
PF-transform: using Galois connections to
structure relational algebra

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

DI/UM, 2008 (updated: 2009-10, 2012, 2014)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Motivation

We motivate this subject by placing some very general questions:

• Why is programming “difficult”?

• Is there a generic skill, or competence, that one such acquire
to become a “good programmer”?

Surely that of abstract modelling. But, still,

• What is it that makes abstract modelling a challenging task?

• Are there generic conceptual patterns that could be used to
shorten the path from problems to models?

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Problems = Easy + Hard

Superlatives in problem statements, eg.

• ”... the smallest such number”

• ”... the longest such list”

• ”... the best approximation”

suggest two layers in specifications:

• the easy layer — broad class of solutions (eg. a prefix of a
list)

• the difficult layer — requires one particular such solution
regarded as optimal in some sense (eg. “longest prefix up to a
given length”).

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Example — back to the primary school desk

The whole division algorithm

7 2
1 3

2× 3 + 1 = 7 , “ie.” 3 = 7÷ 2

However

7 2
3 2

2× 2 + 3 = 7 ∧ 2 6= 7÷ 2

7 2
5 1

2× 1 + 5 = 7 ∧ 1 6= 7÷ 2

That is: for some r ,

n d
r q

q = n ÷ d ≡ d × q + r = n
provided q is the
largest such q (r
smallest)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Example — specifying x ÷ y

First version (literal):

x ÷ y = 〈
∨

z :: z × y ≤ x〉 (203)

Second version (involved):

z = x ÷ y ≡ 〈∃ r : 0 ≤ r < y : x = z × y + r〉 (204)

Third version (clever!):

z × y ≤ x ≡ z ≤ x ÷ y (y > 0) (205)

— a so-called Galois connection, as we shall soon see.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Why (205) is better than (203,204)

Equivalence (205),

z × y ≤ x ≡ z ≤ x ÷ y (y > 0)

captures the requirements in an elegant way:

• It is a solution: x ÷ y multiplied by y approximates x

(x ÷ y)× y ≤ x

— let z := x ÷ y in (205) and simplify.

• It is the best solution because it provides the largest such number:

z × y ≤ x ⇒ z ≤ x ÷ y (y > 0)

— the ⇒ part of the ≡ of (205).

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Reasoning

Equivalence (205)

z × y ≤ x ≡ z ≤ x ÷ y (y > 0)

is not only simple to write but effective to reason about.

Let us see an example: we want to prove the following equality

(n ÷m)÷ d = n ÷ (d ×m)

What about

• using (203)? too many suprema!

• using (204)? too many existential quantifiers!

• using (205)? easy — see the next slide.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Proving (n ÷m)÷ d = n ÷ (d ×m)

q ≤ (n ÷m)÷ d

≡ { (205) }

q × d ≤ n ÷m

≡ { (205) }

(q × d)×m ≤ n

≡ { × is associative }

q × (d ×m) ≤ n

≡ { (205) }

q ≤ n ÷ (d ×m)

:: { indirection (206) }

(n ÷m)÷ d = n ÷ (d ×m)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

(Generic) indirect equality

Note the use of the (generic) indirect equality rule

〈∀ q :: q ≤ x ≡ q ≤ y〉 ≡ (x = y) (206)

valid for any partial order ≤.

Exercise 95: Derive from (205) the two cancellation laws

q ≤ (q × d)÷ d

(n ÷ d)× d ≤ n

and reflexion law:

n ÷ d ≥ 1 ≡ d ≤ n (207)

�

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Galois connections

Equivalence (205) is an example of a Galois connection:

z×y︸︷︷︸
f z

≤ x ≡ z ≤ x÷y︸︷︷︸
g x

In general, for preorders (A,≤) and (B,v) and

(A,≤)

g
**
(B,v)

f

jj (208)

(f , g) are said to be Galois connected iff, for all a ∈ A and
b ∈ B. . .

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Galois adjoints

f︸︷︷︸
lower adjoint

b ≤ a ≡ b v g︸︷︷︸
upper adjoint

a (209)

that is

f ◦ · ≤ = v · g (210)

Graphical interpretation of (210):

• v · g is the “area” below
function g wrt. v

• f ◦ · ≤ is the “area” above
function f wrt. ≤

• f and g are such that these
areas are the same.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Still whole division

f = (×2) is the
lower adjoint of
g = (÷2).

The area below
g = (÷2) is the
same as the area
above f = (×2).

f = (×2) is not
surjective.

g = (÷2) is not
injective.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Adjoints are “nearly” inverses

Easy to observe:

• g(f y) = (y × 2)÷ 2 = y — f is indeed a right inverse for g

• f (g 5) = (5÷ 2)× 2 = 2× 2 = 4 ≤ 5 — g is not a right
inverse for f , but it provides an approximation.

