## Relational Formalisations of Compositions and Liftings of Multirelations

## Hitoshi Furusawa<sup>1</sup>, Yasuo Kawahara<sup>2</sup>, Georg Struth<sup>3</sup> and Norihiro Tsumagari<sup>4</sup>

<sup>1</sup>Department of Mathematics and Computer Science, Kagoshima University
 <sup>2</sup>Professor Emeritus, Kyushu University
 <sup>3</sup>Department of Computer Science, The University of Sheffield
 <sup>4</sup>Center for Education and Innovation, Sojo University

#### RAMiCS 15, Braga, 2015/10/1

# **Our contributions**

• Relational formalization of 3 kinds of compositions by introducing the liftings of multirelations.

Kleisli's composition:

$$lpha \circ eta = lpha eta_\circ$$

Peleg's composition:

$$lpha st eta = lpha eta_st$$

Parikh's composition:

$$lpha \diamond eta = lpha eta_\diamond$$

 $\beta_{\circ}$ : Kleisli lifting,  $\beta_{*}$ : Peleg lifting,  $\beta_{\diamond}$ : Parikh lifting  $\beta_{\circ}, \beta_{*}, \beta_{\diamond}: \wp(Y) \rightarrow \wp(Z)$ 

# **Our contributions**

• We give subclasses of multirelations that form categories with each composition, respectively.

| subclass                                               | composition                  | the unit                                                                                    |
|--------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------|
| mappings $f : \mathbf{V} \to (\mathbf{a}(\mathbf{V}))$ | $lpha \circ eta$ (Kleisli)   | the singleton map $\left( \left( a, \left( a \right) \right) \mid a \in \mathbf{X} \right)$ |
| $J: \mathbf{A} \to \wp(\mathbf{I})$                    |                              | $\{(a, \{a\}) \mid a \in \mathbf{X}\}$                                                      |
| union-closed                                           | lpha st eta (Peleg)          | the singleton map                                                                           |
| multirelations                                         |                              | $\{(a,\{a\})\mid a\in X\}$                                                                  |
| up-closed                                              | $lpha \diamond eta$ (Parikh) | the membership rel.                                                                         |
| multirelations                                         |                              | $\{(a,A) \mid a \in A\}$                                                                    |



- Kleisli lifting and Kleisli's composition
- Peleg lifting and Peleg's composition
- Parikh lifting and Parikh's composition
- Associativity and the unit of each composition

## Kleisli's composition

#### Proposition

For 
$$lpha:X 
ightarrow \wp(Y)$$
 ,  $eta:Y 
ightarrow \wp(Z)$ 

$$lpha\circeta=lphaeta_\circ$$

#### where $\beta_{\circ}$ is the Kleisli lifting of $\beta$ .

We introduce the Kleisli lifting  $\beta_{\circ}$  so that

$$(B,A)\in eta_{\circ}\Leftrightarrow A=igcupeta(B)$$

 $\beta(B) = \{C \mid \exists b \in B.(b,C) \in \beta\}$ 

# Kleisli lifting

#### Definition

For 
$$\beta: Y \to \wp(Z)$$
, define  $\beta_{\circ}: \wp(Y) \to \wp(Z)$  by

$$\beta_{\circ} = \wp(\beta \ni_Z)$$

 $\ni_{\mathbf{Z}}$ : the converse of the membership relation

 $(B,A)\in\wp(\beta{\ni_Z})\Leftrightarrow a\in A\leftrightarrow \exists b\in B.(b,a)\in\beta{\ni_Z}$ 

# Peleg's composition

#### Proposition

For 
$$lpha:X
ightarrow\wp(Y)$$
 ,  $eta:Y
ightarrow\wp(Z)$ 

$$lpha st eta = lpha eta_st$$

#### where $\beta_*$ is the Peleg lifting of $\beta$ .

We introduce the Peleg lifting  $\beta_*$  so that

 $(B,A)\in eta_{*}\Leftrightarrow \exists f.\,(orall b\in B.\,(b,f(b))\in eta)\wedge A=\bigcup f(B)$ 

 $f(B) = \{C \mid \exists b \in B.(b,C) \in f\}$ 

# **Peleg lifting**

#### Definition

For 
$$\beta: Y \to \wp(Z)$$
, define  $\beta_*: \wp(Y) \to \wp(Z)$  by

$$eta_* = igsqcup_{f\sqsubseteq_ceta} \hat{u}_{\lflooreta
floo} f_\circ$$

- $f_{
  m o}$ : the Kleisli lifting of f
- $\lfloor eta 
  floor$ : the relational domain of eta
- $f \sqsubseteq_c \beta \Leftrightarrow f \sqsubseteq \beta \wedge f : \mathsf{pfn} \ \wedge \lfloor f \rfloor = \lfloor \beta \rfloor$

