
PF-transform: using Galois connections to
structure relational algebra

J.N. Oliveira

Dept. Informática,
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Motivation

We motivate this subject by placing some very general questions:

• Why is programming “difficult”?

• Is there a generic skill, or competence, that one such acquire
to become a “good programmer”?

Surely that of abstract modelling. But, still,

• What is it that makes abstract modelling a challenging task?

• Are there generic conceptual patterns that could be used to
shorten the path from problems to models?
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Problems = Easy + Hard

Superlatives in problem statements, eg.

• ”... the smallest such number”

• ”... the longest such list”

• ”... the best approximation”

suggest two layers in specifications:

• the easy layer — broad class of solutions (eg. a prefix of a
list)

• the difficult layer — requires one particular such solution
regarded as optimal in some sense (eg. “longest prefix up to a
given length”).



Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Example — back to the primary school desk

The whole division algorithm

7 2
1 3

2× 3 + 1 = 7 , “ie.” 3 = 7÷ 2

However

7 2
3 2

2× 2 + 3 = 7 ∧ 2 6= 7÷ 2

7 2
5 1

2× 1 + 5 = 7 ∧ 1 6= 7÷ 2

That is: for some r ,

n d
r q

q = n ÷ d ≡ d × q + r = n
provided q is the
largest such q (r
smallest)
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Example — specifying x ÷ y

First version (literal):

x ÷ y = 〈
∨

z :: z × y ≤ x〉 (203)

Second version (involved):

z = x ÷ y ≡ 〈∃ r : 0 ≤ r < y : x = z × y + r〉 (204)

Third version (clever!):

z × y ≤ x ≡ z ≤ x ÷ y (y > 0) (205)

— a so-called Galois connection, as we shall soon see.
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Why (205) is better than (203,204)

Equivalence (205),

z × y ≤ x ≡ z ≤ x ÷ y (y > 0)

captures the requirements in an elegant way:

• It is a solution: x ÷ y multiplied by y approximates x

(x ÷ y)× y ≤ x

— let z := x ÷ y in (205) and simplify.

• It is the best solution because it provides the largest such number:

z × y ≤ x ⇒ z ≤ x ÷ y (y > 0)

— the ⇒ part of the ≡ of (205).
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Reasoning

Equivalence (205)

z × y ≤ x ≡ z ≤ x ÷ y (y > 0)

is not only simple to write but effective to reason about.

Let us see an example: we want to prove the following equality

(n ÷m)÷ d = n ÷ (d ×m)

What about

• using (203)? too many suprema!

• using (204)? too many existential quantifiers!

• using (205)? easy — see the next slide.
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Proving (n ÷m)÷ d = n ÷ (d ×m)

q ≤ (n ÷m)÷ d

≡ { (205) }

q × d ≤ n ÷m

≡ { (205) }

(q × d)×m ≤ n

≡ { × is associative }

q × (d ×m) ≤ n

≡ { (205) }

q ≤ n ÷ (d ×m)

:: { indirection (206) }

(n ÷m)÷ d = n ÷ (d ×m)
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(Generic) indirect equality

Note the use of the (generic) indirect equality rule

〈∀ q :: q ≤ x ≡ q ≤ y〉 ≡ (x = y) (206)

valid for any partial order ≤.

Exercise 95: Derive from (205) the two cancellation laws

q ≤ (q × d)÷ d

(n ÷ d)× d ≤ n

and reflexion law:

n ÷ d ≥ 1 ≡ d ≤ n (207)

�
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Galois connections

Equivalence (205) is an example of a Galois connection:

z×y︸︷︷︸
f z

≤ x ≡ z ≤ x÷y︸︷︷︸
g x

In general, for preorders (A,≤) and (B,v) and

(A,≤)

g
**
(B,v)

f

jj (208)

(f , g) are said to be Galois connected iff, for all a ∈ A and
b ∈ B. . .
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Galois adjoints

f︸︷︷︸
lower adjoint

b ≤ a ≡ b v g︸︷︷︸
upper adjoint

a (209)

that is

f ◦ · ≤ = v · g (210)

Graphical interpretation of (210):

• v · g is the “area” below
function g wrt. v

• f ◦ · ≤ is the “area” above
function f wrt. ≤

• f and g are such that these
areas are the same.
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Still whole division

f = (×2) is the
lower adjoint of
g = (÷2).

The area below
g = (÷2) is the
same as the area
above f = (×2).

f = (×2) is not
surjective.

g = (÷2) is not
injective.
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Adjoints are “nearly” inverses

Easy to observe:

• g(f y) = (y × 2)÷ 2 = y — f is indeed a right inverse for g

• f (g 5) = (5÷ 2)× 2 = 2× 2 = 4 ≤ 5 — g is not a right
inverse for f , but it provides an approximation.

