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Abstract

By a partial component we mean a process which fails
or dies at some stage, thus exhibiting (unexpected)
ephemeral behaviour (eg. operating system crash).

We deal with partial component totalization (or
transposition) in a way similar to what is done wrt. partial
functions , cf. exceptions.

Behavioural transposition adds try-again cycles so as to
prevent components from collapsing

We address client-server fission of every try-again
totalized coalgebra into two components — the original
one and an added front-end — cf. the “Seeheim
(separation) principle” (1985)
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Why Software Components

Component -oriented design relies on compositionality —
the true basis of software construction — for instance

// g // f //

Recall

Unix pipes g | f

Functional composition, λx.f(g(x))

etc
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Why Software Components

Ideal world:

[[ // g // f // ]] = [[f ]] · [[g]]
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Why Software Components

Ideal world:

[[ // g // f // ]] = [[f ]] · [[g]]

Real world!
inv-B inv-C

A // // g B // // f
C // //

pre-g pre-f

Internal state
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Why Software Components

Ideal world:

[[ // g // f // ]] = [[f ]] · [[g]]

Semantics of real world ?
















inv-B inv-C

A // // g
B // // f

C // //

pre-g pre-f

Internal state

















= [[f ]] ? [[g]]
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Why Software Components

Ideal world:

[[ // g // f // ]] = [[f ]] · [[g]]

Semantics of real world ?
















inv-B inv-C

A // // g
B // // f

C // //

pre-g pre-f

Internal state

















= [[f ]] ? [[g]]

Monadic (Kleisli) [[f ]] .! [[g]] replaces [[f ]] · [[g]]
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Why monads

Compare:

(f · g)a = let b = g(a) in f(b)

with

(f .! g)a = do { b <- g(a); f(b) }
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Why monads

Compare:

(f · g)a = let b = g(a) in f(b)

with

(f .! g)a = do { b <- g(a); f(b) }

where types are, in the second case, as follows

A g
// M B

B
f

// M C
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Why monads

Compare:

(f · g)a = let b = g(a) in f(b)

with

(f .! g)a = do { b <- g(a); f(b) }

In detail:

A g
//

f .! g

++
M B

M f
// M(M C) µ

// M C

B
f

// M C

PURe’05 — 12.Oct – p. 4/35



Partiality and the Error monad

Which monad M ? A popular choice for handling partiality is

datatype

data Error a = Err String | Ok a

that is, monad

instance Monad Error where

return b = Ok b

(Err e) >>= f = Err e

(Ok a) >>= f = f a
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First experiment

“Monadify” normal functions,

[[f ]] = Ok · f

and convert conditions and invariants to monadic
partial identities , eg.

[[inv]] a = if (inv a)

then (Ok a

else Err ”Invariant violation”
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Back to the real world

In this way, we get a very simple, “pipelined” approach to
composition

A // [[pre-g]] // [[g]] // [[inv-B]] // [[pre-f ]] // [[f ]] // [[inv-C]] //

where the arrows are Error -monadic — think of (.! ) instead
of (·) — that is

do { pre-g a;

b <- g a;

inv-B b; pre-f b;

c <- f b;

inv-C c

}
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Changing the evaluation mode

See
Camila Revival: VDM meets Haskell

by
J. Visser et al (Overture Workshop last July,

Newcastle UK)
for alternatives to the error monad and a generic
(type class based) way of commuting among them
in a Haskell interpreter of VDM.
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From functions to objects

class stackObj

types
public Stack = seq of A ;
public A = token ;

instance variables
stack : Stack := [];

operations

public PUSH : A ==> ()
PUSH(a) == stack := [a] ˆ stack;

public POP : () ==> A
POP() == def r = hd stack

in ( stack := tl stack;
return r)

pre s <> [];

end stackObj
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Method semantics

Semantics of PUSHis a function of type

[[PUSH]] : S × 1←− S × A

( S abbreviates Stack and 1 abbreviates () in VDM++.)

Semantics of POPis of type

[[POP]] : S × A←− S × 1

However, [[POP]] is not a (total) function, because of its
precondition.