In spite of this asymmetry, the connection enables us to reason
about

g = (÷y)

— the “hard” operation — in terms of

f = (×y)

— the “easy” operation. This is the main advantage of a Galois
connection (GC).

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Notation

A GC can be expressed by point-wise equivalence (209)

f x ≤ y ≡ x v g y

or by the equivalent relational equality (210),

f ◦ · ≤ = v · g

as we have seen.

Abbreviated notation

f ` g (211)

is used instead of (210) wherever the orders are implicit from the
context.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Basic properties
For preorders in

(A,≤)

g
**
(B,v)

f

jj (212)

the two cancellation laws hold:

(f · g)a ≤ a and b v (g · f)b (213)

— recall exercise 95 for the case of whole division.

Distribution laws

f (b t b′) = (f b) ∨ (f b′) (214)

g(a ∧ a′) = (g a) u (g a′) (215)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Basic properties

These hold wherever both preorder are lattices, that is, wherever
suprema

b t b′ v x ≡ b v x ∧ b′ v x (216)

and infima

x v b u b′ ≡ x v b ∧ x v b′ (217)

exist. (Similarly for A, ≤, ∨, ∧.)

Exercise 96: Resort to indirect equality to prove any of (214) or (215).

�

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Other properties

Conversely,

• If f distributes over t then it has an upper adjoint g (f #)

• If g distributes over ∧ then it has a lower adjoint f (g [)

Moreover, if (f , g) are Galois connected,

• f and g are monotonic

• f (g) uniquely determines g (f) — thus the [,] notations

• (g , f) are also Galois connected — just reverse the orderings

• f = f · g · f and g = g · f · g
etc

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Summary

(f b) ≤ a ≡ b v (g a)

Description f = g [g = f]

Definition f b =
∧
{a : b v g a} g a =

⊔
{b : f b ≤ a}

Cancellation f (g a) ≤ a b v g(f b)
Distribution f (b t b′) = (f b) ∨ (f b′) g(a′ ∧ a) = (g a′) u (g a)

Monotonicity b v b′⇒ f b ≤ f b′ a ≤ a′⇒ g a v g a′

Exercise 97: Derive from (209) that both f and g are monotonic. �

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Remark

Galois connections originate from the
work of the French mathematician
Evariste Galois (1811-1832). Their main
advantages,

simple, generic and highly
calculational

are welcome in proofs in computing,
due to their size and complexity, recall
E. Dijkstra:

elegant ≡ simple and
remarkably effective.

In the sequel we will re-interpret the relational operators we’ve
seen so far as Galois adjoints.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Examples
Not only

(d×)q︸ ︷︷ ︸
f q

≤ n ≡ q ≤ n(÷d)︸ ︷︷ ︸
g n

but also the two shunting rules,

(h·)X︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ (h◦·)Y︸ ︷︷ ︸
g Y

X (·h◦)︸ ︷︷ ︸
f X

⊆ Y ≡ X ⊆ Y (·h)︸ ︷︷ ︸
g Y

as well as converse,

X ◦︸︷︷︸
f X

⊆ Y ≡ X ⊆ Y ◦︸︷︷︸
g Y

and so and so forth — are adjoints of GCs: see the next slides.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Converse

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

converse ()◦ ()◦ bR◦a ≡ aRb

Thus:

Cancellation (R◦)◦ = R

Monotonicity R ⊆ S ≡ R◦ ⊆ S◦

Distributions (R ∩ S)◦ = R◦ ∩ S◦, (R ∪ S)◦ = R◦ ∪ S◦

Exercise 98: Why is it that converse-monotonicity can be strengthened

to an equivalence? �

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Example of calculation from the GC

Converse involution:

(R◦)◦ = R (218)

Indirect proof of (218):

(R◦)◦ ⊆ Y

≡ { ◦-universal X ◦ ⊆ Y ≡ X ⊆ Y ◦ for X := R◦ }

R◦ ⊆ Y ◦

≡ { ◦-monotonicity }

R ⊆ Y

:: { indirection }

(R◦)◦ = R

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Functions

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

shunting rule (h·) (h◦·) NB: h is a function
“converse” shunting rule (·h◦) (·h) NB: h is a function

Consequences:

Functional equality: h ⊆ g ≡ h = k ≡ h ⊇ k

Functional division: R · h = R/h◦

Question: what does R/S mean?