In spite of this asymmetry, the connection enables us to reason
about

g = (÷y)

— the “hard” operation — in terms of

f = (×y)

— the “easy” operation. This is the main advantage of a Galois
connection (GC).
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Notation

A GC can be expressed by point-wise equivalence (209)

f x ≤ y ≡ x v g y

or by the equivalent relational equality (210),

f ◦ · ≤ = v · g

as we have seen.

Abbreviated notation

f ` g (211)

is used instead of (210) wherever the orders are implicit from the
context.
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Basic properties
For preorders in

(A,≤)

g
**
(B,v)

f

jj (212)

the two cancellation laws hold:

(f · g)a ≤ a and b v (g · f )b (213)

— recall exercise 95 for the case of whole division.

Distribution laws

f (b t b′) = (f b) ∨ (f b′) (214)

g(a ∧ a′) = (g a) u (g a′) (215)
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Basic properties

These hold wherever both preorder are lattices, that is, wherever
suprema

b t b′ v x ≡ b v x ∧ b′ v x (216)

and infima

x v b u b′ ≡ x v b ∧ x v b′ (217)

exist. (Similarly for A, ≤, ∨, ∧.)

Exercise 96: Resort to indirect equality to prove any of (214) or (215).

�
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Other properties

Conversely,

• If f distributes over t then it has an upper adjoint g (f #)

• If g distributes over ∧ then it has a lower adjoint f (g [)

Moreover, if (f , g) are Galois connected,

• f and g are monotonic

• f (g) uniquely determines g (f ) — thus the [, ] notations

• (g , f ) are also Galois connected — just reverse the orderings

• f = f · g · f and g = g · f · g
etc
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Summary

(f b) ≤ a ≡ b v (g a)

Description f = g [ g = f ]

Definition f b =
∧
{a : b v g a} g a =

⊔
{b : f b ≤ a}

Cancellation f (g a) ≤ a b v g(f b)
Distribution f (b t b′) = (f b) ∨ (f b′) g(a′ ∧ a) = (g a′) u (g a)

Monotonicity b v b′⇒ f b ≤ f b′ a ≤ a′⇒ g a v g a′

Exercise 97: Derive from (209) that both f and g are monotonic. �
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Remark

Galois connections originate from the
work of the French mathematician
Evariste Galois (1811-1832). Their main
advantages,

simple, generic and highly
calculational

are welcome in proofs in computing,
due to their size and complexity, recall
E. Dijkstra:

elegant ≡ simple and
remarkably effective.

In the sequel we will re-interpret the relational operators we’ve
seen so far as Galois adjoints.
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Examples
Not only

(d×)q︸ ︷︷ ︸
f q

≤ n ≡ q ≤ n(÷d)︸ ︷︷ ︸
g n

but also the two shunting rules,

(h·)X︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ (h◦·)Y︸ ︷︷ ︸
g Y

X (·h◦)︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ Y (·h)︸ ︷︷ ︸
g Y

as well as converse,

X ◦︸︷︷︸
f X

⊆ Y ≡ X ⊆ Y ◦︸︷︷︸
g Y

and so and so forth — are adjoints of GCs: see the next slides.
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Converse

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g [ g = f ] Obs.

converse ( )◦ ( )◦ bR◦a ≡ aRb

Thus:

Cancellation (R◦)◦ = R

Monotonicity R ⊆ S ≡ R◦ ⊆ S◦

Distributions (R ∩ S)◦ = R◦ ∩ S◦, (R ∪ S)◦ = R◦ ∪ S◦

Exercise 98: Why is it that converse-monotonicity can be strengthened

to an equivalence? �
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Example of calculation from the GC

Converse involution:

(R◦)◦ = R (218)

Indirect proof of (218):

(R◦)◦ ⊆ Y

≡ { ◦-universal X ◦ ⊆ Y ≡ X ⊆ Y ◦ for X := R◦ }

R◦ ⊆ Y ◦

≡ { ◦-monotonicity }

R ⊆ Y

:: { indirection }

(R◦)◦ = R
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Functions

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g [ g = f ] Obs.

shunting rule (h·) (h◦·) NB: h is a function
“converse” shunting rule (·h◦) (·h) NB: h is a function

Consequences:

Functional equality: h ⊆ g ≡ h = k ≡ h ⊇ k

Functional division: R · h = R/h◦

Question: what does R/S mean?
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Relational division

In the same way

z × y ≤ x ≡ z ≤ x ÷ y

means that x ÷ y is the largest number which multiplied by y
approximates x ,

Z · Y ⊆ X ≡ Z ⊆ X/Y (219)

means that X/Y is the largest relation which pre-composed Y
approximates X .