Reactive partiality is more the rule than the exception in
formal modelling.
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Nondeterministic objects

class unOrdCol

types
public Collection = set of A ;
public A = token ;

instance variables
col : Collection := {};

operations

public PUT : A ==> ()
PUT(a) == col := {a} union col;

public GET : () ==> A
GET() == let r in set col

in ( col := tl \ {r};
return r)

pre s <> {};

end unOrdCol
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Relational semantics

stackObj and unOrdCol are similar in shape

However, GET(the counterpart of POP) is not only partial
but also nondeterministic

All in all, the arrows above have to be regarded as
denoting binary relations

Let’s package PUTand GET(or PUSHand POP) together:

[[PUT]] + [[GET]] : S × 1 + S × A←− S ×A + S × 1
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Going coalgebraic

Since × distributes over + , we can factor out S ,

dr◦ · ([[PUT]] + [[GET]]) · dr : S × (1 + A)←− S × (A + 1)

where dr is the distribute-right isomorphism and R◦

denotes the converse of R .
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Going coalgebraic

Since × distributes over + , we can factor out S ,

dr◦ · ([[PUT]] + [[GET]]) · dr : S × (1 + A)←− S × (A + 1)

Since every R (a relation) has a powerset transpose ΛR

(a function),

f = Λ R ≡ (bRa ≡ b ∈ f a)
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Going coalgebraic

Since × distributes over + , we can factor out S ,

dr◦ · ([[PUT]] + [[GET]]) · dr : S × (1 + A)←− S × (A + 1)

. . . we can convert the above relational semantics into

Λ(dr◦ · ([[PUT]] + [[GET]]) · dr)
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Going coalgebraic

Since × distributes over + , we can factor out S ,

dr◦ · ([[PUT]] + [[GET]]) · dr : S × (1 + A)←− S × (A + 1)

. . . we can convert the above relational semantics into

Λ(dr◦ · ([[PUT]] + [[GET]]) · dr)

— a function of type P(S × (1 + A))←− S × (A + 1)

which can — finally — be curried into coalgebra

Λ(dr◦ · ([[PUT]] + [[GET]]) · dr) : P(S × (1 + A))(A+1)

︸ ︷︷ ︸

TS

←− S
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In general

Given (nondeterministic) component p hiding internal state Up

and offering methods Mi=1,n with public interface
Mi : Oi ←− Ii its semantics will be captured by coalgebra

Λ(dr◦ · (
n∑

i=1

[[Mi]]) · dr)

mapping Up into TUp = P(Up ×O)I , where O abbreviates
∑n

i=1 Oi , I abbreviates
∑n

i=1 Ii (For simplicity, dr is assumed
extended to the n -ary case.)
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Components as coalgebras

A (generic) component p with input interface
I and output interface O

p : O ←− I

I

��
p

��
O

is a pair

(up ∈ Up, ap : B(Up ×O)I ←− Up)

where

point up is the ‘initial’ or ‘seed’ state.

B is an arbitrary strong monad.
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Behavioural semantics

The semantics of p is the behaviour produced by starting at
initial state up and unfolding over coalgebra ap :

[[p]] = [(ap)]up B(ν ×O)I ν
ωoo

B(Up ×O)I

B([(ap)]×O)I

OO

Up
ap

oo

[(ap)]

OO

That is, an action will not simply produce an output and a
continuation state, but a B -structure of such pairs.
Monad B’s unit ( η ) and multiplication ( µ ) provide,
respectively, a value embedding and a ‘flatten’ operation to
unravel nested behavioural annotations.
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Component combinator (algebra)

Pipeline p ; q :
I

��

J

��
p

��

; q

��
J O

Choice p ⊞ q :
I

��

+ O

��
p

��

⊞ q

��
J + R
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Behaviour partiality

Wherever B can be decomposed into a maybe shape,

B ∼= B+ + 1

ξ◦B

ξB

— eg. P ∼= P+ + 1 , Maybe ∼= Id + 1 — p will be referred to
as a partial component : it may stop in presence of a
precondition or invariant violation and its coalgebra is Maybe

-transposable into simple relation B+(Up ×O) Up × I
Rp

such that ap = ξB · Γ Rp and Rp = (ξB · ι1)
◦ · ap.
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Behaviour totalization

Transpose partial component p : O ←− I into
p↑: O + 1←− I such that

output of type 1 bears the informal meaning “please try
again” .

