Preparing Programmers for Quantum

FUTURE
JOBS AND Y
TECHNOLOGIES ANCRacrrs

eeeeee

Porto.
TechHub
cccccccccc

J.N. Oliveira

Research context

UANT A -
(LIAB) /..{/'H,-

» Bridging U.Minho / INESC TEC / INL (Braga, Portugal)

» Targeting reversible and quantum programming from a
formal method’s perspective.

Q\“ X

=1 -

Classical computing

Happy blend of diverse
bodies of knowledge:

Philosophy Maths
Formal %ltomata
Logic Calculus
Semiconductor C A p Ut L g Grammars
E”““"V \-anguages
Physics Linguistics

(Source: Manchester University, UK)

Maths dreamed of it...

1936
A. Turing — abstract
notion of what we now call
a programmable
computer — known as the
Turing machine.

1936
A. Church — X-calculus,
the basis of functional
programming.

A. Turing (1912-1954)

Physics made it happen...

~_1 > Plate (anode)

- = = Grid
Cathode
Heater

Vacuum tubes, triodes (1912)

(Credits: https://en.wikipedia.org/wiki/Triode)

https://en.wikipedia.org/wiki/Triode

Physics made it happen...

Oct. 3, 1950

J. BARD) 24,0
nm.nuégimz CLRGUTT ECEMANT UTILTZING 524,035

CONDUCTIVE MATERIALS

Filed June 1T, 1348 3 Sheets-Sheet 1

s
Y

44

:
wwav.explainthatstufl.com B

Transistors (1948)

... but soon abstraction was needed

B

@ n
8@9 1

... first graphical, then formal

+V
Graphical
X
X l: y D ‘
Y ———
2 Formal logic
nand :{0,1} x{0,1} —{0,1
.
nand (x,y) == (x A y)

50 years later...

1985
David Deutsch (U. Oxford)
describes the first universal
quantum computer.
Nowadays
Physics making it happen,
again...

History repeating itself?

Source: IBM Q Experience website

https://www.research.ibm.com/ibm-q/

The big picture

Mechanical __ Production Line: __ Industrial Robot: 1961 Collaborative Robot: 2012

Loom: 1784 1870 (Unimate)

First Second Forth

Industrial Revolution Industrial Revolution Industrial Revolution
Mechanical production: Mass production: Electronics / IT Cyber / robotized
Water / Steam Electrical power Automization

|
1800 1900 f 2000

software

"o R nelmia
1950s — “L’enfant terrible” is born (Adapted from ®evaiic st 2015)

Crisis (1960s)

Mechanical
Loom: 1784

Industrial Revolution

Mechanical production:
Water / Steam

- Production
1870
Second
Industrial Revolution

Mass production:
Electrical power

Industrial Robot: 1961
(Unimate)

Electronics / IT
Automization

Collaborative Robot: 2012

Industrial Revolution

Cyber / robotized

1800

1900

7

software

2000

crisis

1st NATO Conference on Software Engineering, Garmisch, Oct. 1968

Software Engineering (1968-2018)

Phrase software engineering seems to date from the Garmisch
NATO conference in 1968:

In late 1967 the Study Group recommended the holding of a working
conference on Software Engineering.

The phrase ‘software engineering’ was deliberately chosen as being
provocative, in implying the need for software manufacture to be based
on the types of theoretical foundations and practical disciplines, that
are traditional in the established branches of engineering.

How scientific is SE today?

Not everybody looks happy...

Where is the Science
in Computer Science?

“... we have a responsibility to pursue the science
in computer science. We must develop better tools
and much deeper understanding of the systems we
invent and a far greater ability to make predictions
about the behavior of these complex, connected, and
interacting systems.”.

Vinton Cerf (1943-)

(Vinton G. Cerf, Letter from the ACM President, CACM
55(10), Oct. 2012)

ACM President

Software as a problem

Software (<

“L’enfant terrible”
Unlike hardware, software not governed by the laws of physics:

» does not weight, does not smell,

» it is chemically neutral ...

Anthony Oettinger (ACM President,
1967):
"(...) the scientific, rigorous
component of computing, is more like
mathematics than it is like
physics”.

A. Oettinger (1929-)

J. Backus Turing Award (1978-2018)

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

C I progr ing | are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An altornative funotinnal ctvle of nraoramminge ic

http://wwwusers.di.uniroma1.it/~lpara/LETTURE/backus.pdf

Old concerns

Still Oettinger (already in 1967):

"It is a matter of complexity. Once you start putting
thousands of these instructions together you create a
monster which is unintelligible to anyone save its creator
and, most of the time, unfortunately even to the creator.”

