
Relational Equality in the

Intensional Theory of Types

Victor Cacciari Miraldo

University of Utrecht, the Netherlands
University of Minho, Portugal

victor.cacciari@gmail.com

September 29, 2015



Prelude

During my Master's dissertation, we investigated how to encode

Relational Algebra in the Intensional Theory of Types and created a

rewriting engine that uses Agda's re�ection mechanism to help the

development of proofs using equational reasoning.

This presentation will address the Relational Algebraic part of our

project.



Prelude
Topics

• How to encode relations in a dependently typed language.

• Which di�culties arise from using the standard notion of

relational equality.



Introduction

Agda is a dependently typed, pure, language built on top of the

intensional variant of the Theory of Types.

Our exploratory project relies on Agda to provide support for

di�erent types of equational reasoning. Our main focus is

relational algebraic reasoning.

We examine Agda in its two �avors:

• Constructing a Relational Algebra (RA) Library in Agda, using

its proof-assistant side.

• Developing a smarter rewrite functionality for the language,

delving into the programming part of Agda.

We used the version 2.4.3, with standard library 0.9 for

development.



A First Example

Let us imagine one doubts whether lists are functors or not. A

good start would be checking distribution over composition:

L (f · g) ≡ L f · L g

or, expanding L ·,

Id+ (Id× (f · g)) ≡ Id+ (Id× f ) · Id+ (Id× g)

This proof is easy to complete with the universal law for

coproducts, given that + and × are bi-functors. Let us, then,

illustrate one branch of the proof, in Agda!



A First Example

Let us imagine one doubts whether lists are functors or not. A

good start would be checking distribution over composition:

L (f · g) ≡ L f · L g

or, expanding L ·,

Id+ (Id× (f · g)) ≡ Id+ (Id× f ) · Id+ (Id× g)

This proof is easy to complete with the universal law for

coproducts, given that + and × are bi-functors. Let us, then,

illustrate one branch of the proof, in Agda!



A First Example

begin

(Id + (Id * R) • Id + (Id * S)) • Ì2

≡r〈 (tactic (by (quote +-bi-functor))) 〉

(Id • Id) + (Id * R • Id * S) • Ì2

≡r〈 (tactic (by (quote Ì2-natural))) 〉

Ì2 • Id * R • Id * S

≡r〈 (tactic (by (quote *-bi-functor))) 〉

Ì2 • (Id • Id) * (R • S)

≡r〈 ≡r-cong (ń Z → Ì2 • Z * (R • S)) (≡r-sym (•-id-r Id)) 〉

Ì2 • Id * (R • S)

�



Relational Algebra in Agda
Introduction

The state of the art, at the time we began our research, consistes

in two existing libraries:

• Mu et al., developed a RA Library focused on Program

Re�nement by Sub-relation reasoning.

• Kahl worked on a generic Category Theory standard library for

Agda, from which Rel. Algebra arises as an instance of some

structures.



Relational Algebra in Agda
Challenges

• Relational Equality was hardest challenged we faced. The

problem was solved by borrowing concepts from the Homotopy

Type Theory.

• Adapting the code for automatic processing was another

threat. The amount of boilerplate code we had to cope is

signi�cant.

• The general unstable state of Agda makes the development of

a stable product complicated. The language su�ered major

changes meanwhile, which led us to rewrite a substantial

amount of code.



Relational Algebra in Agda
Challenges

• Relational Equality was hardest challenged we faced. The

problem was solved by borrowing concepts from the Homotopy

Type Theory.

• Adapting the code for automatic processing was another

threat. The amount of boilerplate code we had to cope is

signi�cant.

• The general unstable state of Agda makes the development of

a stable product complicated. The language su�ered major

changes meanwhile, which led us to rewrite a substantial

amount of code.



Relational Algebra in Agda
Challenges

• Relational Equality was hardest challenged we faced. The

problem was solved by borrowing concepts from the Homotopy

Type Theory.

• Adapting the code for automatic processing was another

threat. The amount of boilerplate code we had to cope is

signi�cant.

• The general unstable state of Agda makes the development of

a stable product complicated. The language su�ered major

changes meanwhile, which led us to rewrite a substantial

amount of code.



Relations

A binary relation R is de�ned as a subset of A× B , knowing that A

and B are sets. We usually write A
R−→ B .

Let us take the relation N Succ−−−→ N (which is also a function!) as an

example.

Succ = {(n, n + 1) ∈ N2}
= {(n, k) ∈ N2 | k = n + 1}
= {(n, k) ∈ N2 | isSucc(n, k)}

All we need to know to work with Succ is which elements of N2

also belong in Succ , but those are the ones satisfying isSucc .