What is the pointwise meaning of X/Y ?
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We reason:

First, the types of

Z · Y ⊆ X ≡ Z ⊆ X/Y A
X/Y

��
C B

Y

OO

X
oo

Next, the calculation:

c (X/Y ) a

≡ { introduce points C 1
coo and A 1

aoo }

x(c◦ · (X/Y ) · a)x

≡ { one-point (12) }

x ′ = x ⇒ x ′(c◦ · (X/Y ) · a)x

Proceed by going pointfree:
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We reason

id ⊆ c◦ · (X/Y ) · a

≡ { shunting rules (Galois connections) }

c · a◦ ⊆ X/Y

≡ { rule (219) — Galois connection }

c · a◦ · Y ⊆ X

≡ { now shunt c back to the right }

a◦ · Y ⊆ c◦ · X
≡ { back to points via (47) }

〈∀ b : a Y b : c X b〉
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Outcome

In summary:

c (X/Y ) a ≡ 〈∀ b : a Y b : c X b〉 a?
X/Y

��
c b

_
Y

OO

�
X
oo

(220)

Example:

a Y b = passenger a choses flight b

c X b = company c operates flight b

c (X/Y ) a = company c is the only one trusted by passenger
a, that is, a only flies c .
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Pointwise meaning in full

The full pointwise encoding of Galois connection

Z · Y ⊆ X ≡ Z ⊆ X/Y

is:

〈∀ c , b : 〈∃ a : cZa : aYb〉 : cXb〉 ≡ 〈∀ c , a : cZa : 〈∀ b : aYb : cXb〉〉

If we drop variables and regard the uppercase letters as denoting Boolean
terms dealing without variable c , this becomes

〈∀ b : 〈∃ a : Z : Y 〉 : X 〉 ≡ 〈∀ a : Z : 〈∀ b : Y : X 〉〉

recognizable as the splitting rule (7) of the Eindhoven calculus.

Put in other words: existential quantification is lower adjoint of
universal quantification.
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Exercises

Exercise 99: Prove the equalities

X · f = X/f ◦ (221)

X/⊥ = > (222)

>/Y = > (223)

and check their pointwise meaning. �

Exercise 100: Define

X \ Y = (Y ◦/X ◦)◦ (224)

and infer:

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉 (225)

R · X ⊆ Y ≡ X ⊆ R \ Y (226)

�
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Relational division

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g [ g = f ] Obs.

right-division (·R) ( / R) right-factor
left-division (R·) (R \ ) left-factor

that is,

X · R ⊆ Y ≡ X ⊆ Y / R (227)

R · X ⊆ Y ≡ X ⊆ R \ Y (228)

Immediate: (R·) and (·R) are monotonic and distribute over union:

R · (S ∪ T ) = (R · S) ∪ (R · T )

(S ∪ T ) · R = (S · R) ∪ (T · R)

(\R) and (/R) are monotonic and distribute over ∩.
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Domain and range

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g [ g = f ] Obs.

domain δ (>·) lower ⊆ restricted to coreflexives
range ρ (·>) lower ⊆ restricted to coreflexives

Thus the universal properties of domain and range

δ R ⊆ Φ ≡ R ⊆ > · Φ
ρR ⊆ Φ ≡ R ⊆ Φ · >

— recall (126) and (127) — are Galois connections, and so

δ (S ∪ R) = δ S ∪ δ R
> · (Φ ∩Ψ) = > · Φ ∩ > ·Ψ

hold — similarly for ρ and (·>).
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Other operators

(f X ) ⊆ Y ≡ X ⊆ (g Y )

Description f = g [ g = f ] Obs.

implication (R ∩ ) (R ⇒ ) b(R ⇒ X )a ≡ bRa⇒ bXa
difference ( − R) (R ∪ )

Thus the universal properties of implication and difference,

R ∩ X ⊆ Y ≡ X ⊆ R ⇒ Y

X − R ⊆ Y ≡ X ⊆ R ∪ Y

are GCs — etc, etc

Exercise 101: Show that R ∩ (R ⇒ Y ) ⊆ Y (“modus ponens”) holds
and that R − R = ⊥− R = ⊥. �
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Exercises