Old concerns

Still Backus (1978):

"Conventional programming languages are growing ever
more enormous, but not stronger. Inherent defects (...)
cause them to be both fat and weak: (...) their inhability to
effectively use powerful combining forms for building
programs from existing ones, and their lack of useful
mathematical properties for reasoning about programs.”

Interestingly...

Backus (1978) predicted the age of MapReduce,

<~— reduce map

o A APACHE
Ve ¥ Sdoop

in his FP combinator notation.

written

What should have happened?

IS ABSTRACTION THE KEY
TO COMPUTING?

Why w it that vome software engineers and compuler sctentisls are
able to produce clear, elegant designs and programe, while others cannot?
1y 1k possible to improve these skills through education and training?
Critical to these questions ts the notion of abstraction.

By JEFF KRAMER

(Commun. ACM, 50:4, pages 37-42, April 2007)

Abstraction

Quoting Jeff Kramer:

Abstraction /s widely used in
other disciplines such as art and
music. (...) Henri Matisse
manages to clearly represent the
essence of his subject (...) using
only simple lines or cutouts. His
representation removes all detail

yet conveys much. ’

HMATIGEE 52,

Abstraction

The famous “abstract
map” of London’s

Underground (1939).

The art of removing
unnecessary detail.

Abstraction

Rather than “WySIwWYG"”, we want

What you get
What you write

Expressiveness =

Expressiveness versus productivity:

“(.-.) Readers of this book will enjoy a rare opportunity to learn how to
write less in order to say more, without ambiguity. In short, to learn
how to be productive”.

(endorsing D. Jackson's Software Abstractions, MIT Press, 2011)

http://alloytools.org/book.html

Quantum abstraction

» Programmers to be challenged even further by abstractions in
quantum programming

» Abstract from the physical layer! (quantum physics difficult
and counter-intuitive)

» Get it right from the very beginning! (debugging nearly
impossible)

» Avoid reading the state — measuring interferes with the
quantum effect!

Quantum computing literature

Quantum
Computation
and Quantum

_ Information

| MICHAEL A. NIELSEN
f40// and ISAAC L. CHUANG
M‘“"’u

IS

QUANTUM
COMPUTING

ror COMPUTER
SCIENTISTS

Mesan 5. Yeaafiky
Mirca A Mannpui

Quantum computing literature

Bob Coecke H
Editor I

PICTURING
QUANTUM
LECTURE NOTES IN PHYSICS 813 PROCESSES

AFirst Course in Quantum Theory and
Diagrammatic Reasoning

New StrUCtureS BOB COECKE AND ALEKS KISSINGER
for Physics

@ Springer

http://www.cs.ox.ac.uk/bob.coecke/

Quantum computing literature

» Degree of sophistication varies PICTURING
: UANTUM
» Emphasis on the need to change IR CLsilt

one’s mindset (as happened to
physicists)
» Some pedagogical effort

» What kind of abstractions are
involved?

http://www.cs.ox.ac.uk/bob.coecke/

Why do functions always come first?

Example 3.2 Some process theories we will encounter are:

functions (types = sets)
relations (types = sets, again)

linear maps (types = vector spaces, or Hilbert spaces)

classical processes (types = classical systems)

quantum processes (types = quantum and classical
systems)

(Excerpt from chapter 3 of Picturing quantum processes by Coecke & Kissinger)

Quantum programs (circuits)

Quantum circuit generated using the QUIPPER tool:

740

70l
£

e

Functional abstraction:

. f, f, e f

https://www.mathstat.dal.ca/~selinger/quipper/

Similar abstractions in Neural Networks

L S
A A A A @
® ® -

(RNN = accumulating maps)

(Source: Neural Networks, Types, and Functional Programming by C. Olah, 2015)

http://colah.github.io/posts/2015-09-NN-Types-FP/

A functional quantum program

- D::((a,b) = Vec (¢, b)) — ([a], b) = Vec ([c], b)
D ([], b) = return ([], b)

Y (h:t,b) =do{

t' b))« Cf(tb),

(h",b") < f (h,b);

return (h": t',b")

}

It controls qubit b according to a list of classical bits using the
quantum operator f (parameter).

C
«f
«f
(

How does it compile?

Current experiments

Tool-chain:

QISKit™ IBM Q

— GHCi Quipper

Example of quantum circuit generated from the given program:

M M 0 [w) G G 4
T il) S (S R () S (s il D S ; By
W SESSsossssss

G
B
G

%

(With thanks to: Ana Neri, Afonso Rodrigues, Rui S. Barbosa)

FP on the quantum way

» Quantum programs generalize

. : /a2)
(reversible) functions / - % |
(§b —F/
» Quantum programs much closer _ c 7/ ‘V
to functional programs (FP) -
than to imperative ones. (a non-reversible function!)
Meanwhile

» functional flavour is spreading across languages (F+#, Swift,
Java 8, Python, ...).