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Relational division

In the same way

z × y ≤ x ≡ z ≤ x ÷ y

means that x ÷ y is the largest number which multiplied by y
approximates x ,

Z · Y ⊆ X ≡ Z ⊆ X/Y (219)

means that X/Y is the largest relation which pre-composed Y
approximates X .

What is the pointwise meaning of X/Y ?

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

We reason:

First, the types of

Z · Y ⊆ X ≡ Z ⊆ X/Y A
X/Y

��
C B

Y

OO

X
oo

Next, the calculation:

c (X/Y) a

≡ { introduce points C 1
coo and A 1

aoo }

x(c◦ · (X/Y) · a)x

≡ { one-point (12) }

x ′ = x ⇒ x ′(c◦ · (X/Y) · a)x

Proceed by going pointfree:

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

We reason

id ⊆ c◦ · (X/Y) · a

≡ { shunting rules (Galois connections) }

c · a◦ ⊆ X/Y

≡ { rule (219) — Galois connection }

c · a◦ · Y ⊆ X

≡ { now shunt c back to the right }

a◦ · Y ⊆ c◦ · X
≡ { back to points via (47) }

〈∀ b : a Y b : c X b〉

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Outcome

In summary:

c (X/Y) a ≡ 〈∀ b : a Y b : c X b〉 a?
X/Y

��
c b

_
Y

OO

�
X
oo

(220)

Example:

a Y b = passenger a choses flight b

c X b = company c operates flight b

c (X/Y) a = company c is the only one trusted by passenger
a, that is, a only flies c .

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Pointwise meaning in full

The full pointwise encoding of Galois connection

Z · Y ⊆ X ≡ Z ⊆ X/Y

is:

〈∀ c , b : 〈∃ a : cZa : aYb〉 : cXb〉 ≡ 〈∀ c , a : cZa : 〈∀ b : aYb : cXb〉〉

If we drop variables and regard the uppercase letters as denoting Boolean
terms dealing without variable c , this becomes

〈∀ b : 〈∃ a : Z : Y 〉 : X 〉 ≡ 〈∀ a : Z : 〈∀ b : Y : X 〉〉

recognizable as the splitting rule (7) of the Eindhoven calculus.

Put in other words: existential quantification is lower adjoint of
universal quantification.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercises

Exercise 99: Prove the equalities

X · f = X/f ◦ (221)

X/⊥ = > (222)

>/Y = > (223)

and check their pointwise meaning. �

Exercise 100: Define

X \ Y = (Y ◦/X ◦)◦ (224)

and infer:

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉 (225)

R · X ⊆ Y ≡ X ⊆ R \ Y (226)

�

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Relational division

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

right-division (·R) (/ R) right-factor
left-division (R·) (R \) left-factor

that is,

X · R ⊆ Y ≡ X ⊆ Y / R (227)

R · X ⊆ Y ≡ X ⊆ R \ Y (228)

Immediate: (R·) and (·R) are monotonic and distribute over union:

R · (S ∪ T) = (R · S) ∪ (R · T)

(S ∪ T) · R = (S · R) ∪ (T · R)

(\R) and (/R) are monotonic and distribute over ∩.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Domain and range

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

domain δ (>·) lower ⊆ restricted to coreflexives
range ρ (·>) lower ⊆ restricted to coreflexives

Thus the universal properties of domain and range

δ R ⊆ Φ ≡ R ⊆ > · Φ
ρR ⊆ Φ ≡ R ⊆ Φ · >

— recall (126) and (127) — are Galois connections, and so

δ (S ∪ R) = δ S ∪ δ R
> · (Φ ∩Ψ) = > · Φ ∩ > ·Ψ

hold — similarly for ρ and (·>).

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Other operators

(f X) ⊆ Y ≡ X ⊆ (g Y)

Description f = g [g = f] Obs.

implication (R ∩) (R ⇒) b(R ⇒ X)a ≡ bRa⇒ bXa
difference (− R) (R ∪)

Thus the universal properties of implication and difference,

R ∩ X ⊆ Y ≡ X ⊆ R ⇒ Y

X − R ⊆ Y ≡ X ⊆ R ∪ Y

are GCs — etc, etc

Exercise 101: Show that R ∩ (R ⇒ Y) ⊆ Y (“modus ponens”) holds
and that R − R = ⊥− R = ⊥. �

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercises

Exercise 102: Let PA = {S : S ⊆ A} and let A PA∈oo denote the

membership relation a ∈ S , for any a and S . What does the relation

∈ \ ∈ mean? �

Exercise 103: Show that the relation ∈ \ ∈ of the previous exercise is

reflexive and transitive. �

Exercise 104: Prove that equality

(R \ S) · f = R \ (S · f) (229)

holds. �

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercises

Exercise 105: (a) Show that R ⊆ ⊥/S◦ ≡ δ R ∩ δ S = ⊥; (b) Then use

indirect equality to infer the universal property of term R ∩ ⊥/S◦ — the

largest sub-relation of R whose domain is disjoint of that of S . �

Exercise 106: The relational overriding combinator,

R † S = S ∪ R ∩ ⊥/S◦ (230)

means the relation which contains the whole of S and that part of R
where S is undefined — read R † S as “R overridden by S”. (a) Show
that ⊥ † S = S and that R † ⊥ = R; (b) Infer the universal property:

X ⊆ R † S ≡ X − S ⊆ R ∧ δ (X − S) · δ S = ⊥ (231)
�

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Binary adjoints

Recall the universal property of ∪ (65), R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X ,
which can be written thus

∪(R,S) ⊆ X ≡ (R,S)(⊆ × ⊆)(X ,X)

or even as

∪(R,S) ⊆ X ≡ (R,S)(⊆ × ⊆)(∆X)

where ∆X = (X ,X). Clearly,

∪ ` ∆

Similarly, the universal property of ∩ (64) can be captured by

∆ ` ∩

since (X ,X)(⊆ × ⊆)(R,S) ≡ X ⊆ ∩(R,S).

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

A glimpse of GC (generic) algebra

Assume f ` g and f ′ ` g ′ hold in:

Identity

id ` id

Composition

f · f ′ ` g ′ · g

Converse (symmetry)

f ` g ≡ g ` f

Functors (preorders)

Ff ` Fg

Splitting (lattices)

〈f , f ′〉 ` u · (g × g ′)

In particular, for f , f ′ := id ,
g , g ′ := id :

4` u (232)

for 4x = (x , x).

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Application I — Hoare
Logic

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Handling Hoare triples in relation algebra

As application of the above we show next how to handle Hoare
triples such as

{p}P{q} (233)

in relation algebra. First we spell out the meaning of (233):

〈∀ s : p s : 〈∀ s ′ : s
P // s ′ : q s ′〉〉 (234)

that is:

if program P is in state s satisfying condition p, and it
moves to state s ′, then s ′ satisfies q.

In other words:

Condition p holding before P executes is sufficient for
condition q to hold after P executes.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Handling Hoare triples in relation algebra

Let [[P]] denote the state transition relation of P, that is s ′[[P]]s

means the same as s
P // s ′ .

Then (234) re-writes as follows:

〈∀ s : p s : 〈∀ s ′ : s ′[[P]]s : q s ′〉〉

≡ { coreflexives }

〈∀ s : sΦps : 〈∀ s ′ : s ′[[P]]s : s ′Φqs
′〉〉

≡ { > ; coreflexives }

〈∀ s, s” : sΦps” : 〈∀ s ′ : s ′[[P]]s : s ′(Φq · >)s ′′〉〉

≡ { recall (225) and remove variables }

Φp ⊆ [[P]] \ (Φq · >)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Handling Hoare triples in relation algebra

Finally:

Φp ⊆ [[P]] \ (Φq · >)

≡ { GC of division (228) }

[[P]] · Φp ⊆ Φq · >

≡ { (118) }

[[P]] · Φp ⊆ Φq · [[P]]

Comparing this with the meaning of contract Φq Φp
foo —

recall (143) — we realize that they are the same in case [[P]] is a
function — P deterministic and wholly defined.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Hoare triples are contracts

In summary:

The meaning of Hoare triple {p}P{q} is the contract

[[P]] · Φp ⊆ Φq · [[P]] (235)

where [[P]] denotes the state transition semantics of P.

We will write

Φp
P // Φq

to mean (235) which, as seen above, is the same as

[[P]] · Φp ⊆ Φq · > (236)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Hoare triples are GCs

In turn, (236) is equivalent to

Φp ⊆ [[P]] \ (Φq · >) ∩ id

Thanks to GC (127), (236) is also equivalent to

ρ ([[P]] · Φp) ⊆ Φq

Thus we have the following Galois connection for Hoare triples,
where P, Φ and Ψ abbreviate [[P]], Φp and Φq, respectively:

ρ (P · Φ)︸ ︷︷ ︸
f Φ

⊆ Ψ ≡ Φ ⊆ P \ (Ψ · >) ∩ id︸ ︷︷ ︸
g Ψ

(237)

Adjoints f and g are known as predicate transformers.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Hoare triples are GCs

The usual notation for g Ψ is P \•Ψ — the weakest (liberal)
pre-condition (WP) for Ψ to hold on the outputs of P.

