
Preparing Programmers for Quantum

J.N. Oliveira

Research context

I Bridging U.Minho / INESC TEC / INL (Braga, Portugal)

I Targeting reversible and quantum programming from a
formal method’s perspective.

Classical computing

Happy blend of diverse
bodies of knowledge:

Philosophy

{ Formal
Logic

&&

Maths

{ Automata
Calculus

xx
Computing

Physics

{ Semiconductor
Electronics

88

Linguistics

{ Grammars
Languages

ff

(Source: Manchester University, UK)

Maths dreamed of it...

1936

A. Turing — abstract
notion of what we now call
a programmable
computer — known as the
Turing machine.

1936

A. Church — λ-calculus,
the basis of functional
programming.

A. Turing (1912-1954)

Physics made it happen...

Vacuum tubes, triodes (1912)

(Credits: https://en.wikipedia.org/wiki/Triode)

https://en.wikipedia.org/wiki/Triode

Physics made it happen...

Transistors (1948)

... but soon abstraction was needed

B

S

D

B

S

D

+V

x y x y

... first graphical, then formal
+V

x

y

z

Graphical

x
y z

Formal logic

nand : {0, 1} × {0, 1} → {0, 1}
nand (x , y) = ¬ (x ∧ y)

50 years later...

1985

David Deutsch (U. Oxford)
describes the first universal
quantum computer.

Nowadays

Physics making it happen,
again...

History repeating itself?

Source: IBM Q Experience website

https://www.research.ibm.com/ibm-q/

The big picture

1950s — “L’enfant terrible” is born (Adapted from 2015)

Crisis (1960s)

1st NATO Conference on Software Engineering, Garmisch, Oct. 1968

Software Engineering (1968-2018)

Phrase software engineering seems to date from the Garmisch
NATO conference in 1968:

In late 1967 the Study Group recommended the holding of a working
conference on Software Engineering.

The phrase ‘software engineering’ was deliberately chosen as being
provocative, in implying the need for software manufacture to be based
on the types of theoretical foundations and practical disciplines, that
are traditional in the established branches of engineering.

How scientific is SE today?

Not everybody looks happy...

Vinton Cerf (1943-)

ACM President

“... we have a responsibility to pursue the science
in computer science. We must develop better tools
and much deeper understanding of the systems we
invent and a far greater ability to make predictions
about the behavior of these complex, connected, and
interacting systems.”.

(Vinton G. Cerf, Letter from the ACM President, CACM
55(10), Oct. 2012)

Software as a problem

Software


Process —

Product —

“L’enfant terrible”

Unlike hardware, software not governed by the laws of physics:

I does not weight, does not smell,

I it is chemically neutral ...

Anthony Oettinger (ACM President,
1967):

”(...) the scientific, rigorous
component of computing, is more like
mathematics than it is like
physics”.

A. Oettinger (1929-)

J. Backus Turing Award (1978–2018)

http://wwwusers.di.uniroma1.it/~lpara/LETTURE/backus.pdf

Old concerns

Still Oettinger (already in 1967):

”It is a matter of complexity. Once you start putting
thousands of these instructions together you create a
monster which is unintelligible to anyone save its creator
and, most of the time, unfortunately even to the creator.”

Old concerns

Still Backus (1978):

”Conventional programming languages are growing ever
more enormous, but not stronger. Inherent defects (...)
cause them to be both fat and weak: (...) their inhability to
effectively use powerful combining forms for building
programs from existing ones, and their lack of useful
mathematical properties for reasoning about programs.”

Interestingly...

Backus (1978) predicted the age of MapReduce,

reduceoo mapoo oo

written

(/g) · (α f)

in his FP combinator notation.

Meanwhile...

What should have happened?

IS ABSTRACTION THE KEY
TO COMPUTING?

Why is it that some software engineers and computer scientists are
able to produce clear, elegant designs and programs, while others cannot?

Is it possible to improve these skills through education and training?
Critical to these questions is the notion of abstraction.

For over 30 years, I have been involved in teaching
and research in computer science and software engineering.
My teaching experience ranges from courses in programming,
to distributed systems, distributed algorithms, concurrency,
and software design. All these courses require that students are
able to perform problem solving, conceptualization, modeling,
and analysis. My experience is that the better
students are clearly able to handle complexity and to produce
elegant models and designs. The same students are also able
to cope with the complexities of distributed algorithms, the
applicability of various modeling notations, and other
subtle issues.

By JEFF KRAMER

36 April 2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM COMMUNICATIONS OF THE ACM April 2007/Vol. 50, No. 4 37

(Commun. ACM, 50:4, pages 37–42, April 2007)

Abstraction

Quoting Jeff Kramer:

Abstraction is widely used in
other disciplines such as art and
music. (...) Henri Matisse
manages to clearly represent the
essence of his subject (...) using
only simple lines or cutouts. His
representation removes all detail
yet conveys much.

Abstraction

The famous “abstract

map” of London’s

Underground (1939).

The art of removing

unnecessary detail.

Abstraction

Rather than “wysiwyg”, we want

Expressiveness =
What you get

What you write

Expressiveness versus productivity:

“(...) Readers of this book will enjoy a rare opportunity to learn how to
write less in order to say more, without ambiguity. In short, to learn
how to be productive”.

(endorsing D. Jackson’s Software Abstractions, MIT Press, 2011)

http://alloytools.org/book.html

Quantum abstraction

I Programmers to be challenged even further by abstractions in
quantum programming

I Abstract from the physical layer! (quantum physics difficult
and counter-intuitive)

I Get it right from the very beginning! (debugging nearly
impossible)

I Avoid reading the state — measuring interferes with the
quantum effect!