Exercise 102: Let PA = {S : S ⊆ A} and let A PA∈oo denote the

membership relation a ∈ S , for any a and S . What does the relation

∈ \ ∈ mean? �

Exercise 103: Show that the relation ∈ \ ∈ of the previous exercise is

reflexive and transitive. �

Exercise 104: Prove that equality

(R \ S) · f = R \ (S · f ) (229)

holds. �
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Exercises

Exercise 105: (a) Show that R ⊆ ⊥/S◦ ≡ δ R ∩ δ S = ⊥; (b) Then use

indirect equality to infer the universal property of term R ∩ ⊥/S◦ — the

largest sub-relation of R whose domain is disjoint of that of S . �

Exercise 106: The relational overriding combinator,

R † S = S ∪ R ∩ ⊥/S◦ (230)

means the relation which contains the whole of S and that part of R
where S is undefined — read R † S as “R overridden by S”. (a) Show
that ⊥ † S = S and that R † ⊥ = R; (b) Infer the universal property:

X ⊆ R † S ≡ X − S ⊆ R ∧ δ (X − S) · δ S = ⊥ (231)
�
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Binary adjoints

Recall the universal property of ∪ (65), R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X ,
which can be written thus

∪(R,S) ⊆ X ≡ (R,S)(⊆ × ⊆)(X ,X )

or even as

∪(R,S) ⊆ X ≡ (R,S)(⊆ × ⊆)(∆X )

where ∆X = (X ,X ). Clearly,

∪ ` ∆

Similarly, the universal property of ∩ (64) can be captured by

∆ ` ∩

since (X ,X )(⊆ × ⊆)(R,S) ≡ X ⊆ ∩(R,S).
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A glimpse of GC (generic) algebra

Assume f ` g and f ′ ` g ′ hold in:

Identity

id ` id

Composition

f · f ′ ` g ′ · g

Converse (symmetry)

f ` g ≡ g ` f

Functors (preorders)

Ff ` Fg

Splitting (lattices)

〈f , f ′〉 ` u · (g × g ′)

In particular, for f , f ′ := id ,
g , g ′ := id :

4` u (232)

for 4x = (x , x).
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Application I — Hoare
Logic
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Handling Hoare triples in relation algebra

As application of the above we show next how to handle Hoare
triples such as

{p}P{q} (233)

in relation algebra. First we spell out the meaning of (233):

〈∀ s : p s : 〈∀ s ′ : s
P // s ′ : q s ′〉〉 (234)

that is:

if program P is in state s satisfying condition p, and it
moves to state s ′, then s ′ satisfies q.

In other words:

Condition p holding before P executes is sufficient for
condition q to hold after P executes.



Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Handling Hoare triples in relation algebra

Let [[P]] denote the state transition relation of P, that is s ′[[P]]s

means the same as s
P // s ′ .

Then (234) re-writes as follows:

〈∀ s : p s : 〈∀ s ′ : s ′[[P]]s : q s ′〉〉

≡ { coreflexives }

〈∀ s : sΦps : 〈∀ s ′ : s ′[[P]]s : s ′Φqs
′〉〉

≡ { > ; coreflexives }

〈∀ s, s” : sΦps” : 〈∀ s ′ : s ′[[P]]s : s ′(Φq · >)s ′′〉〉

≡ { recall (225) and remove variables }

Φp ⊆ [[P]] \ (Φq · >)
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Handling Hoare triples in relation algebra

Finally:

Φp ⊆ [[P]] \ (Φq · >)

≡ { GC of division (228) }

[[P]] · Φp ⊆ Φq · >

≡ { (118) }

[[P]] · Φp ⊆ Φq · [[P]]

Comparing this with the meaning of contract Φq Φp
foo —

recall (143) — we realize that they are the same in case [[P]] is a
function — P deterministic and wholly defined.
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Hoare triples are contracts

In summary:

The meaning of Hoare triple {p}P{q} is the contract

[[P]] · Φp ⊆ Φq · [[P]] (235)

where [[P]] denotes the state transition semantics of P.

We will write

Φp
P // Φq

to mean (235) which, as seen above, is the same as

[[P]] · Φp ⊆ Φq · > (236)
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Hoare triples are GCs

In turn, (236) is equivalent to

Φp ⊆ [[P]] \ (Φq · >) ∩ id

Thanks to GC (127), (236) is also equivalent to

ρ ([[P]] · Φp) ⊆ Φq

Thus we have the following Galois connection for Hoare triples,
where P, Φ and Ψ abbreviate [[P]], Φp and Φq, respectively:

ρ (P · Φ)︸ ︷︷ ︸
f Φ

⊆ Ψ ≡ Φ ⊆ P \ (Ψ · >) ∩ id︸ ︷︷ ︸
g Ψ

(237)

Adjoints f and g are known as predicate transformers.
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Hoare triples are GCs

The usual notation for g Ψ is P \•Ψ — the weakest (liberal)
pre-condition (WP) for Ψ to hold on the outputs of P.

