
Part I

Calculating with Functions

7

Chapter 2

An Introduction to Pointfree
Programming

Everybody is familiar with the concept of a function since the school desk. The functional
intuition traverses mathematics from end to end because it has a solid semantics rooted on
a well-known mathematical system — the class of “all” sets and set-theoretical functions.

Functional programming literally means “programming with functions”. Program-
ming languages such as LISP or HASKELL allow us to program with functions. However,
the functional intuition is far more reaching than producing code which runs on a com-
puter. Since the pioneering work of John McCarthy — the inventor of LISP — in the
early 1960s, one knows that other branches of programming can be structured, or ex-
pressed functionally. The idea of producing programs by calculation, that is to say, that
of calculating efficient programs out of abstract, inefficient ones has a long tradition in
functional programming.

This book is structured around the idea that functional programming can be used as
a basis for teaching programming as a whole, from the successor function to
large information system design.

This chapter provides a light-weight introduction to the theory of functional program-
ming. Its emphasis is on explaining how to construct new functions out of other functions
using a minimal set of predefined functional combinators. This leads to a programming
style which is point free in the sense that function descriptions dispense with variables
(definition points).

Many technical issues are deliberately ignored and deferred to later chapters. Most
programming examples will be provided in the HASKELL functional programming lan-
guage. Appendix A includes the listings of some HASKELL modules which complement
the HUGS Standard Prelude (which is based very closely on the Standard Prelude for
HASKELL 1.4.) and help to “animate” the main concepts introduced in this chapter.

9

10 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

2.1 Introducing functions and types
The definition of a function

!! (2.1)

can be regarded as a kind of “process” abstraction: it is a “black box” which produces an
output once it is supplied with an input:

From another viewpoint, can be regarded as a kind of “contract”: it commits itself
to producing a -value provided it is supplied with an -value. How is such a value
produced? In many situations one wishes to ignore it because one is just using function

. In others, however, one may want to inspect the internals of the “black box” in order
to know the function’s computation rule. For instance,

succ !!

succ

expresses the computation rule of the successor function — the function succ which finds
“the next natural number” — in terms of natural number addition and of natural number
. What we above meant by a “contract” corresponds to the signature of the function,

which is expressed by arrow !! in the case of succ and which, by the way, can

be shared by other functions, e.g. sq .
In programming terminology one says that succ and sq have the same “type”. Types

play a prominent rôle in functional programming (as they do in other programming paradigms).
Informally, they provide the “glue”, or interfacing material, for putting functions to-
gether to obtain more complex functions. Formally, a “type checking” discipline can
be expressed in terms of compositional rules which check for functional expression well-
formedness.

It has become standard to use arrows to denote function signatures or function types,
recall (2.1). In this book the following variants will be used interchangeably to denote
the fact that function accepts arguments of type and produces results of type :

2.2. FUNCTIONAL APPLICATION 11

"" , !! , "" or !! . This corresponds to writing f
:: a -> b in the HASKELL functional programming language, where type variables
are denoted by lowercase letters. will be referred to as the domain of and will be
referred to as the codomain of . Both and are symbols which denote sets of values,
very often called types.

2.2 Functional application
What do we want functions for? If we ask this question to a physician or engineer the
answer is very likely to be: one wants functions for modelling and reasoning about the
behaviour of real things.

For instance, function distance could be written by a school physics student
to model the distance (in, say, kilometers) a car will drive (per hour) at average speed

. When questioned about how far the car has gone in 2.5 hours, such a model
provides an immediate answer: just evaluate distance to obtain .

So we get a naı̈ve purpose of functions: we want them to be applied to arguments
in order to obtain results. Functional application is denoted by juxtaposition, e.g.

for "" and , and associates to the left: denotes rather than
.

2.3 Functional equality and composition
Application is not everything we want to do with functions. Very soon our physics student
will be able to talk about properties of the distance model, for instance that property

distance distance (2.2)

holds. Later on, we could learn from her or him that the same property can be restated
as distance twice twice distance , by introducing function twice . Or
even simply as

distance twice twice distance (2.3)

where “ ” denotes function-arrow chaining, as suggested by drawing

distance
##

twice""

distance
##

twice
""

(2.4)

12 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

where both space and time are modelled by real numbers.
This trivial example illustrates some relevant facets of the functional programming

paradigm. Which version of the property presented above is “better”? the version explic-
itly mentioning variable and requiring parentheses (2.2)? the version hiding variable
but resorting to function (2.3)? or even drawing (2.4)?

Expression (2.3) is clearly more compact than (2.2). The trend for notation economy
and compactness is well-known throughout the history of mathematics. In the 16th cen-
tury, for instance, algebrists would write 12.cu.p̃.18.ce.p̃.27.co.p̃.17 for what is nowadays
written as . We may find such syncopated notation odd, but should
not forget that at its time it was replacing even more obscure expression denotations.

Why do people look for compact notations? A compact notation leads to shorter
documents (less lines of code in programming) in which patterns are easier to identify
and to reason about. Properties can be stated in clear-cut, one-line long equations which
are easy to memorize. And diagrams such as (2.4) can be easily drawn which enable us
to visualize maths in a graphical format.

Some people will argue that such compact “pointfree” notation (that is, the notation
which hides variables, or function “definition points”) is too cryptic to be useful as a prac-
tical programming medium. In fact, pointfree programming languages such as Iverson’s
APL or Backus’ FP have been more respected than loved by the programmers community.
Virtually all commercial programming languages require variables and so implement the
more traditional “pointwise” notation.

Throughout this book we will adopt both, depending upon the context. Our chosen
programming medium — HASKELL — blends the pointwise and pointfree programming
styles in a quite successful way. In order to switch from one to the other, we need two
“bridges”: one lifting equality to the functional level and the other lifting application.

