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P R E A M B L E

This textbook, which has arisen from the author’s research and teach-
ing experience, has been in preparation for many years. Its main aim
is to draw the attention of software practitioners to a calculational ap-
proach to the design of software artifacts ranging from simple algo-
rithms and functions to the specification and realization of informa-
tion systems.

Put in other words, the book invites software designers to raise stan-
dards and adopt mature development techniques found in other engi-
neering disciplines, which (as a rule) are rooted on a sound mathemati-
cal basis. Compositionality and parametricity are central to the whole dis-
cipline, granting scalability from school desk exercises to large prob-
lems in an industry setting.

It is interesting to note that while coining the phrase software engi-
neering in the 1960s, our colleagues of the time were already promising
such high quality standards. In March, 1967, ACM President Anthony
Oettinger delivered an address in which he said [66]:

”(...) the scientific, rigorous component of computing, is more like
mathematics than it is like physics” (...) Whatever it is, on the one
hand it has components of the purest of mathematics and on the other
hand of the dirtiest of engineering.

As a discipline, software engineering was announced at the Garmisch
NATO conference in 1968, from whose report [62] the following ex-
cerpt is quoted:

In late 1967 the Study Group recommended the holding of a working
conference on Software Engineering. The phrase ‘software engineer-
ing’ was deliberately chosen as being provocative, in implying the need
for software manufacture to be based on the types of theoretical foun-
dations and practical disciplines, that are traditional in the established
branches of engineering.

Provocative or not, the need for sound theoretical foundations has
clearly been under concern since the very beginning of the discipline
— exactly fifty years ago, at the time of writing. However, how “scien-
tific” do such foundations turn out to be, now that five decades have
since elapsed?1

Thirty years later (1997), Richard Bird and Oege de Moore pub-
lished a textbook [11] in the preface of which C.A.R. Hoare writes:

Programming notation can be expressed by “formulæ and equations
(...) which share the elegance of those which underlie physics and
chemistry or any other branch of basic science”.

1 The title of a communication of another ACM President, Vinton Cerf (2012), does not
sound particularly optimistic [13].

1
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The formulæ and equations mentioned in this quotation are those of a
discipline known as the Algebra of Programming. Many others have
contributed to this body of knowledge, notably Roland Backhouse
and his colleagues at Eindhoven and Nottingham, see e.g. [1, 4], Jeremy
Gibbons and Ralf Hinze at Oxford see e.g. [32], among many others.
Unfortunately, references [1, 4] are still unpublished.

When the author of this draft textbook decided to teach Algebra of
Programming to 2nd year students of the Minho degrees in computer
science, back to 1998, he found textbook [11] too difficult for the stu-
dents to follow, mainly because of its too explicit categorial (allegor-
ical) flavour. So he decided to start writing slides and notes helping
the students to read the book. Eventually, such notes became chapters
2 to 4 of the current version of the monograph. The same procedure
was taken when teaching the relational approach of [11] to 4th year
students (master level), see chapters 5 to 7.

This draft book is incomplete, all subsequent chapters being still
in slide form2. Such half-finished chapters are omitted from the cur-
rent print-out. Altogether, the idea is to show that software engineer-
ing and, in particular, computer programming can adopt the scientific
method as other branches of engineering do. Somehow, it’s like follow-
ing in the footsteps of those who marveled at the power of algebraic
reasoning in the remote past, in different contexts and disciplines:

“(...) De manera, que quien sabe por Algebra, sabe scientifica-
mente [In this way, who knows by Algebra knows scientifi-
cally]. Pedro Nunes, 1567 [65]

A C K N O W L E D G E M E N T S

The draft of this ”book” has been available online for many years, dur-
ing which time the author has received suggestions, comments, typos
and so on, for which he is very grateful. Special thanks are due to
Tom Verhoeff (University of Eindhoven, NL), for his careful reading
and meticulous suggestions for improvement.

University of Minho, Braga, September 2022

2 See e.g. see technical report [70]. The third part will address a linear algebra of pro-
gramming intended for quantitative reasoning about software. This is even less sta-
ble, but some papers exist already about the topic, starting from [69], and a typed-
matrix library written in Haskell [79].
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1
I N T R O D U C T I O N

This monograph is concerned with a major topic in software engineer-
ing: that of designing correct computer programs in the first place. Let
us begin by inquiring into the phrase software engineering itself. Or
even deeper into the word software itself.

Producing software is today an industrial activity that, according
to Evans Data Corporation, involves more than 25 million developers.
How did all this activity start? How productive is this industry? How
relevant is it?

1.1 A B I T O F A R C H A E O L O G Y

The following chart 1 gives the timeline of the four industrial revolu-
tions that have changed human civilization in the last centuries:

This tells that, from the late 18c mechanical lines powered by steam
and water streams, and through the late 19c mass production lines
enabled by electrical power, one reaches the mid 20c third revolution
in which electronics and IT automation start to play a role. The role of
software in industry started here, when dedicated electronics started
to be replaced by devices that could be programmed and tailored to
the specific tasks required.

Software had already proved its power during the second world
war, in the military domain. However, it did not start there. It actu-
ally emerged from the theoretical work of two mathematicians, Alan
Turing (1912-1954) and Alonzo Church (1903-1995). In fact, classical

1 Credits: adapted from Nelmia Robotics Insight, 2015.

4

https://evansdata.com/press/viewRelease.php?pressID=278
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computing is rooted in mathematical abstractions that led in particu-
lar to the Turing machine [83] — which is still regarded as the canonical
abstract notion of a programmable computer — and to the λ-calculus
[14] — a mathematical system that provided the basis for the so-called
functional programming paradigm.

The step from abstraction to reality was made possible by advances
in physics, such as the invention of triodes (1912) and then of transis-
tors (1948), a path that eventually lead to the integrated circuits that
are the basis of the in silico technology of today [63, 78, 45].

Once such devices were first employed to store information in real-
istic situations, it became clear that further abstraction was required.
This led to the explicit adoption of formal logic, a very important ab-
straction still in use today. As the aphorism says, “logic is the language
of computing”.

The birth of software as an independent technology took place in
the 1950s.2 But it soon was faced with a crisis because an effective
discipline of programming was lacking. In fact, software must have
surprised the industrial scene of the 1950s as something of an “enfant
terrible”. Hardware and other “traditional” industrial products were fab-
ricated according to well established laws of physics and principles
of engineering. By contrast, software was not governed by the laws of
physics: it did not weigh, did not smell, did not warm up/cool down,
it was chemically neutral and it did not wear. In his 1967 address,
ACM President Anthony Oettinger said [66]:

”(...) the scientific, rigorous component of computing, is more like
mathematics than it is like physics”.

In spite of the tremendous progress in programming language design
that took place throughout the 1960s — which witnessed the birth of
what many regarded as the first open source project, the Algol family
of languages — the crisis went on. Still Oettinger:

”It is a matter of complexity. Once you start putting thousands of
these instructions together you create a monster which is unintelli-
gible to anyone save its creator and, most of the time, unfortunately
even to the creator.”

S O F T WA R E E N G I N E E R I N G The term software engineering appeared
in the late 1960s and was the subject of a conference supported by
NATO that took place in Garmisch, Germany in 1968. The partici-
pants of this conference expressed concerns and called for stronger
theoretical foundations [62]:

The phrase ‘software engineering’ was deliberately chosen as being pro-
vocative, in implying the need for software manufacture to be based on
the types of theoretical foundations and practical disciplines, that are
traditional in the established branches of engineering.

2 The first programming language, Fortran, appeared in 1953.
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Many took the provocation seriously and embarked on researching so-
called formal methods for developing code from formal specifications,
notably Edsger Dijkstra (1930-2002), Tony Hoare (1934-), Niklaus Wirth
(1934-) and Robert Floyd (1936-2001), all from the Algol development
group and all Turing Awardees. This resulted in the birth of the prin-
ciples of structured programming [17, 87] that became popular in the
1970s and reached the software industry in the form of a new, industry-
strong language, Pascal, which evolved from the Algol culture.

In spite of these developments, the 1968 crisis was (and still is not...)
over yet. The ever increasing complexity of the software that the IT
sector requires programmers to build every day leads to unsafe code
due to the widespread use of ad hoc methods, instead of the mathemat-
ically sound methods anticipated by its founding fathers. The main
problem with such informal methods is that quality control is based
on testing software artifacts after they have been built, and not on en-
suring quality in a stepwise manner, as advocated by academia since
the 1970s.

Oettinger’s suggestion that software is, in a sense, mathematics in
motion, was not accepted by a community that had been engaged in
applying “traditional” engineering principles long before. As these
are as applicable to the software process as in other disciplines, many
researchers, teachers and practitioners were led into equating software
engineering with the software development process itself. This is no
doubt a very important aspect of the problem but tends to leave the
study of the software product itself out of focus:

Software


Process —

Product —

Fancy a chemical plant working in a perfect production line but in
which nobody knows about the Lavoisier principle, the Mendeliev pe-
riodic table, the laws of chemical reactions and so on.

By and large, this is still the kind of software industry that we have
today, unfortunately. In a sense, managers and developers pretend
that software production is not affected by its special nature and move
on. More and more sophisticated tools have been developed to sup-
port software design (IDEs, for instance) and everything seems to be
in full swing. But when one listens to those on the ground, things
look anything but good. The illusion is still due to progress, which is
indeed fabulous, in the hardware arena.3

U N D E R S TA N D I N G C O M P U T E R P R O G R A M S Today’s widespread
research on the mathematical meaning of software originated from

3 See for instance, the talk Preventing the Collapse of Civilization by Jonathan Blow
(Thekla, Inc) available on Youtube (2019).

https://www.youtube.com/watch?v=ZSRHeXYDLko&t=5s
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the pioneering works of Floyd and Hoare [21, 33] (among others less
known) in the late 1960s.4 But these efforts had to wait for many years
before the proposed techniques for program correctness proof were
generally acclaimed and incorporated in tools that are more and more
widespread today.

Nearly a decade later, John Backus read, in his Turing Award Lec-
ture, a revolutionary paper [7] about how he envisaged the future of
computing and software. This paper proclaimed conventional command-
oriented programming languages obsolete because of their inefficiency
arising from retaining, at a high-level, the so-called “memory access
bottleneck” of the underlying computation model — the well-known
von Neumann architecture. Alternatively, the (at the time already ma-
ture) functional programming style was put forward for two main rea-
sons. Firstly, because of its potential for concurrent and parallel com-
putation, which Backus envisaged as the future of computing. Sec-
ondly — and Backus emphasis was really put on this —, because of its
strong mathematical basis.

Backus’ algebra of (functional) programs was providential in alerting
computer programmers that computer languages alone are insufficient,
and that only languages that exhibit an algebra or calculus for reason-
ing about the objects they purport to describe will be useful in the long
run.

The impact of Backus’ first argument in the computing science and
computer architecture communities was considerable, in particular if
assessed in quality rather than quantity and in addition to the almost
contemporary structured programming trend. By contrast, his second
(theoretical) argument for changing computer programming was by
and large ignored. Only the self-named algebra of programming re-
search minority pursued in this direction.

T O WA R D S A N A L G E B R A O F P R O G R A M M I N G Even among those
who defended mathematical approaches to software comprehension
and development, consensus was rare about whether one should stay
with imperative programming tamed by logical reasoning (namely by
using Hoare Logic) or move even further into the realm of algebraic
functional programming. At the same time, the vast majority of pro-
grammers regarded all such efforts useless because the maths was too
low level and got convoluted every time one tried to apply the avail-
able theories to practical case studies.

Indeed, in a relatively recent article [75], David Parnas questions
such methods, which he regards still unfit for the software industry:

We must learn to use mathematics in software development, but we
need to question, and be prepared to discard, most of the methods that
we have been discussing and promoting for all these years.

4 But note that Turing had himself already done similar but less known work back to
1949 [41].
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At the core of Parnas objections lies the contrast between the current
ad-hoc (re)invention of burdening mathematical notation and less known,
elegant concepts that are neglected, often for cultural reasons or (lack
of) background.

The question is: what is it that tells “good” and “bad” methods
apart? As Parnas writes, there is a disturbing gap between software de-
velopment and traditional engineering disciplines. In such disciplines one
finds a successful, well-established mathematical background essen-
tially made of calculus, linear algebra and probability theory.

Central to engineering mathematics is the construction of sets of si-
multaneous equations as models of physical systems (e.g. circuits, etc),

a11x1 + a12x2 + a1mxm = b1
...

...
...

an1x1 + an2x2 + anmxm = bn

(1.1)

that is, formulæ of the form

〈∀ i : 1 6 i 6 n :
m

∑
j=1

aijxj = bi〉 (1.2)

The maturity of traditional engineering mathematics can be appreci-
ated from the fact that such (often very large) sets of equations do not
intimidate engineers, thanks to the matrix and vector concepts: group-
ing all coefficients aij of (1.1) in a matrix A, variables xj in a vector X
and values bi in a vector B, (1.1) becomes

A · X = B

where operator (·) denotes matrix multiplication. Backhouse [4] writes:

In this way a set of equations has been reduced to a single equa-
tion. This is a tremendous improvement in concision that does
not incur any loss of precision!

That is to say, such notation scales up and quantity does not disturb
quality.

Another sign of maturity arises from the use of mathematical trans-
formations, such as e.g. the Laplace transform [43] which changes the
“mathematical space” so as to convert “difficult” sets of equations (e.g.
differential) into “easy” ones (e.g. polynomial), whose solutions are
mapped back to the original problem domain by the converse trans-
form. Once again, complexity is controlled via effective mathematical
techniques.

One may wonder about parallels to these techniques in mathemati-
cal methods for software design, in their use of formal logics. Do such
logics scale up to very large sets of clauses issued by proof obligation
generators, for instance? Is there a linear algebra for logic and set the-
ory? Is there a logic equivalent to a matrix?

While the answer to the first question is poorly!, those to the other
questions are affirmative: yes, there are! Quoting [75] once again:
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There is an alternative. Some researchers have been studying the use of
relational methods in computer science; (...) the well-known laws of re-
lational algebra can serve as the axiomatic basis for programming. The
axioms of relational algebra are simple and universal. This approach
seems to have been neglected by most “mainline” researchers in the
area of formal methods.

Binary relations are Boolean matrices, thus providing a straight par-
allel with linear algebra. And relational composition of two relations
R and S, usually denoted by a similar multiplicative term R · S, pro-
vides another one. In set theory, this relational operator is defined in-
directly as follows, assuming the set-of-pairs understanding of binary
relations: pair (b, c) is in R · S iff there exist one or more mediating a
such that (b, a) ∈ R and (a, c) ∈ S.

If we look at one of the first definitions of this combinator, due to
Charles Peirce (1839-1914) and explained in [49], we realize that it
computes inner products like those of (1.2), where multiplication (re-
stricted to 0s and 1s) captures logical conjunction and addition (resp.
summation) captures disjunction (resp. existential quantification), if
clipped at 1. Thereafter, relation union R∪ S is nothing but index-wise
Boolean matrix addition and the distributive laws

R · (S ∪ T) = (R · S) ∪ (R · T)
(S ∪ T) · R = (S · R) ∪ (T · R)

arise from the bilinearity of the underlying matrix algebra. Confirm-
ing the analogy, Gunther Schmidt’s book on relational mathematics [80]
makes extensive use of matrix notation, concepts and operations in
relation algebra.

F U R T H E R D E V E L O P M E N T S Meanwhile, category theory [48] was
born, emphasizing the description of mathematical concepts in terms
of abstract arrows (morphisms) and diagrams, thus unveiling a compo-
sitional, abstract language of universal combinators that is inherently
generic and pointfree.

The category of sets and functions immediately provided a basis
for pointfree functional reasoning, but this was by and large ignored
by Backus in his FP algebra of programs [7]. In any case, Backus’s
landmark FP paper was the first to show how relevant this reasoning
style could be to programming. This happened four decades ago.

A bridge between the two pointfree schools — the relational and the
categorical — was eventually established by Freyd and Scedrov [23] in
their proposal of the concept of an allegory, which instantiates to typed
relation algebra. The pointfree algebra of programming (AoP) as it is
understood today [11] stems directly from [23].

In the early 1990s, the Groningen-Eindhoven MPC group led by
Backhouse [1] contributed decisively to the AoP by structuring rela-
tion algebra in terms of easy-to-apprehend rules that make relational
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reasoning closer to school algebra. Think for instance of the following
rule to reason about whole division of two natural numbers,

z× y 6 x ≡ z 6 x÷ y (y > 0) (1.3)

assumed universally quantified in all its variables. Pragmatically, it
expresses a “shunting” rule which enables one to exchange between a
whole division at the upper side of an inequality and a multiplication
at the lower side. Many properties of (×) and (÷) can be inferred
from (1.3), for instance (x÷ y)× y 6 x — just replace z by x÷ y and
simplify 5.

In 1997 — two decades after two landmark textbooks of the golden
age of structured programming [17, 87] — Bird and Moor published
a textbook [11] on how to use relational algebra to synthesise recur-
sive programs from relational specifications, inaugurating a new dis-
cipline, called Algebra of Programming. In the preface of the book, com-
puter science pioneer Tony Hoare writes:

Programming notation can be expressed by “formulæ and equations
(...) which share the elegance of those which underlie physics and
chemistry or any other branch of basic science”.

The five decade long aim of calculating software was achieved, but
only partly. The book mostly covers calculating functional programs
from relational specifications, or imperative programs with a purely
functional semantics. Moreover, the techniques proposed were re-
garded as difficult and the book did not have the impact of, for in-
stance, Dijkstra’s [17] and Wirth’s [87] textbooks two decades earlier.

1.2 T H E F U T U R E A H E A D

At the time of writing a new industrial revolution is under way —
and in a rather singular way. It is depicted in the rightmost block in
the picture we have already seen:

5 Rule (1.3) connects division to multiplication, the latter helping to reason about the
former. Functions connected in this way are said to be adjoints: multiplication is
adjoint of division. Equivalences of this kind are scalable, powerful devices known
in mathematics as Galois connections.
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This trend has become known as Industry 4.0 — the fourth industrial
revolution — and is to rely on highly sophisticated software on an
unprecedented scale.

Its main singularity resides in the fact that this is the first time a new
industrial revolution happens solely (or mostly) relying on software
advances — in machine learning, robotics, security, reliability and so
on. Billions of lines of code will be written every day and never was
software correctness and robustness as essential as nowadays.

Concerning the challenges ahead, here is a quotation from a Robot
Programming Tutorial:

“The fundamental challenge of all robotics is this: It is impossible
to ever know the true state of the environment. A robot can only
guess the state of the real world based on measurements returned by
its sensors.”

So the robot software programmer will need to live with the abstract
view of the environment captured by the robot’s sensors. Indeed, it
would be impossible (and useless) for the robot software to cope with
a 100% view of its environment.

A B S T R A C T I O N Abstract view? Beware that software lives on ab-
straction by definition, even before the world became robot-dependent:

”The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise.” (E. Dijkstra)

Indeed, working with too concrete models of reality is one of the main
defects of much software that has been written (and is still to be writ-
ten, unfortunately).

Is the colour of your students’ hair relevant for their assessment in
your course? Surely not, thus no such column in the exams spread-
sheet. But there you are: you’ve just lost (better: deliberately ignored)
one particular attribute of your students! This means that your spread-
sheet already contains an abstract view of them.

The challenge is therefore to keep those attributes that are needed
for the software to operate and only those. In some sense, programming
is in this respect the art of going abstract!

C O M P O S I T I O N A L I T Y Many software monsters had been written
already when, in 1967, Oettinger delivered his speech. The problem
is that many, many more were created since, in spite of the availabil-
ity of increasingly powerful languages with sophisticated abstraction
mechanisms.

It is commonplace to say that today’s programmers write poorly
concurrent code. This is actually worse: they still write poorly struc-
tured sequential code because they were not trained in the art of composi-
tionality early enough in their background. And so they find it hard to
design a piece of software in terms of collaborative, small units, each

https://www.toptal.com/robotics/programming-a-robot-an-introductory-tutorial
https://www.toptal.com/robotics/programming-a-robot-an-introductory-tutorial
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doing its own job. Let alone other forms of composition in which such
components operate concurrently, in a parallel way.

T Y P E - O R I E N T E D P R O G R A M M I N G How does one ensure that co-
operating software components are compatible with each other and
work without damaging one another? The obvious answer is: just in
the same way as, for instance, one cannot physically connect a USB
cable to a 220V outlet — the interfaces are physically different and do
not allow it.

At the software level, such interfaces are known as types and the
associated safety mechanism known as type checking. Type theory has
developed immensely in recent years and is a fast evolving field of
computer science nowadays. The moral is that every computation,
piece of data etc. should have a formal type. Types permit (automatic)
checking before building. Doing software without types is like doing
biology without a post-Linnaean taxonomy. But beware: much software
running today is still untyped or too weakly typed.

C O N T R A C T- O R I E N T E D P R O G R A M M I N G In the meantime, static
type checking has evolved from ensuring static types (at compile-time)
to ensuring that desirable properties are maintained at run-time, lead-
ing to extended (or dynamic) type checking. Such dynamic types are
known also as contracts. The advice is that, as in the regular function-
ing of any society, programming should be based on formal contracts
[56, 40] validated by the underlying maths and supported by dedi-
cated toolsets.

This discipline ensures safety and security and is essential to safety-
critical equipment operation.

PA R A M E T R I C I T Y A N D S C A L A B I L I T Y Adaptability is a much val-
ued feature in classical engineering. Adaptable design is a paradigm
that extends the intended utility of products and designs beyond the



1.3 S U M M A RY 13

initial, intended setting. Adaptability aims at reusing the same “de-
sign” for the creation of different products.

The mathematical essence of software enables particularly interest-
ing forms of adaptability. Software engineers faced with a “new” prob-
lem tend to reuse (by copying, pasting and modifying) previously de-
veloped code. Quite often, a component is copied, renamed and little
more is needed. This means that the original code and the modified
one are abstractly the same. For instance, determining the length of a
list does not depend on the kind of elements kept in the list. Further-
more, length-of-a-list is but an instance of a more general problem,
that of counting the number of items in a finite data structure, inde-
pendently of its topology. This feature of software is termed parameter-
ization and has been known for a long time [16].

Software developers should be trained to appreciate writing para-
metric, reusable code — that is, generic code which is automatically
instantiated in particular situations. This is not only intellectually re-
warding but also brings elegance and economy into programming. So-
called polymorphic types do this automatically and there is a nice theory
behind them called parametric polymorphism [46, 85]. So nice that one
can derive properties of one’s code even before writing it [54],

It is no wonder that parametricity promotes code reuse and makes
software solutions more robust and truly scalable.

1.3 S U M M A R Y

The starting point of the section above was the realization that, with
software taking over all fields of (what used to be solely) human ac-
tivity, the challenges to be faced in the future by software designers
are enormous. Insecurity, risk of malfunction/failure in increasingly
complex systems will reach unprecedented levels.

This was followed by listing some technical ingredients for good
software design that are regarded as useful to mitigate the complex-
ity that lies ahead — considering software as a product and ignoring
(intentionally) its development process, which is a distinct problem.