 $\hat{u}_{\lflooreta
floor}$  : the power subidentity of  $\lflooreta
floor$ 

The power subidentity  $\hat{u}_v \sqsubseteq \operatorname{id}_{\wp(Y)}$  of  $v \sqsubseteq \operatorname{id}_Y$  is defined by  $(A, A) \in \hat{u}_v \iff \forall a \in A. \ (a, a) \in v$ 

## Parikh's composition

#### Proposition

For 
$$lpha:X
ightarrow\wp(Y)$$
,  $eta:Y
ightarrow\wp(Z)$ 

$$lpha \diamond eta = lpha eta_\diamond$$

#### where $\beta_{\diamond}$ is the Parikh lifting of $\beta$ .

We introduce the Parikh lifting  $\beta_{\diamond}$  so that

$$(B,A)\in eta_{\diamond} \iff orall b\in B. \ (b,A)\in eta$$

# Parikh lifting

#### Definition

For  $\beta: Y \to \wp(Z)$ , we define  $\beta_{\diamond}: \wp(Y) \to \wp(Z)$  by

$$\beta_\diamond = \exists_Y \triangleright \beta$$

 $\triangleright$  : the right residuation

 $(B,A)\in 
ightarrow _Y \rhd eta \ \Leftrightarrow \ orall y\in Y. \ (\ (B,b)\in 
ightarrow _Y \Rightarrow (b,A)\in eta \ )$ 

Kleisli's composition:

$$lpha\circeta=lphaeta_{eta}$$

Peleg's composition:

$$lpha st eta = lpha eta_st$$

Parikh's composition:

$$\alpha \diamond eta = lpha eta_\diamond$$

 $eta_\circ$ : Kleisli lifting,  $eta_*$ : Peleg lifting,  $eta_\diamond$ : Parikh lifting

# Outline

- Kleisli lifting and Kleisli's composition
- Peleg lifting and Peleg's composition
- Parikh lifting and Parikh's composition
- Associativity and the unit of each composition

#### Why do we have to consider the associativity?

#### Peleg's composition need not be associative.

Example (Furusawa and Struth, CoRR, 2014) Let  $X = \{a, b\}, \alpha, \beta : X \rightarrow \wp(X)$  $\alpha = \{(a, \{a, b\}), (a, \{a\}), (b, \{a\})\}$  $\beta = \{(a, \{a\}), (a, \{b\})\}$ 

Then

$$(\alpha * \alpha) * \beta$$

- $= \ \{(a,\{a\}),(a,\{b\}),(b,\{a\}),(b,\{b\})\}$
- $\sqsubseteq \ \{(a, \{a\}), (a, \{b\}), (b, \{a\}), (b, \{b\}), (a, \{a, b\})\}$
- $= \alpha * (\alpha * \beta)$

### Parikh's composition need not be associative.

#### Example (Tsumagari, PhD thesis)

Let 
$$X = \{a, b, c\}$$
,  $lpha, eta: X 
ightarrow \wp(X)$ 

$$\begin{split} &\alpha = \{(a,\{a,b,c\}),(b,\{a,b,c\}),(c,\{a,b,c\})\}\\ &\beta = \{(a,\{b,c\}),(b,\{a,c\}),(c,\{a,b\})\} \end{split}$$

Then

$$(\alpha \diamond eta) \diamond lpha = 0_{X\wp(X)} \sqsubseteq lpha = lpha \diamond (eta \diamond lpha)$$

## To prove the associativity

## Let $\Box \in \{\circ, *, \diamond\}$ .

 $(\alpha \Box \beta) \Box \gamma = \alpha \Box (\beta \Box \gamma)$   $\leftrightarrow \quad (\alpha\beta_{\Box}) \Box \gamma = \alpha \Box (\beta\gamma_{\Box})$   $\leftrightarrow \quad \alpha\beta_{\Box}\gamma_{\Box} = \alpha(\beta\gamma_{\Box})_{\Box}$  $\leftarrow \qquad \beta_{\Box}\gamma_{\Box} = (\beta\gamma_{\Box})_{\Box}$ 

## To prove the associativity

#### Lemma

For 
$$\Box \in \{\circ, *, \diamond\}$$
,

$$eta_\Box \gamma_\Box \sqsubseteq (eta \gamma_\Box)_\Box$$

We have

$$(\alpha \Box \beta) \Box \gamma \sqsubseteq \alpha \Box (\beta \Box \gamma).$$

How about the converse implication?