Concerning equality, note that the “ ” sign in (2.2) differs from that in (2.3): while
the former states that two real numbers are the same number, the latter states that two

"" functions are the same function. Formally, we will say that two functions
"" are equal if they agree at pointwise-level, that is

iff (2.5)

where denotes equality at -level.
Concerning application, the pointfree style replaces it by the more generic concept

of functional composition suggested by function-arrow chaining: wherever two functions
are such that the target type of one of them, say "" is the same as the source type

of the other, say "" , then another function can be defined, "" — called
the composition of and , or “ after ” — which “glues” and together:

(2.6)

2.3. FUNCTIONAL EQUALITY AND COMPOSITION 13

This situation is pictured by the following arrow-diagram

##

""

$$!!
!!

!!
!

(2.7)

or by block-diagram

Therefore, the type-rule associated to functional composition can be expressed as follows:

""

""

""

Composition is certainly the most basic of all functional combinators. It is the first
kind of “glue” which comes to mind when programmers need to combine, or chain func-
tions (or processes) to obtain more elaborate functions (or processes) 1. This is because
of one of its most relevant properties,

(2.8)

which shares the pattern of, for instance

and so is called the associative property of composition. This enables us to move paren-
theses around in pointfree expressions involving functional compositions, or even to omit
them, for instance by writing as an abbreviation of , or of ,
or of , etc. For a chain of -many function compositions the notation
will be acceptable as abbreviation of .

1It even has a place in script languages such as UNIX’s, where f | g is the shell counterpart
of , for appropriate “processes” and .

14 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

2.4 Identity functions
How free are we to fulfill the “give me an and I will give you a ” contract of equation
(2.1)? In general, the choice of is not unique. Some s will do as little as possible
while others will laboriously compute non-trivial outputs. At one of the extremes, we
find functions which “do nothing” for us, that is, the added-value of their output when
compared to their input amounts to nothing:

In this case , of course, and is said to be the identity function on :

""
(2.9)

Note that every type “has” its identity . Subscripts will be omitted wherever

implicit in the context. For instance, the arrow notation "" saves us from writing
, etc.. So, we will often refer to “the” identity function rather than to “an” identity

function.
How useful are identity functions? At first sight, they look fairly uninteresting. But

the interplay between composition and identity, captured by the following equation,

(2.10)

will be appreciated later on. This property shares the pattern of, for instance,

This is why we say that is the unit of composition. In a diagram, (2.10) looks like this:

##

""

##
""

(2.11)

Note the graphical analogy of diagrams (2.4) and (2.11). Diagrams of this kind are very
common and express important properties of functions, as we shall see further on.

2.5 Constant functions
Opposite to the identity functions, which do not lose any information, we find functions
which lose all (or almost all) information. Regardless of their input, the output of these
functions is always the same value.

2.6. MONICS AND EPICS 15

Let be a nonempty data domain and let and . Then we define the everywhere
function as follows, for arbitrary :

!!
(2.12)

The following property defines constant functions at pointfree level,

(2.13)

and is depicted by a diagram similar to (2.11):

##

""

##
""

(2.14)

Note that, strictly speaking, symbol denotes two different functions in diagram (2.14):
one, which we should have written , accepts inputs from while the other, which we
should have written , accepts inputs from :

(2.15)

This property will be referred to as the constant-fusion property.
As with identity functions, subscripts will be omitted wherever implicit in the context.

Exercise 1. The HUGS Standard Prelude provides for constant functions: you write
const c for . Check that HUGS assigns the same type to expressions f . const c
and const (f c), for every f and c. What else can you say about these functional
expressions? Justify.

2.6 Monics and epics
Identity functions and constant functions are the limit points of the functional spectrum
with respect to information preservation. All the other functions are in between: they lose
“some” information, which is regarded as uninteresting for some reason. This remark
supports the following aphorism about a facet of functional programming: it is the art

16 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

of transforming or losing information in a controlled and precise way. That is to say,
the art of constructing the exact observation of data which fits in a particular context or
requirement.

How do functions lose information? Basically in two different ways: they may be
“blind” enough to confuse different inputs, by mapping them onto the same output, or
they may ignore values of their codomain. For instance, confuses all inputs by mapping
them all onto . Moreover, it ignores all values of its codomain apart from .

Functions which do not confuse inputs are called monics (or injective functions)

and obey the following property: "" is monic if, for every pair of functions

"" , if then , cf. diagram

"" """"

(is “cancellable on the left”).
It is easy to check that “the” identity function is monic,

by (2.10)

predicate logic
TRUE

and that any constant function is not monic:

by (2.15)

function equality is reflexive

TRUE

predicate logic

So the implication does not hold in general (only if).
Functions which do not ignore values of their codomain are called epics (or surjec-

tive functions) and obey the following property: "" is epic if, for every pair of

2.7. ISOS 17

functions "" , if then , cf. diagram

"""" ""

(is “cancellable on the right”).
As expected, identity functions are epic:

by (2.10)

predicate logic
TRUE

Exercise 2. Under what circumstances is a constant function epic? Justify.

2.7 Isos
A function "" which is both monic and epic is said to be iso (an isomorphism,

or a bijective function). In this situation, always has an inverse !! , which is
such that

(2.16)

(i.e. is invertible).
Isomorphisms are very important functions because they convert data from one “for-

mat”, say , to another format, say , without losing information. So and and are
faithful protocols between the two formats and . Of course, these formats contain the
same “amount” of information, although the same data adopts a different “shape” in each
of them. In mathematics, one says that is isomorphic to and one writes to
express this fact.

Isomorphic data domains are regarded as “abstractly” the same. Note that, in general,
there is a wide range of isos between two isomorphic data domains. For instance, let

18 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

be the set of weekdays,

and let symbol denote the set , which is the initial segment of con-
taining exactly seven elements. The following function , which associates each weekday
with its “ordinal” number,

!!

is iso (guess). Clearly, means “ is the -th day of the week”. But note that
function is also an iso between and . While regards

the first day of the week, places in that position. Both and are
witnesses of isomorphism

(2.17)

Finally, note that all classes of functions referred to so far — constants, identities,
epics, monics and isos — are closed under composition, that is, the composition of two
constants is a constant, the composition of two epics is epic, etc.