Even though the average software designer will agree on the rele-
vance of such design principles, these tend to be overlooked or poorly
adopted (if not at all ignored) by programmers lacking the required
background knowledge.

Several decades of teaching experience of the author of this text
suggest that there is a proper timing for acquiring such background
knowledge: this should take place in the early phases of graduate ed-
ucation, at the same time students face other “theoretical subjects” in
the fields of physics and maths, for instance. Doing it later is unfortu-
nately too late. On the other hand, not every programming paradigm
is suitable for such training. Again based on experience, it has be-
come clear that functional programming (FP) provides an easier vehicle
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for students to understand and apply such basic principles. This calls
for a functional-first academic syllabus.

A traditional obstacle to teaching FP in the past was the inefficiency
of the functional languages available at the time. But, thanks to tremen-
dous advances in the field in the last decades, this is no longer a (very
serious) problem.

Another piece of resistance in the minds of students has been the
feeling that FP is not main stream in industry. But this is changing
steadily, with more and more software companies switching (at least
in part) to FP in areas such as finance application design, data science
or domains where high levels of safety and security are at target.

The main point of functional-first syllabi is that switching to think-
ing functionally can be a tremendous effort for students addicted to the
atomicity of the one-instruction-at-a-time programming paradigm. By
contrast, the converse switch from functional to imperative or object-
oriented programming is not so demanding. FP calls for a good, over-
all perception of the whole picture and for a clear insight on how data
flows throughout the designed artifact. Moreover, since functions can
lose information, there is always a “proper place” in the pipeline for a
particular function to be inserted.

Atomicity or structuralism also impacts the way programmers vali-
date their software. FP promotes a “correct-by-construction” approach
to programming that promises significant reduction in development
costs by avoiding dependence on testing and debugging. Rather than
unit testing focussing on particular components, FP tests are usually ex-
pressed in terms of desirable properties involving several functions at
the same time. It is thus no wonder that tools such as e.g. QuickCheck
started in the FP field [15].6

Structural design, data-flow awareness and less dependence on test-
ing also promote a solid FP background towards new, emerging pro-
gramming paradigms such as reversible and quantum computing [64].
For instance, while classical memory access does not harm the data,
reading quantum data dramatically spoils the quantum effect. From
this perspective, addiction to the edit-run-debug vicious development
cycle can substantially reduce the proficiency of a “conventional” pro-
gramming mind once faced with such new technologies.

Functional programming and FP calculi alone are, however, not
enough. Problem specifications as a rule involve functions but are
not functions in themselves. Thus, a strictly functional algebra of pro-
grams cannot fully bridge the specification-level to the implementation-
level, compromising the “correct-by-construction” desideratum. There
are two options there: either start from specifications expressed in first-
order logic and somehow derive functional implementations from them;

6 The shortcomings of testing are well-known. It is hopelessly inadequate in situations
such as concurrency (where scenarios are often impossible to reproduce) and with
very large input spaces (such as robots and autonomous cars with video sensors).
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or extend the pointfree calculus of functions so that the specifications
themselves can also be written in the same style.

1.4 W H Y T H I S B O O K ?

The well-known aphorism ”functions are special cases of relations” is the
main guideline for the second alternative — extend the calculus of
functions towards a calculus of relations — and such is the principle
behind texbook [11] and the current “book”. This explains the two
parts Calculating with Functions (part I) and Calculating with Relations
(part II).

When the author of this draft textbook decided to teach the alge-
bra of programming to 2nd year computer science students, back to
1998, he found textbook [11] too difficult for the students to follow,
mainly because of its too explicit categorial (allegorical) flavour. So he
decided to start writing slides and notes helping the students to read
the book. Eventually, such notes became chapters 2 to 4 of the cur-
rent version of this monograph. The same procedure was taken when
teaching the relational approach of [11] at master level, see chapters 5
to 8.

Another motivation in complementing [11] is to give a wider per-
ception of the usefulness of relational algebra in calculating software
that is data intensive. Indeed, relations are as effective in describing
algorithms as they are in describing data, which sanctions the “equa-
tion”

Algorithms + Data Structures = Programs [87]

with nice theoretical homogeneity. This homogeneity can be found in
tools such as Alloy [36], for instance, which has been used in the lab
part of the courses mentioned above along with Haskell.

There is a promised third part, Calculating with Matrices (part III)
which will evolve naturally from the first two, heading towards quan-
titative aspects of software design. In the age of data mining and ma-
chine learning it is very important to bring type safety and calcula-
tional design to these subjects, and standard relational database the-
ory ”à la Codd” [50] is not enough, as is explained in [67] for instance.
Typed linear algebra, which is also making a contribution to proba-
bilistic programming [61] seems to be a promise in such direction, but
some consolidation of this kowledge needs to take place before it can
be brought into the classroom.



Part I

C A L C U L AT I N G W I T H F U N C T I O N S



2
A N I N T R O D U C T I O N T O P O I N T F R E E
P R O G R A M M I N G

Everybody is familiar with the concept of a function since the school
desk. The functional intuition traverses mathematics from end to end
because it has a solid semantics rooted on a well-known mathematical
system — the class of “all” sets and set-theoretical functions.

Functional programming literally means “programming with func-
tions”. Programming languages such as LISP or HASKELL allow us
to program with functions. However, the functional intuition is far
more reaching than producing code which runs on a computer. Since
the pioneering work of John McCarthy — the inventor of LISP — in
the early 1960s, one knows that other branches of programming can be
structured, or expressed functionally. The idea of producing programs
by calculation, that is to say, that of calculating efficient programs out
of abstract, inefficient ones has a long tradition in functional program-
ming.

This monograph is structured around the idea that functional pro-
gramming can be used as a basis for teaching programming as a whole,
from the successor function n 7→ n + 1 to large information system de-
sign.1

This chapter provides a light-weight introduction to the theory of
functional programming. The main emphasis is on compositionality
— one of the main advantages of “thinking functionally” — by ex-
plaining how to construct new functions out of other functions using
a minimal set of predefined functional combinators. This leads to a pro-
gramming style that is point free in the sense that function descriptions
dispense with variables (also known as points).

Several technical issues are deliberately ignored and deferred to
later chapters. Most programming examples will be provided in the
HASKELL functional programming language. Appendix B includes
the listings of some HASKELL modules that complement the HASKELL

Standard Prelude and help to “animate” the main concepts introduced
in this chapter.

1 This idea addresses programming in a broad sense, including for instance reversible
and quantum programming, where functional programming already plays leading
roles [60, 58, 29].

17
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2.1 I N T R O D U C I N G F U N C T I O N S A N D T Y P E S

The definition of a function

f : A→ B (2.1)

can be regarded as a kind of “process” abstraction: it is a “black box”
which produces an output once it is supplied with an input:

fx ∈ A (f x) ∈ B

The box isn’t really necessary to convey the abstraction and a single
labelled arrow suffices:

A
f // B

This simplified notation focusses on what is indeed relevant about f
— that it can be regarded as a kind of “contract”:

f commits itself to producing a B-value provided it is sup-
plied with an A-value.

How is such a value produced? In many situations one wishes to ig-
nore this because one is just using function f . In others, however, one
may want to inspect the internals of the “black box” in order to know
the function’s computation rule. For instance,

succ : N→N

succ n def
= n + 1

expresses the computation rule of the successor function — the func-
tion succ which finds “the next natural number” — in terms of natural
number addition and of natural number 1. What we above meant by
a “contract” corresponds to the signature of the function, which is ex-
pressed by arrow N→N in the case of succ and which, by the way,

can be shared by other functions, e.g. sq n def
= n2.

In programming terminology one says that succ and sq have the
same “type”. Types play a prominent rôle in functional programming
(as they do in other programming paradigms). Informally, they pro-
vide the “glue”, or interfacing material, for putting functions together
to obtain more complex functions. Formally, a “type checking” disci-
pline can be expressed in terms of compositional rules which check for
functional expression wellformedness.

It has become standard to use arrows to denote function signatures
or function types, recall (2.1). To denote the fact that function f accepts
arguments of type A and produces results of type B, we will use the fol-

lowing interchangeable notations: f : A→ B, f : B← A, B A
foo
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or A
f // B . This corresponds to writing f :: a → b in the HASKELL

functional programming language, where type variables are denoted
by lowercase letters. A will be referred to as the domain of f and B
will be referred to as the codomain of f . Both A and B are symbols or
expressions which denote sets of values, most often called types.

2.2 F U N C T I O N A L A P P L I C AT I O N

What do we want functions for? If we ask this question to a physician
or engineer the answer is very likely to be: one wants functions for
modelling and reasoning about the behaviour of real things.

For instance, function distance t = 60× t could be written by a school
physics student to model the distance (in, say, kilometers) a car will
drive (per hour) at average speed 60km/hour. When questioned about
how far the car has gone in 2.5 hours, such a model provides an imme-
diate answer: just evaluate distance 2.5 to obtain 150km.

So we get a naı̈ve purpose of functions: we want them to be ap-
plied to arguments in order to obtain results. Functional application is

denoted by juxtaposition, e.g. f a for B A
foo and a ∈ A, and asso-

ciates to the left: f x y denotes ( f x) y rather than f (x y).

2.3 F U N C T I O N A L E Q U A L I T Y A N D C O M P O S I T I O N

Application is not everything we want to do with functions. Very soon
our physics student will be able to talk about properties of the distance
model, for instance that (linear) property

distance (2× t) = 2× (distance t) (2.2)

holds. Later on, we could learn from her or him that the same property
can be restated as distance (twice t) = twice (distance t), by introducing

function twice x def
= 2× x. Or even simply as

distance · twice = twice · distance (2.3)

where “·” denotes function-arrow chaining, as suggested by drawing

R
distance ��

R
twiceoo

distance��
R R

twice
oo

(2.4)

where both space and time are modelled by real numbers in R.
This trivial example illustrates some relevant facets of the functional

programming paradigm. Which version of the property presented
above is “better”? the version explicitly mentioning variable t and re-
quiring parentheses (2.2)? the version hiding variable t but resorting
to function twice (2.3)? or even diagram (2.4) alone?
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Expression (2.3) is clearly more compact than (2.2). The trend for
notation economy and compactness is well-known throughout the his-
tory of mathematics. In the 16th century, for instance, algebrists would
write 12.cu.p̃.18.ce.p̃.27.co.p̃.17 for what is nowadays written as 12x3 +

18x2 + 27x + 17. We may find such syncopated notation odd, but we
should not forget that at its time it was replacing even more obscure
and lengthy expression denotations.

Why do people look for compact notations? A compact notation
leads to shorter documents (less lines of code in programming) in
which patterns are easier to identify and to reason about. Properties
can be stated in clear-cut, one-line long equations which are easy to
memorize. And diagrams such as (2.4) can be easily drawn which
enable us to visualize maths in a graphical format.

Some people will argue that such a compact “pointfree” notation
(that is, the notation that hides variables, or function “definition points”)
is too cryptic to be useful as a practical programming medium. In fact,
pointfree programming languages such as Iverson’s APL or Backus’
FP have been more respected than loved by the programmers commu-
nity. Virtually all commercial programming languages require vari-
ables and so implement the more traditional “pointwise” notation.

Throughout this monograph we will adopt both, depending upon
the context. Our chosen programming medium — HASKELL — blends
the pointwise and pointfree programming styles in a quite successful
way. In order to switch from one to the other, we need two “bridges”:
one lifting equality to the functional level and the other lifting function
application.

Concerning equality, note that the “=” sign in (2.2) differs from that
in (2.3): while the former states that two real numbers are the same
number, the latter states that two R←R functions are the same func-
tion. Formally, we will say that two functions f , g : B← A are equal if
they agree at pointwise-level, that is2

f = g iff 〈∀ a : a ∈ A : f a =B g a〉 (2.5)

where =B denotes equality at B-level. Rule (2.5) is known as exten-
sional equality.

Concerning application, the pointfree style replaces it by the more
generic concept of functional composition suggested by function-arrow
chaining: wherever two functions are such that the target type of one

of them, say B A
goo is the same as the source type of the other, say

C B
foo , then another function can be defined, C A

f ·goo , called
the composition of f and g, or “ f after g”, which “glues” f and g to-
gether:

( f · g) a = f (g a) (2.6)

2 Quantified notation 〈∀ x : P : Q〉 means: “for all x in the range P, Q holds”, where
P and Q are logical expressions involving x. (See appendix A for more details.) This
notation will be used sporadically in the first part of this monograph.



2.3 F U N C T I O N A L E Q U A L I T Y A N D C O M P O S I T I O N 21

This situation is pictured by the following arrow-diagram

B
f
��

A
goo

f ·g��
C

(2.7)

or by block-diagram

ga
g a

f f (g a)

Therefore, the type-rule associated to functional composition can be
expressed as follows:3

C B
foo

B A
goo

C A
f ·goo

Composition is certainly the most basic of all functional combina-
tors. It is the first kind of “glue” that comes to mind when program-
mers need to combine, or chain functions (or processes) to obtain more
elaborate functions (or processes).4 This is because of one of its most
relevant properties,

( f · g) · h = f · (g · h) (2.8)

depicted by diagram

D
g·h

uu
h��

B
f ��

A
goo

f ·guuC
which shares the pattern of, for instance

(a + b) + c = a + (b + c)

and so is called the associative property of composition. This enables us
to move parentheses around in pointfree expressions involving func-
tional compositions, or even to omit them altogether, for instance by
writing f · g · h · i as an abbreviation of (( f · g) · h) · i, or of ( f · (g · h)) · i,
or of f · ((g · h) · i), etc. For a chain of n-many function compositions
the notation©n

i=1 fi will be acceptable as abbreviation of f1 · · · · · fn.

3 This and other type-rules to come adopt the usual “fractional” layout, reminiscent of
that used in school arithmetics for addition, subtraction, etc.

4 It even has a place in scripting languages such as UNIX’s shell, where f | g is the
shell counterpart of g · f , for appropriate “processes” f and g.
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2.4 I D E N T I T Y F U N C T I O N S

How free are we to fulfill the “give me an A and I will give you a B”
contract of equation (2.1)? In general, the choice of f is not unique.
Some f s will do as little as possible while others will laboriously com-
pute non-trivial outputs. At one of the extremes, we find functions
which “do nothing” for us, that is, the added-value of their output
when compared to their input amounts to very little: f a = a. In this
case B = A, of course, and f is said to be the identity function on A:

idA : A← A

idA a def
= a

(2.9)

Note that every type X “has” its identity idX. Subscripts will be
omitted wherever implicit in the context. For instance, the arrow nota-

tion N N
idoo saves us from writing idN. So, we will often refer to

“the” identity function rather than to “an” identity function.
How useful are identity functions? At first sight, they look fairly un-

interesting. But the interplay between composition and identity, cap-
tured by the following equation,

f · id = id · f = f (2.10)

will be appreciated later on. This property shares the pattern of, for
instance,

a + 0 = 0 + a = a

This is why we say that id is the unit (identity) of composition. Pictured
in a diagram, (2.10) looks like this:

A
f
��

Aidoo

f��
f
��

B B
id
oo

(2.11)

Comparing diagrams (2.4) and (2.11), the latter is interesting in the
sense that it is generic, holding for every f . Diagrams of this kind are
very common and express important (and rather ’natural’) properties
of functions, as we shall see further on.

2.5 C O N S TA N T F U N C T I O N S

Opposite to the identity functions, which do not lose any information,
we find functions which lose all (or almost all) information. Regard-
less of their input, the output of these functions is always the same
value.
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Let C be a nonempty data domain and let and c ∈ C. Then we define
the everywhere c function as follows, for arbitrary A:

c : A→ C

c a def
= c

(2.12)

The following property defines constant functions at pointfree level,

c · f = c (2.13)

and is depicted by a diagram similar to (2.11):

C

id
��

A
coo

c
��

f
��

C Bc
oo

(2.14)

Clearly, c · f = c · g, for any f , g, meaning that any difference that may
exist in behaviour between such functions is lost.

Note that, strictly speaking, symbol c denotes two different func-
tions in diagram (2.14): one, which we should have written cA, accepts
inputs from A while the other, which we should have written cB, ac-
cepts inputs from B:

cB · f = cA (2.15)

This property will be referred to as the constant-fusion property.
As with identity functions, subscripts will be omitted wherever im-

plicit in the context.

Exercise 2.1.Use (2.5) to show that f · h = h · f = f has the unique solution h = id,
cf. (2.10).5

2

Exercise 2.2. The HASKELL Prelude provides for constant functions: you write
const c for c. Check that HASKELL assigns the same type to expressions f · (const c)
and const (f c), for every f and c. What else can you say about these functional ex-
pressions? Justify.6

2

5 This textbook follows the convention that free variables such as f above are always
assumed universally quantified. Thus what is to be shown above is: 〈∀ h, f :: f · h =
h · f = f ⇔ h = id〉.

6 The properties of Haskell’s higher order function const will be dealt with in more
detail later in exercise 6.4.



2.6 M O N I C S A N D E P I C S 24

2.6 M O N I C S A N D E P I C S

Identity functions and constant functions are limit points of the func-
tional spectrum with respect to information preservation. All the other
functions are in between: they lose “some” information, which is re-
garded as uninteresting for some reason. This remark supports the
following aphorism about a facet of functional programming: it is the
art of transforming or losing information in a controlled and precise
way. That is to say, the art of constructing the exact observation of
data which fits in a particular context or requirement.

How do functions lose information? Basically in two different ways:
they may be “blind” enough to confuse different inputs, by mapping
them onto the same output, or they may ignore values of their codomain.
For instance, c confuses all inputs by mapping them all onto c. More-
over, it ignores all values of its codomain apart from c.

Functions which do not confuse inputs are called monics (or injec-

tive functions) and obey the following property: B A
foo is monic if,

for every pair of functions A C
h,koo , if f · h = f · k then h = k, cf.

diagram

B A
foo C

hoo
k

oo

(we say that f is “post-cancellable”). It is easy to check that “the” iden-
tity function is monic, since

id · h = id · k
≡ { id is unit of composition (2.10) }

h = k

which trivializes id · h = id · k⇒ h = k. By contrast, any constant
function c is not monic:

c · h = c · k⇒ h = k

≡ { by (2.15) }

c = c⇒ h = k

≡ { function equality is reflexive }

TRUE⇒ h = k

≡ { predicate logic }

h = k

So the implication does not hold in general (only if h = k).
Functions which do not ignore values of their codomain are called

epics (or surjective functions) and obey the following property: A B
foo
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is epic if, for every pair of functions C A
h,koo , if h · f = k · f then

h = k, cf. diagram

C A
h

oo
koo B

f
oo

(we say that f is “pre-cancellable”). As expected, identity functions
are epic:

h · id = k · id⇒ h = k

≡ { by (2.10) }

h = k⇒ h = k

≡ { predicate logic }
TRUE

Exercise 2.3. Under what circumstances is a constant function epic? Justify.
2

2.7 I S O S

A function B A
foo which is both monic and epic is said to be iso

(an isomorphism, or a bijective function). In this situation, f always

has a converse (or inverse) B
f ◦ // A , which is such that

f · f ◦ = idB ∧ f ◦ · f = idA (2.16)

(i.e. f is invertible).
Isomorphisms are very important functions because they convert

data from one “format”, say A, to another format, say B, without
losing information. So f and and f ◦ are faithful protocols between
the two formats A and B. Of course, these formats contain the same
“amount” of information, although the same data adopts a different
“shape” in each of them. In mathematics, one says that A is isomorphic
to B and one writes A ∼= B to express this fact.

Isomorphic data domains are regarded as “abstractly” the same. Note
that, in general, there is a wide range of isos between two isomorphic
data domains. For instance, let Weekday be the set of weekdays,

Weekday =

{Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}

and let symbol 7 denote the set {1, 2, 3, 4, 5, 6, 7}, which is the initial seg-
ment of N containing exactly seven elements. The following function
f , which associates each weekday with its “ordinal” number,
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f : Weekday→ 7
f Monday = 1
f Tuesday = 2
f Wednesday = 3
f Thursday = 4
f Friday = 5
f Saturday = 6
f Sunday = 7

is iso (guess f ◦). Clearly, f d = i means “d is the i-th day of the week”.

But note that function g d def
= rem( f d, 7) + 1 is also an iso between

Weekday and 7. While f regards Monday the first day of the week, g
places Sunday in that position. Both f and g are witnesses of isomor-
phism

Weekday ∼= 7 (2.17)

Isomorphisms are quite flexible in pointfree reasoning. If, for some
reason, f ◦ is found handier than isomorphism f in the reasoning, then
the shunting rules

f · g = h ≡ g = f ◦ · h (2.18)

g · f = h ≡ g = h · f ◦ (2.19)

can be of help.
Finally, note that all classes of functions referred to so far — con-

stants, identities, epics, monics and isos — are closed under composi-
tion, that is, the composition of two constants is a constant, the com-
position of two epics is epic, etc.

2.8 G L U I N G F U N C T I O N S W H I C H D O N O T C O M P O S E — P R O D -
U C T S

Function composition has been presented above as a basis for gluing
functions together in order to build more complex functions. How-
ever, not every two functions can be glued together by composition.
For instance, functions f : A← C and g : B← C do not compose with
each other because the domain of one of them is not the codomain of
the other. However, both f and g share the same domain C. So, some-
thing we can do about gluing f and g together is to draw a diagram
expressing this fact, something like

A B

C
f

__

g

??

Because f and g share the same domain, their outputs can be paired,
that is, we may write ordered pair ( f c, g c) for each c ∈ C. Such pairs
belong to the Cartesian product of A and B, that is, to the set

A× B def
= {(a, b) | a ∈ A ∧ b ∈ B}
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So we may think of the operation which pairs the outputs of f and g
as a new function combinator 〈 f , g〉 defined as follows:

〈 f , g〉 : C → A× B

〈 f , g〉 c def
= ( f c, g c)

(2.20)

Traditionally, the pairing combinator 〈 f , g〉 is pronounced “ f split g”
(or “pair f and g”) and can be depicted by the following “block”, or
“data flow” diagram:

c

f

g

f c

g c

Function 〈 f , g〉 keeps the information of both f and g in the same way
Cartesian product A× B keeps the information of A and B. So, in the
same way A data or B data can be retrieved from A× B data via the
implicit projections π1 or π2,

A A× B
π1oo π2 // B (2.21)

defined by

π1(a, b) = a and π2(a, b) = b

f and g can be retrieved from 〈 f , g〉 via the same projections:

π1 · 〈 f , g〉 = f and π2 · 〈 f , g〉 = g (2.22)

This fact (or pair of facts) will be referred to as the ×-cancellation prop-
erty and is illustrated in the following diagram which puts everything
together:

A A× B
π1oo π2 // B

C
f

cc

〈 f ,g〉

OO

g

<< (2.23)

In summary, the type-rule associated to the “split” combinator is ex-
pressed by

A C
foo

B C
goo

A× B C
〈 f ,g〉oo
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A split arises wherever two functions do not compose but share the
same domain. What about gluing two functions which fail such a req-
uisite, e.g.

A C
foo

B D
goo

. . .?