Dually, f Φ = ρ (P · Φ) is known as the strongest post-condition
(SP) holding on all outputs of P restricted by Φ on the input.

These concepts are independent of their use in Hoare logic. In

general, given a binary relation B A
Roo and coreflexives

A A
Φoo and B B

Ψoo , we define

Φ
R // Ψ ≡ R · Φ ⊆ Ψ · R (238)

≡ Φ ⊆ R \•Ψ (239)

which extends functional contracts to arbitrary relations.
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Exercises

Exercise 107: Prove

id Φ
Roo ≡ True ≡ Φ ⊥Roo (240)�

Exercise 108: Prove the special cases:

• WP of a function f :

f \• Φq = λa.q(f a) (241)

• SP of a function f :

ρ (f · Φp) = λb.b ∈ {f a | p a} (242)

NB: recall that (241) has been used several times earlier on in contract

calculation. �
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Exercises

Exercise 109: The formal meaning of (imperative) code sequential
composition is

[[P; Q]] = [[Q]] · [[P]]

Show that the following rule of the Hoare logic of programs,

{p}P{q} , {q}Q{s}
{p}P; Q{s}

is an instance of the following relational typing rule:

Ψ Φ
R·Soo ⇐ Ψ Υ

Roo ∧ Υ Φ
Soo (243)

�
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Exercises

Exercise 110: Prove the “trading rule”:

Υ Φ ·ΨRoo ≡ Υ Ψ
R·Φoo (244)

�

Exercise 111: Re-write the following “contract splitting” rule,

Ψ1 ·Ψ2 Φ
Roo ≡ Ψ1 Φ

Roo ∧ Ψ2 Φ
Roo (245)

in Hoare logic. Then prove (245). �
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WP calculus

Facts (237) and (239) show that whatever one can do in Hoare
logic can be done with Dijkstra’s WPs.

Let us show an example by converting (245) to WP-calculus:

Υ ·Ψ Φ
Roo ≡ Υ Φ

Roo ∧ Ψ Φ
Roo

≡ { WPs (239) three times }

Φ ⊆ R \• (Υ ·Ψ) ≡ Φ ⊆ R \•Υ ∧ Φ ⊆ R \•Ψ

≡ { coreflexives (112) ; meet-universal (64) }

〈∀ Φ :: Φ ⊆ R \• (Υ ·Ψ) ≡ Φ ⊆ (R \•Υ) ∩ (R \•Ψ)〉

≡ { meet of correflexives; indirect equality (69) }

R \• (Υ ·Ψ) = (R \•Υ) · (R \•Ψ)
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WP calculus

A more interesting example is the transformation of the WP-rule for
sequential composition

(S · R) \• Φ = R \• (S \• Φ) (246)

into a contract:

R \• (S \• φ) = (S · R) \• φ

≡ { indirect equality (69) }

ψ ⊆ R \• (S \• φ) ≡ ψ ⊆ (S · R) \• φ

≡ { (239) twice }

(S \• φ) ψ
Roo ≡ φ ψ

(S·R)oo (247)

The outcome, still involving the \• operator, is an advantageous
replacement for (243), since it is an equivalence.



Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercises

Exercise 112: Show that ρR δ R
Roo holds. However, WP

R \• (ρR) = id rather than δ R. Explain why. �

Exercise 113: Show that ρR δ R
Roo holds. However, WP

R \• (ρR) = id rather than δ R. Explain why. �

Exercise 114: The two “shunting” rules for S a simple relation,

S · R ⊆ Q ≡ (δ S) · R ⊆ S◦ · Q (248)

R · S◦ ⊆ Q ≡ R · δ S ⊆ Q · S (249)

are “almost” Galois connections. (a) Derive the following variants
concerning coreflexives,

R · Φ ⊆ S ≡ R · Φ ⊆ S · Φ
Φ · R ⊆ S ≡ Φ · R ⊆ Φ · S

referred to earlier on as the closure properties (113) and (114),

respectively; (b) prove either (248) or (249) by cyclic implication (vulg.

“ping-pong”). �
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Application II —
Optimization calculus
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Programming is optimization

Abstract models are derived from requirements by ignoring
unnecessary detail.

This often results in models whose operations are vague or
non-deterministic.