Details about ap↑ :

ap↑ =

Up × I
△×id

−−−−−−−→ (Up × Up) × I
a

−−−−−−−→ Up × (Up × I)

id× ap

−−−−−−−→ Up × B(Up × O)

id×ξB
−−−−−−−→ Up × (B+(Up × O) + 1)

dr
−−−−−−−→ Up × B+(Up × O) + (Up × 1)

π2+id
−−−−−−−→ B+(Up × O) + (Up × 1)

B+(id×ι1)+id×ι2
−−−−−−−−−−−−−−−→ B+(Up × (O + 1)) + Up × (O + 1)

[ι1,ξB·ηB]
−−−−−−−−→ B+(Up × (O + 1)) + 1

ξ◦B
−−−−−−−→ B(Up × (O + 1))
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Totalization as refinement

We have developed an equational (pointfree) proof for the
following result:

Lemma: Component p↑: O + 1←− I is a backward
refinement of p : O ←− I , with respect to the failure
refinement order ≤F

T , for T + 1 ∼= B(Id×O) .

We need to explain

What “backward” refinement means

The ≤F
T failure refinement order.
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Backward refinement

Let T be the behaviour shape of components
q = (uq, aq) and p = (up, ap) sharing the same state
space U .
Then q is said to be a backward refinement of p wrt.

preorder TU TU
≤T

— written p ≤T q — if

uq = up

ap

.

≤T aq

NB:
(a) this is a special case of a more general definition.
(b) f

.

≤ g means f ⊆ ≤ · g — that is, f x ≤ g x for all x .
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Refinement preorders

Refinement preorders are membership-compatible preorders:

x ∈T x1 ∧ x1 ≤ x2 ⇒ x ∈T x2

that is, such that

∈T · ≤ ⊆ ∈T

One is free to choose ≤ in the range

id ⊆ ≤ ⊆ ∈T \ ∈T
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Our choice

By solving the above (in)equation we have arrived at the
following preorder (defined by induction on the structure of T ):

≤Id = id

≤K = id

≤T1×T2
= ≤T1

×≤T2

≤T1+T2
= ≤T1

+≤T2

≤T1·T2
= (∈T1

\ ≤T2
) · ∈T1

≤TK =
.

≤T

≤P = ∈P \ ∈P
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Our choice

Pointwise equivalent:

x≤Id y ≡ x = y

x≤K y ≡ x =K y

x≤T1×T2
y ≡ π1 x≤T1

π1 y ∧ π2 x≤T2
π2 y

x≤T1+T2
y ≡







x = ι1 x′ ∧ y = ι1 y′ ⇒ x′ ≤T1
y′

x = ι2 x′ ∧ y = ι2 y′ ⇒ x′ ≤T2
y′

x≤TK y ≡ ∀k∈K . x k ≤T y k

x≤PT y ≡ ∀e∈x∃e′∈y. e≤T e′
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The failure refinement order

Increase in definition on the implementation side is ensured by
extra clause

x ≤F
T+1

y ≡







x = ι1 x′ ∧ y = ι1 y′ ⇒ x′ ≤T y′

x = ι2 ∗ ⇒ TRUE

whose pointfree transform is

≤F
T+1 = [ι1 · ≤T

◦,⊤]◦

So, wherever ap(u, i) = ι2∗ and ap

.

≤F
T+1 aq holds, then either

aq(u, i) = ap(u, i) or, for some y, aq(u, i) = ι1 y.
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“Client-server fission”

Motivation:

“Seeheim principle” (1985): separate partiality handler
from (partial) server, typically

Application = Client (GUI) + Server (IS)

In out context, we want to split a given try-again totalized
coalgebra into two coalgebraic components — the
original one and an added front-end
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“Client-server fission”

Motivation:

“Seeheim principle” (1985): separate partiality handler
from (partial) server, typically

Application = Client (GUI) + Server (IS)

Two versions:

Idealized situation first — an “oracle” tells the client
when it is safe to invoke the server

Real situation — client interacts with the server
before enabling a partial action
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“Client-server fission” (idealized)

Recall how functions are “lifted” to components: f : B ←− A

becomes pfq : B ←− A over 1 such that

apfq = 1× A
η·(id×f) // B(1×B)

Then, given. . .
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“Client-server fission” (idealized)

. . . “oracle”