The 〈 f , g〉 split combination does not work any more. Nevertheless, a
way to “bridge” the domains of f and g, C and D respectively, is to
regard them as targets of the projections π1 and π2 of C× D:

A A× B
π1oo π2 // B

C

f

OO

C× D
π1oo π2 // D

g

OO

From this diagram 〈 f · π1, g · π2〉 arises

A A× B
π1oo π2 // B

C× D
f ·π1

ii

g·π2

55

〈 f ·π1,g·π2〉

OO

mapping C× D to A× B. It corresponds to the “parallel” application
of f and g which is suggested by the following data-flow diagram:

c

d

f

g

f c

g d

Functional combination 〈 f ·π1, g ·π2〉 appears so often that it deserves
special notation — it will be expressed by f × g. So, by definition, we
have

f × g def
= 〈 f · π1, g · π2〉 (2.24)

which is pronounced “product of f and g” and has typing-rule

A C
foo

B D
goo

A× B C× D
f×goo

(2.25)

Note the overloading of symbol “×”, which is used to denote both
Cartesian product and functional product. This choice of notation will
be fully justified later on.
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What is the interplay among functional combinators f · g (composi-
tion), 〈 f , g〉 (split) and f × g (product) ? Composition and split relate
to each other via the following property, known as ×-fusion:7

A A× B
π1oo π2 // B

C
g

cc

〈g,h〉

OO

h

<<

D

g· f

YY

f

OO h· f

EE 〈g, h〉 · f = 〈g · f , h · f 〉 (2.26)

This shows that split is right-distributive with respect to composition.
Left-distributivity does not hold but there is something we can say
about f · 〈g, h〉 in case f = i× j:

(i× j) · 〈g, h〉
= { by (2.24) }

〈i · π1, j · π2〉 · 〈g, h〉
= { by ×-fusion (2.26) }

〈(i · π1) · 〈g, h〉, (j · π2) · 〈g, h〉〉
= { by (2.8) }

〈i · (π1 · 〈g, h〉), j · (π2 · 〈g, h〉)〉
= { by ×-cancellation (2.22) }

〈i · g, j · h〉

The law we have just derived is known as ×-absorption. (The intuition
behind this terminology is that “split absorbs ×”, as a special kind
of fusion.) It is a consequence of ×-fusion and ×-cancellation and is
depicted as follows:

A A× B
π1oo π2 // B

D

i

OO

D× E
π1oo π2 //

i×j

OO

E

j

OO

C
g

cc

〈g,h〉

OO

h

<<

(i× j) · 〈g, h〉 = 〈i · g, j · h〉 (2.27)

This diagram provides us with two further results about products and
projections which can be easily justified:

i · π1 = π1 · (i× j) (2.28)

j · π2 = π2 · (i× j) (2.29)

Two special properties of f × g are presented next. The first one
expresses a kind of “bi-distribution” of×with respect to composition:

(g · h)× (i · j) = (g× i) · (h× j) (2.30)

7 Note how this law can be regarded as a pointfree rendering of (2.20).
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We will refer to this property as the×-functor property. The other prop-
erty, which we will refer to as the ×-functor-id property, has to do with
identity functions:

idA × idB = idA×B (2.31)

These two properties will be identified as the functorial properties of
product. Once again, this choice of terminology will be explained later
on.

Let us finally analyse the particular situation in which a split is built
involving projections π1 and π2 only. These exhibit interesting proper-
ties, for instance 〈π1, π2〉 = id. This property is known as ×-reflection
and is depicted as follows:8

A A× B
π1oo π2 // B

A× B
π1

bb

idA×B

OO

π2

<< 〈π1, π2〉 = idA×B (2.32)

What about 〈π2, π1〉? This corresponds to a diagram

B B× A
π1oo π2 // A

A× B
π2

bb

〈π2,π1〉

OO

π1

<<

which looks very much the same if submitted to a 180o clockwise rota-
tion (thus A and B swap with each other). This suggests that swap —
the name we adopt for 〈π2, π1〉,

swap
def
= 〈π2, π1〉 (2.33)

— is its own inverse; this is checked easily as follows:

swap · swap

= { (2.33) }

〈π2, π1〉 · swap

= { by ×-fusion (2.26) }

〈π2 · swap, π1 · swap〉
= { definition of swap twice }

〈π2 · 〈π2, π1〉, π1 · 〈π2, π1〉〉
= { by ×-cancellation (2.22) }

〈π1, π2〉
= { by ×-reflection (2.32) }

id

8 For an explanation of the word “reflection” in the name chosen for this law (and for
others to come) see section 2.13 later on.
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Therefore, swap is iso and establishes the following isomorphism

A× B

swap
**∼= B×A

swap

jj (2.34)

which is known as the commutative property of product.
The “product datatype” A × B is essential to information process-

ing and is available in virtually every programming language. In
HASKELL one writes (A, B) to denote A × B, for A and B two pre-
defined datatypes, fst to denote π1 and snd to denote π2. In the C
programming language this datatype is called the “struct datatype”,

struct {
A first;
B second;
};

while in PASCAL it is called the “record datatype”:

record
first : A;
second : B

end

Isomorphism (2.34) can be re-interpreted in this context as a guaran-
tee that one does not lose (or gain) anything in swapping fields in record
datatypes. C or PASCAL programmers know also that record-field nest-
ing has the same status, that is to say that, for instance, datatype

record
f : A;
s : record

f : B;
s : C;
end

end;

is abstractly the same as

record
f : record

f : A;
s : B
end;

s : C;
end;

In fact, this is another well-known isomorphism, known as the asso-
ciative property of product:

A× (B× C) ∼= (A× B)× C (2.35)
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This is established by A× (B× C) (A× B)× Cassocroo , which is pro-
nounced “associate to the right” and is defined by

assocr
def
= 〈π1 · π1, π2 × id〉 (2.36)

Appendix B lists an extension to the HASKELL Standard Prelude that
makes isomorphisms such as swap and assocr available. In this mod-
ule, the concrete syntax chosen for 〈 f , g〉 is split f g and the one
chosen for f × g is f >< g.

Exercise 2.4. Rely on (2.24) to prove properties (2.30) and (2.31).
2

2.9 G L U I N G F U N C T I O N S W H I C H D O N O T C O M P O S E — C O P R O D -
U C T S

The split functional combinator arose in the previous section as a kind
of glue for combining two functions which do not compose but share
the same domain. The “dual” situation of two non-composable func-
tions f : C← A and g : C← B which however share the same codomain
is depicted in

A

f ��

B

g��
C

It is clear that the kind of glue we need in this case should make it
possible to apply f in case we are on the “A-side” or to apply g in case
we are on the “B-side” of the diagram. Let us write [ f , g] to denote
the new kind of combinator. Its codomain will be C. What about its
domain?

We need to describe the datatype which is “either an A or a B”. Since
A and B are sets, we may think of A∪ B as such a datatype. This works
in case A and B are disjoint sets, but wherever the intersection A ∩ B
is non-empty it is undecidable whether a value x ∈ A ∩ B is an “A-
value” or a “B-value”. In the limit, if A = B then A ∪ B = A = B, that
is to say, we have not invented a new datatype at all. These difficulties
can be circumvented by resorting to disjoint union,

A + B def
= { i1 a | a ∈ A} ∪ { i2 b | b ∈ B}

assuming the “tagging” functions

i1 a = (t1, a) , i2 b = (t2, b) (2.37)



2.9 G L U I N G F U N C T I O N S W H I C H D O N O T C O M P O S E — C O P R O D U C T S 33

with types9 A
i1 // A + B B

i2oo . Knowing the exact values of tags
t1 and t2 is not essential to understanding the concept of a disjoint
union. It suffices to know that i1 and i2 tag differently (t1 6= t2) and
consistently.

The values of A + B can be thought of as “copies” of A or B values
which are “stamped” with different tags in order to guarantee that
values which are simultaneously in A and B do not get mixed up. For
instance, the following realizations of A + B in the C programming
language,

struct {
int tag; /∗1, 2 ∗/
union {

A ifA;
B ifB;
} data;
};

or in PASCAL,

record
case tag : integer
of x =

1 : (P : A);
2 : (S : B)

end;

adopt integer tags. In the HASKELL Standard Prelude, the A+ B datatype
is realized by

data Either a b = Left a | Right b

So, Left and Right can be thought of as the injections i1 and i2 in this
realization.

At this level of abstraction, disjoint union A + B is called the coprod-
uct of A and B, on top of which we define the new combinator [ f , g]
(pronounced “either f or g”) as follows:

[ f , g] : A + B // C

[ f , g] x def
=

{
x = i1 a ⇒ f a
x = i2 b ⇒ g b

(2.38)

As we did for products, we can express all this in a diagram:

A
i1 //

f ##

A + B

[ f ,g]
��

B
i2oo

g
||

C

(2.39)

9 The tagging functions i1 and i2 are usually referred to as the injections of the disjoint
union.
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It is interesting to note how similar this diagram is to the one drawn
for products — one just has to reverse the arrows, replace projections
by injections and the split arrow by the either one. This expresses the
fact that product and coproduct are dual mathematical constructs (com-
pare with sine and cosine in trigonometry). This duality is of great con-
ceptual economy because everything we can say about product A× B
can be rephrased to coproduct A + B. For instance, we may introduce
the sum of two functions f + g as the notion dual to product f × g:

f + g def
= [i1 · f , i2 · g] (2.40)

The following list of +-laws provides eloquent evidence of this dual-
ity:

+-cancellation :

A
i1 //

g
##

A + B

[g ,h]
��

B
i2oo

h||
C

[g , h] · i1 = g , [g , h] · i2 = h (2.41)

+-reflection :

A
i1 //

i1 ""

A + B

idA+B
��

B
i2oo

i2||
A + B

[i1 , i2] = idA+B (2.42)

+-fusion :

A
i1 //

g
##

f ·g

��

A + B

[g ,h]
��

B
i2oo

h||
f ·h

��

C

f
��

D

f · [g , h] = [ f · g , f · h] (2.43)

+-absorption :

A
i1 //

i
��

A + B

i+j
��

B
i2oo

j
��

D
i1 //

g
##

D + E

[g ,h]
��

E
i2
oo

h||
C

[g , h] · (i + j) = [g · i , h · j] (2.44)

+-functor :

(g · h) + (i · j) = (g + i) · (h + j) (2.45)
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+-functor-id :

idA + idB = idA+B (2.46)

In summary, the typing-rules of the either and sum combinators are as
follows:

C A
foo

C B
goo

C A + B
[ f ,g]oo

C A
foo

D B
goo

C + D A + B
f+goo

(2.47)

Exercise 2.5. By analogy (duality) with swap, show that [i2 , i1] is its own inverse
and so that fact

A + B ∼= B + A (2.48)

holds.
2

Exercise 2.6. Dualize (2.36), that is, write the iso which witnesses fact

A + (B + C) ∼= (A + B) + C (2.49)

from right to left. Use the either syntax available from the HASKELL Standard
Prelude to encode this iso in HASKELL.
2

2.10 M I X I N G P R O D U C T S A N D C O P R O D U C T S

Datatype constructions A× B and A + B have been introduced above
as devices required for expressing the codomain of splits (A × B) or
the domain of eithers (A + B). Therefore, a function mapping values
of a coproduct (say A + B) to values of a product (say A′ × B′) can
be expressed alternatively as an either or as a split. In the first case,
both components of the either combinator are splits. In the latter, both
components of the split combinator are eithers.

This exchange of format in defining such functions is known as the
exchange law. It states the functional equality which follows:

[〈 f , g〉 , 〈h, k〉] = 〈[ f , h], [g , k]〉 (2.50)
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It can be checked by type-inference that both the left-hand side and the
right-hand side expressions of this equality have type B× D← A + C,

for B A
foo , D A

goo , B Choo and D Ckoo , cf. diagram:

A
i1 //

f
�� h

))

A + C C
g

uu

k
��

i2oo

B B× D
π1

oo
π2

// D

An example of a function which is in the exchange-law format is
isomorphism

A× (B + C) (A× B) + (A× C)undistroo (2.51)

(pronounce undistr as “un-distribute-right”) which is defined by

undistr
def
= [id× i1 , id× i2] (2.52)

and witnesses the fact that product distributes through coproduct:

A× (B + C) ∼= (A× B) + (A× C) (2.53)

In this context, suppose that we know of three functions D A
foo ,

E B
goo and F Choo . By (2.47) we infer E + F B + C

g+hoo . Then,
by (2.25) we infer

D× (E + F) A× (B + C)
f×(g+h)oo (2.54)

So, it makes sense to combine products and sums of functions and the
expressions which denote such combinations have the same “shape”
(or symbolic pattern) as the expressions which denote their domain
and range — the . . . × (· · · + · · · ) “shape” in this example. In fact,
if we abstract such a pattern via some symbol, say F — that is, if we
define

F(α, β, γ)
def
= α× (β + γ)

— then we can write F(D, E, F) F(A, B, C)
F( f ,g,h)oo for (2.54).

This kind of abstraction works for every combination of products
and coproducts. For instance, if we now abstract the right-hand side
of (2.51) via pattern

G(α, β, γ)
def
= (α× β) + (α× γ)

we have G( f , g, h) = ( f × g)+ ( f × h), a function which maps G(A, B, C) =
(A× B) + (A× C) onto G(D, E, F) = (D× E) + (D× F). All this can
be put in a diagram

F(A, B, C)

F( f ,g,h)
��

G(A, B, C)undistroo

G( f ,g,h)
��

F(D, E, F) G(D, E, F)
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which unfolds to

A× (B + C)

f×(g+h)
��

(A× B) + (A× C)undistroo

( f×g)+( f×h)
��

D× (E + F) (D× E) + (D× F)

(2.55)

once the F and G patterns are instantiated. An interesting topic which
stems from (completing) this diagram will be discussed in the next
section.

Exercise 2.7. Apply the exchange law to undistr.
2

Exercise 2.8. Complete the “?”s in diagram

?
[x ,y]

��
id+id× f
��

? ?
[k ,g]
oo

and then solve the implicit equation for x and y.
2

Exercise 2.9. Repeat exercise 2.8 with respect to diagram

?
h+〈i,j〉 //

x+y
��

?

id+id× f
��
?

2

Exercise 2.10. Show that 〈[ f , h] · (π1 + π1), [g , k] · (π2 + π2)〉 reduces to [ f ×
g , h× k].
2

2.11 E L E M E N TA R Y D ATAT Y P E S

So far we have talked mostly about arbitrary datatypes represented
by capital letters A, B, etc. (lowercase a, b, etc. in the HASKELL il-
lustrations). We also mentioned R, B and N and, in particular, the
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fact that we can associate to each natural number n its initial segment
n = {1, 2, . . . , n}. We extend this to N0 by stating 0 = {} and, for
n > 0, n + 1 = {n + 1} ∪ n.

Initial segments can be identified with enumerated types and are
regarded as primitive datatypes in our notation. We adopt the con-
vention that primitive datatypes are written in the sans serif font and
so, strictly speaking, n is distinct from n: the latter denotes a natural
number while the former denotes a datatype.

Datatype 0

Among such enumerated types, 0 is the smallest because it is empty.
This is the Void datatype in HASKELL, which has no constructor at all.
Datatype 0 (which we tend to write simply as 0) may not seem very
“useful” in practice but it is of theoretical interest. For instance, it is
easy to check that the following “obvious” properties hold,

A + 0 ∼= A (2.56)

A× 0 ∼= 0 (2.57)

where the second is actually an equality: A× 0 = 0.

Datatype 1

Next in the sequence of initial segments we find 1, which is singleton
set {1}. How useful is this datatype? Note that every datatype A
containing exactly one element is isomorphic to {1}, e.g. A = {NIL},
A = {0}, A = {1}, A = {FALSE}, etc.. We represent this class of
singleton types by 1.

Recall that isomorphic datatypes have the same expressive power
and so are “abstractly identical”. So, the actual choice of inhabitant for
datatype 1 is irrelevant, and we can replace any particular singleton
set by another without losing information. This is evident from the
following, observing isomorphism,

A× 1 ∼= A (2.58)

which can be read informally as follows: if the second component of a
record (“struct”) cannot change, then it is useless and can be ignored.
Selector π1 is, in this context, an iso mapping the left-hand side of
(2.58) to its right-hand side. Its inverse is 〈id, c〉 where c is a particular
choice of inhabitant for datatype 1.

In summary, when referring to datatype 1 we will mean an arbitrary
singleton type, and there is a unique iso (and its inverse) between two
such singleton types. The HASKELL representative of 1 is datatype
(), called the unit type, which contains exactly constructor (). It may
seem confusing to denote the type and its unique inhabitant by the
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same symbol but it is not, since HASKELL keeps track of types and
constructors in separate symbol sets.

Note that any function of type A → 1 is bound to be a constant
function. This function, usually called the “bang”, or ”sink” function,
is denoted by an exclamation mark:

A ! // 1 (2.59)

Clearly, it is the unique function of its type. (Can you write a different
one, of the same type?)

Finally, what can we say about 1+ A? Every function B 1 + A
foo

observing this type is bound to be an either [b0 , g] for b0 ∈ B and

B A
goo . This is very similar to the handling of a pointer in C or

PASCAL: we “pull a rope” and either we get nothing (1) or we get
something useful of type B. In such a programming context “nothing”
above means a predefined value NIL. This analogy supports our pref-
erence in the sequel for NIL as canonical inhabitant of datatype 1. In
fact, we will refer to 1 + A (or A + 1) as the “pointer to A” datatype.
This corresponds to the Maybe type constructor of the HASKELL Stan-
dard Prelude.

Datatype 2

Let us inspect the 1+ 1 instance of the “pointer” construction just men-

tioned above. Any observation B 1 + 1
foo can be decomposed in

two constant functions: f = [b1 , b2]. Now suppose that B = {b1, b2}
(for b1 6= b2). Then 1 + 1 ∼= B will hold, for whatever choice of inhabi-
tants b1 and b2. So we are in a situation similar to 1: we will use symbol
2 to represent the abstract class of all such Bs containing exactly two
elements. Therefore, we can write:

1 + 1 ∼= 2

Of course, B = {TRUE, FALSE} and initial segment 2 = {1, 2} are in
this abstract class. In the sequel we will show some preference for the
particular choice of inhabitants b1 = TRUE and b2 = FALSE, which
enables us to use symbol 2 in places where Bool is expected. Clearly,

2× A ∼= A + A (2.60)

Exercise 2.11. Derive the isomorphism

(B + C)×A (B× A) + (C× A)
undistloo (2.61)

from undistr (2.51) and other isomorphisms studied thus far.
2
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Exercise 2.12.Use the exchange law to infer undistl = 〈π1 + π1, [π2 , π2]〉 from the
outcome of exercise 2.11.
2

Exercise 2.13. Furthermore, show that (2.60) follows from (2.61) and, on the practi-
cal side, relate HASKELL expression

either (split (const True) id) (split (const False) id)

to the same isomorphism (2.60).
2

2.12 N AT U R A L P R O P E R T I E S

Let us resume discussion about undistr and the two other functions in
diagram (2.55). What about using undistr itself to close this diagram,
at the bottom? Note that definition (2.52) works for D, E and F in the
same way it does for A, B and C. (Indeed, the particular choice of
symbols A, B and C in (2.51) was rather arbitrary.) Therefore, we get:

A× (B + C)

f×(g+h)
��

(A× B) + (A× C)undistroo

( f×g)+( f×h)
��

D× (E + F) (D× E) + (D× F)
undistr
oo

which expresses a very important property of undistr:

( f × (g + h)) · undistr = undistr · (( f × g) + ( f × h)) (2.62)

This is called the natural property of undistr. This kind of property
(often called “free” instead of “natural”) is not a privilege of undistr. As
a matter of fact, every function interfacing patterns like F or G above
will exhibit its own natural property. Furthermore, we have already
quoted natural properties without mentioning it. Recall (2.10), for in-
stance. This property (establishing id as the unit of composition) is,
after all, the natural property of id. In this case we have F α = G α = α,
as can be easily observed in diagram (2.11).

In general, natural properties are described by diagrams in which
two “copies” of the operator of interest are drawn as horizontal ar-
rows:

A
f
��

F A
F f
��

G A
φoo

G f
��

B F B G B
φ

oo

(F f ) · φ = φ · (G f ) (2.63)
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Note that f is universally quantified, that is to say, the natural property
holds for every f : B← A.

Diagram (2.63) corresponds to unary patterns F and G. As we have
seen with undistr, other functions (g,h etc.) come into play for multiary
patterns. A very important rôle will be assigned throughout this
monograph to these F, G, etc. “shapes” or patterns which are shared by
pointfree functional expressions and by their domain and codomain
expressions. From chapter 3 onwards we will refer to them by their
proper name — “functor” — which is standard in mathematics and
computer science. Then we will also explain the names assigned to
properties such as, for instance, (2.30) or (2.45).

Exercise 2.14. Show that (2.28) and (2.29) are natural properties. Dualize these
properties. Hint: recall diagram (2.44).
2

Exercise 2.15. Establish the natural properties of the swap (2.34) and assocr (2.36)
isomorphisms.
2

Exercise 2.16.Draw the natural property of function φ = swap · (id× swap) as a
diagram, that is, identify F and G in (2.63) for this case.

Do the same for φ = coswap · (swap + swap) where coswap = [i2 , i1].
2

2.13 U N I V E R S A L P R O P E R T I E S

Functional constructs 〈 f , g〉 and [ f , g] — and their derivatives f × g
and f + g — provide good illustration about what is meant by a pro-
gram combinator in a compositional approach to programming: the
combinator is put forward equipped with a concise set of properties
which enable programmers to transform programs, reason about them
and perform useful calculations. This leads to a scientific programming
methodology.

Such properties bear standard names such as cancellation, reflection,
fusion, absorption etc.. Where do these names come from? As a rule, for
each combinator to be defined one has to define suitable constructions
at “interface”-level 10, e.g. A× B and A + B. These are not chosen or
invented at random: each is defined in a way such that the associated

10 In the current context, programs “are” functions and program-interfaces “are” the
datatypes involved in functional signatures.
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combinator is uniquely defined. This is assured by a so-called univer-
sal property from which the others can be derived.

Take product A× B, for instance. Its universal property states that,

for each pair of arrows A C
foo and B C

goo , there exists an ar-

row A× B C
〈 f ,g〉oo such that

k = 〈 f , g〉 ⇔
{

π1 · k = f
π2 · k = g

(2.64)

holds — recall diagram (2.23) — for all A× B Ckoo .
Note that (2.64) is an equivalence, implicitly stating that 〈 f , g〉 is the

unique arrow satisfying the property on the right. In fact, read (2.64)
in the ⇒ direction and let k be 〈 f , g〉. Then π1 · 〈 f , g〉 = f and π2 ·
〈 f , g〉 = g will hold, meaning that 〈 f , g〉 effectively obeys the property
on the right. In other words, we have derived ×-cancellation (2.22).
Reading (2.64) in the⇐ direction we understand that, if some k satis-
fies such properties, then it “has to be” the same arrow as 〈 f , g〉.