This provides valuable insight: Encoding a relation is encoding its

de�ning predicate!



Relations

A binary relation R is de�ned as a subset of A× B , knowing that A

and B are sets. We usually write A
R−→ B .

Let us take the relation N Succ−−−→ N (which is also a function!) as an

example.

Succ = {(n, n + 1) ∈ N2}
= {(n, k) ∈ N2 | k = n + 1}
= {(n, k) ∈ N2 | isSucc(n, k)}

All we need to know to work with Succ is which elements of N2

also belong in Succ , but those are the ones satisfying isSucc .

This provides valuable insight: Encoding a relation is encoding its

de�ning predicate!



Relations

A binary relation R is de�ned as a subset of A× B , knowing that A

and B are sets. We usually write A
R−→ B .

Let us take the relation N Succ−−−→ N (which is also a function!) as an

example.

Succ = {(n, n + 1) ∈ N2}
= {(n, k) ∈ N2 | k = n + 1}
= {(n, k) ∈ N2 | isSucc(n, k)}

All we need to know to work with Succ is which elements of N2

also belong in Succ , but those are the ones satisfying isSucc .

This provides valuable insight: Encoding a relation is encoding its

de�ning predicate!



Encoding Relations

A predicate over a set A, in dependent types, is usually encoded as

a function A→ Set.

For our relations, we have A× B → Set ≡ B → A→ Set.

Therefore, we will adopt the following encoding:

Rel : Set → Set → Set1
Rel A B = B → A → Set

Let us de�ne our Succ : Rel N N relation in Agda:

Succ (suc zero) zero = Unit
Succ (suc x) (suc y) = Succ x y
Succ _ _ = ⊥

Hence, if (2, 3) ∈ Succ , then the type Succ 3 2 is inhabited:

isSucc-3-2 : Succ 3 2
isSucc-3-2 = unit



Encoding Relations

A predicate over a set A, in dependent types, is usually encoded as

a function A→ Set.

For our relations, we have A× B → Set ≡ B → A→ Set.

Therefore, we will adopt the following encoding:

Rel : Set → Set → Set1
Rel A B = B → A → Set

Let us de�ne our Succ : Rel N N relation in Agda:

Succ (suc zero) zero = Unit
Succ (suc x) (suc y) = Succ x y
Succ _ _ = ⊥

Hence, if (2, 3) ∈ Succ , then the type Succ 3 2 is inhabited:

isSucc-3-2 : Succ 3 2
isSucc-3-2 = unit



Encoding Relations

A predicate over a set A, in dependent types, is usually encoded as

a function A→ Set.

For our relations, we have A× B → Set ≡ B → A→ Set.

Therefore, we will adopt the following encoding:

Rel : Set → Set → Set1
Rel A B = B → A → Set

Let us de�ne our Succ : Rel N N relation in Agda:

Succ (suc zero) zero = Unit
Succ (suc x) (suc y) = Succ x y
Succ _ _ = ⊥

Hence, if (2, 3) ∈ Succ , then the type Succ 3 2 is inhabited:

isSucc-3-2 : Succ 3 2
isSucc-3-2 = unit



Encoding Relations

A predicate over a set A, in dependent types, is usually encoded as

a function A→ Set.

For our relations, we have A× B → Set ≡ B → A→ Set.

Therefore, we will adopt the following encoding:

Rel : Set → Set → Set1
Rel A B = B → A → Set

Let us de�ne our Succ : Rel N N relation in Agda:

Succ (suc zero) zero = Unit
Succ (suc x) (suc y) = Succ x y
Succ _ _ = ⊥

Hence, if (2, 3) ∈ Succ , then the type Succ 3 2 is inhabited:

isSucc-3-2 : Succ 3 2
isSucc-3-2 = unit



Relational Equality

A relation A
R−→ B is a sub-relation of S , written R ⊆ S , when:

∀(a, b) ∈ A× B . b R a⇒ b S a

Equality is de�ned by mutual inclusion: R ≡r S i� R ⊆ S ∧ S ⊆ R .

Or, in Agda:

_⊆_ : {A B : Set}(R S : Rel A B) → Set
R ⊆ S = ∀ a b → R b a → S b a

In words:

Given an a : A, a b : B and an inhabitant of R b a,

produce an inhabitant of S b a.



Relational Equality

A relation A
R−→ B is a sub-relation of S , written R ⊆ S , when:

∀(a, b) ∈ A× B . b R a⇒ b S a

Equality is de�ned by mutual inclusion: R ≡r S i� R ⊆ S ∧ S ⊆ R .

