

0

Exercise 91: Show that product

A C o G(A C)=AxC
Rl sl lG(R,S)_RxS
B D i G(B,D) =B x D

is a (binary) relator.
(]

Free contracts

Last but not least

“Free contracts” in DbC:
e Many functional contracts arise naturally as corollaries of
free theorems.
e This has the advantage of saving us from proving such
contracts explicitly.
e The following exercises provide ample evidence of this.

Exercise 92: The type of functional composition (-) is
(.) = (b->c)>(@->b) >a->c

Show that contract composition (151) is a corollary of the free theorem
(FT) of this type.
O

Free contracts

Exercises

s £

map—

Exer?ise 93: Show that contract W* <—— ®* holds provided contract

VY <—— & holds.
O

Exercise 94: Suppose a functional programmer wishes to prove the
following property of lists:

YV a,s
<(¢a)/\<Va’ : a €elemss: <z)a’):>

(Va”" : a" celems(a:s): ¢ a’)

Show that this property is a contract arising (for free) from the
polymorphic type of operation (- : _) on lists.
O

Free contracts

Background

Going pointwise (39):
RCS & (Vbha: bRa=bSa)
Function converses (47):
(f b)R(g a) < b(f°-R-g)a
Shunting rule (54):
f-RCS & RCf°-S
Shunting rule (55):

R-f°CS & RCS-f

Free contracts

El

K. Backhouse and R.C. Backhouse.

Safety of abstract interpretations for free, via logical relations
and Galois connections.

SCP, 15(1-2):153-196, 2004.

R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S.
Voermans, and J. van der Woude.

Polynomial relators.

In AMAST 91, pages 303—-362. Springer, 1992.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
Information Processing 83, pages 513-523, 1983.

P.L. Wadler.
Theorems for free!
In 4th International Symposium on Functional Programming

Languages and Computer Architecture, pages 347-359,
London, Sep. 1989. ACM.

	Free contracts