2.8 Gluing functions which do not compose — prod-
ucts

Function composition has been presented above as the basis for gluing functions together
in order to build more complex functions. However, not every two functions can be glued
together by composition. For instance, functions "" and "" do
not compose with each other because the domain of one of them is not the codomain of
the other. However, both and share the same domain . So, something we can do

2.8. GLUING FUNCTIONS WHICH DO NOT COMPOSE — PRODUCTS 19

about gluing and together is to draw a diagram expressing this fact, something like

%%"""""""

&&!!!!!!!

Because and share the same domain, their outputs can be paired, that is, we may
write ordered pair for each . Such pairs belong to the Cartesian product of

and , that is, to the set

So we may think of the operation which pairs the outputs of and as a new function
combinator defined as follows:

!!
(2.18)

Function combinator is pronounced “ split ” (or “pair and ”) and can be
depicted by the following “block”, or “data flow” diagram:

Function keeps the information of both and in the same way Cartesian product
keeps the information of and . So, in the same way data or data can be

retrieved from data via the implicit projections or ,

"" !! (2.19)

defined by

and

and can be retrieved from via the same projections:

and (2.20)

20 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

This fact (or pair of facts) will be referred to as the -cancellation property and is illus-
trated in the following diagram which puts things together:

"" !!
''#########

(())$$$$$$$$$

(2.21)

In summary, the type-rule associated to the “split” combinator is expressed by

""

""

""

A split arises wherever two functions do not compose but share the same domain.
What about gluing two functions which fail such a requisite, e.g.

""

""

The split combination does not work any more. But a way to “approach” the do-
mains of and , and respectively, is to regard them as targets of the projections
and of :

"" !!
((

"" !!

((

From this diagram arises

"" !!
''#########

))%%%%%%%%%

((

mapping to . It corresponds to the “parallel” application of and which
is suggested by the following data-flow diagram:

2.8. GLUING FUNCTIONS WHICH DO NOT COMPOSE — PRODUCTS 21

Functional combination appears very often and deserves special notation
— it will be expressed by . So, by definition, we have

(2.22)

which is pronounced “product of and ” and has typing-rule

""

""

""

(2.23)

Note the overloading of symbol “ ”, which is used to denote both Cartesian product and
functional product. This choice of notation will be fully justified later on.

What is the interplay among functional combinators (composition), (split)
and (product) ? Composition and split relate to each other via the following property,
known as -fusion:

"" !!
''#########

(())$$$$$$$$$

**&&&&&&&&&&&&&&&

((

++'''''''''''''''

(2.24)

This shows that split is right-distributive with respect to composition. Left-distributivity
does not hold but there is something we can say about in case :

by (2.22)

by -fusion (2.24)

22 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

by (2.8)

by -cancellation (2.20)

The law we have just derived is known as -absorption. (The intuition behind this ter-
minology is that “split absorbs ”, as a special kind of fusion.) It is a consequence of

-fusion and -cancellation and is depicted as follows:

"" !!
((

"" !!

((((

''(((((((((

(())$$$$$$$$$

(2.25)

This diagram provides us with two further results about products and projections which
can be easily justified:

(2.26)
(2.27)

Two special properties of are presented next. The first one expresses a kind of
“bi-distribution” of with respect to composition:

(2.28)

We will refer to this property as the -functor property. The other property, which we
will refer to as the -functor-id property, has to do with identity functions:

(2.29)

These two properties will be identified as the functorial properties of product. This choice
of terminology will be explained later on.

Let us finally analyse the particular situation in which a split is built involving pro-
jections and only. These exhibit interesting properties, for instance .
This property is known as -reflexion and is depicted as follows:

"" !!
''#########

(())%%%%%%%%%

(2.30)

2.8. GLUING FUNCTIONS WHICH DO NOT COMPOSE — PRODUCTS 23

What about ? This corresponds to a diagram

"" !!
''#########

(())%%%%%%%%%

which looks very much the same if submitted to a clockwise rotation (thus and
swap with each other). This suggests that (the name we adopt for) is its

own inverse, as can be checked easily as follows:

by definition

by -fusion (2.24)

definition of twice

by -cancellation (2.20)

by -reflexion (2.30)

Therefore, is iso and establishes the following isomorphism

(2.31)

which is known as the commutative property of product.
The “product datatype” is essential to information processing and is available in

virtually every programming language. In HASKELL one writes (A,B) to denote ,
for and two predefined datatypes, fst to denote and snd to denote . In the C
programming language this datatype is called the “struct datatype”,

struct
A first;
B second;

;

24 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

while in PASCAL it is called the “record datatype”:

record
first: A;
second: B

end;

Isomorphism (2.31) can be re-interpreted in this context as a guarantee that one does not
lose (or gain) anything in swapping fields in record datatypes. C or PASCAL programmers
know also that record-field nesting has the same status, that is to say that, for instance,
datatype

record
F: A;
S: record

F: B;
S: C;

end
end;

is abstractly the same as

record
F: record

F: A;
S: B

end;
S: C;

end;

In fact, this is another well-known isomorphism, known as the associative property
of product:

(2.32)

This is established by "" , which is pronounced “asso-
ciate to the right” and is defined by

(2.33)

Section A.0.1 in the appendix lists an extension to the HUGS Standard Prelude, called
Set.hs, which makes isomorphisms such as and available. In this module,
the concrete syntax chosen for is split f g and the one chosen for is f
>< g.

Exercise 3. Show that is iso by conjecturing its inverse and proving that
functional equality holds.

Exercise 4. Use (2.22) to prove properties (2.28) and (2.29).

2.9. GLUING FUNCTIONS WHICH DO NOT COMPOSE — COPRODUCTS25

2.9 Gluing functions which do not compose — co-
products

The split functional combinator arose in the previous section as a kind of glue for combin-
ing two functions which do not compose but share the same domain. The “dual” situation
of two non-composable functions "" and "" which however
share the same codomain is depicted in

,,"
""

""
""

--!!
!!

!!
!