Dually, f Φ = ρ (P · Φ) is known as the strongest post-condition
(SP) holding on all outputs of P restricted by Φ on the input.

These concepts are independent of their use in Hoare logic. In

general, given a binary relation B A
Roo and coreflexives

A A
Φoo and B B

Ψoo , we define

Φ
R // Ψ ≡ R · Φ ⊆ Ψ · R (238)

≡ Φ ⊆ R \•Ψ (239)

which extends functional contracts to arbitrary relations.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercises

Exercise 107: Prove

id Φ
Roo ≡ True ≡ Φ ⊥Roo (240)�

Exercise 108: Prove the special cases:

• WP of a function f :

f \• Φq = λa.q(f a) (241)

• SP of a function f :

ρ (f · Φp) = λb.b ∈ {f a | p a} (242)

NB: recall that (241) has been used several times earlier on in contract

calculation. �

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercises

Exercise 109: The formal meaning of (imperative) code sequential
composition is

[[P; Q]] = [[Q]] · [[P]]

Show that the following rule of the Hoare logic of programs,

{p}P{q} , {q}Q{s}
{p}P; Q{s}

is an instance of the following relational typing rule:

Ψ Φ
R·Soo ⇐ Ψ Υ

Roo ∧ Υ Φ
Soo (243)

�

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercises

Exercise 110: Prove the “trading rule”:

Υ Φ ·ΨRoo ≡ Υ Ψ
R·Φoo (244)

�

Exercise 111: Re-write the following “contract splitting” rule,

Ψ1 ·Ψ2 Φ
Roo ≡ Ψ1 Φ

Roo ∧ Ψ2 Φ
Roo (245)

in Hoare logic. Then prove (245). �

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

WP calculus

Facts (237) and (239) show that whatever one can do in Hoare
logic can be done with Dijkstra’s WPs.

Let us show an example by converting (245) to WP-calculus:

Υ ·Ψ Φ
Roo ≡ Υ Φ

Roo ∧ Ψ Φ
Roo

≡ { WPs (239) three times }

Φ ⊆ R \• (Υ ·Ψ) ≡ Φ ⊆ R \•Υ ∧ Φ ⊆ R \•Ψ

≡ { coreflexives (112) ; meet-universal (64) }

〈∀ Φ :: Φ ⊆ R \• (Υ ·Ψ) ≡ Φ ⊆ (R \•Υ) ∩ (R \•Ψ)〉

≡ { meet of correflexives; indirect equality (69) }

R \• (Υ ·Ψ) = (R \•Υ) · (R \•Ψ)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

WP calculus

A more interesting example is the transformation of the WP-rule for
sequential composition

(S · R) \• Φ = R \• (S \• Φ) (246)

into a contract:

R \• (S \• φ) = (S · R) \• φ

≡ { indirect equality (69) }

ψ ⊆ R \• (S \• φ) ≡ ψ ⊆ (S · R) \• φ

≡ { (239) twice }

(S \• φ) ψ
Roo ≡ φ ψ

(S·R)oo (247)

The outcome, still involving the \• operator, is an advantageous
replacement for (243), since it is an equivalence.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercises

Exercise 112: Show that ρR δ R
Roo holds. However, WP

R \• (ρR) = id rather than δ R. Explain why. �

Exercise 113: Show that ρR δ R
Roo holds. However, WP

R \• (ρR) = id rather than δ R. Explain why. �

Exercise 114: The two “shunting” rules for S a simple relation,

S · R ⊆ Q ≡ (δ S) · R ⊆ S◦ · Q (248)

R · S◦ ⊆ Q ≡ R · δ S ⊆ Q · S (249)

are “almost” Galois connections. (a) Derive the following variants
concerning coreflexives,

R · Φ ⊆ S ≡ R · Φ ⊆ S · Φ
Φ · R ⊆ S ≡ Φ · R ⊆ Φ · S

referred to earlier on as the closure properties (113) and (114),

respectively; (b) prove either (248) or (249) by cyclic implication (vulg.

“ping-pong”). �

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Application II —
Optimization calculus

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Programming is optimization

Abstract models are derived from requirements by ignoring
unnecessary detail.

This often results in models whose operations are vague or
non-deterministic.

Such operations, often recorded as pre/post condition pairs, are
binary relations.

As computers cannot handle vagueness, deriving code for such
operations calls for determinization — some way to convert such
relations into functions.

This process is known as model refinement, and it is performed
in a stepwise manner; however, how does one control it? What is
the guiding principle (if any)?

