PF-transform: using Galois connections to structure relational algebra

J.N. Oliveira

Dept. Informática, Universidade do Minho Braga, Portugal

DI/UM, 2008 (updated: 2009-10, 2012, 2014)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation

We motivate this subject by placing some very general questions:

- Why is **programming** "difficult"?
- Is there a generic skill, or competence, that one such acquire to become a "good programmer"?

Surely that of abstract modelling. But, still,

- What is it that makes abstract modelling a challenging task?
- Are there generic conceptual **patterns** that could be used to shorten the path from **problems** to **models**?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\mathsf{Problems} = \mathsf{Easy} + \mathsf{Hard}$

Superlatives in problem statements, eg.

- "... the smallest such number"
- "... the longest such list"
- "... the best approximation"

suggest two layers in specifications:

- the easy layer broad class of solutions (eg. a prefix of a list)
- the difficult layer requires one particular such solution regarded as optimal in some sense (eg. "longest prefix up to a given length").

Example — back to the primary school desk

The whole division algorithm

7 2
1 3
$$2 \times 3 + 1 = 7$$
, "ie." $3 = 7 \div 2$

However

That is: for some r,

$$\begin{array}{c|c} n & d \\ r & q \end{array} \quad q = n \div d \equiv d \times q + r = n \end{array}$$

provided q is the largest such q (r smallest)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Example — specifying $x \div y$

First version (literal):

$$x \div y = \langle \bigvee z :: z \times y \le x \rangle$$
(203)

Second version (involved):

$$z = x \div y \equiv \langle \exists r : 0 \le r < y : x = z \times y + r \rangle$$
(204)

Third version (clever!):

 $z \times y \le x \equiv z \le x \div y$ (y > 0) (205)

- a so-called Galois connection, as we shall soon see.

Why (205) is better than (203,204)

Equivalence (205),

$$z \times y \le x \equiv z \le x \div y$$
 $(y > 0)$

captures the requirements in an elegant way:

It is <u>a</u> solution: x ÷ y multiplied by y approximates x

 $(x \div y) \times y \leq x$

— let $z := x \div y$ in (205) and simplify.

• It is the best solution because it provides the largest such number:

 $z \times y \le x \implies z \le x \div y \qquad (y > 0)$

— the \Rightarrow part of the \equiv of (205).

Reasoning

Equivalence (205)

$$z \times y \le x \equiv z \le x \div y$$
 $(y > 0)$

is not only simple to write but effective to reason about.

Let us see an example: we want to prove the following equality

$$(n \div m) \div d = n \div (d \times m)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What about

- using (203)? too many suprema!
- using (204)? too many existential quantifiers!
- using (205)? easy see the next slide.

Proving $(n \div m) \div d = n \div (d \times m)$

 $q < (n \div m) \div d$ \equiv { (205) } $q \times d \leq n \div m$ { (205) } ≡ $(q \times d) \times m \leq n$ \equiv { \times is associative } $q \times (d \times m) < n$ \equiv { (205) } $q < n \div (d \times m)$ { indirection (206) } :: $(n \div m) \div d = n \div (d \times m)$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

(Generic) indirect equality

Note the use of the (generic) indirect equality rule

$$\langle \forall q :: q \leq x \equiv q \leq y \rangle \equiv (x = y)$$
 (206)

valid for **any** partial order \leq .

Exercise 95: Derive from (205) the two *cancellation* laws

 $q \leq (q \times d) \div d$ $(n \div d) \times d \leq n$

and reflexion law:

 $n \div d \ge 1 \quad \equiv \quad d \le n \tag{207}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Galois connections

Equivalence (205) is an example of a Galois connection:

In general, for **preorders** (A, \leq) and (B, \sqsubseteq) and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(f, g) are said to be **Galois connected** iff, for all $a \in A$ and $b \in B$...

Galois adjoints

Still whole division

 $f = (\times 2)$ is the lower adjoint of $g = (\div 2)$.

The area below $g = (\div 2)$ is the same as the area above $f = (\times 2)$.

 $f = (\times 2)$ is not surjective.

 $g = (\div 2)$ is not injective.

Adjoints are "nearly" inverses

Easy to observe:

- $g(f y) = (y \times 2) \div 2 = y f$ is indeed a right inverse for g
- f(g 5) = (5 ÷ 2) × 2 = 2 × 2 = 4 ≤ 5 − g is not a right inverse for f, but it provides an approximation.

In spite of this asymmetry, the connection enables us to reason about

$$g=(\div y)$$

- the "hard" operation - in terms of

 $f = (\times y)$

— the "easy" operation. This is the main advantage of a Galois connection (GC).

Notation

A GC can be expressed by point-wise equivalence (209)

 $f x \leq y \equiv x \sqsubseteq g y$

or by the equivalent relational equality (210),

 $f^{\circ} \cdot \leq = \Box \cdot g$

as we have seen.

Abbreviated notation

 $f \vdash g \tag{211}$

is used instead of (210) wherever the orders are implicit from the context.

Basic properties

For preorders in

the two cancellation laws hold:

$$(f \cdot g)a \leq a$$
 and $b \sqsubseteq (g \cdot f)b$ (213)

- recall exercise 95 for the case of whole division.

Distribution laws

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Basic properties

These hold wherever both preorder are lattices, that is, wherever suprema

$$b \sqcup b' \sqsubseteq x \equiv b \sqsubseteq x \land b' \sqsubseteq x \tag{216}$$

and infima

$$x \sqsubseteq b \sqcap b' \equiv x \sqsubseteq b \land x \sqsubseteq b'$$
(217)

exist. (Similarly for A, \leq, \vee, \wedge .)

