
Monoid Modules and Structured
Documents Algebra

Andreas Zelend

RAMiCS 15
30. September 2015

Braga 2015 –1– c©Andreas Zelend

Structured Document Algebra

Goals

• A simple yet effective algebra of structured documents such as
collections of composed features

• Formal reasoning about the construction process of documents

• More general operations, notably deletion, than Feature Algebra

Braga 2015 –2– c©Andreas Zelend

Variation Points and Fragments

• Set V of variation points (VPs) at which things may be inserted

• Set F (V) of (document) fragments which may, among other things,
contain VPs from V

• every VP is a (yet unfilled) fragment by itself, i.e., V ⊆ F (V)

• A text is a fragment without VPs

Braga 2015 –3– c©Andreas Zelend

Variation Points and Fragments

• To make error handling algebraically nicer we use

1. a default fragment 0 and
2. an error fragment

• The addition, or supremum, operator + on fragments has the axioms

0 + x = x + x = fi + fj = (i 6= j)

• Together with associativity, idempotence and commutativity this
structure forms a flat lattice with least element 0 and greatest
element

Braga 2015 –4– c©Andreas Zelend

Modules

• A module is a partial function m : V F (V)

• VP v is assigned in m if v ∈ dom(m), otherwise unassigned or
external

• By using partial functions rather than relations, a VP can be filled
with at most one fragment in any legal module (uniqueness)

• Different VPs may have assigned the same fragment to them (a
module need not be an injective partial function)

• Simplest module: 0 (empty module)

Braga 2015 –5– c©Andreas Zelend

Module Addition

• We want to construct larger modules step by step by coupling more
and more VPs with fragments

• Central operation: module addition +

• Fuses two modules while maintaining uniqueness (and signalling an
error upon a conflict)

• Desired properties: + should be commutative, associative and
idempotent

Braga 2015 –6– c©Andreas Zelend

Module Addition

• Module addition can be defined as the lifting of + on fragments:

(m+ n)(v) =df

m(v) if v ∈ dom(m)− dom(n)
n(v) if v ∈ dom(n)− dom(m)
m(v) + n(v) if v ∈ dom(m) ∩ dom(n)
undefined if v 6∈ dom(m) ∪ dom(n)

• If in the third case m(v) 6= n(v) and m(v), n(v) 6= 0 then
(m+ n)(v) = , thus signalling an error

Braga 2015 –7– c©Andreas Zelend

Module Addition

• The set of modules with + and the neutral element 0 forms a
commutative monoid .

• The least element w.r.t. natural order ≤ is the empty module 0 and
the top element is the module t with t(v) = for any v ∈ V .

• Modules m and n are called compatible, in signs m ↓ n, if their
fragments coincide on their shared domains, i.e.,

m ↓ n ⇐⇒df ∀ v ∈ dom(m) ∩ dom(n) : m(v) = n(v) .

Braga 2015 –8– c©Andreas Zelend

Module Addition

v0 7→

class Stack {

v1 7→

int ctr = 0;

int size(){
return ctr;

}

String s = new String();

void empty() {
v3 7→

{
ctr = 0;

s = "";

}
void push(char a) {

v4 7→
{

ctr++;

s = String.valueOf(a)

.concat(s);

}
void pop() {

v5 7→
{

ctr--;

s = s.substring(1);

}
char top() {
return s.charAt(0);

}

← [v2

}

class v0 7→ { class Stack { v1 v2 }

stack v2 7→ { String...v3...v4...v5

count

v1 7→ { int ctr = 0;...

v3 7→ { ctr = 0;

v4 7→ { ctr++;

v5 7→ { ctr--;

(a) (b)

• The module addition class+ stack + count is represented by the
left module.

Braga 2015 –9– c©Andreas Zelend

Subtraction

• For modules m and n we define the subtraction − via restriction | as

m− n =df m |dom(m)−dom(n)

• This spells out to

(m− n)(v) =df

{
m(v) if v ∈ dom(m)− dom(n)
undefined otherwise

Braga 2015 –10– c©Andreas Zelend

Abstracting from SDA

• Intermediate summary:

• The set M of modules with + and − forms an algebraic structure
SDA =df (M,+,−,0) such that (M,+,0) is an idempotent and
commutative monoid and which satisfies the following laws for all
l,m, n ∈M :

1. (l −m)− n = l − (m+ n) ,

2. (l +m)− n = (l − n) + (m− l) ,

3. 0− l = 0 ,

4. l − 0 = l .

Braga 2015 –11– c©Andreas Zelend

Abstracting from SDA I

• Now we want to abstract from modules. Therefore we define
monoid modules (m-module)

• A monoid module (m-module) is an algebraic structure (B,M, :)
where

• (M,+, 0) is an idempotent and commutative monoid,

• (B,+, ·, 0, 1,¬) is a Boolean algebra in which 0 and 1 are the least
and greatest element and · and + denote meet and join,

Braga 2015 –12– c©Andreas Zelend

Abstracting from SDA II

• The restriction, or scalar product, : is a mapping B ×M → M
satisfying for all p, q ∈ B and m,n ∈M :

(p+ q) :m = p :m+ q :m ,

p : (m+ n) = p :m+ p :n ,

0 :m = 0 ,

(p · q) :m = p : (q :m) ,

1 :m = m ,

p : 0 = 0 .

• We define the natural order on (M,+, 0) by
m ≤ n ⇐⇒df m+ n = n. Therefore + is isotone in both
arguments.

Braga 2015 –13– c©Andreas Zelend

Monoid Modules

• As a consequence we have:

1. Restriction : is isotone in both arguments.

2. p :m ≤ m.