Or, in Agda:

_⊆_ : {A B : Set}(R S : Rel A B) → Set
R ⊆ S = ∀ a b → R b a → S b a

In words:

Given an a : A, a b : B and an inhabitant of R b a,

produce an inhabitant of S b a.



Relational Equality, in Agda
The Problem

Given that _ ⊆ _ is anti-symmetric (with respect to ≡r ) by

de�nition, proving equality should be simple.

However, propositional equality in Agda, x ≡ y means that x and y

evaluate to the same value.

Take N T ,U−−→ N as the Top relation on Natural numbers and a

dumb variant of it.

T _ _ = Unit
U _ _ = Unit ] Unit

Note that, although we can prove, in Agda, that T ≡r U, they do

not evaluate to the same value! They are not equal.

We need a better notion of equality!



Relational Equality, in Agda
The Problem

Given that _ ⊆ _ is anti-symmetric (with respect to ≡r ) by

de�nition, proving equality should be simple.

However, propositional equality in Agda, x ≡ y means that x and y

evaluate to the same value.

Take N T ,U−−→ N as the Top relation on Natural numbers and a

dumb variant of it.

T _ _ = Unit
U _ _ = Unit ] Unit

Note that, although we can prove, in Agda, that T ≡r U, they do

not evaluate to the same value! They are not equal.

We need a better notion of equality!



Relational Equality, in Agda
The Problem

Given that _ ⊆ _ is anti-symmetric (with respect to ≡r ) by

de�nition, proving equality should be simple.

However, propositional equality in Agda, x ≡ y means that x and y

evaluate to the same value.

Take N T ,U−−→ N as the Top relation on Natural numbers and a

dumb variant of it.

T _ _ = Unit
U _ _ = Unit ] Unit

Note that, although we can prove, in Agda, that T ≡r U, they do

not evaluate to the same value! They are not equal.

We need a better notion of equality!



Relational Equality, in Agda
Proof Irrelevance

Finding inspiration in the Homotopy Type Theory (HoTT), we see

that this has been done before.

When this is the case, we can prove that they are univalent to

either Unit or ⊥.
lemma-332 : {P : Set} → isProp P → (p0 : P) → P ≈ Unit
¬lemma-332 : {P : Set} → isProp P → (P → ⊥) → P ≈ ⊥

Thus, by requiring the user to provide only proof-irrelevant

relations, we can always transform them into Unit or ⊥.



Relational Equality, in Agda
Proof Irrelevance

Finding inspiration in the Homotopy Type Theory (HoTT), we see

that this has been done before.

When this is the case, we can prove that they are univalent to

either Unit or ⊥.
lemma-332 : {P : Set} → isProp P → (p0 : P) → P ≈ Unit
¬lemma-332 : {P : Set} → isProp P → (P → ⊥) → P ≈ ⊥

Thus, by requiring the user to provide only proof-irrelevant

relations, we can always transform them into Unit or ⊥.



Relational Equality, in Agda
Proving anti-symmetry of _ ⊆ _

At this point, we do not care anymore about the structure of the

underlying set of a relation, as it will resemble Unit or ⊥.

The last ingredient we need, is to stick to decidable relations:

isDec : {A B : Set} → Rel A B → Set
isDec R = ∀ a b → (R b a) ] (R b a → ⊥)

The rest of the proof is a straight-forward combination of these

ingredients.

Hence, given two relations R and S that are mere propositions and

decidable, we can �nally prove anti-symmetry:

⊆-antisym : {A B : Set}{R S : Rel A B}
→ R ⊆ S → S ⊆ R → R ≡ S



Relational Equality, in Agda
Proving anti-symmetry of _ ⊆ _

At this point, we do not care anymore about the structure of the

underlying set of a relation, as it will resemble Unit or ⊥.

The last ingredient we need, is to stick to decidable relations:

isDec : {A B : Set} → Rel A B → Set
isDec R = ∀ a b → (R b a) ] (R b a → ⊥)

The rest of the proof is a straight-forward combination of these

ingredients.

Hence, given two relations R and S that are mere propositions and

decidable, we can �nally prove anti-symmetry:

⊆-antisym : {A B : Set}{R S : Rel A B}
→ R ⊆ S → S ⊆ R → R ≡ S



Relational Equality, in Agda
Proving anti-symmetry of _ ⊆ _

At this point, we do not care anymore about the structure of the

underlying set of a relation, as it will resemble Unit or ⊥.