Exercise 96: Resort to indirect equality to prove any of (214) or (215). \Box

Other properties

Conversely,

- If f distributes over \sqcup then it has an upper adjoint $g(f^{\#})$
- If g distributes over \wedge then it has a lower adjoint $f(g^{\flat})$

Moreover, if (f, g) are Galois connected,

- f and g are monotonic
- f(g) uniquely determines g(f) thus the $\frac{1}{2}$, $\frac{1}{2}$ notations
- (g, f) are also Galois connected just reverse the orderings

• $f = f \cdot g \cdot f$ and $g = g \cdot f \cdot g$

etc

Summary

$(f \ b) \leq a \equiv b \sqsubseteq (g \ a)$			
Description	$f=g^{\flat}$	$g=f^{\sharp}$	
Definition	$f \ b = \bigwedge \{a : b \sqsubseteq g \ a\}$	$g a = \bigsqcup \{b : f b \le a\}$	
Cancellation	$f(g a) \leq a$	$b \sqsubseteq g(f \ b)$	
Distribution	$f(b \sqcup b') = (f \ b) \lor (f \ b')$	$g(a' \wedge a) = (g \ a') \sqcap (g \ a)$	
Monotonicity	$b \sqsubseteq b' \Rightarrow f \ b \leq f \ b'$	$a \leq a' \Rightarrow g \ a \sqsubseteq g \ a'$	

Exercise 97: Derive from (209) that both f and g are monotonic. \Box

(ロ)、(型)、(E)、(E)、 E) の(の)

Remark

Galois connections originate from the work of the French mathematician Evariste Galois (1811-1832). Their main advantages,

simple, generic and highly calculational

are welcome in proofs in computing, due to their size and complexity, recall E. Dijkstra:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $elegant \equiv simple and$ remarkably effective.

In the sequel we will re-interpret the **relational operators** we've seen so far as Galois adjoints.

Examples

Not only

$$\underbrace{(d\times)q}_{f q} \leq n \equiv q \leq \underbrace{n(\div d)}_{g n}$$

but also the two shunting rules,

$$\underbrace{(h \cdot)X}_{f \times} \subseteq Y \equiv X \subseteq \underbrace{(h^{\circ} \cdot)Y}_{g \times}$$
$$\underbrace{X(\cdot h^{\circ})}_{f \times} \subseteq Y \equiv X \subseteq \underbrace{Y(\cdot h)}_{g \times}$$

as well as converse,

$$\underbrace{X^{\circ}}_{f X} \subseteq Y \equiv X \subseteq \underbrace{Y^{\circ}}_{g Y}$$

and so and so forth — are **adjoints** of GCs: see the next slides.

Converse

$(f X) \subseteq Y \equiv X \subseteq (g Y)$			
Description	$f=g^{\flat}$	$g=f^{\sharp}$	Obs.
converse	(_)°	(_)°	$bR^{\circ}a\equiv aRb$

Thus:

Cancellation $(R^{\circ})^{\circ} = R$ Monotonicity $R \subseteq S \equiv R^{\circ} \subseteq S^{\circ}$ Distributions $(R \cap S)^{\circ} = R^{\circ} \cap S^{\circ}, (R \cup S)^{\circ} = R^{\circ} \cup S^{\circ}$

Exercise 98: Why is it that converse-monotonicity can be strengthened to an equivalence? \Box

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example of calculation from the GC

Converse involution:

$$(R^{\circ})^{\circ} = R \tag{218}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Indirect proof of (218):

 $(R^{\circ})^{\circ} \subseteq Y$ $\equiv \{ \circ \text{-universal } X^{\circ} \subseteq Y \equiv X \subseteq Y^{\circ} \text{ for } X := R^{\circ} \}$ $R^{\circ} \subseteq Y^{\circ}$ $\equiv \{ \circ \text{-monotonicity} \}$ $R \subseteq Y$ $:: \{ \text{ indirection } \}$ $(R^{\circ})^{\circ} = R$

Functions

$(f X) \subseteq Y \equiv X \subseteq (g Y)$			
Description	$f = g^{\flat}$	$g=f^{\sharp}$	Obs.
shunting rule	(<i>h</i> ·)	$(h^{\circ}\cdot)$	NB: <i>h</i> is a function
"converse" shunting rule	$(\cdot h^\circ)$	(·h)	NB: <i>h</i> is a function

Consequences:

Functional equality: $h \subseteq g \equiv h = k \equiv h \supseteq k$ Functional division: $R \cdot h = R/h^{\circ}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question: what does R/S mean?

Relational division

In the same way

 $z \times y \leq x \equiv z \leq x \div y$

means that $x \div y$ is the largest **number** which multiplied by y approximates x,

$$Z \cdot Y \subseteq X \equiv Z \subseteq X/Y \tag{219}$$

means that X/Y is the largest **relation** which pre-composed Y approximates X.

What is the pointwise meaning of X/Y?

We reason:

First, the types of

 $Z\cdot Y\subseteq X\ \equiv\ Z\subseteq X/Y$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Next, the calculation:

c (X/Y) a $\equiv \{ \text{ introduce points } C \stackrel{\underline{c}}{\longleftarrow} 1 \text{ and } A \stackrel{\underline{a}}{\longleftarrow} 1 \}$ $x(\underline{c}^{\circ} \cdot (X/Y) \cdot \underline{a})x$ $\equiv \{ \text{ one-point (12)} \}$ $x' = x \Rightarrow x'(\underline{c}^{\circ} \cdot (X/Y) \cdot \underline{a})x$

Proceed by going pointfree:

We reason

$$id \subseteq \underline{c}^{\circ} \cdot (X/Y) \cdot \underline{a}$$

$$\equiv \{ \text{ shunting rules (Galois connections)} \}$$

$$\underline{c} \cdot \underline{a}^{\circ} \subseteq X/Y$$

$$\equiv \{ \text{ rule (219)} - \text{ Galois connection} \}$$

$$\underline{c} \cdot \underline{a}^{\circ} \cdot Y \subseteq X$$

$$\equiv \{ \text{ now shunt } \underline{c} \text{ back to the right} \}$$

$$\underline{a}^{\circ} \cdot Y \subseteq \underline{c}^{\circ} \cdot X$$

$$\equiv \{ \text{ back to points via (47)} \}$$

$$\langle \forall b : a Y b : c X b \rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outcome

In summary:

 $c(X/Y) a \equiv \langle \forall b : a Y b : c X b \rangle$

Example:

a Y b = passenger a choses flight b c X b = company c operates flight b c (X/Y) a = company c is the only one trusted by passenger a, that is, a only flies c.

