
Specifying functional programs

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

DI/UM (2014)

Motivation E+H split List functions Program derivation

First program

What does the following (recursive) program do?

x ÷ y =
if x < y then 0
else 1 + (x − y)÷ y

It seems to be counting the number of times y fits in x , e.g.

7÷ 2 = 1 + 5÷ 2
= 1 + (1 + 3÷ 2)

= 1 + (1 + (1 + 1÷ 2))

= 3 + 0
= 3

Is this the same as whole division?

Motivation E+H split List functions Program derivation

Program testing

What about this other version of the same algorithm?

x ÷ y =
if x ≡ y then 1
else 1 + (x − y)÷ y

Is it correct? 7÷ 7 = 1, ok. What about 6÷ 7?

Uups — not a correct implementation whole division!

Questions:

• What is the specification of whole division?

• Why is programming (so...) tricky?

Motivation E+H split List functions Program derivation

Program testing

What about this other version of the same algorithm?

x ÷ y =
if x ≡ y then 1
else 1 + (x − y)÷ y

Is it correct? 7÷ 7 = 1, ok. What about 6÷ 7?

Uups — not a correct implementation whole division!

Questions:

• What is the specification of whole division?

• Why is programming (so...) tricky?

Motivation E+H split List functions Program derivation

Problems = Easy + Hard

Requirements:

x ÷ y should yield the largest number which, multiplied
by x, is at most y .

Superlatives in problem requirements, e.g.

”... the largest such number”
”... the longest such list”
”... the best approximation”

Two layers in specifications:

• easy — broad class of solutions

• hard — optimal solution required.

Motivation E+H split List functions Program derivation

Back to the primary school desk

The whole division algorithm

7 2
1 3

2× 3 + 1 = 7 , ie. 3 = 7÷ 2

However

7 2
3 2

2× 2 + 3 = 7 ∧ 2 6= 7÷ 2

7 2
5 1

2× 1 + 5 = 7 ∧ 1 6= 7÷ 2

That is: for some r ,

n d
r q

q = n ÷ d ≡ d × q + r = n
provided q is the
largest such q (r
smallest)

Motivation E+H split List functions Program derivation

Back to the primary school desk

The whole division algorithm

7 2
1 3

2× 3 + 1 = 7 , ie. 3 = 7÷ 2

However

7 2
3 2

2× 2 + 3 = 7 ∧ 2 6= 7÷ 2

7 2
5 1

2× 1 + 5 = 7 ∧ 1 6= 7÷ 2

That is: for some r ,

n d
r q

q = n ÷ d ≡ d × q + r = n
provided q is the
largest such q (r
smallest)

Motivation E+H split List functions Program derivation

Example — specifying x ÷ y

First version (literal):

x ÷ y = 〈
∨

z :: z × y 6 x〉 (35)

Second version (involved):

z = x ÷ y ≡ 〈∃ r : 0 6 r < y : x = z × y + r〉 (36)

Third version (clever!):

z × y 6 x ≡ z 6 x ÷ y (y > 0) (37)

Why is (37) the best of all three specifications?

Motivation E+H split List functions Program derivation

Why (37) is better than (35,36)

Equivalence (37),

z × y 6 x ≡ z 6 x ÷ y (y > 0)

captures the requirements in an elegant way:

• It is a solution: x ÷ y multiplied by y approximates x

(x ÷ y)× y 6 x

— let z := x ÷ y in (37) and simplify.

• Is it the best solution? Yes, because it provides the largest such
number:

z × y 6 x ⇒ z 6 x ÷ y (y > 0)

— the ⇒ part of the ≡ of (37).

Motivation E+H split List functions Program derivation

Why (37) is better than (35,36)

Equivalence (37),

z × y 6 x ≡ z 6 x ÷ y (y > 0)

captures the requirements in an elegant way:

• It is a solution: x ÷ y multiplied by y approximates x

(x ÷ y)× y 6 x

— let z := x ÷ y in (37) and simplify.

• Is it the best solution? Yes, because it provides the largest such
number:

z × y 6 x ⇒ z 6 x ÷ y (y > 0)

— the ⇒ part of the ≡ of (37).

Motivation E+H split List functions Program derivation

Reasoning

Equivalence (37)

z × y 6 x ≡ z 6 x ÷ y (y > 0)

is not only simple to write but effective to reason about.