# Associativity of Kleisli's composition

### For Kleisli's composition

#### Lemma

$$eta_\circ \gamma_\circ = (eta \gamma_\circ)_\circ$$

#### Proposition

$$(lpha \circ eta) \circ \gamma = lpha \circ (eta \circ \gamma)$$

# Associativity of Peleg's composition

### For Peleg's composition

# Lemma If $\gamma \colon Z \to \wp(W)$ is union-closed, $(\beta \gamma_*)_* \sqsubseteq \beta_* \gamma_*$

#### Proposition

If  $\gamma \colon Z o \wp(W)$  is union-closed, $(lpha st eta) st \gamma = lpha st (eta st \gamma)$ 

# Associativity of Peleg's composition

#### Definition

 $\gamma: Z 
ightarrow \wp(W)$  is called *union-closed* if  $\lfloor 
ho 
floor(
ho 
arrow _W)^@ \sqsubseteq \gamma$ 

for all relations  $ho: Z 
ightarrow \wp(W)$  such that  $ho \sqsubseteq \gamma$ .

 $(a,B)\in lpha^{@}\Leftrightarrow B=\{b\mid (a,b)\in lpha\}$ 

Note:  $\gamma: Z \to \wp(W)$  is union-closed iff $\mathcal{B} \neq \emptyset \land \mathcal{B} \subseteq \{B \mid (a, B) \in \gamma\} \Rightarrow (a, \bigcup \mathcal{B}) \in \gamma$ 

for each  $a \in Z$ .

# Associativity of Parikh's composition

### For Parikh's composition

# Lemma If $\beta: Y \to \wp(Z)$ is up-closed, $(\beta\gamma_\diamond)_\diamond \sqsubseteq \beta_\diamond \gamma_\diamond$

#### Proposition

If  $eta \colon Y woheadrightarrow \wp(Z)$  is up-closed, $(lpha \diamond eta) \diamond \gamma = lpha \diamond (eta \diamond \gamma)$ 

## Associativity of Parikh's composition

# Definition $\beta: Y \rightarrow \wp(Z)$ is called *up-closed* if $\beta \Xi_Z = \beta$ $(C, C') \in \Xi_Z \Leftrightarrow C \sqsubset C'$

Note:  $\beta: Y \rightarrow \wp(Z)$  is up-closed iff

 $(b,C)\in\beta\ \land\ C\sqsubseteq C'\to (b,C')\in\beta$ 

## Unit of each composition

#### What is the unit of each composition?

#### $\alpha \Box 1 = 1 \Box \alpha = \alpha$

1: the unit of  $\Box$ 

# Example: multirelations on a singleton

Let  $X = \{a\}$  and  $0 = 0_{X\wp(X)}$   $\alpha = \{(a, \emptyset)\}$   $\beta = \{(a, \{a\})\}$  $\gamma = \{(a, \emptyset), (a, \{a\})\}$ 

These are all relations from X to  $\wp(X)$ .

$$0 = 0_{X\wp(X)}, \alpha = \{(a, \emptyset)\}, \beta = \{(a, \{a\})\}, \gamma = \{(a, \emptyset), (a, \{a\})\}$$

Kleisli liftings of these relations:

$$egin{aligned} 0_\circ &= lpha_\circ = \{(\emptyset, \emptyset), (\{a\}, \emptyset)\}\ eta_\circ &= \gamma_\circ = \{(\emptyset, \emptyset), (\{a\}, \{a\})\} \end{aligned}$$

Kleisli's composition table:

| 0                | 0            | lpha     | $oldsymbol{eta}$ | $\gamma$         |
|------------------|--------------|----------|------------------|------------------|
| 0                | 0            | 0        | 0                | 0                |
| lpha             | $ \alpha $   | lpha     | lpha             | ${lpha}$         |
| $oldsymbol{eta}$ | $ \alpha $   | lpha     | $oldsymbol{eta}$ | $oldsymbol{eta}$ |
| $\gamma$         | $  \alpha  $ | ${lpha}$ | $\gamma$         | $\gamma$         |

eta and  $\gamma$  are right units and there is no left unit.

If we consider <u>mappings</u> (i.e. total and univalent multirelations)  $0 = 0_{X_{\wp}(X)}, \alpha = \{(a, \emptyset)\}, \beta = \{(a, \{a\})\}, \gamma = \{(a, \emptyset), (a, \{a\})\}$ 

Kleisli's composition table:

| 0                | lpha | $oldsymbol{eta}$ |
|------------------|------|------------------|
| $\alpha$         | lpha | lpha             |
| $oldsymbol{eta}$ | lpha | $oldsymbol{eta}$ |

The singleton map  $\beta$  is the unit w.r.t. Kleisli's composition.

$$0 = 0_{X\wp(X)}, \alpha = \{(a, \emptyset)\}, \beta = \{(a, \{a\})\}, \gamma = \{(a, \emptyset), (a, \{a\})\}$$

