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Our contributions

Relational formalization of 3 kinds of compositions by
introducing the liftings of multirelations.

Kleisli’s composition:

α ◦ β = αβ◦

Peleg’s composition:

α ∗ β = αβ∗

Parikh’s composition:

α ⋄ β = αβ⋄

β◦ : Kleisli lifting, β∗ : Peleg lifting, β⋄ : Parikh lifting

β◦, β∗, β⋄ : ℘(Y ) ⇁ ℘(Z)
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Our contributions

We give subclasses of multirelations that form categories
with each composition, respectively.

subclass composition the unit

mappings α ◦ β (Kleisli) the singleton map
f : X → ℘(Y ) {(a, {a}) | a ∈ X}

union-closed α ∗ β (Peleg) the singleton map
multirelations {(a, {a}) | a ∈ X}

up-closed α ⋄ β (Parikh) the membership rel.
multirelations {(a,A) | a ∈ A}
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Outline

1 Kleisli lifting and Kleisli’s composition

2 Peleg lifting and Peleg’s composition

3 Parikh lifting and Parikh’s composition

4 Associativity and the unit of each composition
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Kleisli’s composition

Proposition

For α : X ⇁ ℘(Y ), β : Y ⇁ ℘(Z)

α ◦ β = αβ◦

where β◦ is the Kleisli lifting of β.

We introduce the Kleisli lifting β◦ so that

(B,A) ∈ β◦ ⇔ A =
∪

β(B)

β(B) = {C | ∃b ∈ B.(b, C) ∈ β}
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Kleisli lifting

Definition
For β : Y ⇁ ℘(Z), define β◦ : ℘(Y ) ⇁ ℘(Z) by

β◦ = ℘(β∋Z)

∋Z : the converse of the membership relation

(B,A) ∈ ℘(β∋Z)⇔ a ∈ A↔ ∃b ∈ B.(b, a) ∈ β∋Z
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Peleg’s composition

Proposition

For α : X ⇁ ℘(Y ), β : Y ⇁ ℘(Z)

α ∗ β = αβ∗

where β∗ is the Peleg lifting of β.

We introduce the Peleg lifting β∗ so that

(B,A) ∈ β∗ ⇔ ∃f. (∀b ∈ B. (b, f(b)) ∈ β) ∧A =
∪

f(B)

f(B) = {C | ∃b ∈ B.(b, C) ∈ f}
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Peleg lifting

Definition
For β : Y ⇁ ℘(Z), define β∗ : ℘(Y ) ⇁ ℘(Z) by

β∗ =
⊔

f⊑cβ

û⌊β⌋f◦

f◦: the Kleisli lifting of f

⌊β⌋: the relational domain of β

f ⊑c β ⇔ f ⊑ β ∧ f : pfn ∧ ⌊f⌋ = ⌊β⌋

û⌊β⌋: the power subidentity of ⌊β⌋

The power subidentity ûv ⊑ id℘(Y ) of v ⊑ idY is defined by

(A,A) ∈ ûv ⇔ ∀a ∈ A. (a, a) ∈ v
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Parikh’s composition

Proposition

For α : X ⇁ ℘(Y ), β : Y ⇁ ℘(Z)

α ⋄ β = αβ⋄

where β⋄ is the Parikh lifting of β.

We introduce the Parikh lifting β⋄ so that

(B,A) ∈ β⋄ ⇔ ∀b ∈ B. (b,A) ∈ β
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Parikh lifting

Definition
For β : Y ⇁ ℘(Z), we define β⋄ : ℘(Y ) ⇁ ℘(Z) by

β⋄ = ∋Y ▷ β

▷ : the right residuation

(B,A) ∈ ∋Y ▷ β ⇔ ∀y ∈ Y. ( (B, b) ∈ ∋Y ⇒ (b,A) ∈ β )
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Kleisli’s composition:

α ◦ β = αβ◦

Peleg’s composition:

α ∗ β = αβ∗

Parikh’s composition:

α ⋄ β = αβ⋄

β◦ : Kleisli lifting, β∗ : Peleg lifting, β⋄ : Parikh lifting
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Outline

Kleisli lifting and Kleisli’s composition

Peleg lifting and Peleg’s composition

Parikh lifting and Parikh’s composition

Associativity and the unit of each composition
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Why do we have to consider the associativity?