Pointwise meaning in full

The full pointwise encoding of Galois connection

 $Z \cdot Y \subseteq X \equiv Z \subseteq X/Y$

is:

 $\langle \forall c, b : \langle \exists a : cZa : aYb \rangle : cXb \rangle \equiv \langle \forall c, a : cZa : \langle \forall b : aYb : cXb \rangle \rangle$

If we drop variables and regard the uppercase letters as denoting Boolean terms dealing without variable c, this becomes

 $\langle \forall b : \langle \exists a : Z : Y \rangle : X \rangle \equiv \langle \forall a : Z : \langle \forall b : Y : X \rangle \rangle$

recognizable as the splitting rule (7) of the Eindhoven calculus.

Put in other words: **existential** quantification is **lower** adjoint of **universal** quantification.

Exercises

Exercise 99: Prove the equalities

$X \cdot f$	=	X/f°	(221)
X/\perp	=	Т	(222)
\top / Y	=	Т	(223)

and check their pointwise meaning. \Box

Exercise 100: Define

$$X \setminus Y = (Y^{\circ}/X^{\circ})^{\circ}$$
 (224)

and infer:

$$a(R \setminus S)c \equiv \langle \forall b : b R a : b S c \rangle$$

$$R \cdot X \subseteq Y \equiv X \subseteq R \setminus Y$$
(225)
(225)
(226)

Relational division

$(f X) \subseteq Y \equiv X \subseteq (g Y)$			
Description $f = g^{\flat}$ $g = f^{\sharp}$ Obs.			
right-division	$(\cdot R)$	(/ R)	right-factor
left-division	$(R\cdot)$	$(R \setminus)$	left-factor

that is,

$$X \cdot R \subseteq Y \equiv X \subseteq Y / R$$

$$R \cdot X \subseteq Y \equiv X \subseteq R \setminus Y$$
(227)
(228)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Immediate: $(R \cdot)$ and $(\cdot R)$ are monotonic and distribute over union:

 $R \cdot (S \cup T) = (R \cdot S) \cup (R \cdot T)$ (S \cup T) \cdot R = (S \cdot R) \cup (T \cdot R)

(R) and (R) are monotonic and distribute over \cap .

Domain and range

$(f X) \subseteq Y \equiv X \subseteq (g Y)$			
Description $f = g^{\flat}$ $g = f^{\sharp}$ Obs.			Obs.
domain	δ	$(\top \cdot)$	lower \subseteq restricted to coreflexives
range	ρ	$(\cdot \top)$	lower \subseteq restricted to coreflexives

Thus the universal properties of domain and range

$$\begin{split} \delta \, R &\subseteq \Phi &\equiv R \subseteq \top \cdot \Phi \\ \rho \, R &\subseteq \Phi &\equiv R \subseteq \Phi \cdot \top \end{split}$$

— recall (126) and (127) — are Galois connections, and so

 $\delta(S \cup R) = \delta S \cup \delta R$ $\top \cdot (\Phi \cap \Psi) = \top \cdot \Phi \cap \top \cdot \Psi$

hold — similarly for ρ and $(\cdot\top)$.

Other operators

$(f X) \subseteq Y \equiv X \subseteq (g Y)$			
Description	$f = g^{\flat}$	$g=f^{\sharp}$	Obs.
implication	$(R \cap)$	$(R \Rightarrow)$	$b(R \Rightarrow X)a \equiv bRa \Rightarrow bXa$
difference	$(_{-} - R)$	$(R \cup)$	

Thus the universal properties of implication and difference,

 $R \cap X \subseteq Y \equiv X \subseteq R \Rightarrow Y$ $X - R \subseteq Y \equiv X \subseteq R \cup Y$

are GCs — etc, etc

Exercise 101: Show that $R \cap (R \Rightarrow Y) \subseteq Y$ ("modus ponens") holds and that $R - R = \bot - R = \bot$. \Box

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exercises

Exercise 102: Let $\mathcal{P}A = \{S : S \subseteq A\}$ and let $A \xleftarrow{\in} \mathcal{P}A$ denote the membership relation $a \in S$, for any a and S. What does the relation $\in \setminus \in$ mean? \Box

Exercise 103: Show that the relation $\in \setminus \in$ of the previous exercise is reflexive and transitive. \Box

Exercise 104: Prove that equality

$$(R \setminus S) \cdot f = R \setminus (S \cdot f)$$
(229)

holds. 🗆

Exercises

Exercise 105: (a) Show that $R \subseteq \bot/S^{\circ} \equiv \delta R \cap \delta S = \bot$; (b) Then use indirect equality to infer the universal property of term $R \cap \bot/S^{\circ}$ — the largest sub-relation of R whose domain is disjoint of that of S. \Box