The relevance of universal property (2.64) is that it offers a way of
solving equations of the form k = 〈f , g〉. Take for instance the follow-
ing exercise: can the identity be expressed, or “reflected”, using this
combinator? We just solve the equation id = 〈f , g〉 for f and g:

id = 〈f , g〉
≡ { universal property (2.64) }{

π1 · id = f
π2 · id = g

≡ { by (2.10) }{
π1 = f
π2 = g

The equation has the unique solution f = π1 and g = π2 which, once
substituted in the equation itself, yield

id = 〈π1, π2〉

i.e., nothing but the ×-reflection law (2.32).
All other laws can be calculated from the universal property in a

similar way. For instance, the ×-fusion (2.26) law is obtained by solv-
ing the equation k = 〈f , g〉 again for f and g, but this time fixing
k = 〈i, j〉 · h, assuming i, j and h given:11

〈i, j〉 · h = 〈 f , g〉

11 Solving equations of this kind is reminiscent of many similar calculations carried out
in school maths and physics courses. The spirit is the same. The difference is that
this time one is not calculating water pump debits, accelerations, velocities, or other
physical entities: the solutions of our equations are (just) functional programs.
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≡ { universal property (2.64) }{
π1 · (〈i, j〉 · h) = f
π2 · (〈i, j〉 · h) = g

≡ { composition is associative (2.8) }{
(π1 · 〈i, j〉) · h = f
(π2 · 〈i, j〉) · h = g

≡ { by ×-cancellation (derived above) }{
i · h = f
j · h = g

Substituting the solutions f = i · h and g = j · h in the equation, we get
the ×-fusion law: 〈i, j〉 · h = 〈i · h, j · h〉.

It will take about the same effort to derive split structural equality

〈i, j〉 = 〈 f , g〉 ⇔
{

i = f
j = g

(2.65)

from universal property (2.64) — just let k = 〈i, j〉 and solve.
Similar arguments can be built around coproduct’s universal prop-

erty,

k = [ f , g] ⇔
{

k · i1 = f
k · i2 = g

(2.66)

from which structural equality of eithers can be inferred,

[i , j] = [ f , g] ⇔
{

i = f
j = g

(2.67)

as well as the other properties we know about this combinator.
As a final check on the calculational power of universal properties,

let us go back to isomorphism (2.34) and, instead of guessing that swap

is its own inverse, solve the equation

〈π2, π1〉 · k = id

for unknown k:

〈π2, π1〉 · k = id

≡ { ×-fusion (2.26) }

〈π2 · k, π1 · k〉 = id

≡ { ×-universal (2.64) }{
π2 · k = π1

π1 · k = π2

≡ { trivial }{
π1 · k = π2

π2 · k = π1
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≡ { ×-universal (2.64) }

k = 〈π2, π1〉

The unique solution to the equation indeed is k = swap (2.33), as ex-
pected.

Exercise 2.17. Show that assocr (2.36) is iso by solving the equation assocr ·
assocl = id for assocl. Hint: do not ignore the role of universal property (2.64)
in the calculation.
2

Exercise 2.18. Prove the equality: [〈f , k〉 , 〈g, k〉] = 〈[f , g], k〉
2

Exercise 2.19. Derive +-cancellation (2.41), +-reflection (2.42) and +-fusion (2.43)
from universal property (2.66). Then derive the exchange law (2.50) from the uni-
versal property of product (2.64) or coproduct (2.66).
2

Exercise 2.20. Function coassocr = [id + i1 , i2 · i2] is a witness of isomorphism
(A + B) + C ∼= A + (B + C), from left to right. Calculate its converse coassocl by
solving the equation

[x , [y , z]]︸ ︷︷ ︸
coassocl

· coassocr = id (2.68)

for x, y and z.
2

Exercise 2.21. Let δ be a function of which you know that π1 · δ = id e π2 · δ = id
hold. Show that necessarily δ satisfies the natural property ( f × f ) · δ = δ · f .
2

Exercise 2.22. Infer the most general type of α = 〈i1, π1〉 and, from it, the natural
property of α.
2
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2.14 G U A R D S A N D M C C A R T H Y ’ S C O N D I T I O N A L

Most functional programming
languages and notations cater for
pointwise conditional expressions
of the form

if p x then g x else h x (2.69)

which evaluates to g x in case p x
holds and to h x otherwise, that is{

p x ⇒ g x
¬(p x) ⇒ h x

given some predicate B A
poo ,

some “then”-function B A
goo

and some “else”-function
B Ahoo .

Can (2.69) be written in the
pointfree style?

p

g h

T F

x

x

x

p x

The drawing above is an attempt to express such a conditional ex-
pression as a “block”-diagram. Firstly, the input x is copied, the left
copy being passed to predicate p yielding the Boolean p x. One can
easily define this part using copy = 〈id, id〉.

The informal part of the diagram is the T-F “switch”: it should chan-
nel x to g in case p x switches the T-output, or channel x to h otherwise.

At first sight, this T-F gate should be of type B× A → A× A. But
the output cannot be A×A, as f or g act in alternation, not in parallel —
it should rather be A+A, in which case the last step is achieved just by
running [g , h]. How does one switch from our starting product-based
model of conditionals to a coproduct-based one?

The key observation is that the type B× A marked by the dashed
line in the block-diagram is isomorphic to A + A, recall (2.60). That
is, the information captured by the pair (p x, x) ∈ B× A can be con-
verted into a unique y ∈ A + A without loss of information. Let us
define a new combinator for this, denoted p?:

(p?)a =

{
p a ⇒ i1 a

¬(p a) ⇒ i2 a
(2.70)

We call A + A A
p?oo a guard, or better, the guard associated to a

given predicate B A
poo . In a sense, guard p? is more “informative”

than p alone: it provides information about the outcome of testing p
on some input a, encoded in terms of the coproduct injections (i1 for
a true outcome and i2 for a false outcome, respectively) without losing
the input a itself.
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Finally, the composition [g , h] · p?, depicted in the following diagram

A

p?
��

A

g
##

i1 // A + A

[g , h]
��

A

h{{

i2oo

B

has (2.69) as pointwise meaning. It is a well-known functional com-
binator termed “McCarthy conditional”12 and usually denoted by the
expression p→ g, h. Altogether, we have the definition

p→ g, h def
= [g , h] · p? (2.71)

which suggests that, to reason about conditionals, one may seek help
in the algebra of coproducts. Indeed, the following fact,

f · (p→ g, h) = p→ f · g, f · h (2.72)

which we shall refer to as the first McCarthy’s conditional fusion law13, is
nothing but an immediate consequence of +-fusion (2.43).

We shall introduce and define instances of predicate p as long as
they are needed. A particularly important assumption of our notation
should, however, be mentioned at this point: we assume that, for ev-

ery datatype A, the equality predicate B A× A
=Aoo is defined in a

way which guarantees three basic properties: reflexivity (a =A a for
every a), transitivity (a =A b and b =A c implies a =A c) and symme-
try (a =A b iff b =A a). Subscript A in =A will be dropped wherever
implicit in the context.

In HASKELL programming, the equality predicate for a type becomes
available by declaring the type as an instance of class Eq, which ex-
ports equality predicate (==). This does not, however, guarantee
the reflexive, transitive and symmetry properties, which need to be
proved by dedicated mathematical arguments.

We close this section with an illustration of how smart pointfree al-
gebra can be in reasoning about functions that one does not actually
define explicitly. It also shows how relevant the natural properties stud-
ied in section 2.12 are. The issue is that our definition of a guard (2.70)
is pointwise and most likely unsuitable to prove facts such as, for in-
stance,

p? · f = ( f + f ) · (p · f )? (2.73)

Thinking better, instead of “inventing” (2.70), we might (and perhaps
should!) have defined

A
〈p,id〉 //

p?

442×A α // A + A (2.74)

12 After John McCarthy, the computer scientist who first defined it.
13 For the second one go to exercise 2.24.
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which actually expresses rather closely our strategy of switching from
products to coproducts in the definition of (p?). Isomorphism α (2.60)
is the subject of exercise 2.13. Do we need to define it explicitly? Per-
haps not: from its type, 2 × A → A + A, we immediately infer its
natural (or “free”) property:

α · (id× f ) = (f + f ) · α (2.75)

It turns out that this is the knowledge we need about α in order to prove
(2.73), as the following calculation shows:

p ? ·f
= { (2.74) ; 〈p, id〉 · f = 〈p · f , f 〉 }

α · 〈p · f , f 〉
= { ×-absorption (2.27) }

α · (id× f ) · 〈p · f , id〉
= { free theorem of α (2.75) }

(f + f ) · α · 〈p · f , id〉
= { (2.74) again }

(f + f ) · (p · f )?
2

Other examples of this kind of reasoning, based on natural (free) prop-
erties of isomorphisms — and often on “shunting” them around using
laws (2.18,2.19) — will be given later in this monograph.

The less one has to write to solve a problem, the better. One saves
time and one’s brain, adding to productivity. This is often called ele-
gance when applying a scientific method. (Unfortunately, be prepared
for much lack of it in the software engineering field!)

Exercise 2.23. Prove that the following equality between two conditional expressions

k (if p x then f x else h x, if p x then g x else i x)

= if p x then k (λap f x, λap g x) else k (h x, i x)

holds by rewriting it in the pointfree style (using the McCarthy’s conditional combi-
nator) and applying the exchange law (2.50), among others.
2

Exercise 2.24. Prove the first McCarthy’s conditional fusion law (2.72). Then,
from (2.71) and property (2.73), infer the second such law:

(p→ f , g) · h = (p · h)→ ( f · h), (g · h) (2.76)

2



2.15 G L U I N G F U N C T I O N S W H I C H D O N O T C O M P O S E — E X P O N E N T I A L S 48

Exercise 2.25. Prove that property

〈 f , (p→ q , h)〉 = p→ 〈 f , q〉 , 〈 f , h〉 (2.77)

and its corollary

(p→ g , h)× f = p · π1 → g× f , h× f (2.78)

hold, assuming the basic fact:

p→ f , f = f (2.79)

2

Exercise 2.26. Define p (x, y) = x > y and the maximum of two integers, m (x, y),
by:

m = p→ π1 , π2

Then show that

succ ·m = m · (succ× succ)

holds, by using the McCarthy conditional fusion-laws and basic arithmetics.
2

2.15 G L U I N G F U N C T I O N S W H I C H D O N O T C O M P O S E — E X P O -
N E N T I A L S

Now that we have made the distinction between the pointfree and
pointwise functional notations reasonably clear, it is instructive to re-
visit section 2.2 and identify functional application as the “bridge” be-
tween the pointfree and pointwise worlds. However, we should say
“a bridge” rather than “the bridge”, for in this section we enrich such
an interface with another “bridge” which is very relevant to program-
ming.

Suppose we are given the task to combine two functions, one binary

B C× A
foo and the other unary: D A

goo . It is clear that none
of the combinations f · g, 〈 f , g〉 or [ f , g] is well-typed. So, f and g
cannot be put together directly — they require some extra interfacing.

Note that 〈 f , g〉 would be well-defined in case the C component of
f ’s domain could be somehow “ignored”. Suppose that, in some par-
ticular context, the first argument of f happens to be “irrelevant”, in
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the sense that it can be frozen to some particular c0 ∈ C. It is easy to
derive from f a new function

fc0 : A→ B

fc0 a def
= f (c0, a) (2.80)

that combines nicely with g via the split combinator: 〈fc0 , g〉 is well-
defined and bears type A→ B×D. For instance, suppose that C =

A and f is the equality predicate = on A. Then A
=c0 // Bool is the

“equal to c0” predicate on A values:

(=c0) a def
= a = c0 (2.81)

As another example, recall function twice (2.3) which could be defined
as ×2 using the new notation.

Let us now look at notation fc0 more carefully. Similar to functional
application, notation fc0 interfaces the pointfree and the pointwise lev-
els — it involves a function ( f ) and a particular value (c0). Moreover,

for any other c ∈ C, function C× A
f // B , will lead to another

function fc : A → B. That is to say, f generates a family of functions of
type A → B, one per each first argument c. Such a family is of type
C → (A → B). Put in other words, such a family is a function that
outputs functions!

Functions of this kind are called higher-order functions. Anticipating
that there will be higher-order functions that will not only output but
also input functions, there is a piece of notation that will prove useful:

BA def
= {g | g : B← A} (2.82)

There are strong reasons to adopt this BA exponential notation to the
detriment of the more obvious B ← A or A → B alternatives, as we
shall see shortly.

The BA exponential datatype is therefore inhabited by functions
from A to B, that is to say, functional declaration g : B← A means
the same as g ∈ BA. And what do we want functions for? We want to
apply them. So it is natural to introduce the apply operator

ap : B BA × A
apoo

ap( f , a) def
= f a

(2.83)

that applies a function f to an argument a.

Back to our generic binary function B C× A
foo , let us now focus

on the operation that, for every c ∈ C, produces fc ∈ BA. This can
be regarded as a function of signature BA← C that expresses f as a
C-indexed family of functions of signature B← A, as already hinted
above. We will denote such higher-order function by f (read f as “ f
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transposed”). Intuitively, we want f and f to be related to each other
by the following property:

f (c, a) = (f c) a (2.84)

Given c and a, both expressions denote the same value. But, in a sense,
f is more tolerant than f : while the latter is binary and requires both
arguments (c, a) to become available before application, the former
is happy to be provided with c first and with a later on, if actually
required by the evaluation process.

Similarly to A× B and A + B, exponential BA involves a universal
property,

k = f ⇔ f = ap · (k× id) (2.85)

from which laws for cancellation, reflection and fusion can be derived:

Exponentials cancellation :

BA BA × A
ap // B

C

f

OO

C× A

f×id

OO

f

;; f = ap · ( f × id) (2.86)

Exponentials reflection :

BA BA × A
ap // B

BA

idBA

OO

BA × A

idBA×idA

OO

ap

<< ap = idBA (2.87)

Exponentials fusion :

BA BA × A
ap // B

C

g

OO

C× A

g×id

OO
g

;;

D

f

OO

D× A

f×id

OO g·( f×id)

DD g · ( f × id) = g · f (2.88)

Note that the cancellation law is nothing but fact (2.84) written in the
pointfree style.

Is there an absorption law for exponentials? The answer is affirma-
tive but first we need to introduce a new functional combinator which
arises as the transpose of f · ap in the following diagram:

DA × A
ap // D

BA × A

f ·ap×id

OO

ap // B

f

OO
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We shall denote this by f A and its type-rule is as follows:

C B
foo

CA BAf A
oo

It can be shown that, once A and C B
foo are fixed, f A is the func-

tion which accepts some input function B A
goo as argument and

produces function f · g as result (see exercise 2.43). So f A is the “com-
pose with f ” functional combinator:

( f A)g def
= f · g (2.89)

That is,

f A = (f ·) (2.90)

Now we are ready to understand the laws which follow:

Exponentials absorption :

DA DA × A
ap // D

BA

f A

OO

BA × A

f A×id

OO

ap // B

f

OO

C

g

OO

C× A

g×id

OO
g

;;

f · g = f A · g (2.91)

Note how, from this, we also get

f A = f · ap (2.92)

Thus (2.91) can also be written

f · g = f · ap · g (2.93)

Exponentials-functor :

(g · h)A = gA · hA (2.94)

Exponentials-functor-id :

idA = id (2.95)
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W H Y T H E E X P O N E N T I A L N O TAT I O N . To conclude this section
we need to explain why we have adopted the apparently esoteric BA

notation for the “function from A to B” data type. This is the op-
portunity to relate what we have seen above with two (higher order)
functions which are very familiar to functional programmers. In the
HASKELL Prelude they are defined thus:

curry :: ((a, b)→ c)→ (a→ b→ c)
curry f a b = f (a, b)

uncurry :: (a→ b→ c)→ (a, b)→ c
uncurry f (a, b) = f a b

In our notation for types, curry maps functions in function space CA×B

to functions in (CB)A; and uncurry maps functions from the latter func-
tion space to the former.

Let us calculate the meaning of curry by removing variables from
its definition:

g︷ ︸︸ ︷
(curry f︸ ︷︷ ︸

f

a) b = f (a, b) (2.96)

≡ { introduce g }

g b = f (a, b)

≡ { since g b = ap(g, b) (2.83) }

ap(g, b) = f (a, b)

≡ { g = f a ; id x = x }

ap(f a, id b) = f (a, b)

≡ { product of functions: ( f × g)(x, y) = ( f x, g y) }

ap((f × id)(a, b)) = f (a, b)

≡ { composition }

(ap · (f × id))(a, b) = f (a, b)

≡ { extensionality (2.5), i.e. removing points a and b }

ap · (f × id) = f

From the above we infer that the definition of curry is a re-statement
of the cancellation law (2.86). That is,

curry f def
= f (2.97)

and curry is transposition in HASKELL-speak.14

Below we do the same for the definition of uncurry :

uncurry f︸ ︷︷ ︸
k

(a, b) = (f a) b

14 This terminology widely adopted in other functional languages.



2.15 G L U I N G F U N C T I O N S W H I C H D O N O T C O M P O S E — E X P O N E N T I A L S 53

≡ { introduce k ; (2.83) }

k (a, b) = ap (f a, b)

≡ { product of functions etc. as in the calculation of (2.96) }

k (a, b) = (ap · (f × id)) (a, b)

≡ { extensionality (2.5) }

k = ap · (f × id)

≡ { universal property (2.85) }

f = k

≡ { expand k }

f = (uncurry f )

We conclude that uncurry is the inverse of transposition, that is, of
curry . We shall use the abbreviation f̂ for uncurry f , whereby the above

equality is written f = f̂ . It can also be checked that f = f̂ also holds,

instantiating k above by f̂ :

f̂ = ap · (f × id)

≡ { cancellation (2.86) }

f̂ = f

2

So uncurry — i.e. (̂ ) — and curry — i.e. ( ) — are inverses of each
other,

g = f ⇔ ĝ = f (2.98)

leading to isomorphism

A→ CB ∼= A× B→ C

which can also be written as

(CB)A

uncurry
**∼= CA×B

curry

jj (2.99)

decorated with the corresponding witnesses.15

Isomorphism (2.99) is at the core of the theory and practice of func-
tional programming. It clearly resembles a well known equality con-
cerning numeric exponentials, bc×a = (ba)c. Moreover, other known
facts about numeric exponentials, e.g. ab+c = ab × ac or (b× c)a =

15 Writing f (resp. f̂ ) or curry f (resp. uncurry f ) is a matter of taste: the latter are more
in the tradition of functional programming and help when the functions have to be
named; the former save ink in algebraic expressions and calculations.
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ba × ca also find their counterpart in functional exponentials. The
counterpart of the former,

AB+C ∼= AB × AC (2.100)

arises from the uniqueness of the either combination: every pair of
functions ( f , g) ∈ AB × AC leads to a unique function [ f , g] ∈ AB+C

and vice-versa, every function in AB+C is the either of some function
in AB and of another in AC.

The function exponentials counterpart of the second fact about nu-
meric exponentials above is

(B× C)A ∼= BA × CA (2.101)

This can be justified by a similar argument concerning the uniqueness
of the split combinator 〈 f , g〉.

What about other facts valid for numeric exponentials such as a0 =

1 and 1a = 1? The reader is invited to go back to section 2.11 and
recall what 0 and 1 mean as datatypes: the empty (void) and singleton
datatypes, respectively. Our counterpart to a0 = 1 then is

A0 ∼= 1 (2.102)

where A0 denotes the set of all functions from the empty set to some
A. What does (2.102) mean? It simply tells us that there is only one
function in such a set — the empty function mapping “no” value at
all. This fact confirms our choice of notation once again (compare with
a0 = 1 in a numeric context).

Next, we may wonder about facts

1A ∼= 1 (2.103)

A1 ∼= A (2.104)

which are the functional exponentiation counterparts of 1a = 1 and
a1 = a. Fact (2.103) is valid: it means that there is only one function
mapping A to some singleton set {c}— the constant function c. There
is no room for another function in 1A because only c is available as
output value. Our standard denotation for such a unique function is
given by (2.59).

Fact (2.104) is also valid: all functions in A1 are (single valued) con-
stant functions and there are as many constant functions in such a set
as there are elements in A. These functions are often called (abstract)
“points” because of the 1-to-1 mapping between A1 and the elements
(points) in A.

Exercise 2.27. Prove the equality f · (g× h) = ap · (id× h) · f · g using the laws of
explonentials and products.
2
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Exercise 2.28. Relate the isomorphism involving generic elementary type 2

A× A ∼= A2 (2.105)

to the expression λf → (f TRUE, f FALSE) written in HASKELL syntax.
2

Exercise 2.29. Consider the witnesses of isomorphism (2.101)

(B× C)A

unpair
++

∼= BA × CA

pair

kk

defined by:

pair (f , g) = 〈f , g〉
unpair k = (π1 · k, π2 · k)

Show that pair · unpair = id and unpair · pair = id hold.
2

Exercise 2.30. Show that the following equality

f a = f · 〈a, id〉 (2.106)

holds.
2

Exercise 2.31. Prove the equality g = g · π2 knowing that

π2 = id (2.107)

holds.
2

2.16 F I N I TA RY P R O D U C T S A N D C O P R O D U C T S

In section 2.8 it was suggested that product could be regarded as the
abstraction behind data-structuring primitives such as struct in C or
record in PASCAL. Similarly, coproducts were suggested in section
2.9 as abstract counterparts of C unions or PASCAL variant records.
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For a finite A, exponential BA could be realized as an array in any of
these languages. These analogies are captured in table 1.

In the same way C structs and unions may contain finitely many
entries, as may PASCAL (variant) records, product A × B extends to
finitary product A1 × . . .× An, for n ∈ N, also denoted by Πn

i=1Ai, to
which as many projections πi are associated as the number n of factors
involved. Of course, splits become n-ary as well

〈 f1, . . . , fn〉 : A1 × . . .× An← B

for fi : Ai← B, i = 1, n.
Dually, coproduct A + B is extensible to the finitary sum A1 + · · ·+

An, for n ∈ N, also denoted by ∑n
j=1 Aj, to which as many injections

ij are assigned as the number n of terms involved. Similarly, eithers
become n-ary

[ f1, . . . , fn ] : A1 + . . . + An → B

for fi : B← Ai, i = 1, n.

Datatype n

Next after 2, we may think of 3 as representing the abstract class of
all datatypes containing exactly three elements. Generalizing, we may
think of n as representing the abstract class of all datatypes containing
exactly n elements. Of course, initial segment n will be in this abstract
class. (Recall (2.17), for instance: both Weekday and 7 are abstractly
represented by 7.) Therefore,

n ∼= 1 + · · ·+ 1︸ ︷︷ ︸
n

and

A× . . .× A︸ ︷︷ ︸
n

∼= An (2.108)

A + . . . + A︸ ︷︷ ︸
n

∼= n× A (2.109)

hold.

Exercise 2.32. On the basis of table 1, encode undistr (2.52) in C or PASCAL. Com-
pare your code with the HASKELL pointfree and pointwise equivalents.
2

2.17 I N I T I A L A N D T E R M I N A L D ATAT Y P E S

All properties studied for binary splits and binary eithers extend to the
finitary case. For the particular situation n = 1, we will have 〈 f 〉 =
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Abstract notation PASCAL C/C++ Description

A× B

record
P: A;
S: B

end;

struct {
A first;
B second;

};

Records

A + B

record
case
tag: integer

of x =
1: (P:A);
2: (S:B)

end;

struct {
int tag; /* 1,2 */
union {

A ifA;
B ifB;

} data;
};

Variant records

BA array[A] of B B ...[A] Arrays
1 + A ˆA A *... Pointers

Table 1.: Abstract notation versus programming language data-
structures.

