
Context Nominal sets Nominal KA

Completeness and Incompleteness in
nominal Kleene algebra

Dexter Kozen, Konstantinos Mamouras, Alexandra Silva

Cornell University, University College London & HasLab INESC TEC

September 28th, 2015
Ramics 2015

Braga, Portugal

1/35



Context Nominal sets Nominal KA

Context

• Names are pervasive in computer science;
• Semantics of programming languages (α-equivalence);

f (a) = 2 ∗ a g(b) = 2 ∗ b
• Range of proposals for sound semantics:

Pistore-Montanari, Gabbay-Pitts, . . .
• Nominal sets (Fraenkel and Mostowski, early twentieth

century).
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Context

• Francez and Kaminski: finite memory automata.
• Montanari and Pistore: HD-automata.
• Murawski and Tzevelekos: fresh-register automata.
• Bojanczyk, Klin, Lasota: extensive results on nominal

automata theory.
• Gabbay and Ciancia: nominal Kleene algebras.
• Kurz, Suzuki, Tuosto: regular expressions for

HD-automata.
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Nominal Chomsky hierarchy

Key point in Polish work: new notion of finiteness,
orbit-finiteness.
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Nominal Chomsky hierarchy

Unexpected things happen with orbit-finiteness.
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Nominal Chomsky hierarchy

Language hierarchy and correspondence theorems?
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Nominal Chomsky hierarchy

Murawski (June 2015): to this day we still do not have a
satisfactory notion of nominal regular language.
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This talk: some results, many problems. . .

• Nominal Kleene algebra (Ciancia & Gabbay) axioms are
not complete.

• Characterisation of the free Nominal Kleene algebra.

• Nominal Kleene algebra does not give a Kleene Theorem.
• New automaton model for one-sided Kleene Theorem.

Kozen, Mamouras, Silva. Completeness and Incompleteness of Nominal KA.

Kozen, Mamouras, Petrisan, Silva. Nominal Kleene coalgebra.
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Nominal Sets [Gabbay & Pitts, LICS 1999]

Nominal Sets

• a convenient framework for name generation, binding,
α-conversion

Applications

• logic: quantifiers
• programming language semantics: references, objects,

pointers, function parameters
• XML document processing
• cryptography: nonces
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Group Action

• Let G be a group and X a set
• A group action of G on X is a map G × X → X such that

π(ρx) = (πρ)x 1x = x

• A G-set is a set X equipped with a group action G×X → X
• f : X → Y is equivariant if f ◦ π = π ◦ f for all π ∈ G
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Nominal Sets

• Let A be a countably infinite set of atoms
• Let G be the group of all finite permutations of A

(permutations generated by transpositions (ab))
• If G acts on X , say that A ⊆ A supports x ∈ X if

Fix A ⊆ fix x

where fix x = {π ∈ G | πx = x} and Fix A =
⋂

x∈A fix x
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Nominal Sets

• x ∈ X has finite support if there is a finite A ⊆ A that
supports x

• If x ∈ X has finite support, then it has a minimum
supporting set supp x , the support of x

• Write a#x and say a is fresh for x if a 6∈ supp x
• A nominal set is a set X with a group action of G such that

every element has finite support
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Nominal Sets

Example

• A = {variables}
• X = {λ-terms over A}
• If π ∈ G and πa = a for a ∈ FV(x), then πx = x

(α-conversion)
• A ⊆ A supports x ⇐⇒ FV(x) ⊆ A
• supp x = FV(x)

• a#x iff a 6∈ FV(x)

(b c) ((λb.a(bb))(λb.a(bb))) = (λc.a(cc))(λc.a(cc))
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More examples

• The set A is a G-set under the group action πa = π(a). It is
a nominal set with supp(a) = {a}.