It is clear that the kind of glue we need in this case should make it possible to apply in
case we are on the “ -side” or to apply in case we are on the “ -side” of the diagram.
Let us write to denote the new kind of combinator. Its codomain will be . What
about its domain?

We need to describe the datatype which is “either an or a ”. Since and are
sets, we may think of as such a datatype. This works in case and are disjoint
sets, but wherever the intersection is non-empty it is undecidable whether a value

is an “ -value” or a “ -value”. In the limit, if then
, that is to say, we have not invented a new datatype at all. These difficulties can be

circumvented by resorting to disjoint union:

!! ""

The values of can be thought of as “copies” of or values which are “stamped”
with different tags in order to guarantee that values which are simultaneously in and
do not get mixed up. The tagging functions and are called injections:

(2.34)

Knowing the exact values of tags and is not essential to understanding the concept
of a disjoint union. It suffices to know that and tag differently and consistently. For
instance, the following realizations of in the C programming language,

struct
int tag; /* 1,2 */
union

A ifA;
B ifB;

data;
;

26 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

or in PASCAL,

record
case
tag: integer

of x =
1: (P:A);
2: (S:B)

end;

adopt integer tags. In the HUGS Standard Prelude, which is based very closely on the
Standard Prelude for HASKELL 1.4., the datatype is realized by

data Either a b = Left a | Right b

So, Left and Right can be thought of as the injections and in this realization.
At this level of abstraction, disjoint union is called the coproduct of and

, on top of which we define the new combinator (pronounced “either or ”) as
follows:

!!

(2.35)

As we did for products, we can express all this in a single diagram:

!!

..#########

##

""

//$$$$$$$$$
(2.36)

It is interesting to note how similar this diagram is to the one drawn for products — one
just has to reverse the arrows, replace projections by injections and the split arrow by
the either one. This expresses the fact that product and coproduct are dual mathematical
constructs (compare with sine and cosine in trigonometry). This duality is of a great
conceptual economy because everything we can say about product can be rephrased
to coproduct . For instance, we may introduce the sum of two functions as
the notion dual to product :

(2.37)

The following list of -laws provides eloquent evidence of this duality:

2.9. GLUING FUNCTIONS WHICH DO NOT COMPOSE — COPRODUCTS27

-cancellation :

!!

..#########

##

""

//$$$$$$$$$
, (2.38)

-reflexion :

!!

..##
##

##
##

#

##

""

//%%
%%

%%
%%

%
(2.39)

-fusion :

!!

..#########

00&
&&

&&
&&

&&
&&

&&
&&

##

""

//$$$$$$$$$

11''
''

''
''

''
''

''
'

##

(2.40)

-absorption :

!!

##

""

##
!!

..(((((((((

##

""

//$$$$$$$$$

(2.41)

-functor :

(2.42)

-functor-id :

(2.43)

28 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

In summary, the typing-rules of the either and sum combinators are as follows:

""

""

""

""

""

""

(2.44)

Exercise 5. By analogy (duality) with , show that is its own inverse and so
that fact

(2.45)

holds.

Exercise 6. Dualize (2.33), that is, write the iso which witnesses fact

(2.46)

from right to left. Use the either syntax available from the HUGS Standard Prelude to
encode this iso in HASKELL.

2.10 Mixing products and coproducts
Datatype constructions and have been introduced above as devices required
for expressing the codomain of splits () or the domain of eithers (). Therefore,
a function mapping values of a coproduct (say) to values of a product (say)
can be expressed alternatively as an either or as a split. In the first case, both components
of the either combinator are splits. In the latter, both components of the split combinator
are eithers.

This exchange of format in defining such functions is known as the exchange law. It
states the functional equality which follows:

(2.47)

2.10. MIXING PRODUCTS AND COPRODUCTS 29

It can be checked by type-inference that both the left-hand side and the right-hand side ex-

pressions of this equality have type "" , for "" , "" ,
"" and "" .
An example of a function which is in the exchange-law format is isomorphism

"" (2.48)

(pronounce as “un-distribute-right”) which is defined by

(2.49)

and witnesses the fact that product distributes through coproduct:

(2.50)

In this context, suppose that we know of three functions "" , ""

and "" . By (2.44) we infer "" . Then, by (2.23) we infer

"" (2.51)

So, it makes sense to combine products and sums of functions and the expressions which
denote such combinations have the same “shape” (or symbolic pattern) as the expressions
which denote their domain and range — the “shape” in this example. In
fact, if we abstract such a pattern via some symbol, say — that is, if we define

— then we can write "" for (2.51).
This kind of abstraction works for every combination of products and coproducts. For

instance, if we now abstract the right-hand side of (2.48) via pattern

we have , a function which maps
onto . All this can be put in a diagram

##

""

##

30 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

which unfolds to

##

""

##

(2.52)

once the and patterns are instantiated. An interesting topic which stems from (com-
pleting) this diagram will be discussed in the next section.

Exercise 7. Apply the exchange law to .

Exercise 8. Complete the “?”s in diagram

22))
))

))
))

##
""

and then solve the implicit equation for and .

Exercise 9. Repeat exercise 8 with respect to diagram

!!

33*
**

**
**

*

##

2.11. NATURAL PROPERTIES 31

2.11 Natural properties
Let us resume discussion about and the two other functions in diagram (2.52).
What about using itself to close this diagram, at the bottom? Note that definition
(2.49) works for , and in the same way it does for , and . (Indeed, the
particular choice of symbols , and in (2.48) was rather arbitrary.) Therefore, we
get:

##

""

##
""

which expresses a very important property of :

(2.53)

This is called the natural property of . This kind of property (often called
free instead of natural) is not a privilege of . As a matter of fact, every function
interfacing patterns such as or above will exhibit its own natural property. Further-
more, we have already quoted natural properties without mentioning it. Recall (2.10), for
instance. This property (establishing as the unit of composition) is, after all, the natural
property of . In this case we have , as can be easily observed in diagram
(2.11).