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Programming is optimization

Recall (203), one of the definitions given for whole division:

x ÷ y = 〈
∨

z :: z × y ≤ x〉

Given some y , term z × y ≤ x denotes a binary relation with input
x and output z . But not every output z is acceptable — (203)
tells that one wants the largest such z .

So there is an ordering (≤) on the outputs (IN0) telling what the

optimization principle should be: largest wrt. IN0 IN0
≤oo .

Whole division is (perhaps) the first optimization problem one
solves at school; programmers do it all the time, most often
unconsciously!

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Programming is optimization

Another example is provided by the Galois connection which
specifies the take function available in Haskell, for instance:

length ys ≤ n ∧ ys � xs ≡ ys � take n xs (250)

Here the ordering on outputs is the prefix relation (�) on lists.

For each n, term length ys ≤ n ∧ ys � xs tells which outputs ys
are candidates for take n xs.

But only one of these is acceptable — the longest such prefix,
which is optimal with respect to the prefix ordering.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercise

Exercise 115: Before implementing take one can start proving
properties about this function solely relying on (250):

• Show that

take (length xs) xs = xs

holds.

• Resort to indirect equality over � in proving

take n (take m xs) = take (min n m) xs

where min, the minimum of two natural numbers, is given by the
obvious Galois connection.

�

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Optimization in an abstract setting

Let us once again go back to (203) and spell out the meaning of its
supremum:

z(÷y)x ≡ z × y ≤ x ∧ 〈∀ z ′ : z ′ × y ≤ x : z ≥ z ′〉

≡ { define z R x = z × y ≤ x }

z × y ≤ x︸ ︷︷ ︸
z R x

∧ 〈∀ z ′ : z ′ × y ≤ x︸ ︷︷ ︸
x R◦ z′

: z ≥ z ′〉

︸ ︷︷ ︸
z(≥/R◦)x

Im summary:

(÷y) = R ∩ ≥/R◦ where R = (×y)◦· ≤ x;
≥/R◦

}}
z z ′(∀)

_
R◦

OO

�
≥
oo

(251)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Optimization in an abstract setting

Generalization: given any relation

B A
Roo and an optimization

criterion B B
Soo on its outputs,

A

R
��

R�S

��
B B

S
oo

define a new relational combinator R � S (read: R optimized by S ,
or R “shrunk” by S) as follows:

R � S = R︸︷︷︸
easy

∩S/R◦︸ ︷︷ ︸
hard

(252)

The “hard” term specifies the optimization taking place.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Optimization in an abstract setting

By standard application of indirect equality to (252) one obtains
the universal property of the “shrinking” operator:

X ⊆ R � S ≡ X ⊆ R ∧ X · R◦ ⊆ S (253)

This ensures R � S as the largest
sub-relation X of R such that, for all
b′, b ∈ B, if there exists a ∈ A such that
b′Xa ∧ bRa, then b′Sb holds (“b′ better
than b”).

a_

R
��

>
X

��
b′ b�

S
oo

(253) can be regarded as a GC between the set of all subrelations
of R and the set of optimization criteria on its outputs.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Optimization calculus

Both the definition of R � S and its universal property (253)
provide a rich setting for exploiting generic properties of
optimization in this abstract setting.

Below we give a brief account of such algebra, as obtained using
relational calculus.

The interested reader is referred to the works by Mu and Oliveira
(2012) and Oliveira and Ferreira (2012) for a more complete
account of optimization by shrinking, with applicatons to software
design.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Basic properties of R � S

Chaotic optimization:

R �> = R (254)

Impossible optimization:

R �⊥ = ⊥ (255)

“Brute force” determinization:

R � id = largest deterministic fragment of R (256)

Thus R � id is the part of R which cannot be further refined.

Exercise 116: Prove the two first equalities above. �

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Basic properties of R � S

R � id is the extreme case of the fact which follows:

R � S is simple ⇐ S is anti-symmetric (257)

Thus anti-symmetric criteria always lead to determinism, possibly
at the sacrifice of totality. Clearly: for R simple,

R � S = R ≡ imgR ⊆ S (258)

Thus (functions)

f � S = f ⇐ S is reflexive (259)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Basic properties of R � S

Pre-condition fusion:

(R � S) · Φ = (R · Φ) � S (260)

Two function fusion rules

(R � S) · f = (R · f) � S (261)

(f · R) � S = f · (R � Sf) (262)

where Sf abbreviates f ◦ · S · f .

Exercise 117: Show that, for S a preorder, Sf above is also a preorder.