[ f ] = f and π1 = i1 = id, of course. For the particular situation
n = 0, finitary products “degenerate” to 1 and finitary coproducts
“degenerate” to 0. So diagrams (2.23) and (2.39) are reduced to

1 0

[ ]
��

C

〈〉
OO

C

The standard notation for the empty split 〈〉 is !C, where subscript C
can be omitted if implicit in the context. By the way, this is precisely
the only function in 1C, recall (2.103) and (2.59). Dually, the standard
notation for the empty either [ ] is ?C, where subscript C can also be
omitted. By the way, this is precisely the only function in C0, recall
(2.102).

In summary, we may think of 0 and 1 as, in a sense, the “extremes”
of the whole datatype spectrum. For this reason they are called initial
and terminal, respectively. We conclude this subject with the presenta-
tion of their main properties which, as we have said, are instances of
properties we have stated for products and coproducts.

Initial datatype reflection :

0

?0=id0

��
?0 = id0 (2.110)

Initial datatype fusion :

0

?A
��

?B

��
A

f
// B

f ·?A =?B (2.111)
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Terminal datatype reflection :

1

!1=id1

��
!1 = id1 (2.112)

Terminal datatype fusion :

1

A

!A

OO

B
f

oo

!B

__ !A · f =!B (2.113)

Exercise 2.33. Can the properties

[! , !] = !

? = 〈?, ?〉

be derived from the exchange law (2.50)? Justify.
2

2.18 S U M S A N D P R O D U C T S I N H A S K E L L

We conclude this chapter with an analysis of the main primitive avail-
able in HASKELL for creating datatypes: the data declaration. Sup-
pose we declare

data CostumerId = P Z | C Z

meaning to say that, for some company, a client is identified either by
its passport number or by its credit card number, if any. What does
this piece of syntax precisely mean?

If we enquire the HASKELL interpreter about what it knows about
CostumerId, the reply will contain the following information:

Main> :i CostumerId
-- type constructor
data CostumerId

-- constructors:
P :: Int -> CostumerId
C :: Int -> CostumerId

In general, let A and B be two known datatypes. Via declaration

data C = C1 A | C2 B (2.114)
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one obtains from HASKELL a new datatype C equipped with construc-

tors C AC1oo and C BC2oo , in fact the only ones available for con-
structing values of C:

A

C1 ��

B

C2��
C

This diagram leads to an obvious instance of coproduct diagram (2.39),

A
i1 //

C1 ##

A + B

[C1 ,C2]
��

B
i2oo

C2||
C

describing that a data declaration in HASKELL means the either of its
constructors.

Because there are no other means to build C data, it follows that C
is isomorphic to A + B. So [C1, C2] has an inverse, say inv, which is
such that inv · [C1, C2] = id. How do we calculate inv? Let us first

think of the generic situation of a function D C
foo which observes

datatype C:

A
i1 //

C1 ##

A + B

[C1 ,C2]
��

B
i2oo

C2||
C

f
��

D

This is an opportunity for +-fusion (2.43), whereby we obtain

f · [C1, C2] = [ f · C1, f · C2]

Therefore, the observation will be fully described provided we explain
how f behaves with respect to C1 — cf. f · C1 — and with respect to
C2 — cf. f · C2. This is what is behind the typical inductive structure of
pointwise f , which will be made of two and only two clauses:

f : C → D

f (C1 a) = . . .

f (C2 b) = . . .

Let us use this in calculating the inverse inv of [C1, C2]:

inv · [C1, C2] = id

≡ { by +-fusion (2.43) }

[inv · C1, inv · C2] = id
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≡ { by +-reflection (2.42) }

[inv · C1, inv · C2] = [i1 , i2]

≡ { either structural equality (2.67) }
inv · C1 = i1 ∧ inv · C2 = i2

Therefore:

inv : C → A + B

inv(C1 a) = i1 a

inv(C2 b) = i2 b

In summary, C1 is a “renaming” of injection i1, C2 is a “renaming” of
injection i2 and C is a “renamed” replica of A + B:

C A + B
[C1 ,C2]oo (2.115)

[C1, C2] is called the algebra of datatype C and its inverse inv is called
the coalgebra of C. The algebra contains the constructors C1 and C2 of
type C, that is, it is used to “build” C-values. In the opposite direction,
co-algebra inv enables us to “destroy” or observe values of C:

C

inv
**∼= A + B

[C1 ,C2]

hh

Algebra/coalgebras also arise about product datatypes. For instance,
suppose that one wishes to describe datatype Point inhabited by pairs
(x0, y0), (x1, y1) (etc.) of Cartesian coordinates of a given type, say A.
Although A×A equipped with projections π1, π2 “is” such a datatype,
one may be interested in a suitably named replica of A× A in which
points are built explicitly by some constructor (say Point) and observed
by dedicated selectors (say x and y):

A A× A
π1oo π2 //

Point
��

A

Point
x

cc

y

;; (2.116)

This gives birth to the algebra Point and the coalgebra 〈x, y〉 of datatype
Point:

Point

〈x,y〉
**∼= A× A

Point

ii

In HASKELL one writes

data Point a = Point {x :: a, y :: a}

but be warned that HASKELL delivers Point in curried form:
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Point :: a→ a→ Point a

Finally, what is the “HASKELL-equivalent” to handling a pointer in
(say) C? This corresponds to A = 1 in (2.115),

C 1 + B
[C1 ,C2]oo

and to the following HASKELL declaration:

data C = C1 () | C2 B

Note that HASKELL allows for a more programming-oriented alterna-
tive in this case, in which the unit type () is eliminated:

data C = C1 | C2 B

The difference is that here C1 denotes an inhabitant of C (and so a
clause f (C1 a) = . . . is rewritten to f C1 = . . .) while above C1 de-

notes a (constant) function C 1C1oo . Isomorphism (2.104) helps in
comparing these two alternative situations.

2.19 E X E R C I S E S

Exercise 2.34. Let A and B be two disjoint datatypes, that is, A ∩ B = ∅ holds.
Show that isomorphism

A ∪ B ∼= A + B (2.117)

holds. Hint: define A ∪ B A + Bioo as i = [embA , embB] for embA a = a and
embB b = b, and find its inverse. By the way, why didn’t we define i as simply as

i def
= [idA , idB]?

2

Exercise 2.35. Knowing that a given function xr satisfies property

xr · 〈〈f , g〉, h〉 = 〈〈f , h〉, g〉 (2.118)

for all f , g and h, derive from (2.118) the definition of xr:

xr = 〈π1 × id, π2 · π1〉 (2.119)

2

Exercise 2.36. Let distr (read: ‘distribute right’) be the bijection which witnesses
isomorphism A× (B+C) ∼= A× B+ A×C. Fill in the “. . . ”in the diagram which
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follows so that it describes bijection distl (red: ‘distribute left’) which witnesses
isomorphism (B + C)× A ∼= B× A + C× A:

(B + C)× A
swap //

distl

22· · · distr // · · · ··· // B× A + C× A

2

Exercise 2.37. In the context of exercise 2.36, prove

[g , h]× f = [g× f , h× f ] · distl (2.120)

knowing that

f × [g , h] = [ f × g , f × h] · distr (2.121)

holds.
2

Exercise 2.38. Noting the following consequence of (2.120),

ap · ([g , h]× id) = ap · [g× id , h× id] · distl

find g and h such that ap · [g× id , h× id] = id. Conclude that

distl = [i1 , i2] (2.122)

Draw the type diagram of distl.
2

Exercise 2.39. The arithmetic law (a + b)(c + d) = (ac + ad) + (bc + bd) corre-
sponds to the isomorphism

(A + B)× (C + D) ∼= (A× C + A× D) + (B× C + B× D)

h=[[i1×i1 ,i1×i2] ,[i2×i1 ,i2×i2]]

kk

From universal property (2.66) infer the following definition of function h, written
in Haskell syntax:

h(Left(Left(a,c))) = (Left a,Left c)
h(Left(Right(a,d))) = (Left a,Right d)
h(Right(Left(b,c))) = (Right b,Left c)
h(Right(Right(b,d))) = (Right b,Right d)

2
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Exercise 2.40. Every C programmer knows that a “struct of pointers”

(A + 1)× (B + 1)

offers a data type which represents both product A× B (struct) and coproduct A+ B
(union), alternatively. Express in pointfree notation the isomorphisms i1 to i5 of

(A + 1)× (B + 1) ((A + 1)× B) + ((A + 1)× 1)
i1oo

(A× B + 1× B) + (A× 1 + 1× 1)
i2
OO

(A× B + B) + (A + 1)
i3
OO

(A× B + (B + A)) + 1
i5

// A× B + (B + (A + 1))
i4
OO

which witness the observation above.
2

Exercise 2.41. Prove the following property of McCarthy conditionals:

p→ f · g , h · k = [ f , h] · (p→ i1 · g , i2 · k) (2.123)

2

Exercise 2.42. Assuming the fact

(p? + p?) · p? = (i1 + i2) · p? (2.124)

show that nested conditionals can be simplified:

p→ (p→ f , g) , (p→ h , k) = p→ f , k (2.125)

2

Exercise 2.43. Show that ( f · ap) g = f · g holds, cf. (2.89).
2

Exercise 2.44. Consider the higher-order isomorphism f lip defined as follows:

(CB)A ∼= CA×B ∼= CB×A ∼= (CA)B

f 7→ f̂ 7→ f̂ .swap 7→ f̂ · swap = f lip f
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Show that f lip f x y = f y x.
2

Exercise 2.45. Let C const // CA be the function of exercise 2.2, that is, const c =
cA. Which fact is expressed by the following diagram featuring const?

C const //

f
��

CA

f A

��
B

const
// BA

(2.126)

Write it at point-level and describe it by your own words.
2

Exercise 2.46. Show that π2 · f = π2 holds for every f . Thus π2 is a constant
function — which one?
2

Exercise 2.47. Establish the difference between the following two declarations in
HASKELL,

data D = D1 A | D2 B C
data E = E1 A | E2 (B, C)

for A, B and C any three predefined types. Are D and E isomorphic? If so, can you
specify and encode the corresponding isomorphism?
2

2.20 B I B L I O G R A P H Y N O T E S

A few decades ago John Backus read, in his Turing Award Lecture, a
revolutionary paper [7]. This paper proclaimed conventional command-
oriented programming languages obsolete because of their inefficiency
arising from retaining, at a high-level, the so-called “memory access
bottleneck” of the underlying computation model — the well-known
von Neumann architecture. Alternatively, the (at the time already ma-
ture) functional programming style was put forward for two main rea-
sons. Firstly, because of its potential for concurrent and parallel com-
putation. Secondly — and Backus emphasis was really put on this —,
because of its strong algebraic basis.

Backus algebra of (functional) programs was providential in alerting
computer programmers that computer languages alone are insufficient,
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and that only languages which exhibit an algebra for reasoning about
the objects they purport to describe will be useful in the long run.

The impact of Backus first argument in the computing science and
computer architecture communities was considerable, in particular if
assessed in quality rather than quantity and in addition to the almost
contemporary structured programming trend 16. By contrast, his sec-
ond argument for changing computer programming was by and large
ignored, and only the so-called algebra of programming research minori-
ties pursued in this direction. However, the advances in this area
throughout the last two decades are impressive and can be fully ap-
preciated by reading a textbook written relatively recently by Bird and
de Moor [11]. A comprehensive review of the voluminous literature
available in this area can also be found in this book.

Although the need for a pointfree algebra of programming was first
identified by Backus, perhaps influenced by Iverson’s APL growing
popularity in the USA at that time, the idea of reasoning and using
mathematics to transform programs is much older and can be traced
to the times of McCarthy’s work on the foundations of computer pro-
gramming [53], of Floyd’s work on program meaning [21] and of Pa-
terson and Hewitt’s comparative schematology [76]. Work of the so-called
program transformation school was already very expressive in the mid
1970s, see for instance references [12].

The mathematics adequate for the effective integration of these re-
lated but independent lines of thought was provided by the categorial
approach of Manes and Arbib compiled in a textbook [52] which has
very strongly influenced the last decade of 20th century theoretical
computer science.

A so-called MPC (“Mathematics of Program Construction”) commu-
nity has been among the most active in producing an integrated body
of knowledge on the algebra of programming which has found in func-
tional programming an eloquent and paradigmatic medium. Func-
tional programming has a tradition of absorbing fresh results from
theoretical computer science, algebra and category theory. Languages
such as HASKELL [10] have been competing to integrate the most re-
cent developments and therefore are excellent prototyping vehicles in
courses on program calculation, as happens with this monograph.

For fairly recent work on this topic see e.g. [26, 30, 31, 25].

16 Even the C programming language and the UNIX operating system, with their im-
plicit functional flavour, may be regarded as subtle outcomes of the “going functional”
trend.
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R E C U R S I O N I N T H E P O I N T F R E E S T Y L E

How useful from a programmer’s point of view are the abstract con-
cepts presented in the previous chapter? Recall that a table was pre-
sented — table 1 — which records an analogy between abstract type
notation and the corresponding data-structures available in common,
imperative languages.

This analogy will help in showing how to extend the abstract nota-
tion studied thus far towards a most important field of programming:
recursion. This, however, will be preceeded by a simpler introduction
to the subject rooted on very basic and intuitive notions of mathemat-
ics.

3.1 M O T I VAT I O N

Where do algorithms come from? From human imagination only?
Surely not — they actually emerge from mathematics. In a sense, in
the same way one may say that hardware follows the laws of physics
(e.g. semiconductor electronics) one might say that software is gov-
erned by the laws of mathematics.

This section provides a naive introduction to algorithm analysis and
synthesis by showing how a quite elementary class of algorithms —
equivalent to for-loops in C or any other imperative language — arise
from elementary properties of the underlying maths domain.

We start by showing how the arithmetic operation of multiplying
two natural numbers (in N0) is a for-loop which emerges solely from
the algebraic properties of multiplication:

a× 0 = 0
a× 1 = a
a× (b + c) = a× b + a× c

(3.1)

These properties are known as the absorption, unit and distributive prop-
erties of multiplication, respectively.

Start by making c := 1 in the third (distributive) property, obtaining
a× (b + 1) = a× b + a× 1, and then simplify. The second clause is

66
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useful in this simplification but it is not required in the final system of
two equations,{

a× 0 = 0
a× (b + 1) = a× b + a

(3.2)

since it is derivable from the remaining two, for b := 0 and property
0 + a = a of addition.

System (3.2) is already a runnable program in a functional language
such as Haskell (among others). The moral of this trivial exercise is
that programs arise from the underlying maths, instead of being in-
vented or coming out of the blue. Novices in functional programming
do this kind of reasoning all the time without even noticing it, when
writing their first programs. For instance, the function which com-
putes discrete exponentials will scale up the same procedure, thanks
to the properties

a0 = 1
a1 = a
ab+c = ab × ac

where the program just developed for multiplication can be re-used,
and so and so on.

Type-wise, the multiplication algorithm just derived for natural num-
bers is not immediate to generalize. Intuitively, it will diverge for b a
negative integer and for b a real number less than 1, at least. Argument
a, however, does not seem to be constrained.

Indeed, the two arguments a and b will have different types in gen-
eral. Let us see why and how. Starting by looking at infix operators
(×) and (+) as curried operators — recall section 2.15 — we can resort
to the corresponding sections and write:{

(a×)0 = 0
(a×)(b + 1) = (a+)((a×)b) (3.3)

It can be easily checked that

(a×) = for (a+) 0 (3.4)

by introducing a for-loop combinator given by{
for f i 0 = i
for f i (n + 1) = f (for f i n)

(3.5)

where f is the loop-body and i is the initialization value. In fact,
(for f i)n = f n i, that is, f is iterated n times over the initial value
i.

For-loops are a primitive construct available in many programming
languages. In C, for instance, one will write something like
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int mul(int a, int n)
{

int s=0; int i;
for (i=1; i<n+1; i++) { s += a; }
return s;

};

for (the uncurried version of) loop for (a+) 0.
To better understand this construct let us remove variables from

both equations in (3.3) by lifting function application to function com-
position and lifting 0 to the “everywhere 0” (constant) function:{

(a×) · 0 = 0
(a×) · (+1) = (+a) · (a×)

Using the junc (“either”) pointfree combinator we merge the two equa-
tions into a single one,

[(a×) · 0 , (a×) · (+1)] = [0 , (+a) · (a×)]

— thanks to the Eq-+ rule (2.67) — then single out the common factor
(a×) in the left hand side,

(a×) · [0 , (+1)] = [0 , (+a) · (a×)]

— thanks to +-fusion (2.43) — and finally do a similar fission operation
on the other side,

(a×) · [0 , (+1)] = [0 , (+a)] · (id + (a×)) (3.6)

— thanks to +-absorption (2.44).
As we already know, equalities of compositions are nicely drawn as

diagrams. That of (3.6) is as follows:

N0

(a×)
��

A + N0

id+(a×)
��

[0 ,(+1)]oo

N0 A + N0
[0 ,(+a)]
oo

Function (+1) is the successor function succ on natural numbers. Type
A is any (non-empty) type. For the particular case of A = 1, the dia-
gram is more interesting, as [0 , succ] becomes an isomorphism, telling
a unique way of building natural numbers:1

Every natural number in N0 either is 0 or the successor of an-
other natural number.

1 This is nothing but a re-statement of the well-known Peano axioms for the natural
numbers. Giuseppe Peano (1858-1932) was a famous Italian mathematician.
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We will denote such an isomorphism by in and its converse by out in
the following version of the same diagram

N0

out=in◦
**

(a×)
��

∼= 1 + N0

id+(a×)
��

in=[0 ,succ]

ii

N0 1 + N0

[0 ,(+a)]

ii

capturing both the isomorphism and the (a×) recursive function. By
solving the isomorphism equation out · in = id we easily obtain the
definition of out, the converse of in 2:

out 0 = i1()

out(n + 1) = i2 n

Finally, we generalize the target N0 to any non-empty type B, (+a)

to any function B
g // B and 0 to any constant k in B (this is why

B has to be non-empty). The corresponding generalization of (a×) is
denoted by f below:

N0

out=in◦
**

f
��

∼= 1 + N0

id+ f
��

in=[0 ,succ]

ii

B 1 + B

[k ,g]

hh

It turns out that, given k and g, there is a unique solution to the
equation (in f ) captured by the diagram: f · in = [k , g] · (id + f ). We
know this solution already, recall (3.5):

f = for g k

As we have seen earlier on, solution uniqueness is captured by univer-
sal properties. In this case we have the following property, which we
will refer to by writing “for-loop-universal”:

f = for g k ≡ f · in = [k , g] · (id + f ) (3.7)

From this property it is possible to infer a basic theory of for-loops.
For instance, by making f = id and solving the for-loop-universal
equation (3.7) for g and k we obtain the reflection law:

for succ 0 = id (3.8)

This can be compared with the following (useless) program in C:

2 Note how the singularity of type 1 ensures out a function: what would the outcome
of out 0 be should A be arbitrary?
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int id(int n)
{

int s=0; int i;
for (i=1;i<n+1;i++) {s += 1;}
return s;

};

(Clearly, the value returned in s is that of input n.)
More knowledge about for-loops can be extracted from (3.7). Later

on we will show that these constructs are special cases of a more gen-
eral concept termed catamorphism.3 In the usual ”banana-bracket” nota-
tion of catamorphisms, to be introduced later, the for-combinator will
be written:

for g k = L [k , g] M (3.9)

In the sequel, we shall study the (more general) theory of catamor-
phisms and come back to for-loops as an instantiation. Then we will
understand how more interesting for-loops can be synthesized, for in-
stance those handling more than one “global variable”, thanks to cata-
morphism theory (for instance, the mutual recursion laws).

As a generalization of what we have just seen happening between
for-loops and natural numbers, it will be shown that a catamorphism
is intimately connected to the data-structure it processes, for instance
a finite list (sequence) or a binary tree. A good understanding of such
structures is therefore required. We proceed to studying the list data
structure first, wherefrom trees stem as natural extensions.

Exercise 3.1. Addition is known to be associative (a + (b + c) = (a + b) + c) and
have unit 0 (a + 0 = a). Following the same strategy that was adopted above for
(a×), show that

(a+) = for succ a (3.10)

2

Exercise 3.2. The following fusion-law

h · (for g k) = for j (h k) ⇐ h · g = j · h (3.11)

can be derived from universal-property (3.7) 4. Since (a+) · id = (a+), provide an
alternative derivation of (3.10) using the fusion-law above.
2

Exercise 3.3. From (3.4) and fusion-law (3.11) infer: (a∗) · succ = for a (a+).
2

3 See e.g. section 3.6.
4 A generalization of this property will be derived in section 3.12.
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Exercise 3.4. Show that f = for k k and g = for id k are the same program (func-
tion).
2

Exercise 3.5. Generic function k = for f i can be encoded in the syntax of C by
writing

int k(int n) {
int r=i;
int x;
for (x=1;x<n+1;x++) {r=f(r);}
return r;

};

for some predefined f . Encode the functions f and g of exercise 3.4 in C and inspect
their operational behaviour.
2

3.2 F R O M N AT U R A L N U M B E R S T O F I N I T E S E Q U E N C E S

Let us consider a very common data-structure in programming: “linked-
lists”. In PASCAL one will write

L = ˆN;
N = record

first: A;
next: ˆN

end;

to specify such a data-structure L. This consists of a pointer to a node
(N), where a node is a record structure which puts some predefined
type A together with a pointer to another node, and so on. In the C
programming language, every x ∈ L will be declared as L x in the
context of datatype definition

typedef struct N {
A first;
struct N *next;

} *L;

and so on.
What interests us in such “first year programming course” datatype

declarations? Records and pointers have already been dealt with in
table 1. So we can use this table to find the abstract version of datatype
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Figure 3.1.: Linked-list representation of the finite sequence [1, 2, 3 ].