Peleg liftings of these relations:

$$\begin{array}{l} 0_* = \{(\emptyset, \emptyset)\} \\ \alpha_* = \{(\emptyset, \emptyset), (\{a\}, \emptyset)\} \\ \beta_* = \{(\emptyset, \emptyset), (\{a\}, \{a\})\} \\ \gamma_* = \{(\emptyset, \emptyset), (\{a\}, \emptyset), (\{a\}, \{a\})\} \end{array}$$

Peleg's composition table:

| *                | 0          | ${\boldsymbol lpha}$ | $oldsymbol{eta}$ | $\gamma$ |
|------------------|------------|----------------------|------------------|----------|
| 0                | 0          | 0                    | 0                | 0        |
| $\alpha$         | $\alpha$   | $\alpha$             | $\alpha$         | lpha     |
| $oldsymbol{eta}$ | 0          | lpha                 | $oldsymbol{eta}$ | $\gamma$ |
| $\gamma$         | $ \alpha $ | $\alpha$             | $\gamma$         | $\gamma$ |

The singleton map  $\beta$  is the unit w.r.t. Peleg's composition.

[Furusawa, Struth, CoRR, 2014]

$$0 = 0_{X\wp(X)}, \alpha = \{(a, \emptyset)\}, \beta = \{(a, \{a\})\}, \gamma = \{(a, \emptyset), (a, \{a\})\}$$

Parikh lifting of these relations:

$$\begin{array}{l} 0_{\diamond} = \{(\emptyset, \emptyset), (\emptyset, \{a\})\} \\ \alpha_{\diamond} = \{(\emptyset, \emptyset), (\emptyset, \{a\}), (\{a\}, \emptyset)\} \\ \beta_{\diamond} = \{(\emptyset, \emptyset), (\emptyset, \{a\}), (\{a\}, \{a\})\} \\ \gamma_{\diamond} = \nabla_{\wp(X)\wp(X)} \end{array}$$

Parikh's composition table:

| $\diamond$       | 0          | $\alpha$ | $oldsymbol{eta}$ | $\gamma$ |
|------------------|------------|----------|------------------|----------|
| 0                | 0          | 0        | 0                | 0        |
| ${lpha}$         | $ \gamma $ | $\gamma$ | $\gamma$         | $\gamma$ |
| $oldsymbol{eta}$ | 0          | $\alpha$ | $oldsymbol{eta}$ | $\gamma$ |
| $\gamma$         | $ \gamma $ | $\gamma$ | $\gamma$         | $\gamma$ |

So,  $\beta$  is the left unit and there is no right unit.

If we consider up-closed multirelations

$$0 = 0_{X\wp(X)}, \alpha = \{(a, \emptyset)\}, \beta = \{(a, \{a\})\}, \gamma = \{(a, \emptyset), (a, \{a\})\}$$

Parikh's composition table:

| $\diamond$       | 0        | $oldsymbol{eta}$ | $\gamma$ |
|------------------|----------|------------------|----------|
| 0                | 0        | 0                | 0        |
| $oldsymbol{eta}$ | 0        | $oldsymbol{eta}$ | $\gamma$ |
| $\gamma$         | $\gamma$ | $\gamma$         | $\gamma$ |

The membership relation  $\beta$  is the unit w.r.t. Parikh's compositon.

# Conclusion

- We formalized 3 kinds of compositions of multirelations in relational calculi.
- We showed that each of the following subclasses of multirelations forms a category with each composition.

| subclass                       | composition                             | the unit                                       |
|--------------------------------|-----------------------------------------|------------------------------------------------|
| mappings $f:X	o\wp(Y)$         | $lpha \circ eta$ (Kleisli)              | the singleton map $\{(a,\{a\}) \mid a \in X\}$ |
| union-closed<br>multirelations | lpha st eta (Peleg)                     | the singleton map $\{(a,\{a\}) \mid a \in X\}$ |
| up-closed<br>multirelations    | $lpha \diamond oldsymbol{eta}$ (Parikh) | the membership rel. $\{(a,A) \mid a \in A\}$   |

# Conclusion

- We formalized 3 kinds of compositions of multirelations in relational calculi.
- We showed that each of the following subclasses of multirelations forms a category with each composition.

| subclass                      | composition                  | the unit                   |
|-------------------------------|------------------------------|----------------------------|
| mappings                      | $lpha \circ eta$ (Kleisli)   | the singleton map          |
| $f:X ightarrow\wp(Y)$         |                              | $\{(a,\{a\})\mid a\in X\}$ |
| union-closed                  | lpha st eta (Peleg)          | the singleton map          |
| multirelations                |                              | $\{(a,\{a\})\mid a\in X\}$ |
| up-closed                     | $lpha \diamond eta$ (Parikh) | the membership rel.        |
| multirelations                |                              | $\{(a,A)\mid a\in A\}$     |
| Thank you for your attention! |                              |                            |