�

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Basic properties of R � S

Union:

(R ∪ S) � Q = (R � Q) ∩ Q/S◦ ∪ (S � Q) ∩ Q/R◦ (263)

This has a number of corollaries, namely a conditional rule,

(p → R , T) � S = p → (R � S) , (p � S) (264)

the distribution over alternatives (77),

[R , S] � U = [R � U ,S � U] (265)

and the “function competition” rule:

(f ∪ g) � S = (f ∩ S · g) ∪ (g ∩ S · f) (266)

since S/g◦ = S · g .

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

“Function competition” rule

With points:

y((f ∪ g) � S)x ≡


y = f x ∧ (f x)S(g x)
∨
y = g x ∧ (g x)S(f x)

that is: f (resp. g) “wins” wherever it is better than g (resp. f)
wrt. S . For instance,

abs = (id ∪ sim) �≥

for sim x = −x , cf.

y = abs x ≡ y = x ∧ x ≥ −x ∨ y = −x ∧ −x ≥ x

≡ y = x ∧ x ≥ 0 ∨ y = −x ∧ 0 ≥ x

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

R � S on data

Combinator R � S also makes sense when R and S are finite,
relational data structures (eg. tables in a database).

Example of R � S in data-processing: given

Examiner Mark Student

Smith 10 John
Smith 11 Mary
Smith 15 Arthur
Wood 12 John
Wood 11 Mary
Wood 15 Arthur


and wishing to “choose the best mark”, project over Mark ,Student
and optimize over the ≥ ordering on Mark (next slide):

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

R � S on data


Mark Student

10 John
11 Mary
12 John
15 Arthur

 � ≥ =

Mark Student

11 Mary
12 John
15 Arthur

Relational shrinking can also be used for induction-free reasoning
about sequences (lists), welcome in Alloy where no explicit
recursion is available.

Example of R � S in list-processing: given a sequence A IN
Soo ,

A IN
nub Soo 4 (S◦ �≤)◦

removes all duplicates while keeping the first instances. (Data in IN
could be regarded as “time stamps”.)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Galois connections (211) as optimization problems

f ◦ · (≤) = (v) · g

≡ { ping-pong }

(v) · g ⊆ f ◦ · (≤) ∧ f ◦ · (≤) ⊆ (v) · g

≡ { converses }

(v) · g ⊆ f ◦ · (≤) ∧ (f ◦ · (≤))◦ ⊆ g◦ · (w)

≡ { since f is monotonic (see exercise 119 below) }

g ⊆ f ◦ · (≤)︸ ︷︷ ︸
“easy”

∧ g · (f ◦ · (≤))◦ ⊆ (w)︸ ︷︷ ︸
“hard”

,

≡ { universal property (253) }

g ⊆ (f ◦ · (≤)) � (w) (267)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Galois connections as optimization problems

Comments:

• Given the two orderings (≤) and (w) and the “easy adjoint”
f , implementing the “hard adjoint” amounts to solving the
inequation (267) for g .

• We have already seen an instance of this result in (251), for
whole division.

Question:

Implementations are usually recursive. Where in (267) is
the “guideline” for introducing recursion in the
calculations ?

Since g ⊆ (f ◦ · (≤)) � (w) expresses an optimization by (w), it is
this ordering which controls the implementation process. How?

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Exercises

Assume a generic Galois connection f ◦ · ≤ = v · g in the
following exercises.

Exercise 118: Show that f monotonicity, x v y ⇒ f x ≤ f y , can be
written point-free as

(v) · f ◦ ⊆ f ◦ · (≤), (268)
�

Exercise 119: Show that, once (268) is assumed, the following
equivalence holds:

g ⊆ f ◦ · (≤) ≡ (v) · g ⊆ f ◦ · (≤) (269)

Suggestion: do a “ping-pong” proof. �

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Application III —
Optimization versus

induction

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Optimizing over inductive relations

As shown in (Bird and de Moor, 1997) and (Mu and Oliveira,
2012), most often the orderings involved in program optimization
are inductive relations.

• Inductive orderings lead to recursive programs

• “Greedy algorithms” and “dynamic programming” studied in
this way in the Algebra of Programming book (Bird and
de Moor, 1997).

• Complexity of the approach puts many readers off (need for
always transposing relations to powerset functions; ...)

What’s new in (Mu and Oliveira, 2012):

R � S algebra greatly simplifies and generalizes the
calculation of programs from such specifications.
(Notably, there is no need for power transpose.)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Folds (kαταs)

In general, for F a polynomial functor (relator) and initial

µF F(µF)
inoo ,

µF

(|R|)
��

in◦

**
=̃ F(µF)

F(|R|)
��

in

hh

A FA
R

oo

there is a unique solution to equation X = R · FX · in◦ — thus
universal property:

X = (|R|) ≡ X · in = R · FX (270)

(Read (|R|) as “fold R” or“κατα R”.)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Relational folds

It is very easy to show that

(|in|) = id (271)

holds — just make X = id in (270) and solve for R (this is known
as the reflexion property).