L, by replacing pointers by the “1+ · · · ” notation and records (structs)
by the “. . .× . . .” notation:{

L = 1 + N
N = A× (1 + N)

(3.12)

We obtain a system of two equations on unknowns L and N, in
which L’s dependence on N can be removed by substitution:{

L = 1 + N
N = A× (1 + N)

≡ { substituting L for 1 + N in the second equation }{
L = 1 + N

N = A× L

≡ { substituting A× L for N in the first equation }{
L = 1 + A× L

N = A× L

System (3.12) is thus equivalent to:{
L = 1 + A× L

N = A× (1 + N)
(3.13)

Intuitively, L abstracts the “possibly empty” linked-list of elements of
type A, while N abstracts the “non-empty” linked-list of elements of
type A. Note that L and N are independent of each other, but also that
each depends on itself. Can we solve these equations in a way such
that we obtain “solutions” for L and N, in the same way we do with
school equations such as, for instance,

x = 1 +
x
2

? (3.14)

Concerning this equation, let us recall how we would go about it in
school mathematics:

x = 1 +
x
2

≡ { adding − x
2 to both sides of the equation }

x− x
2
= 1 +

x
2
− x

2
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≡ { − x
2 cancels x

2 }

x− x
2
= 1

≡ { multiplying both sides of the equation by 2 etc. }
2× x− x = 2

≡ { subtraction }
x = 2

We very quickly get solution x = 2. However, many steps were
omitted from the actual calculation. This unfolds into the longer se-
quence of more elementary steps which follows, in which notation
a− b abbreviates a + (−b) and a

b abbreviates a× 1
b , for b 6= 0:

x = 1 +
x
2

≡ { adding − x
2 to both sides of the equation }

x− x
2
= (1 +

x
2
)− x

2
≡ { + is associative }

x− x
2
= 1 + (

x
2
− x

2
)

≡ { − x
2 is the additive inverse of x

2 }

x− x
2
= 1 + 0

≡ { 0 is the unit of addition }

x− x
2
= 1

≡ { multiplying both sides of the equation by 2 }

2× (x− x
2
) = 2× 1

≡ { 1 is the unit of multiplication }

2× (x− x
2
) = 2

≡ { multiplication distributes over addition }

2× x− 2× x
2
= 2

≡ { 2 cancels its inverse 1
2 }

2× x− 1× x = 2

≡ { multiplication distributes over addition }

(2− 1)× x = 2

≡ { 2− 1 = 1 and 1 is the unit of multiplication }
x = 2
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Back to (3.13), we would like to submit each of the equations, e.g.

L = 1 + A× L (3.15)

to a similar reasoning. Can we do it? The analogy which can be found
between this equation and (3.14) goes beyond pattern similarity. From
chapter 2 we know that many properties required in the reasoning
above hold in the context of (3.15), provided the “=” sign is replaced
by the “∼=” sign, that of set-theoretical isomorphism. Recall that, for
instance, + is associative (2.49), 0 is the unit of addition (2.56), 1 is
the unit of multiplication (2.58), multiplication distributes over addi-
tion (2.53) etc. Moreover, the first step above assumed that addition is
compatible (monotonic) with respect to equality,

a = b
c = d

a + c = b + d

a fact which still holds when numeric equality gives place to isomor-
phism and numeric addition gives place to coproduct:

A ∼= B
C ∼= D

A + C ∼= B + D

— recall (2.47) for isos f and g.
Unfortunately, the main steps in the reasoning above are concerned

with two basic cancellation properties

x + b = c ≡ x = c− b

x× b = c ≡ x =
c
b

(b 6= 0)

which hold about numbers but do not hold about datatypes. In fact,
neither products nor coproducts have arbitrary inverses 5, and so we
cannot “calculate by cancellation”. How do we circumvent this limita-
tion?

Just think of how we would have gone about (3.14) in case we did
not know about the cancellation properties: we would be bound to the
x by 1 + x

2 substitution plus the other properties. By performing such
a substitution over and over again we would obtain. . .

x = 1 +
x
2

≡ { x by 1 + x
2 substitution followed by simplification }

x = 1 +
1 + x

2
2

= 1 +
1
2
+

x
4

5 The initial and terminal datatypes do have inverses — 0 is its own “additive inverse”
and 1 is its own “multiplicative inverse” — but not all the others.
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≡ { the same as above }

x = 1 +
1
2
+

1 + x
2

4
= 1 +

1
2
+

1
4
+

x
8

≡ { over and over again, n-times }
· · ·

≡ { simplification }

x =
n

∑
i=0

1
2i +

x
2n+1

≡ { sum of n first terms of a geometric progression }

x = (2− 1
2n ) +

x
2n+1

≡ { let n→ ∞ }

x = (2− 0) + 0

≡ { simplification }
x = 2

Clearly, this is a much more complicated way of finding solution
x = 2 for equation (3.14). But we would have loved it in case it were
the only known way, and this is precisely what happens with respect
to (3.15). In this case we have:

L = 1 + A× L

≡ { substitution of 1 + A× L for L }

L = 1 + A× (1 + A× L)

≡ { distributive property (2.53) }

L ∼= 1 + A× 1 + A× (A× L)

≡ { unit of product (2.58) and associativity of product (2.35) }

L ∼= 1 + A + (A× A)× L

≡ { by (2.102), (2.104) and (2.108) }

L ∼= A0 + A1 + A2 × L

≡ { another substitution as above and similar simplifications }

L ∼= A0 + A1 + A2 + A3 × L

≡ { after (n + 1)-many similar steps }

L ∼=
n

∑
i=0

Ai + An+1 × L
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Bearing a large n in mind, let us deliberately (but temporarily) ig-
nore term An+1 × L. Then L will be isomorphic to the sum of n-many
contributions Ai,

L ∼=
n

∑
i=0

Ai

each of them consisting of i-long tuples, or sequences, of values of
A. (Number i is said to be the length of any sequence in Ai.) Such
sequences will be denoted by enumerating their elements between
square brackets, for instance the empty sequence [ ] which is the only
inhabitant in A0, the two element sequence [a1, a2] which belongs to
A2 provided a1, a2 ∈ A, and so on. Note that all such contributions
are mutually disjoint, that is, Ai ∩ Aj = ∅ wherever i 6= j. (In other
words, a sequence of length i is never a sequence of length j, for i 6= j.)
If we join all contributions Ai into a single set, we obtain the set of all
finite sequences on A, denoted by A? and defined as follows:

A? def
=

⋃
i>0

Ai (3.16)

The intuition behind taking the limit in the numeric calculation above
was that term x

2n+1 was getting smaller and smaller as n went larger
and larger and, “in the limit”, it could be ignored. By analogy, taking
a similar limit in the calculation just sketched above will mean that,
for a “sufficiently large” n, the sequences in An are so long that it is
very unlikely that we will ever use them! So, for n→ ∞ we obtain

L ∼=
∞

∑
i=0

Ai

Because ∑∞
i=0 Ai is isomorphic to

⋃∞
i=0 Ai (see exercise 2.34), we finally

have:

L ∼= A?

All in all, we have obtained A? as a solution to equation (3.15). In
other words, datatype L is isomorphic to the datatype which contains
all finite sequences of some predefined datatype A. This corresponds
to the HASKELL [a] datatype, in general. Recall that we started from
the “linked-list datatype” expressed in PASCAL or C. In fact, wherever
the C programmer thinks of linked-lists, the HASKELL programmer
will think of finite sequences.

But, what does equation (3.15) mean in fact? Is A? the only solution
to this equation? Back to the numeric field, we know of equations
which have more than one solution — for instance x = x2+3

4 , which
admits two solutions 1 and 3 —, which have no solution at all — for
instance x = x + 1 (in N0) —, or which admit an infinite number of —
for instance x = x.
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We will address these topics in the next section, which is concerned
with inductive datatypes and — more generally — in chapter 8, where
the formal semantics of recursion will be made explicit. This is where
the “limit” constructions used informally in this section will be shown
to make sense.

3.3 I N T R O D U C I N G I N D U C T I V E D ATAT Y P E S

Datatype L as defined by (3.15) is said to be recursive because L “re-
curs” in the definition of L itself 6. From the discussion above, it
is clear that set-theoretical equality “=” in this equation should give
place to set-theoretical isomorphism (“∼=”):

L ∼= 1 + A× L (3.17)

Which isomorphism L 1 + A× Linoo do we expect to witness (3.17)?
This will depend on which particular solution to (3.17) we are think-
ing of. So far we have seen only one, A?. By recalling the notion of
algebra of a datatype (section 2.18) we may rephrase the question as:
which algebra

A? 1 + A× A?inoo

do we expect to witness the tautology which arises from (3.17) by re-
placing unknown L with solution A?, that is

A? ∼= 1 + A× A? ?

It will have to be of the form in = [in1 , in2] as depicted by the follow-
ing diagram:

1
i1//

in1 %%

1 + A× A?

in
��

A× A?i2oo

in2ww
A?

(3.18)

Arrows in1 and in2 can be guessed rather intuitively: in1 = [ ], which
will express the “NIL pointer” by the empty sequence, at A? level, and
in2 = cons, where cons is the standard “left append” sequence con-
structor, which we for the moment introduce rather informally as fol-
lows:

cons : A× A? → A?

cons(a, [a1, . . . , an]) = [a, a1, . . . , an]
(3.19)

In a diagram:

1
i1//

[ ] %%

1 + A× A?

[[ ] ,cons]
��

A× A?i2oo

cons
ww

A?

(3.20)

6 By analogy, we may regard (3.14) as a “recursive definition” of number 2.
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Of course, for in to be iso it needs to have an inverse, call it out, such
that

out · in = id

Then:

out · in = id

≡ { in = [[ ] , cons]; +-reflexion }

out · [[ ] , cons] = [i1 , i2]

≡ { coproduct laws }{
out · [ ] = i1
out · cons = i2

Another way to define out uses a McCarthy conditional

out def
= (! + 〈hd, tl〉) · (=[ ]?) (3.21)

where sequence operators hd (head of a nonempty sequence) and tl (tail of
a nonempty sequence) are (again informally) described as follows:

hd : A? → A
hd [a1, a2, . . . , an] = a1

(3.22)

tl : A? → A?

tl [a1, a2, . . . , an] = [a2, . . . , an]
(3.23)

Showing that in and out are each other inverses is not a hard task
either:

in · out = id

≡ { definitions of in and out }

[[ ] , cons] · (! + 〈hd, tl〉) · (=[ ]?) = id

≡ { +-absorption (2.44) and (2.15) }

[[ ] , cons · 〈hd, tl〉] · (=[ ]?) = id

≡ { property of sequences: cons(hd s, tl s) = s }

[[ ] , id] · (=[ ]?) = id

≡ { going pointwise (2.70) }{
=[ ] a ⇒ [[ ] , id] (i1 a)

¬(=[ ] a) ⇒ [[ ] , id] (i2 a)
= a

≡ { +-cancellation (2.41) }{
=[ ] a ⇒ [ ] a

¬(=[ ] a) ⇒ id a
= a
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≡ { a = [ ] in one case and identity function (2.9) in the other }{
a = [ ] ⇒ a

¬(a = [ ]) ⇒ a
= a

≡ { property (p→ f , f ) = f holds }
a = a

A comment on the particular choice of terminology above: symbol
in suggests that we are going inside, i.e. constructing (synthesizing)
values of A?; symbol out suggests that we are going out, or destructing
(analyzing) values of A?. We shall often resort to this duality in the
sequel.

Are there more solutions to equation (3.17)? In trying to implement
this equation, a HASKELL programmer could have written, after the
declaration of type A, the following datatype declaration:

data L = Nil () | Cons (A, L)

which, as we have seen in section 2.18, can be written simply as

data L = Nil | Cons (A, L)

and generates diagram

1
i1//

Nil
$$

1 + A× L

in′
��

A× L
i2oo

Cons
xxL

(3.24)

leading to algebra in′ = [Nil , Cons].
HASKELL seems to have generated another solution for the equa-

tion, which it calls L. To avoid the inevitable confusion between this
symbol denoting the newly created datatype and symbol L in equa-
tion (3.17), which denotes a mathematical variable, let us use symbol
T to denote the former (T stands for “type”). This can be coped with
very simply by writing T instead of L above:

data T = Nil | Cons (A, T) (3.25)

In order to make T more explicit, we will write inT instead of in′.
Some questions naturally arise at this point. First of all, what is

datatype T? What are its inhabitants? Next, is T 1 + A× T
inToo an

iso or not?
HASKELL will help us to answer these questions. Suppose that A

is a primitive numeric datatype, and that we add deriving Show
to (3.25) so that we can “see” the inhabitants of the T datatype. The
information associated to T is thus:
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Main> :i T
-- type constructor
data T

-- constructors:
Nil :: T
Cons :: (A,T) -> T

-- instances:
instance Show T
instance Eval T

By typing :t Nil

Main> :t Nil
Nil :: T

we confirm that Nil is itself an inhabitant of T, and by typing :t Cons

Main> :t Cons
Cons :: (A, T) -> T

we realize that Cons is not so (as expected), but it can be used to build
such inhabitants, for instance:

Main> Cons(1,Nil)
Cons (1,Nil) :: T

or

Main> Cons(2,Cons(1,Nil))
Cons (2,Cons (1,Nil)) :: T

etc. We conclude that expressions involving Nil and Cons are inhabi-
tants of type T. Are these the only ones? The answer is yes because,
by design of the HASKELL language, the constructors of type T will
remain fixed once its declaration is interpreted, that is, no further con-
structor can be added to T. Does inT have an inverse? Yes, its inverse
is coalgebra

outT : T→ 1 + A× T

outT Nil = i1 NIL

outT(Cons(a, l)) = i2(a, l)
(3.26)

which can be straightforwardly encoded in HASKELL using the Either
realization of + (recall sections 2.9 and 2.18):

outT :: T→ Either () (A, T)

outT Nil = i1 ()

outT (Cons (a, l)) = i2 (a, l)

In summary, isomorphism

T

outT
**∼= 1 + A× T

inT

hh (3.27)
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holds, where datatype T is inhabited by symbolic expressions which
we may visualize very conveniently as trees, for instance

1 Nil

Cons

2
Cons

picturing expression Cons(2, Cons(1, Nil)). Nil is the empty tree and
Cons may be regarded as the operation which adds a new root and a
new branch, say a, to a tree t:

tt
Cons(a, ) =

Cons

a

The choice of symbols T, Nil and Cons was rather arbitrary in
(3.25). Therefore, an alternative declaration such as, for instance,

data U = Stop | Join (A, U) (3.28)

would have been perfectly acceptable, generating another solution for
the equation under algebra [Stop , Join]. It is easy to check that (3.28)
is but a renaming of Nil to Stop and of Cons to Join. Therefore, both
datatypes are isomorphic, or “abstractly the same”.

Indeed, any other datatype X inductively defined by a constant and a
binary constructor accepting A and X as parameters will be a solution
to the equation. Because we are just renaming symbols in a consistent
way, all such solutions are abstractly the same. All of them capture the
abstract notion of a list of symbols.

We wrote “inductively” above because the set of all expressions
(trees) which inhabit the type is defined by induction. Such types are
called inductive and we shall have a lot more to say about them in
chapter 8 .

Exercise 3.6. Obviously,

either (const []) (:)

does not work as a HASKELL realization of the mediating arrow in diagram (3.20).
What do you need to write instead?
2



3.4 O B S E RV I N G A N I N D U C T I V E D ATAT Y P E 82

3.4 O B S E RV I N G A N I N D U C T I V E D ATAT Y P E

Suppose that one is asked to express a particular observation of an in-

ductive such as T (3.25), that is, a function of signature B T
foo for

some target type B. Suppose, for instance, that A is N0 (the set of all
non-negative integers) and that we want to add all elements which oc-
cur in a T-list. Of course, we have to ensure that addition is available
in N0,

add : N0 ×N0 →N0

add(x, y) def
= x + y

and that 0 ∈N0 is a value denoting “the addition of nothing”. So con-

stant arrow N0 1
0oo is available. Of course, add(0, x) = add(x, 0) =

x holds, for all x ∈ N0. This property means that N0, together with
operator add and constant 0, forms a monoid, a very important alge-
braic structure in computing which will be exploited intensively later
in this monograph. The following arrow “packaging” N0, add and 0,

N0 1 + N0 ×N0
[0 ,add]oo (3.29)

is a convenient way to express such a structure. Combining this arrow
with the algebra

T 1 + N0 × T
inToo (3.30)

which defines T, and the function f we want to define, the target of
which is B = N0, we get the almost closed diagram which follows, in
which only the dashed arrow is yet to be filled in:

T

f
��

1 + N0 × T
inToo

��
N0 1 + N0 ×N0

[0 ,add]
oo

(3.31)

We know that inT = [Nil , Cons]. A pattern for the missing arrow is not
difficult to guess: in the same way f bridges T and N0 on the left-hand
side, it will do the same job on the right-hand side. So pattern · · · +
· · · × f comes to mind (recall section 2.10), where the “· · · ” are very
naturally filled in by identity functions. All in all, we obtain diagram

T

f
��

1 + N0 × T
[Nil ,Cons]oo

id+id× f
��

N0 1 + N0 ×N0
[0 ,add]

oo

(3.32)

which pictures the following property of f

f · [Nil , Cons] = [0, add] · (id + id× f ) (3.33)
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and is easy to convert to pointwise notation:

f · [Nil , Cons] = [0, add] · (id + id× f )

≡ { (2.43) on the lefthand side, (2.44) and identity id on the righthand side }

[ f · Nil , f · Cons] = [0, add · (id× f )]

≡ { either structural equality (2.67) }{
f · Nil = 0
f · Cons = add · (id× f )

≡ { going pointwise }{
( f · Nil)x = 0 x
( f · Cons)(a, x) = (add · (id× f ))(a, x)

≡ { composition (2.6), constant (2.12), product (2.24) and definition of add }{
f Nil = 0
f (Cons(a, x)) = a + f x

Note that we could have used outT in diagram (3.31),

T
outT //

f
��

1 + N0 × T

id+id× f
��

N0 1 + N0 ×N0
[0 ,add]

oo

(3.34)

obtaining another version of the definition of f ,

f = [0, add] · (id + id× f ) · outT (3.35)

which would lead to exactly the same pointwise recursive definition:

f = [0, add] · (id + id× f ) · outT

≡ { (2.44) and identity id on the righthand side }

f = [0, add · (id× f )] · outT

≡ { going pointwise on outT (3.26) }{
f Nil = ([0, add · (id× f )] · outT)Nil
f (Cons(a, x)) = ([0, add · (id× f )] · outT)(a, x)

≡ { definition of outT (3.26) }{
f Nil = ([0, add · (id× f )] · i1)Nil
f (Cons(a, x)) = ([0, add · (id× f )] · i2)(a, x)

≡ { +-cancellation (2.41) }{
f Nil = 0 Nil
f (Cons(a, x)) = (add · (id× f )) (a, x)

≡ { simplification }



3.5 S Y N T H E S I Z I N G A N I N D U C T I V E D ATAT Y P E 84

{
f Nil = 0
f (Cons(a, x)) = a + f x

Pointwise f mirrors the structure of type T in having as many defini-
tion clauses as constructors in T. Such functions are said to be defined
by induction on the structure of their input type. If we repeat this calcu-
lation for N0

? instead of T, that is, for

out = (! + 〈hd, tl〉) · (=[ ]?)

— recall (3.21) — taking place of outT, we get a “more algorithmic”
version of f :

f = [0, add] · (id + id× f ) · (! + 〈hd, tl〉) · (=[ ]?)

≡ { +-functor (2.45), identity and ×-absorption (2.27) }

f = [0, add] · (! + 〈hd, f · tl〉) · (=[ ]?)

≡ { +-absorption (2.44) and constant 0 }

f = [0, add · 〈hd, f · tl〉] · (=[ ]?)

≡ { going pointwise on guard =[ ]? (2.70) and simplifying }

f l =
{

l = [ ] ⇒ 0 l
¬(l = [ ]) ⇒ (add · 〈hd, f · tl〉) l

≡ { simplification }

f l =
{

l = [ ] ⇒ 0
¬(l = [ ]) ⇒ hd l + f (tl l)

The outcome of this calculation can be encoded in HASKELL syntax as

f l | l ≡ [ ] = 0
| otherwise = head l + f (tail l)

or

f l = if l ≡ [ ] then 0 else head l + f (tail l)

both requiring the equality predicate ≡ and destructors head and tail.

3.5 S Y N T H E S I Z I N G A N I N D U C T I V E D ATAT Y P E

The issue which concerns us in this section dualizes what we have just
dealt with: instead of analyzing or observing an inductive type such as
T (3.25), we want to be able to synthesize (generate) particular inhab-
itants of T. In other words, we want to be able to specify functions

with signature B
f // T for some given source type B. Let B = N0

and suppose we want f to generate, for a given natural number n > 0,
the list containing all numbers less or equal to n in decreasing order

Cons(n, Cons(n− 1, Cons(. . . , Nil)))
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or the empty list Nil, in case n = 0.
Let us try and draw a diagram similar to (3.34) applicable to the new

situation. In trying to “re-use” this diagram, it is immediate that arrow
f should be reversed. Bearing duality in mind, we may feel tempted
to reverse all arrows just to see what happens. Identity functions are
their own inverses, and inT takes the place of outT:

T 1 + N0 × T
inToo

N0

f

OO

// 1 + N0 ×N0

id+id× f

OO

Interestingly enough, the bottom arrow is the one which is not obvious
to reverse, meaning that we have to “invent” a particular destructor
of N0, say

N0
g // 1 + N0 ×N0

fitting in the diagram and generating the particular computational ef-
fect we have in mind. Once we do this, a recursive definition for f will
pop out immediately,

f = inT · (id + id× f ) · g (3.36)

which is equivalent to:

f = [Nil , Cons · (id× f )] · g (3.37)

Because we want f 0 = Nil to hold, g (the actual generator of the
computation) should distinguish input 0 from all the others. One thus
decomposes g as follows,

N0
=0?//

g
22N0 + N0

!+h // 1 + N0 ×N0

leaving h to fill in. This will be a split providing, on the lefthand side,
for the value to be Cons’ed to the output and, on the righthand side,
for the “seed” to the next recursive call. Since we want the output
values to be produced contiguously and in decreasing order, we may
define h = 〈id, pred〉 where, for n > 0,

pred n def
= n− 1 (3.38)

computes the predecessor of n. Altogether, we have synthesized

g = (! + 〈id, pred〉) · (=0?) (3.39)

Filling this in (3.37) we get

f = [Nil , Cons · (id× f )] · (! + 〈id, pred〉) · (=0?)

≡ { +-absorption (2.44) followed by ×-absorption (2.27) etc. }

f = [Nil , Cons · 〈id, f · pred〉] · (=0?)
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≡ { going pointwise on guard =0? (2.70) and simplifying }

f n =

{
n = 0 ⇒ Nil

¬(n = 0) ⇒ Cons(n, f (n− 1))

which matches the function we had in mind:

f n
| n ≡ 0 = Nil
| otherwise = Cons (n, f (n− 1))

We shall see briefly that the constructions of the f function adding
up a list of numbers in the previous section and, in this section, of the
f function generating a list of numbers are very standard in algorithm
design and can be broadly generalized. Let us first introduce some
standard terminology.

3.6 I N T R O D U C I N G ( L I S T ) C ATA S , A N A S A N D H Y L O S

Suppose that, back to section 3.4, we want to multiply, rather than add,
the elements occurring in lists of type T (3.25). How much of the pro-
gram synthesis effort presented there can be reused in the design of
the new function?

It is intuitive that only the bottom arrow N0 1 + N0 ×N0
[0 ,add]oo

of diagram (3.34) needs to be replaced, because this is the only place
where we can specify that target datatype N0 is now regarded as the
carrier of another (multiplicative rather than additive) monoidal struc-
ture,

N0 1 + N0 ×N0
[1 ,mul]oo (3.40)

for mul(x, y) def
= x y. We are saying that the argument list is now to

be reduced by the multiplication operator and that output value 1 is
expected as the result of “nothing left to multiply”.

Moreover, in the previous section we might have wanted our number-
list generator to produce the list of even numbers smaller than a given
number, in decreasing order (see exercise 3.9). Intuition will once
again help us in deciding that only arrow g in (3.36) needs to be up-
dated.