Exercise 106: The relational overriding combinator,

$$R \dagger S = S \cup R \cap \bot / S^{\circ} \tag{230}$$

means the relation which contains the whole of *S* and that part of *R* where *S* is undefined — read $R \dagger S$ as "*R* overridden by *S*". (a) Show that $\perp \dagger S = S$ and that $R \dagger \perp = R$; (b) Infer the universal property:

$$X \subseteq R \dagger S \equiv X - S \subseteq R \land \delta (X - S) \cdot \delta S = \bot$$
(231)

・ロト・西ト・ヨト・ヨー シック

Binary adjoints

Recall the universal property of \cup (65), $R \cup S \subseteq X \equiv R \subseteq X \land S \subseteq X$, which can be written thus

$$\cup (R,S) \subseteq X \equiv (R,S)(\subseteq \times \subseteq)(X,X)$$

or even as

 $\cup (R,S) \subseteq X \equiv (R,S)(\subseteq \times \subseteq)(\Delta X)$

where $\Delta X = (X, X)$. Clearly,

$\cup \vdash \Delta$

Similarly, the universal property of \cap (64) can be captured by

 $\Delta \vdash \cap$

since $(X, X) \subseteq (\subseteq X \subseteq) (R, S) \equiv X \subseteq \cap (R, S)$.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III —

A glimpse of GC (generic) algebra

Assume $f \vdash g$ and $f' \vdash g'$ hold in:

Functors (preorders) $Ff \vdash Fg$ **Splitting** (lattices) $\langle f, f' \rangle \vdash \sqcap \cdot (g \times g')$ In particular, for f, f' := id, g, g' := id: $\wedge \vdash \Box$ (232)for $\triangle x = (x, x)$.

Identity

id ⊢ id

Composition

 $f \cdot f' \vdash g' \cdot g$

Converse (symmetry)

 $f \vdash g \equiv g \vdash f$

・ロト ・ 日本・ 小田 ト ・ 田 ・ うらぐ
Motivation E+H split Galois connections Application I - Hoare Logic Application II - Optimization calculus Application III -

Application I — Hoare Logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Handling Hoare triples in relation algebra

As application of the above we show next how to handle **Hoare triples** such as

$$\{p\}P\{q\} \tag{233}$$

in relation algebra. First we spell out the meaning of (233):

$$\langle \forall s : p s : \langle \forall s' : s \xrightarrow{P} s' : q s' \rangle \rangle$$
 (234)

that is:

if program P is in state s satisfying condition p, and it moves to state s', then s' satisfies q.

In other words:

Condition p holding before P executes is sufficient for condition q to hold after P executes.

Handling Hoare triples in relation algebra

Let [P] denote the state transition relation of P, that is s'[P]s means the same as $s \xrightarrow{P} s'$.

Then (234) re-writes as follows:

 $\begin{array}{l} \langle \forall \ s \ : \ p \ s : \ \langle \forall \ s' \ : \ s'\llbracket P \rrbracket s : \ q \ s' \rangle \rangle \\ \\ \equiv & \{ \text{ coreflexives } \} \\ \langle \forall \ s \ : \ s \Phi_p s : \ \langle \forall \ s' \ : \ s'\llbracket P \rrbracket s : \ s' \Phi_q s' \rangle \rangle \\ \\ \equiv & \{ \ \top \ ; \text{ coreflexives } \} \\ \langle \forall \ s, s'' \ : \ s \Phi_p s'' : \ \langle \forall \ s' \ : \ s'\llbracket P \rrbracket s : \ s'(\Phi_q \cdot \top) s'' \rangle \rangle \\ \\ \equiv & \{ \text{ recall } (225) \text{ and remove variables } \} \\ \Phi_p \subseteq \llbracket P \rrbracket \setminus (\Phi_q \cdot \top) \end{array}$

Handling Hoare triples in relation algebra

Finally:

$$\begin{aligned} \Phi_p &\subseteq \llbracket P \rrbracket \setminus (\Phi_q \cdot \top) \\ &\equiv & \{ \ \ \mathsf{GC} \ \text{of division} \ (228) \ \} \\ & \llbracket P \rrbracket \cdot \Phi_p \subseteq \Phi_q \cdot \top \\ & \equiv & \{ \ \ (118) \ \} \\ & \llbracket P \rrbracket \cdot \Phi_p \subseteq \Phi_q \cdot \llbracket P \rrbracket \end{aligned}$$

Comparing this with the meaning of **contract** $\Phi_q \prec \Phi_p$ recall (143) — we realize that they are the same in case $[\![P]\!]$ is a function — P deterministic and wholly defined.

・ロト ・西ト ・ヨト ・ヨー うらぐ

Hoare triples are contracts

In summary:

The meaning of Hoare triple $\{p\}P\{q\}$ is the contract

 $\llbracket P \rrbracket \cdot \Phi_p \subseteq \Phi_q \cdot \llbracket P \rrbracket$ (235)

where [P] denotes the state transition semantics of P.

We will write

$$\Phi_p \xrightarrow{P} \Phi_q$$

to mean (235) which, as seen above, is the same as

$$\llbracket P \rrbracket \cdot \Phi_p \subseteq \Phi_q \cdot \top \tag{236}$$

Hoare triples are GCs

In turn, (236) is equivalent to

 $\Phi_p \subseteq \llbracket P \rrbracket \setminus (\Phi_q \cdot \top) \cap \mathit{id}$

Thanks to GC (127), (236) is also equivalent to

 $\rho\left(\llbracket P\rrbracket \cdot \Phi_p\right) \subseteq \Phi_q$

Thus we have the following Galois connection for Hoare triples, where P, Φ and Ψ abbreviate $[\![P]\!]$, Φ_p and Φ_q , respectively:

$$\underbrace{\rho\left(P \cdot \Phi\right)}_{f \ \Phi} \subseteq \Psi \equiv \Phi \subseteq \underbrace{P \setminus (\Psi \cdot \top) \cap id}_{g \ \Psi}$$
(237)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Adjoints *f* and *g* are known as **predicate transformers**.