Φ = I
φ?
−−−→ I + I

id+!
−−−→ I + 1

telling which actions in I can be safely performed, try-again
totalized component p↑ would be bisimilar to

I

��

pΦq

��

;

I + 1

(client)

I

��

+ 1

��
p

��

⊞ pidq

��
O + 1

(server)
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“Client-server fission” (idealized)

Thus the architectural expression

front_end ; (p ⊞ idle) : O + 1←− I

where front_end = pΦq and idle = pid1q .
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“Client-server fission” (idealized)

Thus the architectural expression

front_end ; (p ⊞ idle) : O + 1←− I

where front_end = pΦq and idle = pid1q .

However — in reality — executability of a
component’s call depends not only on the input
supplied but also on the current value of p ’s state
variable.
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“Client-server fission” (realistic)

As this value must be known to the front-end, it should be
made available by p as a sort of attribute. It seems
reasonable to assume such an attribute as private , ie,
available only when p is intended to act as a server
accessed through a validating front-end.

So p must be of shape

p = p′ ; pπ2q : O ←− I

where p′ : Up ×O ←− I , on completion of a service call,
yields not only the corresponding output value but also
the current value of its internal state.
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A new front-end for p

I + Up

��

f_endp

��

= (up ∈ Up, af_endp
)

I + 1

where

af_endp
= Up × (I + Up)

dr
−−−→ (Up × I) + (Up × Up)

test+update
−−−−−−→ (Up × (I + 1)) + Up

ηB·[id,(id,ι2·!)]
−−−−−−−−→ B(Up × (I + 1))
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A new front-end for p

I + Up

��

f_endp

��

= (up ∈ Up, af_endp
)

I + 1

where update = π2 and where

test = Up × I
a·(△×id)
−−−−−→ Up × (Up × I)

id×Γ(dom Rp)
−−−−−−−−−→ Up × (Up × I + 1)

id×(π2+id)
−−−−−−→ Up × (I + 1)
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“Client-server fission” (realistic)

Finally, the server/front-end architecture is defined through a
similar aggregation pattern but with an additional step:

On every execution of the server component, the
computed value for its state is fed back to f_endp ,
using the corresponding update service.

Formally,

(f_endp ; (p′ ⊞ idle))�Up
: O + 1←− I

(See our draft paper for details about the p�X combinator)
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“Client-server fission” (diagram)

I + Up

��

f_endp

��

;

I + 1

(client)

I

��

+ 1

��

p′

��

⊞ idle

��
Up ×O

�Up + 1

(server)

Still missing but not essential: O also fed back to
f_endp for “beautification” .

PURe’05 — 12.Oct – p. 31/35



“Client-server fission” lemma

Fission is expressed by the following lemma:

Given partial component p , its try-again-transpose
p↑ is bisimilar to (f_endp ; (p′ ⊞ idle))�Up

.

This is proved by identifying a coalgebra morphism
h : Up ←− Up × (Up × 1) connecting the state-spaces of the
underlying coalgebras. The obvious choice is h = π1 · π2 .
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Conclusions

Regarding transposition as a refinement situation
entailed the need to extend the combinator algebra ( p�X

is new) and re-visit the underlying theory

Formal justification of what seemed to be just intuitive

Re-frame the theory in the pointfree relational calculus
which makes effective calculations simple and elegant.

Our calculations would require lengthy and contrived
proofs had we resorted to classical pointwise reasoning
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Hot topics

Coalgebriaic refinement theory still “hot”, eg.

Rp instead of ap ?

Lindsay Groves’ ⊑=⊑post · ⊑pre factorization versus
forward/backward refinement?

Build software architecture catalog (eg. client-server ,
pipe&filter , blackboard , pier-evolution , etc) around
canonical (generic) coalgebraic expressions (cf. “design
patterns”)

Use slicing, program analysis etc. to classify software
systems wrt. to such a catalog

Think of architectural transformation morphisms
(software architecture refinement?)
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Appendix: ASM refinement

ASM (=abstract state machines) refinement
ordering:

Machine PA A
R

implements machine

PA A
S

— written S ⊢ R iff

〈∀ a : (S a) ⊃ ∅ : ∅ ⊂ (R a) ⊆ (S a)〉

where S a means the set of states
reachable (in machine S) from state a.
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