The following diagrams generalize both constructions by leaving
such bottom arrows unspecified,

T
outT //

f
��

1 + N0 × T

id+id× f
��

B 1 + N0 × Bg
oo

T 1 + N0 × T
inToo

B

f

OO

g
// 1 + N0 × B

id+id× f

OO (3.41)

and express their duality (cf. the directions of the arrows). It so hap-
pens that, for each of these diagrams, f is uniquely dependent on the
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g arrow, that is to say, each particular instantiation of g will determine
the corresponding f . So both gs can be regarded as “seeds” or “genetic
material” of the f functions they uniquely define 7.

C ATA S A N D A N A S Following the standard terminology, we ex-
press these facts by writing f = L g M with respect to the lefthand side
diagram and by writing f = [(g)] with respect to the righthand side
diagram. Read L g M as “the T-catamorphism induced by g” and [(g)]
as “the T-anamorphism induced by g”. This terminology is derived
from the Greek words κατα (cata) and ανα (ana) meaning, respectively,
“downwards” and “upwards” (compare with the direction of the f ar-
row in each diagram). The exchange of parentheses “( )” and “[ ]” in
double parentheses “L M” and “[( )]” is aimed at expressing the duality
of both concepts.

We shall have a lot to say about catamorphisms and anamorphisms
of a given type such as T. For the moment, it suffices to say that

• the T-catamorphism induced by B 1 + N0 × B
goo is the unique

function B T
L g Moo which obeys to property (or is defined by)

L g M = g · (id + id× L g M) · outT (3.42)

which is the same as

L g M · inT = g · (id + id× L g M) (3.43)

• given B
g // 1 + N0 × B the T-anamorphism induced by g is

the unique function B
[(g)] // T which obeys to property (or is

defined by)

[(g)] = inT · (id + id× [(g)]) · g (3.44)

From (3.41) it can be observed that T can act as a mediator between

any T-anamorphism and any T-catamorphism, that is to say, B T
L g Moo

composes with T C
[(h)]oo , for some C h // 1 + N0 × C . In other

words, a T-catamorphism call always observe (consume) the output

7 The theory which supports the statements of this paragraph will not be dealt with
until chapter 8 .
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of a T-anamorphism. The latter produces a list of N0s which is con-
sumed by the former. This is depicted in the diagram which follows:

B 1 + N0 × B
goo

T

L g M

OO

1 + N0 × T
inToo

id+id×L g M

OO

C

[(h)]

OO

h
// 1 + N0 × C

id+id×[(h)]

OO

(3.45)

What can we say about the L g M · [(h)] composition? It is a function from
C to B which resorts to T as an intermediate data-structure and can be
subject to the following calculation (cf. outermost rectangle in (3.45)):

L g M · [(h)] = g · (id + id× L g M) · (id + id× [(h)]) · h
≡ { +-functor (2.45) }

L g M · [(h)] = g · ((id · id) + (id× L g M) · (id× [(h)])) · h
≡ { identity and ×-functor (2.30) }

L g M · [(h)] = g · (id + id× L g M · [(h)]) · h

This calculation shows how to define C B
L g M·[(h)]oo in one go, that

is to say, doing without any intermediate data-structure:

B 1 + N0 × B
goo

C

L g M·[(h)]

OO

h
// 1 + N0 × C

id+id×L g M·[(h)]
OO (3.46)

As an example, let us see what comes out of L g M · [(h)] for h and g
respectively given by (3.39) and (3.40):

L g M · [(h)] = g · (id + id× L g M · [(h)]) · h
≡ { L g M · [(h)] abbreviated to f and instantiating h and g }

f = [1, mul] · (id + id× f ) · (! + 〈id, pred〉) · (=0?)

≡ { +-functor (2.45) and identity }

f = [1, mul] · (! + (id× f ) · 〈id, pred〉) · (=0?)

≡ { ×-absorption (2.27) and identity }

f = [1, mul] · (! + 〈id, f · pred〉) · (=0?)

≡ { +-absorption (2.44) and constant 1 (2.15) }

f = [1, mul · 〈id, f · pred〉] · (=0?)

≡ { McCarthy conditional (2.71) }

f = (=0?)→ 1, mul · 〈id, f · pred〉
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Going pointwise, we get — via (2.71) —

f 0 = [1, mul · 〈id, f · pred〉](i1 0)

= { +-cancellation (2.41) }
1 0

= { constant function (2.12) }
1

and

f (n + 1) = [1, mul · 〈id, f · pred〉](i2(n + 1))

= { +-cancellation (2.41) }

mul · 〈id, f · pred〉(n + 1)

= { pointwise definitions of split, identity, predecessor and mul }

(n + 1)× f n

In summary, f is but the well-known factorial function:{
f 0 = 1
f (n + 1) = (n + 1)× f n

This result comes to no surprise if we look at diagram (3.45) for
the particular g and h we have considered above and recall a popular
“definition” of factorial:

n! = n× (n− 1)× . . .× 1︸ ︷︷ ︸
n times

(3.47)

In fact, [(h)] n produces T-list

Cons(n, Cons(n− 1, . . . Cons(1, Nil)))

as an intermediate data-structure which is consumed by L g M , the ef-
fect of which is but the “replacement” of Cons by × and Nil by 1,
therefore accomplishing (3.47) and realizing the computation of facto-
rial.

H Y L O S The moral of this example is that a function as simple as
factorial can be decomposed into two components (producer/consumer
functions) which share a common intermediate inductive datatype.
The producer function is an anamorphism which “represents” or pro-
duces a “view” of its input argument as a value of the intermediate
datatype. The consumer function is a catamorphism which reduces
this intermediate data-structure and produces the final result. Like
factorial, many functions can be handsomely expressed by a L g M · [(h)]
composition for a suitable choice of the intermediate type, and of g
and h.
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The intermediate data-structure is said to be virtual in the sense that
it only exists as a means to induce the associated pattern of recursion
and disappears by calculation. The composition

L g M · [(h)]

of a T-catamorphism with a T-anamorphism is called a T-hylomorphism
8 and is denoted by Jg, hK. Because g and h fully determine the be-
haviour of the Jg, hK function, they can be regarded as the “genes” of
the function they define. As we shall see, this analogy with biology
will prove specially useful for algorithm analysis and classification.

Exercise 3.7. A way of computing n2, the square of a given natural number n, is to
sum up the n first odd numbers. In fact, 12 = 1, 22 = 1 + 3, 32 = 1 + 3 + 5, etc.,
n2 = (2n− 1) + (n− 1)2. Following this hint, express function

sq n def
= n2 (3.48)

as a T-hylomorphism and encode it in HASKELL.
2

Exercise 3.8. Write function xn as a T-hylomorphism and encode it in HASKELL.
2

Exercise 3.9. The following function in HASKELL computes the T-sequence of all
even numbers less or equal to n:

f n = if n 6 1 then Nil else Cons (m, f (m− 2))
where m = if even n then n else n− 1

Find its “genetic material”, that is, function g such that f=[(g)] in

T 1 + N0 × T
inToo

N0

[(g)]

OO

g
// 1 + N0 ×N0

id+id×[(g)]

OO

2

8 This terminology is derived from the Greek word vλoσ (hylos) meaning “matter”.
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3.7 I N D U C T I V E T Y P E S M O R E G E N E R A L LY

So far we have focussed our attention exclusively to a particular induc-
tive type T (3.30) — that of finite sequences of non-negative integers.
This is, of course, of a very limited scope. First, because one could
think of finite sequences of other datatypes, e.g. Booleans or many oth-
ers. Second, because other datatypes such as trees, hash-tables etc.
exist which our notation and method should be able to take into ac-
count.

Although a generic theory of arbitrary datatypes requires a theoreti-
cal elaboration which cannot be explained at once, we can move a step
further by taking the two observations above as starting points. We
shall start from the latter in order to talk generically about inductive
types. Then we introduce parameterization and functorial behaviour.

Suppose that, as a mere notational convention, we abbreviate every
expression of the form “1+N0× . . .” occurring in the previous section
by “F . . .”, e.g. 1 + N0 × B by F B, e.g. 1 + N0 × T by F T

T

outT
((∼= F T

inT

gg (3.49)

etc. This is the same as introducing a datatype-level operator

F X def
= 1 + N0 × X (3.50)

which maps every datatype A into datatype 1 + N0 × A. Operator
F captures the pattern of recursion which is associated to so-called
“right” lists (of non-negative integers), that is, lists which grow to the

right. The slightly different pattern G X def
= 1 + X×N0 will generate a

different, although related, inductive type

X ∼= 1 + X×N0 (3.51)

— that of so-called “left” lists (of non-negative integers). And it is not
difficult to think of the pattern which is merges both right and left lists
and gives rise to bi-linear lists, better known as binary trees:

X ∼= 1 + X×N0 × X (3.52)

One may think of many other expressions F X and guess the inductive

datatype they generate, for instance H X def
= N0 + N0 × X generating

non-empty lists of non-negative integers (N+
0 ). The general rule is

that, given an inductive datatype definition of the form

X ∼= F X (3.53)

(also called a domain equation), its pattern of recursion is captured by
a so-called functor F.
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3.8 F U N C T O R S

The concept of a functor F, borrowed from category theory, is a most
generic and useful device in programming 9. As we have seen, F can
be regarded as a datatype constructor which, given datatype A, builds
a more elaborate datatype F A; given another datatype B, builds a sim-
ilarly elaborate datatype F B; and so on. But what is more important
and has the most beneficial consequences is that, if F is regarded as a
functor, then its data-structuring effect extends smoothly to functions

in the following way: suppose that B A
foo is a function which ob-

serves A into B, which are parameters of F A and F B, respectively. By

definition, if F is a functor then F B F A
F foo exists for every such f :

A

f
��

F A

F f
��

B F B

F f extends f to F-structures and will, by definition, obey to two very
basic properties: it commutes with identity

F idA = id(F A) (3.54)

and with composition

F(g · h) = (F g) · (F h) (3.55)

Two simple examples of a functor follow:

• Identity functor: define F X = X, for every datatype X, and
F f = f . Properties (3.54) and (3.55) hold trivially just by re-
moving symbol F wherever it occurs.

• Constant functors: for a given C, define F X = C (for all datatypes
X) and F f = idC, as expressed in the following diagram:

A

f
��

C

idC
��

B C

Properties (3.54) and (3.55) hold trivially again.

In the same way functions can be unary, binary, etc., we can have
functors with more than one argument. So we get binary functors (also
called bifunctors), ternary functors etc.. Of course, properties (3.54) and

9 The category theory practitioner must be warned of the fact that the word functor is
used here in a too restrictive way. A proper (generic) definition of a functor will be
provided later in this monograph.
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Data construction Universal construct Functor Description

A× B 〈 f , g〉 f × g Product
A + B [ f , g] f + g Coproduct

BA f f A Exponential

Table 2.: Datatype constructions and associated operators.

(3.55) have to hold for every parameter of an n-ary functor. For a bi-
nary functor B, for instance, equation (3.54) becomes

B (idA, idB) = idB (A,B) (3.56)

and equation (3.55) becomes

B (g · h, i · j) = B (g, i) · B (h, j) (3.57)

Product and coproduct are typical examples of bifunctors. In the for-
mer case one has B (A, B) = A× B and B ( f , g) = f × g — recall (2.24).
Properties (2.31) and (2.30) instantiate (3.56) and (3.57), respectively,
and this explains why we called them the functorial properties of prod-
uct. In the latter case, one has B (A, B) = A + B and B ( f , g) = f + g
— recall (2.40) — and functorial properties (2.46) and (2.45). Finally,
exponentiation is a functorial construction too: assuming A, one has

F X def
= XA and F f def

= f · ap and functorial properties (2.94) and (2.95).
All this is summarized in table 2.

Such as functions, functors may compose with each other in the ob-
vious way: the composition of F and G, denoted F · G, is defined by

(F · G)X def
= F (G X) (3.58)

(F · G) f def
= F (G f ) (3.59)

3.9 P O LY N O M I A L F U N C T O R S

We may put constant, product, coproduct and identity functors to-
gether to obtain so-called polynomial functors, which are described by
polynomial expressions, for instance

F X = 1 + A× X

— recall (3.17). A polynomial functor is either

• a constant functor or the identity functor, or

• the (finitary) product or coproduct (sum) of other polynomial
functors, or

• the composition of other polynomial functors.
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So the effect on arrows of a polynomial functor is computed in an easy
and structured way, for instance:

F f = (1 + A× X) f

= { sum of two functors where A is a constant and X is a variable }

(1) f + (A× X) f

= { constant functor and product of two functors }

id1 + (A) f × (X) f

= { constant functor and identity functor }

id1 + idA × f

= { subscripts dropped for simplicity }

id + id× f

So, 1 + A× f denotes the same as id1 + idA × f , or even the same as
id + id× f if one drops the subscripts.

It should be clear at this point that what was referred to in section
2.10 as a “symbolic pattern” applicable to both datatypes and arrows
is after all a functor in the mathematical sense. The fact that the same
polynomial expression is used to denote both the data and the oper-
ators which structurally transform such data is of great conceptual
economy and practical application. For instance, once polynomial
functor (3.50) is assumed, the diagrams in (3.41) can be written as sim-
ply as

T
outT //

f
��

F T

F f
��

B F Bg
oo

T F T
inToo

B

f

OO

g
// F B

F f

OO (3.60)

It is useful to know that, thanks to the isomorphism laws studied in
chapter 2, every polynomial functor F may be put into the canonical
form,

F X ∼= C0 + (C1 × X) + (C2 × X2) + · · ·+ (Cn × Xn)

= ∑n
i=0 Ci × Xi (3.61)

and that Newton’s binomial formula

(A + B)n ∼=
n

∑
p=0

nCp × An−p × Bp (3.62)

can be used in such conversions. These are performed up to isomor-
phism, that is to say, after the conversion one gets a different but iso-
morphic datatype. Consider, for instance, functor

F X def
= A× (1 + X)2
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(where A is a constant datatype) and check the following reasoning:

F X = A× (1 + X)2

∼= { law (2.108) }

A× ((1 + X)× (1 + X))

∼= { law (2.53) }

A× ((1 + X)× 1 + (1 + X)× X))

∼= { laws (2.58), (2.34) and (2.53) }

A× ((1 + X) + (1× X + X× X))

∼= { laws (2.58) and (2.108) }

A× ((1 + X) + (X + X2))

∼= { law (2.49) }

A× (1 + (X + X) + X2)

∼= { canonical form obtained via laws (2.53) and (2.109) }

A︸︷︷︸
C0

+ A× 2︸ ︷︷ ︸
C1

×X + A︸︷︷︸
C2

×X2

Exercise 3.10. Synthesize the isomorphism

A + A× 2× X + A× X2 A× (1 + X2)
νoo

implicit in the above reasoning.
2

3.10 P O LY N O M I A L I N D U C T I V E T Y P E S

An inductive datatype is said to be polynomial wherever its pattern of
recursion is described by a polynomial functor, that is to say, wherever
F in equation (3.53) is polynomial. For instance, datatype T (3.30) is
polynomial (n = 1) and its associated polynomial functor is canoni-
cally defined with coefficients C0 = 1 and C1 = N0. For reasons that
will become apparent later on, we shall always impose C0 6= 0 to hold
in a polynomial datatype expressed in canonical form.

Polynomial types are easy to encode in HASKELL wherever the asso-
ciated functor is in canonical polynomial form, that is, wherever one
has

T ∼= ∑n
i=0 Ci × Ti

inT

hh (3.63)

Then we have
inT

def
= [ f1, . . . , fn ]
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where, for i = 0, n, fi is an arrow of type T← Ci × Ti. Since n is finite,
one may expand exponentials according to (2.108) and encode this in
HASKELL as follows:

data T =

C0 C0 |
C1 (C1, T) |
C2 (C2, (T, T)) | . . . |
Cn (Cn, (T, . . . , T))

Of course the choice of symbol Ci to realize each fi is arbitrary 10. Sev-
eral instances of polynomial inductive types (in canonical form) will
be mentioned in section 3.14. Section 3.19 will address the conversion
between inductive datatypes induced by so-called natural transforma-
tions.

The concepts of catamorphism, anamorphism and hylomorphism
introduced in section 3.6 can be extended to arbitrary polynomial types.
We devote the following sections to explaining catamorphisms in the
polynomial setting. Polynomial anamorphisms and hylomorphisms
will not be dealt with until chapter 8.

3.11 F - A L G E B R A S A N D F - H O M O M O R P H I S M S

Our interest in polynomial types is basically due to the fact that, for
polynomial F, equation (3.53) always has a particularly interesting so-
lution which corresponds to our notion of a recursive datatype.

In order to explain this, we need two notions which are easy to un-
derstand: first, that of an F-algebra, which simply is any function α of
signature A F Aαoo . A is called the carrier of F-algebra α and con-
tains the values which α manipulates by computing new A-values out
of existing ones, according to the F-pattern (the “type” of the algebra).
As examples, consider [0, add] (3.29) and inT (3.30), which are both
algebras of type F X = 1 + N0 × X. The type of an algebra clearly de-
termines its form. For instance, any algebra α of type F X = 1+ X×X
will be of form [α1 , α2], where α1 is a constant and α2 is a binary oper-
ator. So monoids are algebras of this type 11.

10 A more traditional (but less close to (3.63)) encoding will be

data T = C0 C0 | C1 C1 T | C2 C2 T T | . . . | Cn Cn T . . . T

delivering every constructor in curried form.
11 But not every algebra of this type is a monoid, since the type of an algebra only fixes

its syntax and does not impose any properties such as associativity, etc.
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Secondly, we introduce the notion of an F-homomorphism which is
but a function observing a particular F-algebra α into another F-algebra
β:

A

f
��

F A

F f
��

αoo

B F B
β

oo

f · α = β · (F f ) (3.64)

Clearly, f can be regarded as a structural translation between A and
B, that is, A and B have a similar structure 12. Note that — thanks to
(3.54) — identity functions are always (trivial) F-homomorphisms and
that — thanks to (3.55) — these homomorphisms compose, that is, the
composition of two F-homomorphisms is an F-homomorphism.

3.12 F - C ATA M O R P H I S M S

An F-algebra can be epic, monic or both, that is, iso. Iso F-algebras are
particularly relevant to our discussion because they describe solutions
to the X ∼= F X equation (3.53). Moreover, for polynomial F a partic-

ular iso F-algebra always exists, which is denoted by µF F µF
inoo

and has special properties. First, its carrier is the smallest among the
carriers of other iso F-algebras, and this is why it is denoted by µF —
µ for “minimal” 13. Second, it is the so-called initial F-algebra. What
does this mean?

It means that, for every F-algebra α there exists one and only one
F-homomorphism between in and α. This unique arrow mediating in
and α is therefore determined by α itself, and is called the F-catamorphism
generated by α. This construct, which was introduced in 3.6, is in gen-
eral denoted by (|α|)F:

µF

f=(|α|)F
��

F µF

F (|α|)F
��

inoo

A F A
α

oo

(3.65)

We will drop the F subscript in (|α|)F wherever deducible from the
context, and often call α the “gene” of (|α|)F.

As happens with splits, eithers and transposes, the uniqueness of
the catamorphism construct is captured by a universal property estab-
lished in the class of all F-homomorphisms:

k = L α M ⇔ k · in = α · F k (3.66)

12 Cf. homomorphism = homo (the same) + morphos (structure, shape).
13 µF means the least fixpoint solution of equation X ∼= F X, as will be described in

chapter 8 .
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According to the experience gathered from section 2.13 onwards, a few
properties can be expected as consequences of (3.66). For instance, one
may wonder about the “gene” of the identity catamorphism. Just let
k = id in (3.66) and see what happens:

id = L α M⇔ id · in = α · F id

= { identity (2.10) and F is a functor (3.54) }

id = L α M⇔ in = α · id
= { identity (2.10) once again }

id = L α M⇔ in = α

= { α replaced by in and simplifying }

id = L in M

Thus one finds out that the genetic material of the identity catamor-
phism is the initial algebra in. Which is the same as establishing the
reflection property of catamorphisms:

Cata-reflection :

µF

L in M
��

F µF

F L in M
��

inoo

µF F µF
in
oo

L in M = idµF (3.67)

In a more intuitive way, one might have observed that L in M is, by def-
inition of in, the unique arrow mediating µF and itself. But another
arrow of the same type is already known: the identity idµF. So these
two arrows must be the same.

Another property following immediately from (3.66), for k = L α M,
is

Cata-cancellation :

L α M · in = α · F L α M (3.68)

Because in is iso, this law can be rephrased as follows

L α M = α · F L α M · out (3.69)

where out denotes the inverse of in:

µF

out
))∼= F µF

in

hh

Now, let f be F-homomorphism (3.64) between F-algebras α and
β. How does it relate to L α M and L β M? Note that f · L α M is an arrow
mediating µF and B. But B is the carrier of β and L β M is the unique
arrow mediating µF and B. So the two arrows are the same:
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Cata-fusion :

µF

L α M
��

F µF

FL α M
��

inoo

A
f
��

F A
α

oo

F f
��

B F B
β

oo

f · L α M = L β M if f · α = β · F f (3.70)

Of course, this law is also a consequence of the universal property, for
k = f · L α M:

f · L α M = L β M ⇔ ( f · L α M) · in = β · F ( f · L α M)

⇔ { composition is associative and F is a functor (3.55) }

f · (L α M · in) = β · (F f ) · (F L α M)

⇔ { cata-cancellation (3.68) }

f · α · F L α M = β · F f · F L α M

⇐ { require f to be a F-homomorphism (3.64) }

f · α · F L α M = f · α · F L α M∧ f · α = β · F f

⇔ { simplify }

f · α = β · F f

The presentation of the absorption property of catamorphisms en-
tails the very important issue of parameterization and deserves to be
treated in a separate section, as follows.

3.13 PA R A M E T E R I Z AT I O N A N D T Y P E F U N C T O R S

By analogy with what we have done about splits (product), eithers (co-
product) and transposes (exponential), we now look forward to iden-
tifying F-catamorphisms which exhibit functorial behaviour.

Suppose that one wishes to square all numbers that are members of
lists of type T (3.30). It can be checked that

L [Nil , Cons · (sq× id)] M (3.71)

will do this for us, where N0 N0
sqoo is given by (3.48). This cata-

morphism, which converted to pointwise notation is nothing but func-
tion h which follows{

h Nil = Nil
h(Cons(a, l)) = Cons(sq a, h l)

maps type T to itself. This is because sq maps N0 to N0. Now sup-
pose that, instead of sq, one would like to apply a given function
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B N0
foo (for some B other than N0) to all elements of the argu-

ment list. It is easy to see that it suffices to replace f for sq in (3.71).
However, the output type no longer is T, but rather type T′ ∼= 1+ B×
T′.

Types T and T′ are very close to each other. They share the same
“shape” (recursive pattern) and only differ with respect to the type of
elements — N0 in T and B in T′. This suggests that these two types
can be regarded as instances of a more generic list datatype List

List X ∼= 1 + X× List X

in=[Nil ,Cons]

jj (3.72)

in which the type of elements X is allowed to vary. Thus one has
T = List N0 and T′ = List B.