Hoare triples are GCs

The usual notation for $g \Psi$ is $P \downarrow \Psi$ — the weakest (liberal) **pre-condition** (WP) for Ψ to hold on the outputs of P.

Dually, $f \Phi = \rho (P \cdot \Phi)$ is known as the **strongest post-condition** (SP) holding on all outputs of *P* restricted by Φ on the input.

These concepts are independent of their use in Hoare logic. In general, given a binary relation $B < \stackrel{R}{\longleftarrow} A$ and coreflexives $A < \stackrel{\Phi}{\longleftarrow} A$ and $B < \stackrel{\Psi}{\longleftarrow} B$, we define

$$\Phi \xrightarrow{R} \Psi \equiv R \cdot \Phi \subseteq \Psi \cdot R$$
(238)
$$\equiv \Phi \subseteq R \bullet \Psi$$
(239)

which extends functional contracts to arbitrary relations.

Exercise 107: Prove $\Box \qquad id \stackrel{R}{\longleftarrow} \Phi \equiv T_{RUE} \equiv \Phi \stackrel{R}{\longleftarrow} \bot \qquad (240)$ Exercise 108: Prove the special cases: • WP of a function f:

$$f \bullet \Phi_q = \lambda a.q(f a) \tag{241}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• SP of a function f:

 $\rho(f \cdot \Phi_p) = \lambda b.b \in \{f \ a \mid p \ a\}$ (242)

NB: recall that (241) has been used several times earlier on in contract calculation. \Box

Exercise 109: The formal meaning of (imperative) code sequential composition is

$\llbracket P; Q \rrbracket = \llbracket Q \rrbracket \cdot \llbracket P \rrbracket$

Show that the following rule of the Hoare logic of programs,

 $\frac{\{p\} P\{q\} , \{q\} Q\{s\}}{\{p\} P; Q\{s\}}$

is an instance of the following relational typing rule:

 $\Psi \stackrel{R\cdot S}{\longleftarrow} \Phi \quad \Leftarrow \quad \Psi \stackrel{R}{\longleftarrow} \Upsilon \land \Upsilon \stackrel{S}{\longleftarrow} \Phi \quad (243)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exercise 110: Prove the "trading rule":

$$\Upsilon \stackrel{R}{\longleftarrow} \Phi \cdot \Psi \equiv \Upsilon \stackrel{R \cdot \Phi}{\longleftarrow} \Psi$$
(244)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Exercise 111: Re-write the following "contract splitting" rule,

$$\Psi_1 \cdot \Psi_2 \stackrel{R}{\longleftarrow} \Phi \equiv \Psi_1 \stackrel{R}{\longleftarrow} \Phi \land \Psi_2 \stackrel{R}{\longleftarrow} \Phi \quad (245)$$

in Hoare logic. Then prove (245). \Box

WP calculus

Facts (237) and (239) show that whatever one can do in Hoare logic can be done with Dijkstra's WPs.

Let us show an example by converting (245) to WP-calculus:

 $\Upsilon \cdot \Psi \not\leftarrow \stackrel{R}{\longleftarrow} \Phi \equiv \Upsilon \not\leftarrow \stackrel{R}{\longleftarrow} \Phi \land \Psi \not\leftarrow \stackrel{R}{\longleftarrow} \Phi$ $\equiv \{ WPs (239) \text{ three times} \} \}$ $\Phi \subseteq R \blacktriangleright (\Upsilon \cdot \Psi) \equiv \Phi \subseteq R \blacktriangleright \Upsilon \land \Phi \subseteq R \blacktriangleright \Psi$ $\equiv \{ \text{ coreflexives (112) ; meet-universal (64) } \}$ $\langle \forall \Phi :: \Phi \subseteq R \blacktriangleright (\Upsilon \cdot \Psi) \equiv \Phi \subseteq (R \blacktriangleright \Upsilon) \cap (R \blacktriangleright \Psi) \rangle$ $\equiv \{ \text{ meet of correflexives; indirect equality (69) } \}$ $R \blacktriangleright (\Upsilon \cdot \Psi) = (R \blacktriangleright \Upsilon) \cdot (R \blacktriangleright \Psi)$

WP calculus

A more interesting example is the transformation of the WP-rule for sequential composition

$$(S \cdot R) \bullet \Phi = R \bullet (S \bullet \Phi)$$
(246)

into a contract:

$$R \blacklozenge (S \blacklozenge \phi) = (S \cdot R) \blacklozenge \phi$$

$$\equiv \{ \text{ indirect equality (69)} \}$$

$$\psi \subseteq R \blacklozenge (S \blacklozenge \phi) \equiv \psi \subseteq (S \cdot R) \blacklozenge \phi$$

$$\equiv \{ (239) \text{ twice } \}$$

$$(S \blacklozenge \phi) \stackrel{R}{\longleftarrow} \psi \equiv \phi \stackrel{(S \cdot R)}{\longleftarrow} \psi \qquad (247)$$

The outcome, still involving the \blacklozenge operator, is an advantageous replacement for (243), since it is an equivalence.