Example: we want to derive the property

(n ÷m)÷ d = n ÷ (d ×m)

from the specification. What about

• using (35)?
∨

difficult!

• using (36)? ∃ difficult!

• using (37)? easy — see the next slide.

Motivation E+H split List functions Program derivation

Reasoning

Equivalence (37)

z × y 6 x ≡ z 6 x ÷ y (y > 0)

is not only simple to write but effective to reason about.

Example: we want to derive the property

(n ÷m)÷ d = n ÷ (d ×m)

from the specification. What about

• using (35)?
∨

difficult!

• using (36)? ∃ difficult!

• using (37)? easy — see the next slide.

Motivation E+H split List functions Program derivation

Proving (n ÷m)÷ d = n ÷ (d ×m)

z 6 (n ÷m)÷ d

≡ { (37) }

z × d 6 n ÷m

≡ { (37) }

(z × d)×m 6 n

≡ { × is associative }

z × (d ×m) 6 n

≡ { (37) }

z 6 n ÷ (d ×m)

:: { indirection — see (38) below }

(n ÷m)÷ d = n ÷ (d ×m)

Motivation E+H split List functions Program derivation

Indirect equality

Important: Note the use of the (generic) indirect equality rule

〈∀ z :: z 6 x ≡ z 6 y〉 ≡ (x = y) (38)

valid for any partial order 6.

Exercise 16: Derive from (37) the two cancellation laws

q 6 (q × d)÷ d

(n ÷ d)× d 6 n

and reflexion law:

n ÷ d > 1 ≡ d 6 n (39)

�

Motivation E+H split List functions Program derivation

Specifying functions on lists

Consider the following requirements about the take function in
Haskell:

take n xs should yield the longest possible prefix of xs
not exceeding n in length.

Warming up (with examples):

take 2 [10, 20, 30] = [10, 20]
take 20 [10, 20, 30] = [10, 20, 30]
etc

How do we write a formal specification for these requirements?

Motivation E+H split List functions Program derivation

Specifying functions on lists

We observe that:

• take n xs is a prefix of xs — specify this as e.g.

take n xs � xs

where � denotes the ordering (leave this for later).

• the length of take n xs cannot exceed n — easy to specify:

length (take n xs) 6 n

Altogether:

length (take n xs) 6 n ∧ take n xs � xs (40)

But this is not enough — (silly) implementation take n xs = []
meets (40)!

Motivation E+H split List functions Program derivation

Superlatives...

We have not yet thought of how to formally specify the
superlative in

...take n xs should yield the longest possible prefix...

This is the hard part but there is a standard method to follow:

• think of an arbitrary list ys also satisfying (40)

length ys 6 n ∧ ys � xs

• Then (following the requirements) ys should be a prefix of
take n xs:

length ys 6 n ∧ ys � xs ⇒ ys � take n xs (41)

Motivation E+H split List functions Program derivation

Final touch

So we need the two clauses,

the easy one (40)

and

the hard one (41).

Interestingly, (40) can be derived from the converse of (41)

length ys 6 n ∧ ys � xs ⇐ ys � take n xs

by letting ys := take n xs and simplifying.

So a single line is enough to formally specify take:

length ys 6 n ∧ ys � xs ≡ ys � take n xs (42)

Motivation E+H split List functions Program derivation

Exercises

Exercise 17: Follow the specification method of the previous example
to formally specify the requirement

The function takeWhile p xs should yield the longest prefix of
xs such that all x in such a prefix satisfy predicate p.

and

The function filter p xs should yield the longest sublist of xs
such that all x in such a sublist satisfy predicate p.

NB: assume the existence of the sublist ordering ys v xs such that e.g.
"ab" v "acb" holds but "ab" v "bca" does not hold.

�

Motivation E+H split List functions Program derivation

Exercises

Exercise 18: (a) Check that specification

X ⊆ A ∧ X ⊆ B ≡ X ⊆ A ∩ B (43)

meets the (abstract) requirements:

The intersection A ∩ B is the largest common subset of A and
B.

(b) Then write a similar specification for the union A ∪ B of two sets.

(c) Finally guess the (textual) requirements which lead to the following
specification of the least (minimum) of two numbers:

x 6 m ∧ x 6 n ≡ x 6 min m n (44)

�

Motivation E+H split List functions Program derivation

Reasoning about specifications

One of the advantages of formal specification is that one may
quest the specification (aka model) to derive useful properties of
the design before the implementation phase.