Question:
Should FP be taught at
universities as first language?

Answer:

> Yes, it should (and this is the
case in several places)

However:

» That's simply... too late!

J. McCarthy (1927-2011)

Formal operational stage

“(...) from around 12 to
adulthood (...) individuals
indicate an ability to think
abstractly, systematically, and
hypothetically, and to use
symbols related to abstract
concepts. This is the crucial
stage at which individuals are
capable of thinking abstractly
and scientifically.”

(Kramer, 2007)

1st year
2nd year
3rd year
4th year
5th year
6th year
7th year
8th year
9th year
10th year
11th year
12th year

1° Ciclo - 1st Cycle

Ensino Basico
2° Ciclo - 2nd Cycle | Basic Education

3° Ciclo - 3rd Cycle

Ensino Secundario
Secondary Education

https://en.wikipedia.org/wiki/Education_in_Portugal

“Verao no Campus” (2007-2017)

\.veraono
)-campus’201/

e

VnC “junior university” courses, University of Minho, every July —
introducing ISCED? level 3 students (15 to 18) to programming.

Ynternational Standard Classification of Education.

https://www.uminho.pt/PT/ensino/futurosestudantes/programa-verao-no-campus

“Verao no Campus” (2007-2017)

At our VnC module we
have 10 years of

experience in teaching FP
to ISCED level 3 students.

As a rule, students like the
course.

(Even those who have
programmed before.)

https://www.facebook.com/ComputacaoSemFronteiras/

Alongside with maths, physics

7th year 12
and the other subjects, middle 8ih year 18 3 Cido-3rd Cycle
9th 14
school students should study —
year 15) B
basic computer science and fihyear 16 g Sea e
econdary Education
programming 12th year 17

FP blends very nicely with maths and physics.

Such has been our experience at VnC (2007-17).

Imagine...

9 I I I]
; e
ANV I I Il Il I I I I J
b [— — T
You may say I'm a dream -er
9 I I I ? = =
AP I = P=Y =
. [—
But 'm not___ the on - -ly one

(Lennon, 1971)

FP @ U.Minho (1998-2018)

Our department has long been an advocate of the functional-first
school of programming and has been teaching Haskell as a first
language (...) for 20 years. (...) We have been using game
programming to keep students motivated (...) We summarise (...) our
experience [in developing] a model for comprehensive and interactive
functional game programming assignments (...)

Quoted from: J.B. Almeida, A. Cunha, N. Macedo, H. Pacheco, J. Proenca - Experience
Report: Teaching how to program using automated assessment and functional Glossy
games, ICFP 2018, St. Louis, USA (forthcoming).

https://icfp18.sigplan.org/event/icfp-2018-papers-experience-report-teaching-how-to-program-using-automated-assessment-and-functional-glossy-games
https://icfp18.sigplan.org/event/icfp-2018-papers-experience-report-teaching-how-to-program-using-automated-assessment-and-functional-glossy-games
https://icfp18.sigplan.org/event/icfp-2018-papers-experience-report-teaching-how-to-program-using-automated-assessment-and-functional-glossy-games

“Computing & Schools” (CAS) trend

Computing as a mandatory subject on the EU (2016)
» 2014, UK: covering Primary and Secondary school
* 2016, France: covering 2nd, 3rd and 4th cycles

» 2016-18, Finland: covering Primary and Secondary
school

» 2016-17, Poland, Malta and Croatia: covering Primary
and Secondary school

+ 2017, Denmark: covering Secondary school

» Spain, Belgium and Germany: introduced at a
regional level

(Credits: N.F. Rodrigues)

Future jobs...

/" ama . lustin Baker

Lead Product Designer at Auction.com — Top Writer in Tech & Design at Medium — Founder of CA

3 Assoc of Product Designers —All opinions are my own
_/ Nov 17,2017 - 4 min read

2018's Software Engineering Talent
Shortage— It's quality, not just quantity
Forrester projects that firms will pay 20% above market for
quality engineering talent in 2018

(https://hackernoon.com)

https://hackernoon.com

Future jobs...

What is a software engineer?

If you know a programming language, then are you an engineer? No.
Knowing a language does not make you an engineer. The same as knowing

how to speak elementary Spanish does not automatically make you a good
Spanish teacher.

In-demand software engineers are problem solvers,
not coders.

(https://hackernoon.com)

https://hackernoon.com

Thanks

