
Metaphorisms in Programming

J.N. Oliveira

RAMiCS 2015
Braga

September 2015

INESC TEC & University of Minho
Grant PTDC/EIA-CCO/122240/2010

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Everything is a relation

(Source: Wikipedia, Pride and Prejudice, by Jane Austin, 1813.)

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Metaphorism < metaphor

Cognitive linguistics versus Chomskian generative linguistics

• Information science is based on Chomskian generative
grammars

• Semantics is a “quotient” of syntax

• Cognitive linguistics has emerged meanwhile

• Emphasis on conceptual metaphors — the basic building
block of semantics

• Metaphors we live by (Lakoff and Johnson, 1980).

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Metaphors we live by

A cognitive metaphor is a device whereby the meaning of an idea
(concept) is carried by another, e.g.

She counterattacked with a winning argument

— the underlying metaphor is argument is war.

Metaphor time is money underlies everyday phrases such as
e.g.:

You are wasting my time

Invest your time in something else.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Metaphoric language

Attributed to Mark Twain:

“Politicians and diapers should be changed often and for
the same reason”.

(‘No jobs for the boys’ in metaphorical form).

Metaphor structure, where P = politician and D = diaper:

P

chngt′

��

corrupt ��@
@@

@@
@@

D

chng

��

dirty��~~
~~

~~
~

corrupt◦·dirtyoo

IB

dirty (chng x) = False induces chngt ′ over P, and so on.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Formal metaphors

In his Philosophy of Rhetoric, Richards (1936) finds three kernel
ingredients in a metaphor, namely

• a tenor (e.g. politicians)

• a vehicle (e.g. diapers)

• an implicit, shared attribute.

Formally, we have a “cospan”

T

f ��?
??

??
??

V

g
����

��
��

�

A

(1)

where functions f : T→ A and g : V→ A extract the common
attribute (A) from tenor (T) and vehicle (V).

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Formal metaphors

The cognitive, æsthetic, or witty power of a metaphor is obtained
by hiding A, thereby establishing a composite, binary relationship

T V
f ◦·goo

— the “T is V” metaphor — which leaves A implicit.

Mathematics terminology is inherently metaphoric, cf. e.g. (in
our field)

• “polynomial” functor

• vector “addition”

(algebraic structure sharing) and so is computing terminology in
general

• ... stack, queue, pipe, memory, driver, ...

in a true cognitive sense.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

“Metaphoric” software science?

Two flavours in (applied) linguistics,

• generative (grammars, parsing)

• cognitive (“metaphors we live by”...)

Trying a parallel to software science — further to hylomorphisms with
pattern f · g◦, e.g. context-free languages, compilers:

compiler = code generator · pretty printer◦

how about “metaphorisms” with
pattern f ◦ · g , e.g. sorting:

sort = ordered · (bag◦ · bag)

?

aaaabbc

bag ��<
<<

<<
<<

abacaba

bag����
��

��
�

a4b2c1

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Metaphorical specifications

In the field of program specification, many problem statements are
indeed metaphorical in such a formal sense.

Such “metaphorisms” are input-output relationships in which
some hidden information is preserved (the invariant part), subject
to some form of optimization (the variant part):

M = (f ◦ · g) � R

T

T

f ��?
??

??
??

R
??�������

V

g
����

��
��

�

M
__???????

f ◦·goo

A

(2)

Shrinking (· � ·) reduces the vagueness of relation f ◦ · g in (2)
under criterion R, which tells which Ts are “better”.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Text formatting metaphorism

Formatted text is a sequence of text lines,

[String]

(>>=words) %%KKKKKKKKKK
String

wordsyyttt
ttt

ttt
t

Formatoo

[String]

such that the original sequence of words is preserved when white
space is ignored.

Formatting consists in (re)introducing white space evenly
throughout the output text lines,

Format = ((>>=words)◦ · words) � R (3)

as specified by some convenient criterion R.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Other metaphorisms

• Source code refactoring — the meaning of the source
program is preserved, the target code being better styled wrt.
coding conventions and best practices.

• Change of base (numeric representation) — the numbers
represented by the source and the result are the same, cf. the
representation changers of Hutton and Meijer (1996).