Exercise 112: Show that $\rho R \prec R \to \delta R$ holds. However, WP $R \bullet (\rho R) = id$ rather than δR . Explain why. \Box

Exercise 113: Show that $\rho R \stackrel{R}{\longleftarrow} \delta R$ holds. However, WP $R \triangleright (\rho R) = id$ rather than δR . Explain why. \Box

Exercise 114: The two "shunting" rules for S a simple relation,

 $S \cdot R \subseteq Q \equiv (\delta S) \cdot R \subseteq S^{\circ} \cdot Q$ (248)

 $R \cdot S^{\circ} \subseteq Q \equiv R \cdot \delta S \subseteq Q \cdot S$ (249)

are "almost" Galois connections. (a) Derive the following variants concerning coreflexives,

 $R \cdot \Phi \subseteq S \equiv R \cdot \Phi \subseteq S \cdot \Phi$ $\Phi \cdot R \subseteq S \equiv \Phi \cdot R \subseteq \Phi \cdot S$

referred to earlier on as the *closure properties* (113) and (114), respectively; (b) prove either (248) or (249) by cyclic implication (yulg.

Motivation E+H split Galois connections Application I - Hoare Logic Application II - Optimization calculus Application III -

Application II — Optimization calculus

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Programming is optimization

Abstract models are derived from requirements by ignoring unnecessary detail.

This often results in models whose operations are **vague** or **non-deterministic**.

Such operations, often recorded as pre/post condition pairs, are binary relations.

As computers cannot handle vagueness, deriving code for such operations calls for **determinization** — some way to convert such relations into functions.

This process is known as **model refinement**, and it is performed in a stepwise manner; however, how does one control it? What is the **guiding principle** (if any)?

Programming is optimization

Recall (203), one of the definitions given for whole division:

 $x \div y = \langle \bigvee z :: z \times y \le x \rangle$

Given some y, term $z \times y \leq x$ denotes a binary relation with input x and output z. But not every output z is acceptable — (203) tells that one wants **the largest** such z.

So there is an **ordering** (\leq) on the outputs (\mathbb{N}_0) telling what the **optimization** principle should be: *largest* wrt. $\mathbb{N}_0 \ll \mathbb{N}_0$.

Whole division is (perhaps) the first **optimization** problem one solves at school; programmers do it **all the time**, most often unconsciously!

Programming is optimization

Another example is provided by the Galois connection which specifies the *take* function available in Haskell, for instance:

length $ys \leq n \land ys \leq xs \equiv ys \leq take \ n \ xs$ (250)

Here the ordering on outputs is the **prefix** relation (\leq) on lists.

For each *n*, term length $ys \le n \land ys \le xs$ tells which outputs ys are candidates for *take n xs*.

But only one of these is acceptable — the **longest** such prefix, which is **optimal** with respect to the prefix ordering.

Exercise 115: Before implementing *take* one can start proving properties about this function solely relying on (250):

• Show that

```
take (length xs) xs = xs
```

holds.

Resort to indirect equality over ≤ in proving

take n (take m xs) = take (min n m) xs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where *min*, the minimum of two natural numbers, is given by the obvious Galois connection.

Optimization in an abstract setting

Let us once again go back to (203) and spell out the meaning of its supremum:

$$z(\div y)x \equiv z \times y \le x \land \langle \forall z' : z' \times y \le x : z \ge z' \rangle$$

$$\equiv \{ \text{ define } z \ R \ x = z \times y \le x \}$$

$$\underbrace{z \times y \le x}_{z \ R \ x} \land \underbrace{\langle \forall z' : \underbrace{z' \times y \le x}_{x \ R^{\circ} \ z'} : z \ge z' \rangle}_{z(\ge/R^{\circ})x}$$

Im summary:

$$(\div y) = R \cap \ge /R^{\circ} \text{ where } R = (\times y)^{\circ} \cdot \le x \quad (251)$$

$$z \xleftarrow{\geq} R^{\circ} \qquad x \qquad z' (\forall)$$

(ロ)、(型)、(E)、(E)、 E) のQの

Optimization in an abstract setting

Generalization: given any relation $B \stackrel{R}{\longleftarrow} A$ and an **optimization** criterion $B \stackrel{S}{\longleftarrow} B$ on its outputs,

define a new relational combinator $R \upharpoonright S$ (read: R optimized by S, or R "shrunk" by S) as follows:

$$R \upharpoonright S = \underbrace{R}_{easy} \cap \underbrace{S/R^{\circ}}_{hard}$$
(252)

The "hard" term specifies the optimization taking place.

Optimization in an abstract setting

By standard application of **indirect equality** to (252) one obtains the **universal property** of the "shrinking" operator:

$$X \subseteq R \upharpoonright S \equiv X \subseteq R \land X \cdot R^{\circ} \subseteq S$$
(253)

This ensures $R \upharpoonright S$ as the largest sub-relation X of R such that, for all $b', b \in B$, if there exists $a \in A$ such that $b'Xa \land bRa$, then b'Sb holds ("b' better than b").

(253) can be regarded as a GC between the set of all **subrelations** of R and the set of **optimization criteria** on its outputs.

Optimization calculus

Both the definition of $R \upharpoonright S$ and its universal property (253) provide a rich setting for exploiting **generic properties** of **optimization** in this abstract setting.

Below we give a brief account of such algebra, as obtained using relational calculus.

The interested reader is referred to the works by Mu and Oliveira (2012) and Oliveira and Ferreira (2012) for a more complete account of optimization by shrinking, with applicatons to software design.

Chaotic optimization:

$$R \upharpoonright \top = R \tag{254}$$

Impossible optimization:

```
R \upharpoonright \bot = \bot \tag{255}
```

"Brute force" determinization:

 $R \upharpoonright id =$ largest deterministic fragment of R (256)

Thus $R \upharpoonright id$ is the part of R which cannot be further refined.