• The set PA is a G-set, but not a nominal set.
• The set PfsA of finite and co-finite subsets of A is a

nominal set.
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Kleene Algebra
Idempotent Semiring Axioms

p + (q + r) = (p + q) + r p(qr) = (pq)r
p + q = q + p 1p = p1 = p
p + 0 = p p0 = 0p = 0
p + p = p

p(q + r) = pq + pr a ≤ b
4⇐⇒ a + b = b

(p + q)r = pr + qr

Axioms for ∗

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x
1 + p∗p ≤ p∗ q + xp ≤ x ⇒ qp∗ ≤ x
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Standard Model

Regular sets of strings over Σ

A + B = A ∪ B
AB = {xy | x ∈ A, y ∈ B}
A∗ =

⋃
n≥0

An = A0 ∪ A1 ∪ A2 ∪ · · ·

1 = {ε}
0 = ∅

This is the free KA on generators Σ
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Other Models

• Relational models
• Trace models used in semantics
• (min, +) algebra used in shortest path algorithms
• (max, +) algebra used in coding
• Convex sets used in computational geometry (Iwano &

Steiglitz 90)
• Matrix algebras
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Nominal KA [Gabbay & Ciancia 2011]

A nominal Kleene algebra (NKA) over atoms A is a structure

(K ,+, ·,∗ ,0,1, ν)

with ν : A× K → K such that
• K is a nominal set over A
• the KA operations and ν are equivariant:

π(x + y) = πx + πy π(0) = 0
π(xy) = (πx)(πy) π(1) = 1
π(x∗) = (πx)∗ π(νa.e) = ν(πa).πe

equivalently, every π ∈ G is an automorphism of K
• all the KA axioms are satisfied and ν satisfies. . .

17/35



Context Nominal sets Nominal KA

Nominal Axioms [Gabbay & Ciancia 2011]

Odersky style axioms interaction with KA operators
a#e⇒ νa.e = e νa.(d + e) = νa.d + νa.e
νa.νb.e = νb.νa.e a#e⇒ (νa.d)e = νa.de
a#e⇒ νb.e = νa.(a b)e a#e⇒ e(νa.d) = νa.ed
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Nominal KA [Gabbay & Ciancia 2011]

Expressions

e ::= a ∈ Σ | e + e | ee | e∗ | 0 | 1 | νa.e

The operator νa is a binding operator whose scope is e

The set of expressions over Σ is denoted ExpΣ
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ν-strings

A ν-string is an expression with no occurrence of +, ∗, 0, or 1
(except to denote the null string, in which case we use ε)

x ::= a ∈ Σ | xx | ε | νa.x

The set of ν-strings over Σ is denoted Σν .
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Nominal Language Model [Gabbay & Ciancia 2011]

NL : ExpA → P(A∗)

Example:

NL(νa.ab) = {ab | a 6= b}
NL((νa.ab)(νa.ab)) = {abcb | a, c ∈ A distinct and different than b}

Care must be taken when defining product to avoid capture!
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Intermediate interpretation as sets of ν-strings over A

I : ExpA → P(Aν)

+, ·, ∗, 0, and 1 have their usual set-theoretic interpretations,
and

I(νa.e) = {νa.x | x ∈ I(e)} I(a) = {a}.

Examples

I(νa.a) = {νa.a}
I(νa.νb.(a + b)) = {νa.νb.a, νa.νb.b}

I(νa.(νb.ab)(a + b)) = {νa.(νb.ab)a, νa.(νb.ab)b}
I(νa.(ab)∗) = {νa.ε, νa.ab, νa.abab, νa.ababab, . . .}
I((νa.ab)∗) = {ε, νa.ab, (νa.ab)(νa.ab), (νa.ab)(νa.ab)(νa.ab), . . .}.
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Nominal Language Model [Gabbay & Ciancia 2011]

NL : Aν → P(A∗)

• α-convert so that all bindings in x are distinct and different
from free variables in x

• delete all binding operators νa to obtain x ′ ∈ A∗

• NL(x) = {π(x ′) | π ∈ fix FV(x)}
• NL(e) =

⋃
x∈I(e) NL(x)

Example

NL((νa.ab)(νa.ab)(νa.ab))

= {abcbdb | a, c,d ∈ A distinct and different from b}
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Completeness and Incompleteness

Lemma
For x , y ∈ Aν , ` x = y implies NL(x) = NL(y).

Incompleteness

6` a ≤ νa.a but NL(a) = {a} ⊆ A = NL(νa.a)
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Alternative Nominal Language Model

Let Σ and A be countably infinite disjoint sets, a,b, c, . . . ∈ A,
x , y , z, . . . ∈ Σ, and u, v ,w , . . . ∈ (Σ ∪ A)∗. Quantification is only
over Σ.