In general, natural properties are described by diagrams in which two “copies” of the
operator of interest are drawn as horizontal arrows:

##

""

##
""

(2.54)

Note that is universally quantified, that is to say, the natural property holds for every
"" .

Diagram (2.54) corresponds to unary patterns and . As we have seen with ,
other functions (, etc.) come into play for multiary patterns. A very important rôle will
be assigned throughout this book to these , etc. “shapes” or patterns which are shared
by pointfree functional expressions and by their domain and codomain expressions. From
chapter 3 onwards we will refer to them by their proper name — “functor” — which
is standard in mathematics and computer science. Then we will also explain the names
assigned to properties such as, for instance, (2.28) or (2.42).

32 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exercise 10. Show that (2.26) and (2.27) are natural properties. Dualize these properties.
Hint: recall diagram (2.41).

Exercise 11. Establish the natural properties of the (2.31) and (2.33)
isomorphisms.

2.12 Universal properties
Functional constructs and (and their derivatives and) provide good
illustration about what is meant by a program combinator in a compositional approach to
programming: the combinator is put forward equipped with an useful set of properties
which enable programmers to transform programs, reason about them and perform useful
calculations. This raises a programming methodology which is scientific and stable.

Such properties bear standard names such as cancellation, reflexion, fusion, absorp-
tion etc.. Where do these come from? As a rule, for each combinator to be defined one
has to define suitable constructions at “interface”-level 2, e.g. and . These
are not chosen or invented at random: each is defined in a way such that the associated
combinator is uniquely defined. This is assured by a so-called universal property from
which the others can derived.

Take product , for instance. Its universal property states that, for each pair of

arrows "" and "" , there exists an arrow "" such that

(2.55)

holds — recall diagram (2.21) — for all "" . This equivalence states that
is the unique arrow satisfying the property on the right. In fact, read (2.55) in the

direction and let be . Then and will hold, meaning
that effectively obeys the property on the right. In other words, we have derived

2In the current context, programs “are” functions and program-interfaces “are” the datatypes
involved in functional signatures.

2.12. UNIVERSAL PROPERTIES 33

-cancellation (2.20). Reading (2.55) in the direction we understand that, if some
satisfies such properties, then it “has to be” the same arrow as .

It is easy to see other properties of arising from (2.55). For instance, for
we get -reflexion (2.30),

by (2.10)

by substitution of and

and for we get -fusion (2.24):

composition is associative (2.8)

by -cancellation (just derived)

by substitution of and

It will take about the same effort to derive split structural equality

(2.56)

from universal property (2.55) — just let .
Similar arguments can be built around coproduct’s universal property,

(2.57)

34 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

from which structural equality of eithers can be inferred,

(2.58)

as well as the other properties we know about this combinator.

Exercise 12. Derive -cancellation (2.38), -reflexion (2.39) and -fusion (2.40) from
universal property (2.57). Then derive the exchange law (2.47) from the universal property
of product (2.55) or coproduct (2.57).

2.13 Guards and McCarthy’s conditional
Most functional programming languages and notations cater for pointwise conditional
expressions of the form

meaning

for some given predicate "" , some “then”-function "" and some

“else”-function "" . is the primitive datatype containing truth values FALSE
and TRUE.

Can such expressions be written in the pointfree style? They can, provided we intro-
duce the so-called “McCarthy conditional” functional form

which is defined by

(2.59)

a definition we can understand provided we know the meaning of the “ ” construct.

We call "" a guard, or better, the guard associated to a given predicate

2.13. GUARDS AND MCCARTHY’S CONDITIONAL 35

"" . Every predicate gives birth to its own guard which, at point-level, is
defined as follows:

(2.60)

In a sense, guard is more “informative” than alone: it provides information about the
outcome of testing on some input , encoded in terms of the coproduct injections (for
a true outcome and for a false outcome, respectively) without losing the input itself.

The following fact, which we will refer to as McCarthy’s conditional fusion law, is a
consequence of -fusion (2.40):

(2.61)

We shall introduce and define instances of predicate as long as they are needed. A
particularly important assumption of our notation should, however, be mentioned at this
point: we assume that, for every datatype , the equality predicate "" is
defined in a way which guarantees three basic properties: reflexivity (for every

), transitivity (and implies) and symmetry (iff).
Subscript in will be dropped wherever implicit in the context.

In HASKELL programming, the equality predicate for a type becomes available by
declaring the type as an instance of class Eq, which exports equality predicate (==).
This does not, however, guarantee the reflexive, transitive and symmetry properties, which
need to be proved by dedicated mathematical arguments.

Exercise 13. Prove that the following equality between two conditional expressions

holds by rewriting it in the pointfree style (using the McCarthy’s conditional combinator)
and applying the exchange law (2.47), among others.

Exercise 14. Prove law (2.61).

36 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exercise 15. From (2.59) and property

(2.62)

infer

(2.63)

2.14 Gluing functions which do not compose — ex-
ponentials

Now that we have made the distinction between the pointfree and pointwise functional
notations reasonably clear, it is instructive to revisit section 2.2 and identify functional
application as the “bridge” between the pointfree and pointwise worlds. However, we
should say “a bridge” rather than “the bridge”, for in this section we enrich such an inter-
face with another “bridge” which is very relevant to programming.

Suppose we are given the task to combine two functions "" and "" .
It is clear that none of the combinations , or is well-typed. So, and
cannot be put together directly — they require some extra interfacing.

Note that would be well-defined in case the component of ’s domain could
be somehow “ignored”. Suppose, in fact, that in some particular context the first argument
of happens to be “irrelevant”, or to be frozen to some . It is easy to derive a new
function

!!

from which combines nicely with via the split combinator: is well-defined
and bears type "" . For instance, suppose that and is the equality

predicate on . Then "" is the “equal to ” predicate on values:

(2.64)

2.14. GLUING FUNCTIONS WHICH DO NOT COMPOSE — EXPONENTIALS37

As another example, recall function (2.3) which could be defined as using the
new notation.