Peleg’s composition need not be associative.

Example (Furusawa and Struth, CoRR, 2014)

Let X = {a, b}, α, β : X ⇁ ℘(X)

α = {(a, {a, b}), (a, {a}), (b, {a})}
β = {(a, {a}), (a, {b})}

Then

(α ∗ α) ∗ β
= {(a, {a}), (a, {b}), (b, {a}), (b, {b})}
⊑ {(a, {a}), (a, {b}), (b, {a}), (b, {b}), (a, {a, b})}
= α ∗ (α ∗ β)
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Why do we have to consider the associativity?

Parikh’s composition need not be associative.

Example (Tsumagari, PhD thesis)

Let X = {a, b, c}, α, β : X ⇁ ℘(X)

α = {(a, {a, b, c}), (b, {a, b, c}), (c, {a, b, c})}
β = {(a, {b, c}), (b, {a, c}), (c, {a, b})}

Then

(α ⋄ β) ⋄ α = 0X℘(X) ⊑ α = α ⋄ (β ⋄ α)
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To prove the associativity

Let □ ∈ {◦, ∗, ⋄}.

(α □ β) □ γ = α □ (β □ γ)

↔ (αβ□) □ γ = α □ (βγ□)

↔ αβ□γ□ = α(βγ□)□

← β□γ□ = (βγ□)□
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To prove the associativity

Lemma

For □ ∈ {◦, ∗, ⋄},

β□γ□ ⊑ (βγ□)□

We have
(α □ β) □ γ ⊑ α □ (β □ γ).

How about the converse implication?
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Associativity of Kleisli’s composition

For Kleisli’s composition

Lemma

β◦γ◦ = (βγ◦)◦

Proposition

(α ◦ β) ◦ γ = α ◦ (β ◦ γ)
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Associativity of Peleg’s composition

For Peleg’s composition

Lemma

If γ : Z ⇁ ℘(W ) is union-closed,

(βγ∗)∗ ⊑ β∗γ∗

Proposition

If γ : Z ⇁ ℘(W ) is union-closed,

(α ∗ β) ∗ γ = α ∗ (β ∗ γ)
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Associativity of Peleg’s composition

Definition

γ : Z ⇁ ℘(W ) is called union-closed if

⌊ρ⌋(ρ∋W )@ ⊑ γ

for all relations ρ : Z ⇁ ℘(W ) such that ρ ⊑ γ.

(a,B) ∈ α@ ⇔ B = {b | (a, b) ∈ α}

Note: γ : Z ⇁ ℘(W ) is union-closed iff

B ̸= ∅ ∧ B ⊆ {B | (a,B) ∈ γ} ⇒ (a,
∪
B) ∈ γ

for each a ∈ Z.
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Associativity of Parikh’s composition

For Parikh’s composition

Lemma

If β : Y ⇁ ℘(Z) is up-closed,

(βγ⋄)⋄ ⊑ β⋄γ⋄

Proposition

If β : Y ⇁ ℘(Z) is up-closed,

(α ⋄ β) ⋄ γ = α ⋄ (β ⋄ γ)

Norihiro Tsumagari Relational Formalisations of Compositions and Liftings of Multirelations



Associativity of Parikh’s composition

Definition

β : Y ⇁ ℘(Z) is called up-closed if

βΞZ = β

(C,C′) ∈ ΞZ ⇔ C ⊑ C′

Note: β : Y ⇁ ℘(Z) is up-closed iff

(b, C) ∈ β ∧ C ⊑ C′ → (b, C′) ∈ β
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Unit of each composition

What is the unit of each composition?