Such operations, often recorded as pre/post condition pairs, are
binary relations.

As computers cannot handle vagueness, deriving code for such
operations calls for determinization — some way to convert such
relations into functions.

This process is known as model refinement, and it is performed
in a stepwise manner; however, how does one control it? What is
the guiding principle (if any)?
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Programming is optimization

Recall (203), one of the definitions given for whole division:

x ÷ y = 〈
∨

z :: z × y ≤ x〉

Given some y , term z × y ≤ x denotes a binary relation with input
x and output z . But not every output z is acceptable — (203)
tells that one wants the largest such z .

So there is an ordering (≤) on the outputs (IN0) telling what the

optimization principle should be: largest wrt. IN0 IN0
≤oo .

Whole division is (perhaps) the first optimization problem one
solves at school; programmers do it all the time, most often
unconsciously!
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Programming is optimization

Another example is provided by the Galois connection which
specifies the take function available in Haskell, for instance:

length ys ≤ n ∧ ys � xs ≡ ys � take n xs (250)

Here the ordering on outputs is the prefix relation (�) on lists.

For each n, term length ys ≤ n ∧ ys � xs tells which outputs ys
are candidates for take n xs.

But only one of these is acceptable — the longest such prefix,
which is optimal with respect to the prefix ordering.
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Exercise

Exercise 115: Before implementing take one can start proving
properties about this function solely relying on (250):

• Show that

take (length xs) xs = xs

holds.

• Resort to indirect equality over � in proving

take n (take m xs) = take (min n m) xs

where min, the minimum of two natural numbers, is given by the
obvious Galois connection.

�
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Optimization in an abstract setting

Let us once again go back to (203) and spell out the meaning of its
supremum:

z(÷y)x ≡ z × y ≤ x ∧ 〈∀ z ′ : z ′ × y ≤ x : z ≥ z ′〉

≡ { define z R x = z × y ≤ x }

z × y ≤ x︸ ︷︷ ︸
z R x

∧ 〈∀ z ′ : z ′ × y ≤ x︸ ︷︷ ︸
x R◦ z′

: z ≥ z ′〉

︸ ︷︷ ︸
z(≥/R◦)x

Im summary:

(÷y) = R ∩ ≥/R◦ where R = (×y)◦· ≤ x;
≥/R◦

}}
z z ′(∀)

_
R◦

OO

�
≥
oo

(251)
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Optimization in an abstract setting

Generalization: given any relation

B A
Roo and an optimization

criterion B B
Soo on its outputs,

A

R
��

R�S

��
B B

S
oo

define a new relational combinator R � S (read: R optimized by S ,
or R “shrunk” by S) as follows:

R � S = R︸︷︷︸
easy

∩S/R◦︸ ︷︷ ︸
hard

(252)

The “hard” term specifies the optimization taking place.
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Optimization in an abstract setting

By standard application of indirect equality to (252) one obtains
the universal property of the “shrinking” operator:

X ⊆ R � S ≡ X ⊆ R ∧ X · R◦ ⊆ S (253)

This ensures R � S as the largest
sub-relation X of R such that, for all
b′, b ∈ B, if there exists a ∈ A such that
b′Xa ∧ bRa, then b′Sb holds (“b′ better
than b”).

a_

R
��

>
X

��
b′ b�

S
oo

(253) can be regarded as a GC between the set of all subrelations
of R and the set of optimization criteria on its outputs.
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Optimization calculus

Both the definition of R � S and its universal property (253)
provide a rich setting for exploiting generic properties of
optimization in this abstract setting.

Below we give a brief account of such algebra, as obtained using
relational calculus.

The interested reader is referred to the works by Mu and Oliveira
(2012) and Oliveira and Ferreira (2012) for a more complete
account of optimization by shrinking, with applicatons to software
design.
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Basic properties of R � S

Chaotic optimization:

R �> = R (254)

Impossible optimization:

R �⊥ = ⊥ (255)

“Brute force” determinization:

R � id = largest deterministic fragment of R (256)

Thus R � id is the part of R which cannot be further refined.

Exercise 116: Prove the two first equalities above. �
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Basic properties of R � S

R � id is the extreme case of the fact which follows:

R � S is simple ⇐ S is anti-symmetric (257)

Thus anti-symmetric criteria always lead to determinism, possibly
at the sacrifice of totality. Clearly: for R simple,

R � S = R ≡ imgR ⊆ S (258)

Thus (functions)

f � S = f ⇐ S is reflexive (259)
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Basic properties of R � S

Pre-condition fusion:

(R � S) · Φ = (R · Φ) � S (260)

Two function fusion rules

(R � S) · f = (R · f ) � S (261)

(f · R) � S = f · (R � Sf ) (262)

where Sf abbreviates f ◦ · S · f .