A language is a subset A ⊆ (Σ ∪ A)∗ such that πA = A for all
π ∈ G. The set of languages is denoted L.

AB = {uv | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩ A = ∅}
νx .A = {w [a/x ] | w ∈ A, a ∈ A− FV(w)}, x ∈ Σ
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Completeness

Theorem
The axioms of nominal Kleene algebra are sound and complete
for the equational theory of nominal Kleene algebras and for
the equational theory of the alternative language model:

` e1 = e2 ⇐⇒ AL(e1) = AL(e2)

The alternative language model is the free nominal KA.

26/35



Context Nominal sets Nominal KA

Completeness

I exposing bound variables
I scope configuration
I canonical choice of bound variables
I semilattice identities

27/35



Context Nominal sets Nominal KA

Determining Semilattice Identities

• Any substring of the form νa.x of a ν-string generated by
e1 or e2 must be generated by a subexpression νa.d

• There may be several different subexpressions of this form
• The sets of ν-strings generated by the ν-subexpressions

could satisfy various semilattice identities, and we may
have to know these identities to prove equivalence
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Determining Semilattice Identities

Example

Consider c1 + c2 and d1 + d2 + d3, where

c1 = νa.a(aa)∗ d1 = νa.a(aaa)∗

c2 = νa.aa(aa)∗ d2 = νa.aa(aaa)∗

d3 = νa.aaa(aaa)∗

• ci generates strings with i mod 2 a’s
• di generates strings with i mod 3 a’s
• Both c1 + c2 and d1 + d2 + d3 generate all nonempty

strings of a’s, but in different ways
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Determining Semilattice Identities

Express every ν-subexpression in e1 or e2 as a sum of atoms
of the Boolean algebra on sets of ν-strings generated by these
ν-subexpressions.

In the example above, the atoms are

bi = νa.ai(a6)∗, 1 ≤ i ≤ 6

so bi generates strings with i mod 6 a’s.
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Determining Semilattice Identities

Rewriting as sums of atoms,

c1 = b1 + b3 + b5 d1 = b1 + b4

c2 = b2 + b4 + b6 d2 = b2 + b5

d3 = b3 + b6.

The equivalences are provable in pure KA plus the nominal
axiom νa.(d + e) = νa.d + νa.e. This gives

c1 + c2 = (b1 + b3 + b5) + (b2 + b4 + b6)

d1 + d2 + d3 = (b1 + b4) + (b2 + b5) + (b3 + b6)
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Determining Semilattice Identities

Now observe
• any ν-string νa.x generated by e1 or e2 is generated by

exactly one atom νa.e
• we can treat νa.e as atomic!
• we can even replace each atom νa.e by a single letter

aνa.e in e1 and e2, and the resulting expressions are
equivalent, therefore provable

• for expressions of ν-depth greater than one, perform the
construction inductively, innermost scopes first
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Conclusions

• free language model consisting of regular sets of ν-strings
modulo the Gabbay–Ciancia axioms

• new techniques in the completeness proof, e.g.
• The Boolean algebra generated by finitely many regular

sets consists of regular sets and is atomic.
• Crucial for the normal form: every expression can be

written as a sum of atoms.
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Conclusions

• nominal versions of the syntactic and semantic Brzozowski
derivative

• finitely supported sets of ν-strings modulo the
Gabbay–Ciancia axioms form the final coalgebra

• half a Kleene theorem (expressions⇒ automata)
• exponential space decision procedure
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Open Problems

• Complexity?
• Other half of the Kleene theorem is false:

s0(a)

s1(a,b)

s0(b)

s1(b,a)

νb a

νab

The set of ν-strings accepted from state s0(a) is

{ε, νb.ba, νb.ba(νa.ab), νb.ba(νa.ab(νb.ba)),

νb.ba(νa.ab(νb.ba(νa.ab))), . . .}

Requires unbounded ν-depth!
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Open Problems

• Can we characterize bounded ν-depth automata in a way
that would lead to a converse of the Kleene theorem?

• Can we extend the syntax of expressions to capture sets of
unbounded ν-depth? Yes:

Xa = ε+ νb.bYab Yab = aXb

. . . but this leaves us with the task of providing proof rules
and proving completeness
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