α □ 1 = 1 □ α = α

1: the unit of □
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Example: multirelations on a singleton

Let X = {a} and

0 = 0X℘(X)

α = {(a, ∅)}
β = {(a, {a})}
γ = {(a, ∅), (a, {a})}

These are all relations from X to ℘(X).
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0 = 0X℘(X), α = {(a, ∅)}, β = {(a, {a})}, γ = {(a, ∅), (a, {a})}

Kleisli liftings of these relations:

0◦ = α◦ = {(∅, ∅), ({a}, ∅)}
β◦ = γ◦ = {(∅, ∅), ({a}, {a})}

Kleisli’s composition table:

◦ 0 α β γ
0 0 0 0 0
α α α α α
β α α β β
γ α α γ γ

β and γ are right units and there is no left unit.
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If we consider mappings (i.e. total and univalent multirelations)

0 = 0X℘(X),α = {(a, ∅)}, β = {(a, {a})}, γ = {(a, ∅), (a, {a})}

Kleisli’s composition table:

◦ α β
α α α
β α β

The singleton map β is the unit w.r.t. Kleisli’s composition.
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0 = 0X℘(X), α = {(a, ∅)}, β = {(a, {a})}, γ = {(a, ∅), (a, {a})}

Peleg liftings of these relations:

0∗ = {(∅, ∅)}
α∗ = {(∅, ∅), ({a}, ∅)}
β∗ = {(∅, ∅), ({a}, {a})}
γ∗ = {(∅, ∅), ({a}, ∅), ({a}, {a})}

Peleg’s composition table:

∗ 0 α β γ
0 0 0 0 0
α α α α α
β 0 α β γ
γ α α γ γ

The singleton map β is the unit w.r.t. Peleg’s composition.

[Furusawa, Struth, CoRR, 2014]
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0 = 0X℘(X), α = {(a, ∅)}, β = {(a, {a})}, γ = {(a, ∅), (a, {a})}

Parikh lifting of these relations:

0⋄ = {(∅, ∅), (∅, {a})}
α⋄ = {(∅, ∅), (∅, {a}), ({a}, ∅)}
β⋄ = {(∅, ∅), (∅, {a}), ({a}, {a})}
γ⋄ = ∇℘(X)℘(X)

Parikh’s composition table:

⋄ 0 α β γ
0 0 0 0 0
α γ γ γ γ
β 0 α β γ
γ γ γ γ γ

So, β is the left unit and there is no right unit.
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If we consider up-closed multirelations

0 = 0X℘(X), α = {(a, ∅)},β = {(a, {a})}, γ = {(a, ∅), (a, {a})}

Parikh’s composition table:

⋄ 0 β γ
0 0 0 0
β 0 β γ
γ γ γ γ

The membership relation β is the unit w.r.t. Parikh’s compositon.
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Conclusion

We formalized 3 kinds of compositions of multirelations in
relational calculi.
We showed that each of the following subclasses of
multirelations forms a category with each composition.

subclass composition the unit

mappings α ◦ β (Kleisli) the singleton map
f : X → ℘(Y ) {(a, {a}) | a ∈ X}

union-closed α ∗ β (Peleg) the singleton map
multirelations {(a, {a}) | a ∈ X}

up-closed α ⋄ β (Parikh) the membership rel.
multirelations {(a,A) | a ∈ A}

Thank you for your attention!

Norihiro Tsumagari Relational Formalisations of Compositions and Liftings of Multirelations



Conclusion

We formalized 3 kinds of compositions of multirelations in
relational calculi.
We showed that each of the following subclasses of
multirelations forms a category with each composition.

subclass composition the unit

mappings α ◦ β (Kleisli) the singleton map
f : X → ℘(Y ) {(a, {a}) | a ∈ X}

union-closed α ∗ β (Peleg) the singleton map
multirelations {(a, {a}) | a ∈ X}

up-closed α ⋄ β (Parikh) the membership rel.
multirelations {(a,A) | a ∈ A}

Thank you for your attention!
Norihiro Tsumagari Relational Formalisations of Compositions and Liftings of Multirelations