However, we need to be more careful about what is meant by . Such as functional
application, expression interfaces the pointfree and the pointwise levels — it involves

a function () and a value (). But, for "" , there is a major distinction
between and — while the former denotes a value of type , i.e. ,
denotes a function of type "" . We will say that by introducing a new
datatype construct which we will call the exponential:

"" (2.65)

There are strong reasons to adopt the notation in detriment of the more obvious
or alternatives, as we shall see shortly.

The exponential datatype is therefore inhabited by functions from to , that is
to say, functional declaration "" means the same as . And what do
we want functions for? We want to apply them. So it is natural to introduce the apply
operator

""

which applies a function to an argument .

Back to generic binary function "" , let us now think of the operation
which, for every , produces . This can be regarded as a function of
signature "" which expresses as a kind of -indexed family of functions of
signature "" . We will denote such a function by (read as “ transposed”).
Intuitively, we want and to be related to each other by the following property:

(2.66)

Given and , both expressions denote the same value. But, in a sense, is more tolerant
than : while the latter is binary and requires both arguments to become available
before application, the former is happy to be provided with first and with later on, if
actually required by the evaluation process.

Similarly to and , exponential involves a universal property,

(2.67)

from which laws for cancellation, reflexion and fusion can be derived:

38 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exponentials cancellation :

!!
(((())$$$$$$$$$

(2.68)

Exponentials reflexion :

!!
(((())$$$$$$$$$

(2.69)

Exponentials fusion :

!!
(((())$$$$$$$$$

((((

++++++++++++++++++

(2.70)

Note that the cancellation law is nothing but fact (2.66) written in the pointfree style.
Is there an absorption law for exponentials? The answer is affirmative but first we

need to introduce a new functional combinator which arises as the transpose of in
the following diagram:

!!
((

!!

((

We shall denote this by and its type-rule is as follows:

""

""

2.14. GLUING FUNCTIONS WHICH DO NOT COMPOSE — EXPONENTIALS39

It can be shown that, once and "" are fixed, is the function which accepts

some input function "" as argument and produces function as result (see
exercise 23). So is the “compose with ” functional combinator:

(2.71)

Now we are ready to understand the laws which follow:

Exponentials absorption :

!!
((((

!!

((

(((())$$$$$$$$$$

(2.72)

Exponentials-functor :

(2.73)

Exponentials-functor-id :

(2.74)

To conclude this section we need to explain why we have adopted the apparently
esoteric notation for the “function from to ” data type. Let us introduce the
following operator

curry (2.75)

which maps a function to its transpose . This operator, which is very familiar to
functional programmers, maps functions in some function space to functions in

. Its inverse (known as the uncurry function) also exists. In the HUGS Standard
Prelude we find them declared as follows:

curry :: ((a,b) -> c) -> (a -> b -> c)
curry f x y = f (x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f p = f (fst p) (snd p)

40 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

From (2.75) it is obvious see that writing or curry is a matter of taste, the latter being
more in the tradition of functional programming. For instance, the fusion law (2.70) can
be re-written as

curry curry

and so on.
It is known from mathematics that curry and uncurry are isos witnessing the following

isomorphism which is at the core of the theory of functional programming:

(2.76)

Fact (2.76) clearly resembles a well known equality concerning numeric exponentials,
. But other known facts about numeric exponentials, e.g. or

find their counterpart in functional exponentials. The counterpart of
the former,

(2.77)

arises from the uniqueness of the either combination: every pair of functions
leads to a unique function and vice-versa, every function in

is the either of some function in and of another in .
The function exponentials counterpart of the second fact about numeric exponentials

above is

(2.78)

This can be justified by a similar argument concerning the uniqueness of the split combi-
nator .

What about other facts valid for numeric exponentials such as and ? We
need to know what and mean as datatypes. Such elementary datatypes are presented
in the section which follows.

Exercise 16. Load module Set.hs (cf. section A.0.1) into the HUGS interpreter and
check the types assigned to the following functional expressions:

curry ap
\f -> ap . (f >< id)
uncurry . curry

Which of these is functionally equivalent to the uncurry function and why? Which of
these are functionally equivalent to identity functions? Justify.

2.15. ELEMENTARY DATATYPES 41

2.15 Elementary datatypes
So far we have talked mostly about arbitrary datatypes represented by capital letters ,

, etc. (lowercase a, b, etc. in the HASKELL illustrations). We also mentioned ,
and and, in particular, the fact that we can associate to each natural number its initial
segment . We extend this to by stating and, for ,

.
Initial segments can be identified with enumerated types and are regarded as primitive

datatypes in our notation. We adopt the convention that primitive datatypes are written
in the sans serif font and so, strictly speaking, is distinct from : the latter denotes a
natural number while the former denotes a datatype.

Datatype 0
Among such enumerated types, is the smallest because it is empty. This is the Void
datatype in HASKELL, which has no constructor at all. Datatype (which we tend to
write simply as) may not seem very “useful” in practice but it is of theoretical interest.
For instance, it is easy to check that the following “obvious” properties hold:

(2.79)
(2.80)

Datatype 1
Next in the sequence of initial segments we find , which is singleton set . How useful
is this datatype? Note that every datatype containing exactly one element is isomorphic
to , e.g. NIL , , , FALSE , etc.. We represent this class
of singleton types by .

Recall that isomorphic datatypes have the same expressive power and so are “ab-
stractly identical”. So, the actual choice of inhabitant for datatype is irrelevant, and we
can replace any particular singleton set by another without losing information. This is
evident from the following relevant facts involving :

(2.81)
(2.82)

We can read (2.81) informally as follows: if the second component of a record (“struct”)
cannot change, then it is useless and can be ignored. Selector is, in this context, an iso
mapping the left-hand side of (2.81) to its right-hand side. Its inverse is where
is a particular choice of inhabitant for datatype . Concerning (2.82), denotes the set
of all functions from the empty set to some . What does (2.82) mean? It simply tells

42 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

us that there is only one function in such a set — the empty function mapping “no” value
at all. This fact confirms our choice of notation once again (compare with in a
numeric context).