Exercise 116: Prove the two first equalities above. \Box

 $R \upharpoonright id$ is the extreme case of the fact which follows:

 $R \upharpoonright S$ is simple $\leftarrow S$ is anti-symmetric (257)

Thus anti-symmetric criteria always lead to determinism, possibly at the sacrifice of totality. Clearly: for R simple,

$$R \upharpoonright S = R \equiv \operatorname{img} R \subseteq S \tag{258}$$

Thus (functions)

 $f \upharpoonright S = f \quad \Leftarrow \quad S \text{ is reflexive}$ (259)

Pre-condition fusion:

$$(R \upharpoonright S) \cdot \Phi = (R \cdot \Phi) \upharpoonright S$$
(260)

Two function fusion rules

$$(R \upharpoonright S) \cdot f = (R \cdot f) \upharpoonright S$$
(261)
$$(f \cdot R) \upharpoonright S = f \cdot (R \upharpoonright S_f)$$
(262)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where S_f abbreviates $f^{\circ} \cdot S \cdot f$.

Exercise 117: Show that, for *S* a preorder, S_f above is also a preorder.

Union:

$$(R \cup S) \upharpoonright Q = (R \upharpoonright Q) \cap Q/S^{\circ} \cup (S \upharpoonright Q) \cap Q/R^{\circ}$$
 (263)

This has a number of corollaries, namely a conditional rule,

 $(p \rightarrow R, T) \upharpoonright S = p \rightarrow (R \upharpoonright S), (p \upharpoonright S)$ (264)

the distribution over alternatives (77),

$$[R, S] \upharpoonright U = [R \upharpoonright U, S \upharpoonright U]$$
(265)

and the "function competition" rule:

 $(f \cup g) \upharpoonright S = (f \cap S \cdot g) \cup (g \cap S \cdot f)$ (266)

since $S/g^{\circ} = S \cdot g$.

"Function competition" rule

With points:

$$y((f \cup g) \upharpoonright S) x \equiv \begin{cases} y = f \times \wedge (f \times)S(g \times) \\ \lor \\ y = g \times \wedge (g \times)S(f \times) \end{cases}$$

that is: f (resp. g) "wins" wherever it is better than g (resp. f) wrt. S. For instance,

 $abs = (id \cup sim) \upharpoonright \geq$

for sim x = -x, cf.

 $y = abs \ x \equiv y = x \land x \ge -x \lor y = -x \land -x \ge x$ $\equiv y = x \land x \ge 0 \lor y = -x \land 0 \ge x$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$R \upharpoonright S$ on data

Combinator $R \upharpoonright S$ also makes sense when R and S are finite, relational data structures (eg. tables in a database).

Example of $R \upharpoonright S$ in **data-processing**: given

(Examiner	Mark	Student \	
	Smith	10	John	
	Smith	11	Mary	
	Smith	15	Arthur	
	Wood	12	John	
	Wood	11	Mary	
	Wood	15	Arthur /	

and wishing to "choose the best mark", project over Mark, Student and optimize over the \geq ordering on Mark (next slide):

 $R \upharpoonright S$ on data

(Mark	Student		Mark	Student
	10	John	$= \leq 1$	IVIAI K	Student
	11	Many		11	Mary
	11	iviary		12	John
	12	John		15	Arthur
l	15	Arthur		10	Arthur

Relational shrinking can also be used for induction-free reasoning about sequences (lists), welcome in **Alloy** where no explicit recursion is available.

Example of $R \upharpoonright S$ in **list-processing**: given a sequence $A \stackrel{S}{\leftarrow} \mathbb{N}$,

 $A \stackrel{nub \ S}{\leftarrow} \mathbb{N} \triangleq (S^{\circ} \upharpoonright \leq)^{\circ}$

removes all duplicates while keeping the first instances. (Data in \mathbb{N} could be regarded as "time stamps".)

Galois connections (211) as optimization problems

 $f^{\circ} \cdot (\leq) = (\Box) \cdot g$ \equiv { ping-pong } $(\Box) \cdot g \subset f^{\circ} \cdot (<) \land f^{\circ} \cdot (<) \subset (\Box) \cdot g$ { converses } \equiv $(\sqsubseteq) \cdot g \subseteq f^{\circ} \cdot (\leq) \land (f^{\circ} \cdot (\leq))^{\circ} \subseteq g^{\circ} \cdot (\sqsupseteq)$ \equiv $\{ \text{ since } f \text{ is monotonic (see exercise 119 below) } \}$ $\underbrace{g \subseteq f^{\circ} \cdot (\leq)}_{\text{"easy"}} \land \underbrace{g \cdot (f^{\circ} \cdot (\leq))^{\circ} \subseteq (\beth)}_{\text{"hard"}},$ { universal property (253) } \equiv $g \subset (f^{\circ} \cdot (<)) \upharpoonright (\Box)$ (267) < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Galois connections as optimization problems

Comments:

- Given the two orderings (≤) and (□) and the "easy adjoint" f, implementing the "hard adjoint" amounts to solving the inequation (267) for g.
- We have already seen an instance of this result in (251), for whole division.

Question:

Implementations are usually recursive. Where in (267) is the "guideline" for introducing recursion in the calculations ?

Since $g \subseteq (f^{\circ} \cdot (\leq)) \upharpoonright (\supseteq)$ expresses an optimization by (\supseteq) , it is this ordering which controls the implementation process. How?

Assume a generic Galois connection $f^{\circ} \cdot \leq = \Box \cdot g$ in the following exercises.

Exercise 118: Show that f monotonicity, $x \sqsubseteq y \Rightarrow f x \le f y$, can be written point-free as

$$(\sqsubseteq) \cdot f^{\circ} \subseteq f^{\circ} \cdot (\leq), \tag{268}$$

Exercise 119: Show that, once (268) is assumed, the following equivalence holds:

$$g \subseteq f^{\circ} \cdot (\leq) \equiv (\sqsubseteq) \cdot g \subseteq f^{\circ} \cdot (\leq)$$
 (269)

Suggestion: do a "ping-pong" proof. □

Motivation E+H split Galois connections Application I - Hoare Logic Application II - Optimization calculus Application III -

Application III — Optimization versus induction

Optimizing over inductive relations

As shown in (Bird and de Moor, 1997) and (Mu and Oliveira, 2012), most often the orderings involved in **program optimization** are **inductive** relations.