• Sorting — the bag (multiset) of elements of the source list is
preserved, the optimization consisting in obtaining an ordered
output.

etc

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Shrunken equivalence relation = metaphorism

Wherever f = g in (2) we get

M = (f ◦ · f) � R (4)

— a “shrunken” equivalence relation because f ◦ · f = ker f is an
equivalence (the kernel of f).

Meaning of y M x :

• f y = f x (this is the formal metaphor)

• y is “best” among all other y ′ such that f y ′ = f x (this is
the optimization) recalling S � R = S ∩ R / S◦, that is:

〈∀ y ′ : f y ′ = f x : y R y ′〉

— recall Programming from Galois connections, RAMiCS 2011
(Mu and Oliveira, 2012).

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Inductive metaphorisms

From a strict, cognitive point of view, case f = g in (2) leads to
“poor metaphors”.

Things become more interesting wherever f = g = (|k|) over an

inductive type, say T F T
inoo , that is, f · in = k · (F f).

(|h|) expresses a fold or catamorphism over algebra h.

In this case, for surjective f = (|k|)

ker f = (|ker f · in|) (5)

holds, meaning that metaphorism M = ker f � R can be
implemented by calculating M = (|ker f · in|) � R — cf. “greedy”
theorems, etc

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Calculating metaphorisms

Another alternative is to shrink only (|k|)◦and then fuse the
outcome with (|k|), cf.

M = (ker (|k|)) � R = ((|k|)◦ � R) · (|k|) (6)

by this law of shrinking: (S · f) � R = (S � R) · f .

There are, still, other calculational alternatives that lead to “richer
metaphors” which in turn lead to more interesting programs.

These amount to what has elsewhere been known as changing the
virtual data structure (Swierstra and de Moor, 1993).

NB: the (functional) composition of a fold followed by an unfold
has been known as a metamorphism (Martin Erwig).

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

AoP, pp.154–155

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Enriching the metaphor

Changing the virtual data structure amounts to, in the first place,
composing the metaphor with a very special hylomorphism: the
image (|h|) · (|h|)◦ = id of a surjective fold over another datatype
W:

W
(|h|)

~~}}
}}

}}
}}

T T

(|k|) ��?
??

??
??id=img (|h|)

oo

(|h|)◦
``AAAAAAAA

T

(|k|)����
��

��
�

ker (|k|)oo

A

(7)

Typically, choose polynomial W of degree higher than T, e.g.
binary trees versus finite lists.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Enriching the metaphor

We are heading towards a “richer metaphor” able to shift the “ictus” of
algorithmic control from type T to type W:

W
(|h|)

~~}}
}}

}}
}

(|k|)·(|h|)

��=
==

==
==

==
==

==
==

==

T T

(|k|)����
��

��
�

N=(|h|)◦·ker (|k|)
iiTTTTTTTTTTTTTTTTTTTT

A

(8)

W is the (virtual) data type chosen to command a divide & conquer
algorithmic implementation.

The aim is to convert N into an unfold, say [(X)] so that we get a
hylomorphism as final implementation.

However, a metaphorism = metaphor + optimization, so we have to

consider this too.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Special case of optimization (shrinking)

It may be the case that R in

M = (ker (|k|)) � R

is of the form R = p? · > where > is the coexists relation
y > x = true (de Morgan’s terminology) and p? is the partial
identity (test) which represents predicate p.

Thus y (p? · >) x = p y

It can be shown that:

S � (p? · >) = p? · S ⇐ S is entire (9)

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Special case of optimization (shrinking)

Kernels are reflexive and therefore entire. Thus:

M = ker (|k|) � (p? · >) = p? · ker (|k|)

Example — the sorting metaphorism:

Sort = (ordered?) · Perm

Equivalence Perm = ker bag is the metaphor

Function bag computes the bag of elements of a finite list.

Pointwise:

y (Sort) x = ordered y ∧ (bag y = bag x)

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Sorting example (details)

• T = finite cons-lists, inT = [nil , cons].

• W = binary labelled trees, W F W
inW=[empty ,fork]oo where

F f = id + id × (f × f)

• (|k|) = bag — converts finite lists to bags (multisets of
elements).

• (|h|) = flatten, for h = [nil , inord] where

inord (a, (x , y)) = x ++ [a] ++ y

is inorder traversal.