Example: in = [nil , cons] for lists. Reflexion (271) means that the
function f = ([nil , cons]) is bound to be the identity, cf.

f [] = []
f (cons(a, x)) = cons(a, f x)

Now suppose we have R = [nil , cons ∪ nil] in (270). What is the
meaning of ([nil , cons ∪ nil])?

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Relational folds

Unfolding X = ([nil , cons ∪ nil]) we get

X · [nil , cons] = [nil , cons ∪ nil] · (id + id × X)

that is, X · nil = nil and X · cons = (cons ∪ nil) · (id × X).

Introducing variables in X · nil = nil we get y X [] ≡ y = [] since
nil = []. That is, [] X [] ≡ True. Doing the same for the
other clause we get:

y X (a : x) ≡ y = [] ∨ 〈∃ x ′ : x ′ X x : y = a : x ′〉

Thus ([nil , cons ∪ nil]) is the prefix relation:

(�) = ([nil , cons ∪ nil])

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

The “Greedy” theorem

(|R � S |) ⊆ (|R|) � S ⇐ S◦ F S◦
Roo (272)

for S transitive. (NB: R S
Xoo means X · S ⊆ R · X) In a

diagram, where the side condition is depicted in dashed arrows:

µF

in◦

++

(|R|)�S

{{

(|R|)
��

(|R�S |)

��

=̃ F(µF)

F(|R|)
��

in

jj

A A
Soo FA

Roo

R�S

kk

⊇

A

S◦

OO

FA
R

oo

FS◦

OO

Proof: see (Mu and Oliveira, 2012).

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Example of greedy programming

The msp problem (“maximum sum prefix”), whose spec

msp :: [Int]← [Int]
y msp x = y is a prefix of x that yields the maximum
sum

translates into (� = ([nil , cons ∪ nil]) is the prefix ordering)

y msp x ⇒ y � x ∧ 〈∀ z : z � x : sum y ≥ sum z〉

which in turn PF-transforms into

msp ⊆ � �≥sum

(NB: not a GC, it is nevertheless a good example to understand
greedy programming.)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Example of greedy programming

We calculate:

msp ⊆ � �≥sum

≡ { definition of prefix ordering }

msp ⊆ ([nil , cons ∪ nil]) �≥sum

⇐ { greedy theorem (272) }

msp ⊆ ([[nil , cons ∪ nil] �≥sum])

≡ { junc-rule (265) ; determinism of nil }

msp ⊆ ([nil , (cons ∪ nil) �≥sum])

≡ { function competition rule (266) }

msp ⊆ ([nil , (cons ∩ ≥sum · nil) ∪ (nil ∩ ≥sum · cons)])

(Side condition ignored for brevity.)

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Example of greedy programming

Let R abbreviate the inductive step

(nil ∩ ≥sum · cons) ∪ (cons ∩ ≥sum · nil)

Then y R (a : x) means

y = [] ∧ 0 ≥ a + sum x ∨ y = a : x ∧ a + sum x ≥ 0

The case a + sum x = 0 is ambiguous, in the sense that the
algorithm may either stop yielding y = [] or yield y = a : x , where
x is the outcome of the recursive step.

As we still have non-determinism, we need to further shrink what
we started from, msp = (� �≥sum) �� (273)

to obtain the function which yields the shortest such prefix.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

Example of greedy programming

Putting everything together, the overall outcome will be, in Haskell
syntax:

msp [] = []

msp(a:s) = let x = msp s

in if sum x > -a then a:x else []

See more theorems and examples in (Mu and Oliveira, 2012)
covering also optimizations which lead to hylomorphisms and
anamorphisms.

It turns out that whole division (x ÷ y), take etc end up being
anamorphisms.

Motivation E+H split Galois connections Application I — Hoare Logic Application II — Optimization calculus Application III — Optimization versus induction Theorem References

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall, 1997.

S.-C. Mu and J.N. Oliveira. Programming from Galois connections.
JLAP, 81(6):680–704, 2012.

J.N. Oliveira and M.A. Ferreira. Alloy meets the algebra of
programming: a case study, 2012. To appear in IEEE
Transactions on Software Engineering.

	Motivation
	E+H split
	Galois connections
	Application I — Hoare Logic
	Application II — Optimization calculus
	Application III — Optimization versus induction
	Theorem