- Inductive orderings lead to recursive programs
- "Greedy algorithms" and "dynamic programming" studied in this way in the *Algebra of Programming* book (Bird and de Moor, 1997).
- Complexity of the approach puts many readers off (need for always transposing relations to powerset functions; ...)

What's new in (Mu and Oliveira, 2012):

 $R \upharpoonright S$ algebra greatly simplifies and generalizes the calculation of programs from such specifications. (Notably, there is no need for power transpose.)

Folds ($k\alpha\tau\alpha$ s)

In general, for F a polynomial functor (relator) and initial $\mu F \prec \frac{in}{\mu} F(\mu F)$,

there is a unique solution to equation $X = R \cdot F X \cdot in^{\circ}$ — thus universal property:

 $X = (|R|) \equiv X \cdot in = R \cdot F X \tag{270}$

(Read (|R|) as "fold R" or " $\kappa \alpha \tau \alpha R$ ".)

Relational folds

It is very easy to show that

$$(|in|) = id \tag{271}$$

holds — just make X = id in (270) and solve for R (this is known as the **reflexion** property).

Example: in = [nil, cons] for lists. Reflexion (271) means that the function f = ([nil, cons]) is bound to be the identity, cf.

f[] = []f(cons(a, x)) = cons(a, f x)

Now suppose we have $R = [nil, cons \cup nil]$ in (270). What is the meaning of $([nil, cons \cup nil])$?
Relational folds

Unfolding $X = ([nil, cons \cup nil])$ we get

 $X \cdot [nil, cons] = [nil, cons \cup nil] \cdot (id + id \times X)$

that is, $X \cdot nil = nil$ and $X \cdot cons = (cons \cup nil) \cdot (id \times X)$.

Introducing variables in $X \cdot nil = nil$ we get $y X [] \equiv y = []$ since $nil_{-} = []$. That is, $[] X [] \equiv \text{TRUE}$. Doing the same for the other clause we get:

 $y X (a:x) \equiv y = [] \lor \langle \exists x' : x' X x: y = a:x' \rangle$

Thus $([nil, cons \cup nil])$ is the **prefix** relation:

 $(\preceq) = ([nil, cons \cup nil])$

The "Greedy" theorem

 $(|R \upharpoonright S|) \subseteq (|R|) \upharpoonright S \iff S^{\circ} \xleftarrow{R} F S^{\circ}$ (272)

・ロト ・ 一 ト ・ モト ・ モト

э

for *S* transitive. (**NB**: $R \stackrel{X}{\longleftarrow} S$ means $X \cdot S \subseteq R \cdot X$) In a diagram, where the side condition is depicted in dashed arrows:

Proof: see (Mu and Oliveira, 2012).

The *msp* problem ("maximum sum prefix"), whose spec $msp :: [Int] \leftarrow [Int]$ y msp x = y is a prefix of x that yields the maximum sum

translates into $(\leq = ([nil, cons \cup nil])$ is the prefix ordering)

 $y msp x \Rightarrow y \leq x \land \langle \forall z : z \leq x : sum y \geq sum z \rangle$

which in turn PF-transforms into

 $msp \subseteq \preceq \restriction \geq_{sum}$

(**NB:** not a GC, it is nevertheless a good example to understand greedy programming.)

We calculate:

 $msp \subset \prec \upharpoonright >_{sum}$ { definition of prefix ordering } \equiv $msp \subseteq ([nil, cons \cup nil]) \upharpoonright >_{sum}$ { greedy theorem (272) } \Leftarrow $msp \subseteq ([nil, cons \cup nil] \upharpoonright >_{sum})$ { junc-rule (265) ; determinism of *nil* } \equiv $msp \subseteq ([nil, (cons \cup nil) \upharpoonright \geq_{sum}))$ { function competition rule (266) } \equiv $msp \subseteq ([nil, (cons \cap \geq_{sum} \cdot nil) \cup (nil \cap \geq_{sum} \cdot cons)])$

(Side condition ignored for brevity.)

Let R abbreviate the inductive step

 $(\mathit{nil} \cap \geq_{\mathit{sum}} \cdot \mathit{cons}) \cup (\mathit{cons} \cap \geq_{\mathit{sum}} \cdot \mathit{nil})$

Then y R (a : x) means

 $y = [] \land 0 \ge a + sum x \lor y = a : x \land a + sum x \ge 0$

The case a + sum x = 0 is **ambiguous**, in the sense that the algorithm may either stop yielding y = [] or yield y = a : x, where x is the outcome of the recursive step.

As we still have non-determinism, we need to further shrink what we started from, $msp = (\prec \uparrow \geq_{sum}) \uparrow \prec$ (273)

to obtain the function which yields the shortest such prefix.

Putting everything together, the overall outcome will be, in Haskell syntax:

See more theorems and examples in (Mu and Oliveira, 2012) covering also optimizations which lead to hylomorphisms and anamorphisms.

It turns out that whole division $(x \div y)$, *take* etc end up being anamorphisms.

Motivation E+H split Galois connections Application I - Hoare Logic Application II - Optimization calculus Application III -

- R. Bird and O. de Moor. *Algebra of Programming*. Series in Computer Science. Prentice-Hall, 1997.
- S.-C. Mu and J.N. Oliveira. Programming from Galois connections. *JLAP*, 81(6):680–704, 2012.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

J.N. Oliveira and M.A. Ferreira. Alloy meets the algebra of programming: a case study, 2012. To appear in IEEE Transactions on Software Engineering.