Exercise 117: Show that, for S a preorder, Sf above is also a preorder.

�
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Basic properties of R � S

Union:

(R ∪ S) � Q = (R � Q) ∩ Q/S◦ ∪ (S � Q) ∩ Q/R◦ (263)

This has a number of corollaries, namely a conditional rule,

(p → R , T ) � S = p → (R � S) , (p � S) (264)

the distribution over alternatives (77),

[R , S ] � U = [R � U ,S � U] (265)

and the “function competition” rule:

(f ∪ g) � S = (f ∩ S · g) ∪ (g ∩ S · f ) (266)

since S/g◦ = S · g .
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“Function competition” rule

With points:

y((f ∪ g) � S)x ≡


y = f x ∧ (f x)S(g x)
∨
y = g x ∧ (g x)S(f x)

that is: f (resp. g) “wins” wherever it is better than g (resp. f )
wrt. S . For instance,

abs = (id ∪ sim) �≥

for sim x = −x , cf.

y = abs x ≡ y = x ∧ x ≥ −x ∨ y = −x ∧ −x ≥ x

≡ y = x ∧ x ≥ 0 ∨ y = −x ∧ 0 ≥ x
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R � S on data

Combinator R � S also makes sense when R and S are finite,
relational data structures (eg. tables in a database).

Example of R � S in data-processing: given

Examiner Mark Student

Smith 10 John
Smith 11 Mary
Smith 15 Arthur
Wood 12 John
Wood 11 Mary
Wood 15 Arthur


and wishing to “choose the best mark”, project over Mark ,Student
and optimize over the ≥ ordering on Mark (next slide):
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R � S on data


Mark Student

10 John
11 Mary
12 John
15 Arthur

 � ≥ =

Mark Student

11 Mary
12 John
15 Arthur

Relational shrinking can also be used for induction-free reasoning
about sequences (lists), welcome in Alloy where no explicit
recursion is available.

Example of R � S in list-processing: given a sequence A IN
Soo ,

A IN
nub Soo 4 (S◦ �≤)◦

removes all duplicates while keeping the first instances. (Data in IN
could be regarded as “time stamps”.)



Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Galois connections (211) as optimization problems

f ◦ · (≤) = (v) · g

≡ { ping-pong }

(v) · g ⊆ f ◦ · (≤) ∧ f ◦ · (≤) ⊆ (v) · g

≡ { converses }

(v) · g ⊆ f ◦ · (≤) ∧ (f ◦ · (≤))◦ ⊆ g◦ · (w)

≡ { since f is monotonic (see exercise 119 below) }

g ⊆ f ◦ · (≤)︸ ︷︷ ︸
“easy”

∧ g · (f ◦ · (≤))◦ ⊆ (w)︸ ︷︷ ︸
“hard”

,

≡ { universal property (253) }

g ⊆ (f ◦ · (≤)) � (w) (267)
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Galois connections as optimization problems

Comments:

• Given the two orderings (≤) and (w) and the “easy adjoint”
f , implementing the “hard adjoint” amounts to solving the
inequation (267) for g .

• We have already seen an instance of this result in (251), for
whole division.

Question:

Implementations are usually recursive. Where in (267) is
the “guideline” for introducing recursion in the
calculations ?

Since g ⊆ (f ◦ · (≤)) � (w) expresses an optimization by (w), it is
this ordering which controls the implementation process. How?
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Exercises

Assume a generic Galois connection f ◦ · ≤ = v · g in the
following exercises.

Exercise 118: Show that f monotonicity, x v y ⇒ f x ≤ f y , can be
written point-free as

(v) · f ◦ ⊆ f ◦ · (≤), (268)
�

Exercise 119: Show that, once (268) is assumed, the following
equivalence holds:

g ⊆ f ◦ · (≤) ≡ (v) · g ⊆ f ◦ · (≤) (269)

Suggestion: do a “ping-pong” proof. �
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Application III —
Optimization versus

induction
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Optimizing over inductive relations

As shown in (Bird and de Moor, 1997) and (Mu and Oliveira,
2012), most often the orderings involved in program optimization
are inductive relations.

• Inductive orderings lead to recursive programs

• “Greedy algorithms” and “dynamic programming” studied in
this way in the Algebra of Programming book (Bird and
de Moor, 1997).

• Complexity of the approach puts many readers off (need for
always transposing relations to powerset functions; ...)