• q? tests for ordered lists, q? = (|[nil , cons] · (id + mn?)|) where
mn (x , xs) = 〈∀ x ′ : x ′ εT xs : x ′ 6 x〉, εT denoting list
membership.
(Predicate mn (x , xs) ensures that list x : xs is such that x is
at most the minimum of xs, if it exists.)

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Shrinking metaphorisms into hylomorphisms

M = q? · id · ker (|k|)

⇔ { (|h|) · (|h|)◦ = id for surjective (|h|) }

M = q? · (|h|) · (|h|)◦ · ker (|k|)

⇔ { switch to p? such that (|h|) · p? = q? · (|h|) }

M = (|h|) · p? · (|h|)◦ · ker (|k|)︸ ︷︷ ︸
[(X)]

Unfold [(X)] is the (relational) divide

step in T W
(|h|)oo T

[(X)]oo

[(X)] is in fact a new metaphorism,
now between W and T.

W

(|k|)·(|h|) @
@@

@@
@@

@ T

(|k|)����
��

��
�

[(X)]oo

A

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Weakest preconditions

Before proceeding to calculating divide step [(X)], we observe that
p? such that

(|h|) · p? = q? · (|h|)

holds is the weakest pre-condition for (|h|) to ensure q? on its
output, that is (q · f)? — recall the standard GC:

ρ (f · p?)︸ ︷︷ ︸
sp(f ,p)

⊆ q? ⇔ f · p? ⊆ q? · f ⇔ p? ⊆ δ (q? · f)︸ ︷︷ ︸
wp(f ,q)

(10)

NB:

δ (q? · f) = (q · f)? (11)

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Weakest precondition algebra

The following wp(·, ·)-universal property,

f · p? = q? · f ⇔ p = q · f (12)

enables a “logic-free” calculation of weakest preconditions.

So, given f and post-condition q, replacing q? · f by f · p? is
always possible (cf. existence) and such p is unique.

Also, for some q:

ker f · p? = p? · ker f ⇐ p = q · f (13)

Relational proofs for (12) and (13) follow.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Proof of (12)

Step (⇒):

p = q · f
⇔ { unfolding p? = (q · f)? }

p? ⊆ (q · f)? ∧ (q · f)? ⊆ p?

⇔ { sp a wp GC (10) ; (11) }

f · p? ⊆ q? · f ∧ δ (q? · f) ⊆ p?

⇐ { f · p? = q? · f assumed (twice) }

δ (f · p?) ⊆ p?

⇔ { domain GC ; shunting test p? }

f · p? ⊆ >
⇔ { trivia }

true

�

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Proof of (12)

Step (⇐):

f · p? = q? · f ⇐ p = q · f
⇔ { (11) ; substitution, i.e. cancellation (10) }

q? · f ⊆ f · (q · f)?

⇔ { R = R · δ R ; (11) }

q? · f · δ (q? · f) ⊆ f · (δ q? · f)

⇔ { domain δ (q? · f) }

q? · f ⊆ f

⇐ { monotonicity of (·f) }

q? ⊆ id

⇔ { q? is a test }
true

�

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Proof of (13)

ker f · p?

= { ker f = f ◦ · f ; (12) since p = q · f }

f ◦ · q? · f
= { converses ; partial identities }

(q? · f)◦ · f

= { again (12) }

(f · p?)◦ · f

= { converses ; kernels }

p? · ker f

�

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Shrinking metaphorisms into hylomorphisms

In the case of

(|h|) · p? = q? · (|h|)
W

(|h|)
��

W

(|h|)
��

p?oo

T T
q?
oo

(14)

above, test p? : W←W will be of shape

p? = (|W F W
inWoo F W

w?oo |)

where inW is the initial algebra of W, i.e. (|inW|) = id , and so
p? ⊆ id by monotonicity since w? ⊆ id .