The last ingredient we need, is to stick to decidable relations:

isDec : {A B : Set} → Rel A B → Set
isDec R = ∀ a b → (R b a) ] (R b a → ⊥)

The rest of the proof is a straight-forward combination of these

ingredients.

Hence, given two relations R and S that are mere propositions and

decidable, we can �nally prove anti-symmetry:

⊆-antisym : {A B : Set}{R S : Rel A B}
→ R ⊆ S → S ⊆ R → R ≡ S



Conclusions

• We can see that although complicated in a few points, Agda is

an excellent tool for working with (so far, basic) Relational

Algebra. The mix�x feature is a great plus!

• A few debugging tools from Agda could be very helpful. For

instance, we failed to pinpoint (in the code) where the

performance explodes with our prototype of catamorphisms.

• Despite not being mentioned here, the Re�ection mechanism

allows one to create interesting meta-programming libraries.

More can be found on my thesis.



Relational Equality in the

Intensional Theory of Types

Victor Cacciari Miraldo

University of Utrecht, the Netherlands
University of Minho, Portugal

victor.cacciari@gmail.com

September 29, 2015



Catamorphisms

The last relational construct we encoded was the catamorphism

notion. Our objective was to provide functor generic catas. The

end result is still experimental, and shows very poor performance in

Agda 2.4.3, besides requiring some TERMINATING pragmas.

We will not delve too deeply into the technicalities of our encoding.

Instead, we chose to make explicit the theoretical connection

between catamorphisms and W-types, which is the foundation of

our work.



Catamorphisms

The last relational construct we encoded was the catamorphism

notion. Our objective was to provide functor generic catas. The

end result is still experimental, and shows very poor performance in

Agda 2.4.3, besides requiring some TERMINATING pragmas.

We will not delve too deeply into the technicalities of our encoding.

Instead, we chose to make explicit the theoretical connection

between catamorphisms and W-types, which is the foundation of

our work.



Catas, as �xed points

In a pen-and-paper setting, one de�nes a cata as a function (resp.

relation) with its domain being the least �xed point of a given

recursive functor.

Let us take lists as an example:

FA X = 1+ A× X

LA = µ X . FA X

This de�nition clearly doesn't work in Agda, as it is trivially

non-terminating. In the dependent type setting, one uses W-types

to encode recursive datatypes generically.



Catas, as �xed points

In a pen-and-paper setting, one de�nes a cata as a function (resp.

relation) with its domain being the least �xed point of a given

recursive functor.

Let us take lists as an example:

FA X = 1+ A× X

LA = µ X . FA X

This de�nition clearly doesn't work in Agda, as it is trivially

non-terminating. In the dependent type setting, one uses W-types

to encode recursive datatypes generically.



W-types

The trick lies in the following reasoning.

FAX ∼= 1+ A× X

∼= 1× 1+ A× X

∼= 1× X⊥ + A× X 1

Which gives us a shape functor S = 1+ A and a positioning

functor P = [const ⊥, const 1] such that W S P is isomorphic to

µX .FA X , where W is de�ned as:

data W (S : Set)(P : S → Set) : Set where
sup : (s : S) → (P s → W S P) → W S P



W-types

The trick lies in the following reasoning.

FAX ∼= 1+ A× X

∼= 1× 1+ A× X

∼= 1× X⊥ + A× X 1

Which gives us a shape functor S = 1+ A and a positioning

functor P = [const ⊥, const 1] such that W S P is isomorphic to

µX .FA X , where W is de�ned as:

data W (S : Set)(P : S → Set) : Set where
sup : (s : S) → (P s → W S P) → W S P



Catas as W-recursion
W-types come equipped with a recursion principle:

W-rec : ∀{c}{S : Set}{P : S → Set}
→ {C : W S P → Set c}
→ (c : (s : S) → (f : P s → W S P)
→ (h : (p : P s) → C (f p))
→ C (sup s f)

) → (x : W S P) → C x

Which, upon choosing C = A→ Set gives us:

W-rec-rel : {S : Set}{P : S → Set}{A : Set}
→ ((s : S) → (p : P s → W S P) → Rel (W S P) A → A → Set)
→ Rel (W S P) A

W-rec-rel h a w = W-rec (ń s p c → h s p (W-rec-rel h) a) w

And this later W-rec-rel is what is exported as a catamorphism in

our library. (plus a few conversions from a relational gene).



Relational Equality in the

Intensional Theory of Types

Victor Cacciari Miraldo

University of Utrecht, the Netherlands
University of Minho, Portugal

victor.cacciari@gmail.com

September 29, 2015