What’s new in (Mu and Oliveira, 2012):

R � S algebra greatly simplifies and generalizes the
calculation of programs from such specifications.
(Notably, there is no need for power transpose.)
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Folds (kαταs)

In general, for F a polynomial functor (relator) and initial

µF F(µF)
inoo ,

µF

(|R|)
��

in◦

**
=̃ F(µF)

F(|R|)
��

in

hh

A FA
R

oo

there is a unique solution to equation X = R · FX · in◦ — thus
universal property:

X = (|R|) ≡ X · in = R · FX (270)

(Read (|R|) as “fold R” or“κατα R”.)
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Relational folds

It is very easy to show that

(|in|) = id (271)

holds — just make X = id in (270) and solve for R (this is known
as the reflexion property).

Example: in = [nil , cons] for lists. Reflexion (271) means that the
function f = ([ nil , cons ]) is bound to be the identity, cf.

f [ ] = [ ]
f (cons(a, x)) = cons(a, f x)

Now suppose we have R = [nil , cons ∪ nil ] in (270). What is the
meaning of ([ nil , cons ∪ nil ])?
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Relational folds

Unfolding X = ([ nil , cons ∪ nil ]) we get

X · [nil , cons] = [nil , cons ∪ nil ] · (id + id × X )

that is, X · nil = nil and X · cons = (cons ∪ nil) · (id × X ).

Introducing variables in X · nil = nil we get y X [ ] ≡ y = [ ] since
nil = [ ]. That is, [ ] X [ ] ≡ True. Doing the same for the
other clause we get:

y X (a : x) ≡ y = [ ] ∨ 〈∃ x ′ : x ′ X x : y = a : x ′〉

Thus ([ nil , cons ∪ nil ]) is the prefix relation:

(�) = ([ nil , cons ∪ nil ])
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The “Greedy” theorem

(|R � S |) ⊆ (|R|) � S ⇐ S◦ F S◦
Roo (272)

for S transitive. (NB: R S
Xoo means X · S ⊆ R · X ) In a

diagram, where the side condition is depicted in dashed arrows:

µF

in◦

++

(|R|)�S

{{

(|R|)
��

(|R�S |)

��

=̃ F(µF)

F(|R|)
��

in

jj

A A
Soo FA

Roo

R�S

kk

⊇

A

S◦

OO

FA
R

oo

FS◦

OO

Proof: see (Mu and Oliveira, 2012).
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Example of greedy programming

The msp problem (“maximum sum prefix”), whose spec

msp :: [Int]← [Int]
y msp x = y is a prefix of x that yields the maximum
sum

translates into (� = ([ nil , cons ∪ nil ]) is the prefix ordering)

y msp x ⇒ y � x ∧ 〈∀ z : z � x : sum y ≥ sum z〉

which in turn PF-transforms into

msp ⊆ � �≥sum

(NB: not a GC, it is nevertheless a good example to understand
greedy programming.)
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Example of greedy programming

We calculate:

msp ⊆ � �≥sum

≡ { definition of prefix ordering }

msp ⊆ ([ nil , cons ∪ nil ]) �≥sum

⇐ { greedy theorem (272) }

msp ⊆ ([ [nil , cons ∪ nil ] �≥sum ])

≡ { junc-rule (265) ; determinism of nil }

msp ⊆ ([ nil , (cons ∪ nil) �≥sum ])

≡ { function competition rule (266) }

msp ⊆ ([ nil , (cons ∩ ≥sum · nil) ∪ (nil ∩ ≥sum · cons) ])

(Side condition ignored for brevity.)
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Example of greedy programming

Let R abbreviate the inductive step

(nil ∩ ≥sum · cons) ∪ (cons ∩ ≥sum · nil)

Then y R (a : x) means

y = [ ] ∧ 0 ≥ a + sum x ∨ y = a : x ∧ a + sum x ≥ 0

The case a + sum x = 0 is ambiguous, in the sense that the
algorithm may either stop yielding y = [ ] or yield y = a : x , where
x is the outcome of the recursive step.

As we still have non-determinism, we need to further shrink what
we started from, msp = (� �≥sum) �� (273)

to obtain the function which yields the shortest such prefix.
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Example of greedy programming

Putting everything together, the overall outcome will be, in Haskell
syntax:

msp [] = []

msp(a:s) = let x = msp s

in if sum x > -a then a:x else []

See more theorems and examples in (Mu and Oliveira, 2012)
covering also optimizations which lead to hylomorphisms and
anamorphisms.

It turns out that whole division (x ÷ y), take etc end up being
anamorphisms.
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