Similarly: T T
q?oo = inT · t?, for some t.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Shifting the metaphor

Given h and q, solving

(|h|) · p? = q? · (|h|)
for p amounts to finding conditions for reducing both (|h|) · p? and
q? · (|h|) to the same fold (|R|) over W, thanks to relational
fold-fusion:

Q · (|S |) = (|R|) ⇐ Q · S = R · F Q (15)

a) Reducing one side (15) :

q? · (|h|) = (|R|) ⇐ q? · h = R · (F q?) (16)

b) Reducing the other side:

(|h|) · p? = (|R|)

⇔ { inline p? = (|inW · w?|) }

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Shifting the metaphor

⇔ { inline p? = (|inW · w?|) }

(|h|) · (|inW · w?|) = (|R|)

⇐ { fusion (15) }

(|h|) · inW · w? = R · F (|h|)

⇔ { cancellation: (|h|) · inW = h · F (|h|) }

h · F (|h|) · w? = R · F (|h|)

⇔ { switch to r? such that F (|h|) · w? = r? · F (|h|) }

h · r? · F (|h|) = R · (F (|h|))

⇐ { Leibniz }

h · r? = R

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Shifting the metaphor

Thus R = h · r? ensures proviso (14), which we can replace in the
other proviso — side condition of fusion step (16), getting

q? · h = h · r? · F q?

T

q?
��

F T

F q?
��

hoo

T F T
h

oo F T
r?
oo

(17)

while not forgetting:

F (|h|) · w? = r? · F (|h|)
F W

F (|h|)
��

F W

F (|h|)
��

w?oo

F T F T
r?
oo

(18)

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Example (sorting)

Clearly, condition r on F T in proviso (17),

q? · h = h · r? · (F q?)

is the weakest precondition for h to maintain q.

Let us calculate r for the sorting metaphorism, where (recall) q
checks for ordered lists, (|h|) = flatten, i.e.

flatten empty = nil
flatten (fork (a, (x , y)) = inord (a, (flatten x , flatten y))

where inord (a, (x , y)) = x ++ [a] ++ y

and thus

h = [nil , inord]

F f = id + id × (f × f)

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Example (sorting)

We get:

q? · [nil , inord] = [nil , inord] · r? · (id + id × (q?× q?))

⇔ { switch to s such that r? = id + s?; coproducts }

[q? · nil , q? · inord] = [nil , inord · s? · (id × (q?× q?))]

⇔ { the empty list is trivially ordered }

q? · inord = inord · s? · (id × (q?× q?))

⇔ { universal property (12) }

(q · inord)? = s? · (id × (q?× q?))

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Example — quicksort

Knowing q and inord we easily spot s going pointwise:

q (x ++ [a] ++ y)

⇔ { pointwise definition of ordered lists }
(q x) ∧ (q y)
〈∀ b : b εT x : b 6 a〉 ∧ 〈∀ b : b εT y : a 6 b〉︸ ︷︷ ︸

s (a,(x ,y))

Altogether:

inord (a, (x , y)) = x ++ [a] ++ y
pre (a, (x , y)) = 〈∀ b : b εT x : b 6 a〉 ∧ 〈∀ b : b εT y : a 6 b〉

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Calculating the divide step

Assuming (17) and (18), let us calculate X :

p? · (|h|)◦ · ker (|k|) = [(X)]

⇔ { converses }

ker (|k|) · (|h|) · p? = (|X ◦|)

⇔ { (|h|) · p? = q? · (|h|) assumed — cf. (14) }

ker (|k|) · q? · (|h|) = (|X ◦|)

⇐ { fusion (15) ; functor F }

ker (|k|) · q? · h = X ◦ · F ker (|k|) · F q?

We are far for having a closed formula for X — how do we get rid
of term F ker (|k|) · F q??

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Calculating the divide step

Removing F q? first:

ker (|k|) · q? · h = X ◦ · F ker (|k|) · F q?

⇔ { proviso (17): q? · h = h · r? · F q? }

ker (|k|) · h · r? · F q? = X ◦ · F ker (|k|) · F q?

⇐ { Leibniz }

ker (|k|) · h · r? = X ◦ · F ker (|k|)

Next, we’ll get rid of F ker (|k|).

This will require equivalence ker (|k|) to be a congruence for
algebra h, see the next slide.

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Auxiliary results

Theorem
Let R be a congruence for algebra h : F A→ A, that is

h · (F R) ⊆ R · h i .e. y (F R) x ⇒ (h y) R (h x) (19)

holds and R is an equivalence relation. Then this is the same as
stating:

R · h = R · h · (F R) (20)

(Proof in the appendix.) �

Example: for f = (|k|), ker f is congruence for initial algebra in,
since ker f = (|ker f · in|) is an instance of (20), cf.
ker f · in = ker f · in · (F ker f).

Example: “same parity as” is a congruence for succ .