The principle of indirect equality (38) is the main tool in this
process, as we have already seen with x ÷ y .

Exercise 19: Solely relying on specification (42) use indirect equality to
prove that

take (length xs) xs = xs (45)

take 0 xs = [] (46)

take n [] = [] (47)

hold.

�

Motivation E+H split List functions Program derivation

Reasoning about specifications

A more interesting calculation is that of simplifying

take m (take n xs)

to an expression involving a single take.

As before, we head for an indirect equality derivation by starting
with term ys � take m (take n xs) (complete the claims):

ys � take m (take n xs)

≡ { . . . }

ys � (take n xs) ∧ length ys 6 m

≡ { . . . }

(ys � xs ∧ length ys 6 n) ∧ length ys 6 m

Motivation E+H split List functions Program derivation

Reasoning about specifications

ys � xs ∧ (length ys 6 n ∧ length ys 6 m)

≡ { . . . }

ys � xs ∧ (length ys 6 min n m)

≡ { . . . }

ys � take (min n m) xs

�

Thus:

take m (take n xs) = take (min n m) xs

is a property of take.

Motivation E+H split List functions Program derivation

Exercises

Exercise 20: Derive from (44) the following properties of the min
function (on IN0)

min m (min n p) = min (min m n) p (48)

min m m = m (49)

min 0 m = 0 (50)

and infer (by formal analogy) the corresponding properties of intersection
(43).

�

Motivation E+H split List functions Program derivation

Deriving programs from specifications

Back to the starting example, can we derive program

x ÷ y =
if x < y then 0
else 1 + (x − y)÷ y

from the specification

z × y 6 x ≡ z 6 x ÷ y

(for y > 0) thereby ensuring correctness?

Motivation E+H split List functions Program derivation

Deriving programs from specifications

A simple example first: deriving the algorithm of min from its
specification

x 6 m ∧ x 6 n ≡ x 6 min m n

Note that either m 6 n or n 6 m holds. Case m 6 n:

x 6 min m n

≡ { specification }
x 6 m ∧ x 6 n

≡ { because m 6 n (transitivity) }
x 6 m

:: { indirect equality }

min m n = m

�

Motivation E+H split List functions Program derivation

Deriving programs from specifications

Case n 6 m is similar:

x 6 min m n

≡ { specification }
x 6 m ∧ x 6 n

≡ { because n 6 m (transitivity) }
x 6 n

:: { indirect equality }

min m n = n

�

Thus we obtain the program

min m n = if n 6 m then n else m

Motivation E+H split List functions Program derivation

Integer division now

Specification (in IN0, for y > 0):

z × y 6 x ≡ z 6 x ÷ y

Derivation:

z 6 x ÷ y

≡ { specification }
z × y 6 x

≡ { assume x > y and subtract }
z × y − y 6 x − y

≡ { arithmetics }

(z − 1)× y 6 x − y

(→ next slide)

Motivation E+H split List functions Program derivation

Deriving programs from specifications

(← previous slide)

≡ { specification }

z − 1 6 (x − y)÷ y

≡ { trivial }

z 6 1 + (x − y)÷ y

Altogether (for x > y):

z 6 x ÷ y ≡ z 6 1 + (x − y)÷ y

By indirect equality:

x ÷ y = if x > y then 1 + (x − y)÷ y else . . .

Motivation E+H split List functions Program derivation

Deriving programs from specifications

Case x < y is simpler, as expected:

z 6 x ÷ y

≡ { specification }
z × y 6 x

≡ { since x < y }
z × y 6 x ∧ z × y < y

≡ { z = 0 iff z × y < y in IN0 }

z 6 0
�

By indirect equality (altogether):

x ÷ y = if x < y then 0 else 1 + (x − y)÷ y

Motivation E+H split List functions Program derivation

Summary

One-line specifications of functions

Superlatives in requirements are the hard bit

Derivation of (functional) programs from specifications

Formal methods for functional programming easier than for
imperative programming.

Motivation E+H split List functions Program derivation

Exercise

Exercise 21: Derive fact

x ÷ x = 1 (51)

from (37). So the base case of program

x ÷ y =
if x ≡ y then 1
else 1 + (x − y)÷ y

is correct. What is wrong about the algorithm, then?

�

	Motivation
	E+H split
	List functions
	Program derivation