Next, we may wonder about facts

(2.83)
(2.84)

which are the functional exponentiation counterparts of and . Fact (2.83)
is valid: it means that there is only one function mapping to some singleton set
— the constant function . There is no room for another function in because only

is available as output value. Fact (2.84) is also valid: all functions in are (single
valued) constant functions and there are as many constant functions in such a set as there
are elements in .

In summary, when referring to datatype we will mean an arbitrary singleton type,
and there is a unique iso (and its inverse) between two such singleton types. The HASKELL
representative of is datatype (), called the unit type, which contains exactly constructor
(). It may seem confusing to denote the type and its unique inhabitant by the same sym-
bol but it is not, since HASKELL keeps track of types and constructors in separate symbol
sets.

Finally, what can we say about ? Every function "" observing this

type is bound to be an either for and "" . This is very similar to
the handling of a pointer in C or PASCAL: we “pull a rope” and either we get nothing ()
or we get something useful of type . In such a programming context “nothing” above
means a predefined value NIL. This analogy supports our preference in the sequel for NIL
as canonical inhabitant of datatype . In fact, we will refer to (or) as the
“pointer to ” datatype. This corresponds to the Maybe type constructor of the HUGS
Standard Prelude.

Datatype 2
Let us inspect the instance of the “pointer” construction just mentioned above. Any

observation "" can be decomposed in two constant functions: .
Now suppose that (for). Then will hold, for whatever
choice of inhabitants and . So we are in a situation similar to : we will use symbol
to represent the abstract class of all such s containing exactly two elements. Therefore,
we can write:

2.16. FINITARY PRODUCTS AND COPRODUCTS 43

Of course, TRUE FALSE and initial segment are in this abstract
class. In the sequel we will show some preference for the particular choice of inhabitants

TRUE and FALSE, which enables us to use symbol in places where is
expected.

Exercise 17. Relate HASKELL expressions

either (split (const True) id) (split (const False) id)

and

\f->(f True, f False)

to the following isomorphisms involving generic elementary type :

(2.85)
(2.86)

Apply the exchange law (2.47) to the first expression above.

2.16 Finitary products and coproducts
In section 2.8 it was suggested that product could be regarded as the abstraction behind
data-structuring primitives such as struct in C or record in PASCAL. Similarly, co-
products were suggested in section 2.9 as abstract counterparts of C unions or PASCAL
variant records. For a finite , exponential could be realized as an array in any of
these languages. These analogies are captured in table 2.1.

In the same way C structs and unions may contain finitely many entries, as may
PASCAL (variant) records, product extends to finitary product , for

, also denoted by , to which as many projections are associated as the
number of factors involved. Of course, splits become -ary as well

""

for "" , .
Dually, coproduct is extensible to the finitary sum , for ,

also denoted by , to which as many injections are assigned as the number of
terms involved. Similarly, eithers become -ary

!!

for "" , .

44 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Abstract notation PASCAL C/C++ Description
record

P: A;
S: B

end;

struct
A first;
B second;

;

Records

record
case
tag: integer

of x =
1: (P:A);
2: (S:B)

end;

struct
int tag; /* 1,2 */
union

A ifA;
B ifB;

data;
;

Variant records

array[A] of B B ...[A] Arrays
ˆA A *... Pointers

Table 2.1: Abstract notation versus programming language data-structures.

Datatype
Next after , we may think of as representing the abstract class of all datatypes contain-
ing exactly three elements. Generalizing, we may think of as representing the abstract
class of all datatypes containing exactly elements. Of course, initial segment will
be in this abstract class. (Recall (2.17), for instance: both and are abstractly
represented by .) Therefore,

and

(2.87)

(2.88)

hold.

Exercise 18. On the basis of table 2.1, encode (2.49) in C or PASCAL. Compare
your code with the HASKELL pointfree and pointwise equivalents.

2.17. INITIAL AND TERMINAL DATATYPES 45

2.17 Initial and terminal datatypes
All properties studied for binary splits and binary eithers extend to the finitary case. For
the particular situation , we will have and , of
course. For the particular situation , finitary products “degenerate” to and finitary
coproducts “degenerate” to . So diagrams (2.21) and (2.36) are reduced to

##

((

The standard notation for the empty split is , where subscript can be omitted if
implicit in the context. By the way, this is precisely the only function in , recall (2.83).
Dually, the standard notation for the empty either is , where subscript can also be
omitted. By the way, this is precisely the only function in , recall (2.82).

In summary, we may think of and as, in a sense, the “extremes” of the whole
datatype spectrum. For this reason they are called initial and terminal, respectively. We
conclude this subject with the presentation of their main properties which, as we have
said, are instances of properties we have stated for products and coproducts.

Initial datatype reflexion :

00
(2.89)

Initial datatype fusion :

44"
""

""
""

"

!!

(2.90)

Terminal datatype reflexion :

00
(2.91)

46 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Terminal datatype fusion :

((

""

55""""""""

(2.92)

Exercise 19. Particularize the exchange law (2.47) to empty products and empty coprod-
ucts, i.e. and .

2.18 Sums and products in HASKELL

We conclude this chapter with an analysis of the main primitive available in HASKELL
for creating datatypes: the data declaration. Suppose we declare

data CostumerId = P Int | CC Int

meaning to say that, for some company, a client is identified either by its passport number
or by its credit card number, if any. What does this piece of syntax precisely mean?

If we enquire the HUGS interpreter about what he knows about CostumerId, the
reply will contain the following information:

Main> :i CostumerId
-- type constructor
data CostumerId

-- constructors:
P :: Int -> CostumerId
CC :: Int -> CostumerId

In general, let and be two known datatypes. Via declaration

data C = C1 A | C2 B (2.93)

2.18. SUMS AND PRODUCTS IN HASKELL 47

one obtains from HUGS a new datatype equipped with constructors "" and
"" , in fact the only ones available for constructing values of :

,,"
""

""
""

--!!
!!

!!
!

This diagram leads to an obvious instance of coproduct diagram (2.36),

!!