Quantum computing literature

Quantum computing literature

http://www.cs.ox.ac.uk/bob.coecke/

Quantum computing literature

I Degree of sophistication varies

I Emphasis on the need to change
one’s mindset (as happened to
physicists)

I Some pedagogical effort

I What kind of abstractions are
involved?

http://www.cs.ox.ac.uk/bob.coecke/

Why do functions always come first?

(Excerpt from chapter 3 of Picturing quantum processes by Coecke & Kissinger)

Quantum programs (circuits)

Quantum circuit generated using the Quipper tool:

E
N

T
E

R
: e

xa
ct

_s
yn

th
es

is q[0]

q[1]

q[2]
S*

S

X S*

S

X

E
X

IT
: e

xa
ct

_s
yn

th
es

is q[0]

q[1]

q[2]

Functional abstraction:

//
//

//
f1

//
//

//
f2

//
//

//
· · · //

//

//
fn //

//

//

https://www.mathstat.dal.ca/~selinger/quipper/

Similar abstractions in Neural Networks

(RNN = accumulating maps)

(Source: Neural Networks, Types, and Functional Programming by C. Olah, 2015)

http://colah.github.io/posts/2015-09-NN-Types-FP/

A functional quantum program

$ ·% :: ((a, b)→ Vec (c , b))→ ([a], b)→ Vec ([c], b)
$ f % ([], b) = return ([], b)
$ f % (h : t, b) = do {

(t ′, b′)← $ f % (t, b);
(h′′, b′′)← f (h, b′);
return (h′′ : t ′, b′′)
}

It controls qubit b according to a list of classical bits using the
quantum operator f (parameter).

How does it compile?

Current experiments

Tool-chain:

// GHCi // Quipper // QISKittm // IBM Q

Example of quantum circuit generated from the given program:

E
N

T
E

R
: e

xa
ct

_s
yn

th
es

is q[0]

q[1]

q[2]

q[3]

q[4]

H H H

H

H

H

H

H

H H

E
X

IT
: e

xa
ct

_s
yn

th
es

is q[0]

q[1]

q[2]

q[3]

q[4]

(With thanks to: Ana Neri, Afonso Rodrigues, Rui S. Barbosa)

FP on the quantum way

I Quantum programs generalize
(reversible) functions

I Quantum programs much closer
to functional programs (FP)
than to imperative ones. (a non-reversible function!)

Meanwhile

I functional flavour is spreading across languages (F#, Swift,
Java 8, Python, ...).

Too late

Question:

Should FP be taught at
universities as first language?

Answer:

I Yes, it should (and this is the
case in several places)

However:

I That’s simply... too late!

J. McCarthy (1927-2011)

Formal operational stage

“(...) from around 12 to
adulthood (...) individuals
indicate an ability to think
abstractly, systematically, and
hypothetically, and to use
symbols related to abstract
concepts. This is the crucial
stage at which individuals are
capable of thinking abstractly
and scientifically.”

(Kramer, 2007)

https://en.wikipedia.org/wiki/Education_in_Portugal

“Verão no Campus” (2007-2017)

VnC “junior university” courses, University of Minho, every July —
introducing ISCED1 level 3 students (15 to 18) to programming.

1International Standard Classification of Education.

https://www.uminho.pt/PT/ensino/futurosestudantes/programa-verao-no-campus

“Verão no Campus” (2007-2017)

At our VnC module we
have 10 years of
experience in teaching FP
to ISCED level 3 students.

As a rule, students like the
course.

(Even those who have
programmed before.)

https://www.facebook.com/ComputacaoSemFronteiras/

Formal operational stage

Alongside with maths, physics
and the other subjects, middle
school students should study
basic computer science and
programming.

FP blends very nicely with maths and physics.

Such has been our experience at VnC (2007-17).

Imagine...

You may say I’m a dream er

But I’m not the on ly one

(Lennon, 1971)

FP @ U.Minho (1998-2018)

Our department has long been an advocate of the functional-first
school of programming and has been teaching Haskell as a first
language (...) for 20 years. (...) We have been using game
programming to keep students motivated (...) We summarise (...) our
experience [in developing] a model for comprehensive and interactive
functional game programming assignments (...)

Quoted from: J.B. Almeida, A. Cunha, N. Macedo, H. Pacheco, J. Proença - Experience
Report: Teaching how to program using automated assessment and functional Glossy
games, ICFP 2018, St. Louis, USA (forthcoming).

https://icfp18.sigplan.org/event/icfp-2018-papers-experience-report-teaching-how-to-program-using-automated-assessment-and-functional-glossy-games
https://icfp18.sigplan.org/event/icfp-2018-papers-experience-report-teaching-how-to-program-using-automated-assessment-and-functional-glossy-games
https://icfp18.sigplan.org/event/icfp-2018-papers-experience-report-teaching-how-to-program-using-automated-assessment-and-functional-glossy-games

“Computing & Schools” (CAS) trend

Computing in
European Union

Computing as a mandatory subject on the EU (2016)
• 2014, UK: covering Primary and Secondary school
• 2016, France: covering 2nd, 3rd and 4th cycles
• 2016-18, Finland: covering Primary and Secondary

school
• 2016-17, Poland, Malta and Croatia: covering Primary

and Secondary school
• 2017, Denmark: covering Secondary school
• Spain, Belgium and Germany: introduced at a

regional level

confidential - not for circulation 13

(Credits: N.F. Rodrigues)

Future jobs...

(https://hackernoon.com)

https://hackernoon.com

Future jobs...

(https://hackernoon.com)

https://hackernoon.com

Thanks