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Calculating the divide step

We move on:

ker (|k|) · h · r? = X ◦ · F ker (|k|)

⇔ { (20) }

ker (|k|) · h · (F ker (|k|)) · r? = X ◦ · F ker (|k|)

Annoying: as r? prevents cancellation, we have to assume a final
side condition

F (ker (|k|)) · r? = r? · F (ker (|k|)) (21)

whereby we get (after cancellation, converses):

X = r? · h◦ · ker (|k|)

— another metaphor, cf. X = r? · ((|k|) · h)◦ · (|k|)

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Example (sorting)

Let us calculate (relational) coalgebra

X : T→ 1 + T× (T× T)
X = (id + s?) · (bag · [nil , inord])◦ · bag

(22)

for the sorting metaphor:

X = (id + s?) · (bag · [nil , inord])◦ · bag

⇔ { take converses and let X ◦ = [X1◦,X2◦] }

[X1◦,X2◦] = bag◦ · (bag · [nil , inord]) · (id + s?)

⇔ { bag◦ · bag = Perm; coproducts }

[X1◦,X2◦] = [Perm · nil ,Perm · inord · s?]

⇔ { Perm · nil = nil ; converses }{
X1 = nil◦

X2 = s? · inord◦ · Perm

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Example — quicksort

⇔ { go pointwise }{
() X1 x ⇔ x = []
(a, (y , z)) X2 x ⇔ (a, (y , z)) (s? · inord◦ · Perm) x

where the second line unfolds to:

(a, (y , z)) X2 x ⇔ s (a, (y , z)) ∧ (y ++ [a] ++ z) Perm x

Note the free choice of “pivot” a provided s holds.

NB: We still need to check the other side conditions — not
difficult but not immediate (see the paper).

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Wrapping up

Quicksort derivation takes longer than 2 pages...

Generic calculation of the refinement of a metaphorism into a
hylomorphism by changing the virtual data structure.

Metaphorism identified as a class of relational specifications.

Currently working out the text formatting metaphorism.

Greedy implementation from M = (f ◦ · g) � R where R includes
more than one optimization criterion, e.g.

• fixed maximum number of characters per output line

• maximize number of words per line (minimize white space)

Metaphorism — exploratory concept (recent research topic).

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Annex

Proof of (19), (20) concerning congruences:

R · h = R · h · (F R)

⇔ { R · h ⊆ R · h · (F R) holds by id ⊆ F R, since id ⊆ R }

R · h · (F R) ⊆ R · h

⇔ { lower R can be cancelled, see below }

h · (F R) ⊆ R · h
�

Last step can be justified by assuming the function kR which maps
every object to its R-equivalence class — R = ker kR .

Then (next slide):

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

Annex

For any suitably typed relations X and Y :

R · X ⊆ R · Y
⇔ { inline R = ker kR }

ker kR · X ⊆ ker kR · Y
⇔ { ker kR = k◦

R · kR ; shunting }

kR · k◦
R · kR · X ⊆ kR · Y

⇔ { f · f ◦ · f = f (difunctionality) }

kR · X ⊆ kR · Y
⇔ { shunting ; R = ker kR }

X ⊆ R · Y
�

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

References

Context Metaphorisms Calculating metaphorisms Hylomorphisms References

G. Hutton and E. Meijer. Back to basics: Deriving representation
changers functionally. Journal of Functional Programming, 6(1):
181–188, 1996.

G. Lakoff and M. Johnson. Metaphors we live by. University of
Chicago Press, Chicago, 1980. ISBN 978-0-226-46800-6.

S.-C. Mu and J.N. Oliveira. Programming from Galois connections.
JLAP, 81(6):680–704, 2012. doi: 10.1016/j.jlap.2012.05.003. .

I.A. Richards. The Philosophy of Rhetoric. Oxford University
Press, 1936.

D. Swierstra and O. de Moor. Virtual data structures. In
B. Möller, H. Partsch, and S. Schuman, editors, Formal Program
Development, volume 755 of LNCS, pages 355–371. Springer,
1993. ISBN 978-3-540-57499-6. doi:
10.1007/3-540-57499-9 26. URL
http://dx.doi.org/10.1007/3-540-57499-9 26.

http://dx.doi.org/10.1007/3-540-57499-9_26

	Context
	Metaphorisms
	Calculating metaphorisms
	Hylomorphisms
	References