..#########

##

""

//$$$$$$$$$

describing that a data declaration in HASKELL means the either of its constructors.
Because there are no other means to build data, it follows that is isomorphic to

. So has an inverse, say , which is such that . How

do we calculate ? Let us first think of the generic situation of a function ""

which observes datatype :

!!

..#########

##

""

//$$$$$$$$$

##

This is an opportunity for -fusion (2.40), whereby we obtain

Therefore, the observation will be fully described provided we explain how behaves
with respect to — cf. — and with respect to — cf. . This is what is
behind the typical inductive structure of pointwise , which will be made of two and only
two clauses:

!!

48 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Let us use this in calculating the inverse of :

by -fusion (2.40)

by -reflexion (2.39)

either structural equality (2.58)

Therefore:

!!

In summary, is a “renaming” of injection , is a “renaming” of injection and
is “renamed” replica of :

""

is called the algebra of datatype and its inverse is called the coalgebra
of . The algebra contains the constructors of and of type , that is, it is used
to “build” -values. In the opposite direction, co-algebra enables us to “destroy” or
observe values of :

66
77

Algebra/coalgebras also arise about product datatypes. For instance, suppose that one
wishes to describe datatype inhabited by pairs , etc. of Cartesian
coordinates of a given type, say . Although equipped with projections
“is” such a datatype, one may be interested in a suitably named replica of in which
points are built explicitly by some constructor (say) and observed by dedicated
selectors (say and):

"" !!

##

''#########

))%%%%%%%%%

(2.94)

2.19. EXERCISES 49

This rises an algebra () and a coalgebra () for datatype :

88

99

In HASKELL one writes

data Point a = Point { x :: a, y :: a }

but be warned that HASKELL delivers Point in curried form:

Point :: a -> a -> Point a

Finally, what is the “pointer”-equivalent in HASKELL? This corresponds to in
(2.93) and to the following HASKELL declaration:

data C = C1 () | C2 B

Note that HASKELL allows for a more programming-oriented alternative in this case, in
which the unit type () is eliminated:

data C = C1 | C2 B

The difference is that here C1 denotes an inhabitant of (and so a clause

is rewritten to) while above C1 denotes a (constant) function "" .
Isomorphism (2.84) helps in comparing these two alternative situations.

2.19 Exercises

Exercise 20. Let and be two disjoint datatypes, that is, holds. Show that
isomorphism

(2.95)

holds. Hint: define "" as for and

, and find its inverse. By the way, why didn’t we define simply as
?

50 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

Exercise 21. Let (read: ‘distribute right’) be the bijection which witnesses isomor-
phism . Fill in the “. . . ”in the diagram which follows
so that it describes bijection (red: ‘distribute left’) which witnesses isomorphism

:

!!
::

!! !!

Exercise 22. In the context of exercise 21, prove

(2.96)

knowing that

holds.

Exercise 23. Show that holds, cf. (2.71).

Exercise 24. Let !! be the function of exercise 1, that is, .
Which fact is expressed by the following diagram featuring ?

!!

##
!!

Write it at point-level and describe it by your own words.

2.20. BIBLIOGRAPHY NOTES 51

Exercise 25. Establish the difference between the following two declarations in HASKELL,

data D = D1 A | D2 B C
data E = E1 A | E2 (B,C)

for A, B and C any three predefined types. Are and isomorphic? If so, can you
specify and encode the corresponding isomorphism?

2.20 Bibliography notes
Almost two decades ago John Backus read, in his Turing Award Lecture, a revolution-
ary paper [Bac78]. This paper proclaimed conventional command-oriented programming
languages obsolete because of their inefficiency arising from retaining, at a high-level,
the so-called “memory access bottleneck” of the underlying computation model — the
well-known von Neumann architecture. Alternatively, the (at the time already mature)
functional programming style was put forward for two main reasons. Firstly, because of
its potential for concurrent and parallel computation. Secondly — and Backus emphasis
was really put on this —, because of its strong algebraic basis.

Backus algebra of (functional) programs was providential in alerting computer pro-
grammers that computer languages alone are insufficient, and that only languages which
exhibit an algebra for reasoning about the objects they purport to describe will be useful
in the long run.

The impact of Backus first argument in the computing science and computer architec-
ture communities was considerable, in particular if assessed in quality rather than quantity
and in addition to the almost contemporary structured programming trend 3. By contrast,
his second argument for changing computer programming was by and large ignored, and
only the so-called algebra of programming research minorities pursued in this direction.
However, the advances in this area throughout the last two decades are impressive and can
be fully appreciated by reading a textbook written relatively recently by Bird and de Moor

3Even the C programming language and the UNIX operating system, with their implicit func-
tional flavour, may be regarded as subtle outcomes of the “going functional” trend.

52 CHAPTER 2. AN INTRODUCTION TO POINTFREE PROGRAMMING

[BdM97]. A comprehensive review of the voluminous literature available in this area can
also be found in this book.

Although the need for a pointfree algebra of programming was first identified by
Backus, perhaps influenced by Iverson’s APL growing popularity in the USA at that time,
the idea of reasoning and using mathematics to transform programs is much older and can
be traced to the times of McCarthy’s work on the foundations of computer programming
[McC63], of Floyd’s work on program meaning [Flo67] and of Paterson and Hewitt’s
comparative schematology [PH70]. Work of the so-called program transformation school
was already very expressive in the mid 1970s, see for instance references [BD77].

The mathematics adequate for the effective integration of these related but indepen-
dent lines of thought was provided by the categorial approach of Manes and Arbib com-
piled in a textbook [MA86] which has very strongly influenced the last decade of 20th
century theoretical computer science.

A so-called MPC (“Mathematics of Program Construction”) community has been
among the most active in producing an integrated body of knowledge on the algebra of
programming which has found in functional programming an eloquent and paradigmatic
medium. Functional programming has a tradition of absorbing fresh results from theoret-
ical computer science, algebra and category theory. Languages such as HASKELL [Bir98]
have been competing to integrate the most recent developments and therefore are excellent
prototyping vehicles in courses on program calculation, as happens with this book.