3. p : (q :m) = q : (p :m)

• The structure RMM = (P(M),P(M ×N), :), where : is restriction,
i.e., p :m = {(x, y) | x ∈ p ∧ (x, y) ∈ m}, forms an m-module.

Braga 2015 –14– c©Andreas Zelend

Predomain Monoid Modules

• To model subtraction we extend m-modules with the predomain
operator p: M → B.

• A predomain monoid module (predomain m-module) is a structure
(B,M, :, p) such that(B,M, :) is a m-module and p : M → B
satisfies for all p ∈ B and m ∈M :

m ≤ pm : m , p(p : m) ≤ p .

Braga 2015 –15– c©Andreas Zelend

Predomain Monoid Modules

• In a predomain m-module pm is the least left preserver of m and
¬pm is the greatest left annihilator:

(llp) pm ≤ p ⇐⇒ m ≤ p :m , (gla) p ≤ ¬pm ⇐⇒ p :m ≤ 0 .

• In a predomain m-module (B,M, :, p) for all p ∈ B and m,n ∈M :

1. m = 0 ⇐⇒ pm = 0 ,

2. m ≤ n =⇒ pm ≤ pn ,

3. m = pm : m ,

4. p(m+ n) = pm+ pn ,

5. p(p :m) :m = p :m ,

6. p(p :m) = p · pm .

Braga 2015 –16– c©Andreas Zelend

Predomain Monoid Modules

• By defining pm =df {x | (x, y) ∈ m} RMM becomes a predomain
m-module.

• Using an RMM over binary functional relations R ⊆ V × F (V), i.e.,
R`;R ⊆ id(F (V)), allows us to reason about SDA.

• As a result, SDA’s subtraction m− n of modules is equivalent to
¬pn :m in the corresponding RMM.

Braga 2015 –17– c©Andreas Zelend

Predomain Monoid Modules

• SDA laws for subtractions also hold in a predomain m-module:

1. p(¬pn :m) = pm · ¬pn

2. (¬pn : 0 = 0)

3. ¬pl : (m+n) = ¬pl :m+¬pl :n

4. ¬p(m+ n) : l = ¬pn :(¬pm : l)

5. ¬p0 :m = m

6. ¬pm :m = 0

7. ¬pn :m ≤ m

8. m ≤ n =⇒ ¬pn :m = 0

Braga 2015 –18– c©Andreas Zelend

Overriding (SDA)

• Using addition and subtraction we can define overriding (similar to
the overriding known from OOP)

• The module m−. n which results from overriding n by m is defined
as

m−. n =df m+ (n−m)

• This replaces all assignments in n for which m also provides a value

• −. is associative and idempotent with neutral element 0, but not
commutative

Braga 2015 –19– c©Andreas Zelend

Overriding (predomain m-module)

• SDA’s overriding operator m−. n can also be defined in a
predomain m-module: m−. n =df m+ ¬pm :n .

• In a predomain m-module (B,M, :, p) for all p ∈ B and
l,m, n ∈M :

1. 0−. n = n,

2. m−. 0 = m,

3. m ≤ m−. n,

4. m = pm :(m−. n),

5. p(m−. n) = pm+ pn,

6. pm ≥ pn⇒ m−. n = m,

7. l−. (m+ n) = (l−. m) + (l−. n).

Braga 2015 –20– c©Andreas Zelend

Transformations

• By a transformation or modification or refactoring we mean a total
function T : F (V) → F (V). By T ·m we denote the application of
T to a module m. It yields a new module defined by

(T ·m)(v) =df

{
T (m(v)) if v ∈ dom(m)
undefined otherwise .

• Since we don’t want to allow transformations to mask errors that are
related to module addition, we add the requirement

T () = .

• A transformation might leave many fragments unchanged, i.e., act
as the identity on them.

Braga 2015 –21– c©Andreas Zelend

Structure of Transformations

• A monoid of transformations is a structure F = (F, ◦,1), where F
is a set of total functions f : X → X over some set X, closed
under function composition ◦, and 1 the identity function.

• The pair (X,F) is called transformation monoid of X.

Braga 2015 –22– c©Andreas Zelend

Structure of Transformations

• With this, we now can extend the list of requirements on
transformations:

1. T · (m+ n) = T ·m+ n ⇐ T |ran(n) = 1|ran(n) ∧ m ↓ n ,
2. 1 ·m = m ,
3. T · 0 = 0 .

• 0 being an annihilator means that transformations can only change
existing fragments rather than create new ones.

• We define the application equivalence ≈ of two transformations S, T
by

S ≈ T ⇐⇒df ∀m : S ·m = T ·m

Braga 2015 –23– c©Andreas Zelend

Structure of Transformations

• We define the set of fragments changed by a transformation T :

• Tm =df {f ∈ F (V) | T (f) 6= f} the modified fragments of T

• Tv =df {T (f) ∈ F (V) | T (f) 6= f} = ran(T |Tm) the value set of T

• Now we can characterise situations in which transformations can be
omitted or commute:

1. T · (S ·m) = S ·m if Tm ⊆ Sm ∧ Tm ∩ Sv = ∅.
2. T and S commute if Tm ∩ Sm = ∅ ∧ Tm ∩ Sv = ∅ ∧ Tv ∩ Sm = ∅.

Braga 2015 –24– c©Andreas Zelend

Summary

• Analysed the natrual order of modules

• Abstracted from SDA to a predomain monoid module

• Had a closer look at the structure of transformations

• Next step will be the addition transformations to predomain
m-modules

Braga 2015 –25– c©Andreas Zelend