By inspection, it can be checked that, for every B A
foo ,

L [Nil , Cons · ( f × id)] M (3.73)

maps List A to List B. Moreover, for f = id one has:

L [Nil , Cons · (id× id)] M

= { by the ×-functor-id property (2.31) and identity }

L [Nil , Cons] M

= { cata-reflection (3.67) }

id

Therefore, by defining

List f def
= L [Nil , Cons · ( f × id)] M

what we have just seen can be written thus:

List idA = idList A

This is nothing but law (3.54) for F replaced by List. Moreover, it will
not be too difficult to check that

List (g · f ) = List g · List f

also holds — cf. (3.55). Altogether, this means that List can be regarded
as a functor.

In programming terminology one says that List X (the “lists of Xs
datatype”) is parametric and that, by instantiating parameter X, one
gets ground lists such as lists of integers, booleans, etc. The illustra-
tion above deepens one’s understanding of parameterization by iden-
tifying the functorial behaviour of the parametric datatype along with
its parameter instantiations.
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All this can be broadly generalized and leads to what is commonly
known by a type functor. First of all, it should be clear that the generic
format

T ∼= F T

adopted so far for the definition of an inductive type is not sufficiently
detailed because it does not provide a parametric view of T. For sim-
plicity, let us suppose (for the moment) that only one parameter is
identified in T. Then we may factor this out via type variable X and
write (overloading symbol T)

T X ∼= B(X, T X)

where B is called the type’s base functor. Binary functor B(X, Y) is
given this name because it is the basis of the whole inductive type
definition. By instantiation of X one obtains F. In the example above,
B (X, Y) = 1 + X×Y and in fact F Y = B (N0, Y) = 1 + N0×Y, recall
(3.50). Moreover, one has

F f = B (id, f ) (3.74)

and so every F-homomorphism can be written in terms of the base-
functor of F, e.g.

f · α = β · B (id, f )

instead of (3.64).
T X will be referred to as the type functor generated by B:

TX︸︷︷︸
type functor

∼= B(X, TX)︸ ︷︷ ︸
base functor

We proceed to the description of its functorial behaviour — T f — for

a given B A
foo . As far as typing rules are concerned, we shall have

B A
foo

T B T A
T foo

So we should be able to express T f as a B (A, )-catamorphism L g M:

A

f
��

T A

T f=L g M
��

B (A, T A)
inT Aoo

B (id,T f )
��

B T B B (A, T B)g
oo
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As we know that inT B is the standard constructor of values of type
T B, we may put it into the diagram too:

A

f
��

T A

T f=L g M
��

B (A, T A)
inT Aoo

B (id,T f )
��

B T B B (A, T B)g
oo

B (B, T B)
inT B

dd

The catamorphism’s gene g will be synthesized by filling the dashed
arrow in the diagram with the “obvious” B ( f , id), whereby one gets

T f def
= L inT B · B ( f , id) M (3.75)

and a final diagram, where inT A is abbreviated by inA (ibid. inT B by
inB):

A

f
��

T A

T f=L inB·B ( f ,id) M
��

B (A, T A)
inAoo

B (id,T f )
��

B T B B (B, T B)
inB

oo B (A, T B)
B ( f ,id)
oo

Next, we proceed to deriving the useful law of cata-absorption

L g M · T f = L g · B ( f , id) M (3.76)

as consequence of the laws studied in section 3.12. Our target is to
show that, for k = L g M · T f in (3.66), one gets α = g · B ( f , id):

L g M · T f = L α M

⇔ { type-functor definition (3.75) }

L g M · L inB · B ( f , id) M = L α M

⇐ { cata-fusion (3.70) }

L g M · inB · B ( f , id) = α · B (id, L g M)

⇔ { cata-cancellation (3.68) }

g · B (id, L g M) · B ( f , id) = α · B (id, L g M)

⇔ { B is a bi-functor (3.57) }

g · B (id · f , L g M · id) = α · B (id, L g M)

⇔ { id is natural (2.11) }

g · B ( f · id, id · L g M) = α · B (id, L g M)

⇔ { (3.57) again, this time from left to right }

g · B ( f , id) · B (id, L g M) = α · B (id, L g M)
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⇐ { Leibniz }

g · B ( f , id) = α

The following diagram pictures this property of catamorphisms:

A

f
��

T A

T f
��

B (A, T A)
inAoo

B (id,T f )
��

C T C

L g M
��

B (C, T C)
inC

oo

B (id,L g M)
��

B (A, T C)
B ( f ,id)
oo

B (id,L g M)
��

D B (C, D)g
oo B (A, D)

B ( f ,id)
oo

It remains to show that (3.75) indeed defines a functor. This can be
verified by checking properties (3.54) and (3.55) for F = T :

• Property type-functor-id, cf. (3.54):

T id

= { by definition (3.75) }

L inB · B (id, id) M

= { B is a bi-functor (3.56) }

L inB · id M

= { identity and cata-reflection (3.67) }

id

• Property type-functor, cf. (3.55) :

T ( f · g)
= { by definition (3.75) }

L inB · B ( f · g, id) M

= { id · id = id and B is a bi-functor (3.57) }

L inB · B ( f , id) · B (g, id) M

= { cata-absorption (3.76) }

L inB · B ( f , id) M · T g

= { by definition (3.75) }

T f · T g

Exercise 3.11. Function

length = (|[zero , succ · π2]|)



3.13 PA R A M E T E R I Z AT I O N A N D T Y P E F U N C T O R S 104

counts the number of elements of a finite list. In case the input list has one element
at least it suffices to count the elements of its tail starting with count 1 instead of 0:

length · (a:) = (|[one , succ · π2]|) (3.77)

Prove (3.77) knowing that

length · (a:) = succ · length

follows from the definition of length. (NB: assume zero = 0 and one = 1.)
2

Exercise 3.12. Function concat, extracted from Haskell’s Prelude, can be defined
as list catamorphism,

concat = (|[nil , conc]|) (3.78)

where conc (x, y) = x ++ y, nil = [ ], B (f , g) = id + f × g, F f = B (id, f ), and
T f = map f . Prove property

length · concat = sum ·map length (3.79)

resorting to cata-fusion and cata-absorption.
2

Exercise 3.13. Consider the following generalization of law (3.76)

L g M · L in2 · α M = L g · α M ⇐ G f · α = α · F f (3.80)

corresponding to the diagram:

T1

L in2·α M
��

F T1
in1oo

F L in2·α M
��

T2

L g M
��

G T2
in2

oo

G L g M
��

F T2
αoo

FL g M
��

C G Cg
oo FC

α
oo

Prove (3.80).
2
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3.14 A C ATA L O G U E O F S TA N D A R D P O LY N O M I A L I N D U C T I V E

T Y P E S

The following table contains a collection of standard polynomial in-
ductive types and associated base type bi-functors, which are in canon-
ical form (3.63). The table contains two extra columns which may be
used as bookmarks for equations (3.74) and (3.75), respectively 14:

Description T X B (X, Y) B (id, f ) B ( f , id)

“Right” Lists List X 1 + X×Y id + id× f id + f × id
“Left” Lists LList X 1 + Y× X id + f × id id + id× f
Non-empty Lists NList X X + X×Y id + id× f f + f × id
Binary Trees BTree X 1 + X×Y2 id + id× f 2 id + f × id
“Leaf” Trees LTree X X + Y2 id + f 2 f + id

(3.81)

All type functors T in this table are unary. In general, one may think
of inductive datatypes which exhibit more than one type parameter.
Should n parameters be identified in T, then this will be based on an
n + 1-ary base functor B, cf.

T(X1, . . . , Xn) ∼= B(X1, . . . , Xn, T(X1, . . . , Xn))

So, every n + 1-ary polynomial functor B(X1, . . . , Xn, Xn+1) can be
identified as the basis of an inductive n-ary type functor (the con-
vention is to stick to the canonical form and reserve the last variable
Xn+1 for the “recursive call”). While type bi-functors (n = 2) are often
found in programming, the situation in which n > 2 is relatively rare.
For instance, the combination of leaf-trees with binary-trees in (3.81)
leads to the so-called “full tree” type bi-functor

Description T(X1, X2) B(X1, X2, Y) B(id, id, f ) B( f , g, id)

“Full” Trees FTree(X1, X2) X1 + X2 ×Y2 id + id× f 2 f + g× id
(3.82)

As we shall see later on, these types are widely used in programming.
In the actual encoding of these types in HASKELL, exponentials are
normally expanded to products according to (2.108), see for instance

data BTree a = Empty | Node (a, (BTree a, BTree a)) (3.83)

Moreover, one may choose to curry the type constructors as in, e.g.

data BTree a = Empty | Node a (BTree a) (BTree a)

Exercise 3.14. Write as a catamorphisms

• the function which counts the number of elements of a non-empty list (type
NList in (3.81)).

• the function which computes the maximum element of a binary-tree of natural
numbers.

14 Note the abuse of notation in writing f 2 as abbreviation for f × f and thus id2 for
id× id. Since id× id = id, we have id2 = id.
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2

Exercise 3.15. Let

nil = [ ] (3.84)

singl a = [a ] (3.85)

be defined. Characterize the function which is defined by L [nil , h] M for each of the
following definitions of h:

h(x, (y1, y2)) = y1 ++ [x] ++ y2 (3.86)

h = ++ · (singl×++) (3.87)

h = ++ · (++× singl) · swap (3.88)

Identify in (3.81) which datatypes are involved as base functors.
2

Exercise 3.16. Write as a catamorphism the function that computes the tips of a tree
of type LTree (3.81), listed from left to right.
2

Exercise 3.17. Function

mirror (Leaf a) = Leaf a
mirror (Fork (x, y)) = Fork (mirror y, mirror x)

which mirrors binary trees of type LTree a = Leaf a | Fork (LTree a, LTree a) can
be defined both as a catamorphism

mirror = (|in · (id + swap)|) (3.89)

and as an anamorphism

mirror = [((id + swap) · out)] (3.90)

where out is the converse of

in = [Leaf , Fork] (3.91)

Show that both definitions are effectively the same, that is, complete the etc steps of
the rasoning:

mirror = (|in · (id + swap)|)
≡ { ... etc ... }

mirror = [((id + swap) · out)]

2
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Figure 3.1.: Towers of Hanoi.

(Hint: recall that F f = id + f × f for this type and mind the natural property of
id + swap.)
2

Exercise 3.18. Let parametric type T be given with base B, that is, such that T f =
(| in · B (f , id)|). Define the so-called triangular combinator of T, tri f , as follows:

tri f = (| in · B (id, T f )|) (3.92)

Show that the instance of this combinator for type LTree a = Leaf a | Fork (LTree a, LTree a)
— such that in = [Leaf , Fork] and B (f , g) = f + g× g — is the following function

tri :: (a→ a)→ LTree a→ LTree a
tri f (Leaf x) = Leaf x
tri f (Fork (t, t′)) = Fork (fmap f (tri f t), fmap f (tri f t′))

written in Haskell syntax.
2

3.15 H Y L O - F A C T O R I Z AT I O N

A well-known example of a hylomorphism is the algorithm that com-
putes the sequence of disk moves in the Towers of Hanoi puzzle:

hanoi (d, 0) = [ ]

hanoi (d, n + 1) = hanoi (¬ d, n) ++ [(n, d) ] ++ hanoi (¬ d, n)
(3.93)

Here is a nice account of this puzzle, taken from [5]:

The Towers of Hanoi problem comes from a puzzle marketed in 1883
by the French mathematician Édouard Lucas, under the pseudonym
Claus. The puzzle is based on a legend according to which there is
a temple, apparently in Bramah rather than in Hanoi as one might
expect, where there are three giant poles fixed in the ground. On the
first of these poles, at the time of the world’s creation, God placed sixty
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four golden disks, each of different size, in decreasing order of size. The
Bramin monks were given the task of moving the disks, one per day,
from one pole to another subject to the rule that no disk may ever be
above a smaller disk. The monks’ task would be complete when they
had succeeded in moving all the disks from the first of the poles to the
second and, on the day that they completed their task the world would
come to an end!

There is a wellknown inductive solution to the problem (...) In this solu-
tion we make use of the fact that the given problem is symmetrical with
respect to all three poles. Thus it is undesirable to name the individual
poles. Instead we visualize the poles as being arranged in a circle [See
figure 3.1]; the problem is to move the tower of disks from one pole to
the next pole in a specified direction around the circle. The code defines
H n d§ to be a sequence of pairs (k, d′) where n is the number of disks,
k is a disk number and d and d′ are directions. Disks are numbered
from 0 onwards, disk 0 being the smallest. (Assigning number 0 to the
smallest rather than the largest disk has the advantage that the number
of the disk that is moved on any day is independent of the total number
of disks to be moved.) Directions are boolean values, true representing
a clockwise movement and false an anticlockwise movement. The pair
(k, d′) means move the disk numbered k from its current position in
the direction d′. (...) Taking the pairs in order from left to right, the
complete sequence (...) prescribes how to move the n smallest disks one-
byone from one pole to the next pole in the direction d following the
rule of never placing a larger disk on top of a smaller disk.

Next, here is how the same function (3.93) can be viewed as a hylo-
morphism:15

hanoi = L inord M · [(strategy)] where
strategy (d, 0) = i1 ()

strategy (d, n + 1) = i2 ((d, n), ((¬ d, n), (¬ d, n)))
inord = [nil , f ]
f (x, (l, r)) = l ++ [x ] ++ r

This means that, for some functor F,

hanoi = inord · F hanoi · strategy (3.94)

holds. The question is: which functor F is capturing the recursive pat-
tern of the algorithm? From strategy (d, 0) = i1 () we infer the type

strategy : B×N0 → 1 + .....

and from strategy (d, n + 1) = i2 ((d, n), ((¬ d, n), (¬ d, n))) we infer

strategy : B×N0 → . . . + (B×N0)× (B×N0)
2

Altogether:

(B×N0)
∗ 1 + (B×N0)× ((B×N0)

∗)
2inordoo

B×N0

hanoi

OO

strategy
// 1 + (B×N0)× (B×N0)

2

id+id×hanoi2

OO

15 Recall (3.86) concerning function inord.
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We conclude that F X = 1 + (B×N0)×X2:

(B×N0)
∗ F (B×N0)

∗inordoo

B×N0

hanoi

OO

strategy
// F (B×N0)

F hanoi

OO

Since F X = B (Y, X) for some B, we get

F X = B (B×N0, X)

for B (Y, X) = 1+Y×X2. Finally, from the table in (3.81) we conclude
that the intermediate (virtual) structure of the hanoi hylomorphism is
BTree (B×N0):

(B×N0)
∗ F (B×N0)

∗inordoo

BTree (B×N0)

L inord M

OO

out
,,

∼= F (BTree (B×N0))

F L inord M

OO

in

ll

B×N0

hanoi

55

[(strategy)]

OO

strategy
// F (B×N0)

F [(strategy)]

OO
F hanoi

ii

Exercise 3.19. Show that (3.94) unfolds to (3.93) for F X = 1 + (B×N0)×X2.
2

Exercise 3.20. From the hanoi function (3.93) one can derive the function that gives
the total number of disk movements of the puzzle:

nm 0 = 0
nm (n + 1) = 2 ∗ (nm n) + 1

That is, it is the for-loop

nm = for odd 0 where odd n = 2 ∗ n + 1 (3.95)

Show that

nm n = 2n − 1.

Hint: define k n = 2n − 1 and solve the equation k = for odd 0 using the laws of
catamorphisms and basic properties of arithmetics.
2

Exercise 3.21. From the pointwise version on ‘quicksort‘’,
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qSort [ ] = [ ]
qSort (h : t) = qSort [a | a← t, a < h ] ++ [h ] ++ qSort [a | a← t, a > h ]

infer g and h in the hylo-factorization qSort = L g M · [(h)], knowing that the interme-
diate structure is a BTree as in the case of hanoi.
2

Exercise 3.22. Consider the well-known function which computes the n-th Fibonacci
number:

fib 0 = 1
fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

Show that f ib is a hylomorphism of type LTree (3.81),

f ib = Jcount, f ibdK

for

count = [1, add]
add (x, y) = x + y
fibd 0 = i1 ()
fibd 1 = i1 ()
fibd (n + 2) = i2 (n + 1, n)

2

Exercise 3.23. Consider the following definition of the factorial function,

dfac 0 = 1
dfac n = [[[id , mul], dfacd]] (1, n)

where

mul (x, y) = x ∗ y
dfacd (n, m)
| n ≡ m = i1 n
| otherwise = i2 ((n, k), (k + 1, m)) where k = (n + m)÷ 2

Derive from the above the corresponding (doubly recursive) pointwise definition of
dfac. (This is known as the double factorial implementation of factorial.)
2

Exercise 3.24. The drawing below describes how the so-called merge sort algorithm
works16:

16 Only the case of inputs with more than one element is depicted.



3.15 H Y L O - F A C T O R I Z AT I O N 111

merge (mSort l1) (mSort l2)

mSort l1 mSort l2

l1 l2

l

C (“conquer”)

B

A (“divide”)

Define the function merge (which merges two ordered lists into a single ordered list)
and then the hylomorphism in

mSort [ ] = [ ]
mSort x = [[[singl , merge], g]] x

(find g) knowing that its virtual data-structure is of type LTree. Note that the empty
list is left out of the hylomorphism and handled separately. Function singl is defined
in (3.85).
2

Exercise 3.25. Consider the histogram below corresponding to the following se-
quence of numbers that indicate the height of each bar:

h = [2, 3, 1, 5, 3, 1 ]

We want to define a hylomorphism

lhr = L conquer M · [(divide)]

that should calculate the rectangle with the largest
area that can be included in such histograms. (For
the given histogram, we should have lhr h =
6.) The diagram below depicts lhr as a BTree-
hylomorphism:

N0
∗

divide
,,

[(divide)]
��

1 + N2
0 ×N0

∗2

id+id×[(divide)]2
��

BTree (N2
0)

out ..

L conquer M
��

∼= 1 + N2
0 × (BTree N2

0)
2

in

ll

id+id×L conquer M2

��
N0 1 + N2

0 ×N0
2

conquer

jj

Define divide and conquer. Hint: the tree below is the intermediate data-structure
t = [(divides)] h that is generated when the input is h = [2, 3, 1, 5, 3, 1 ]. 17

17 This exercise is adapted from problem 84 (Largest Rectangle in Histogram) of the
LeetCode website.

https://leetcode.com/problems/largest-rectangle-in-histogram/
https://leetcode.com/
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2

3.16 F U N C T O R S A N D T Y P E F U N C T O R S I N H A S K E L L

The concept of a (unary) functor is provided in HASKELL in the form
of a particular class exporting the fmap operator:

class Functor f where
fmap :: (a→ b)→ (f a→ f b)

So fmap g encodes F g once we declare F as an instance of class Functor.
The most popular use of fmap has to do with HASKELL lists, as al-
lowed by declaration

instance Functor [ ] where
fmap f [ ] = [ ]

fmap f (x : xs) = f x : fmap f xs

in language’s Standard Prelude.
In order to encode the type functors we have seen so far we have

to do the same concerning their declaration. For instance, should we
write

instance Functor BTree

where fmap f = cataBTree (inBTree · (id + (f × id)))

concerning the binary-tree datatype of (3.81) and assuming appropri-
ate declarations of cataBTree and inBTree, then fmap is overloaded
and used across such binary-trees.

Bi-functors can be added easily by writing

class BiFunctor f where
bmap :: (a→ b)→ (c→ d)→ (f a c→ f b d)

Exercise 3.26. Declare all datatypes in (3.81) in HASKELL notation and turn them
into HASKELL type functors, that is, define fmap in each case.
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2

Exercise 3.27. Declare datatype (3.82) in HASKELL notation and turn it into an
instance of class BiFunctor.
2

3.17 T H E M U T U A L - R E C U R S I O N L AW

The theory developed so far for building (and reasoning about) recur-
sive functions does not cope with mutual recursion. As a matter of
fact, the pattern of recursion of a given cata(ana,hylo)morphism in-
volves only the recursive function being defined, even though more
than once, in general, as dictated by the relevant base functor.

It turns out that rules for handling mutual recursion are surprisingly
simple to calculate. As motivation, recall section 2.10 where, by mix-
ing products with coproducts, we obtained a result — the exchange
rule (2.50) — which stemmed from putting together the two universal
properties of product and coproduct, (2.64) and (2.66), respectively.

The question we want to address in this section is of the same brand:
what can one tell about catamorphisms which output pairs of values? By
(2.64), such catamorphisms are bound to be splits, as are the corre-
sponding genes:18

T

L 〈h,k〉 M
��

F T

F L 〈h,k〉 M
��

inoo

A× B F (A× B)
〈h,k〉
oo

As we did for the exchange rule, we put (2.64) and the universal prop-
erty of catamorphisms (3.66) against each other and calculate:

〈 f , g〉 = L 〈h, k〉 M
≡ { cata-universal (3.66) }

〈 f , g〉 · in = 〈h, k〉 · F 〈 f , g〉
≡ { ×-fusion (2.26) twice }

〈 f · in, g · in〉 = 〈h · F 〈 f , g〉, k · F 〈 f , g〉〉
≡ { (2.65) }{

f · in = h · F 〈f , g〉
g · in = k · F 〈f , g〉

18 Using T to denote µF.
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The rule thus obtained,{
f · in = h · F 〈 f , g〉
g · in = k · F 〈 f , g〉 ≡ 〈 f , g〉 = L 〈h, k〉 M (3.96)

is referred to as the mutual recursion law (or as “Fokkinga’s law”) and
is useful in combining two mutually recursive functions f and g

T

f
��

F T

F 〈 f ,g〉
��

inoo

A F (A× B)
h

oo

T

g
��

F T

F 〈 f ,g〉
��

inoo

B F (A× B)
k

oo

into a single catamorphism.
When applied from left to right, law (3.96) is surprisingly useful in

optimizing recursive functions in a way which saves redundant traver-
sals of the input inductive type T. Let us take the Fibonacci function
as example:

f ib 0 = 1

f ib 1 = 1

f ib(n + 2) = f ib(n + 1) + f ib n

It can be shown — recall exercise 3.22 — that f ib is a hylomorphism
of type LTree (3.81). This hylo-factorization of f ib tells something
about its internal algorithmic structure: the divide step [( f ibd)] builds
a tree whose number of leaves is a Fibonacci number; the conquer step
L count M just counts such leaves.

There is, of course, much re-calculation in this hylomorphism. Can
we improve its performance? The clue is to regard the two instances
of f ib in the recursive branch as mutually recursive over the natural
numbers. This clue is suggested not only by f ib having two base cases
(so, perhaps it hides two functions) but also by the lookahead n + 2 in
the recursive clause.

We start by defining a function which reduces such a lookahead by
1,

f n = f ib(n + 1)

Clearly, f (n + 1) = f ib(n + 2) = f n + f ib n and f 0 = f ib 1 = 1.
Putting f and f ib together,{

f 0 = 1
f (n + 1) = f n + fib n{
fib 0 = 1
fib (n + 1) = f n

we obtain two mutually recursive functions over the natural numbers
(N0) which transform into pointfree equalities

f · [0, suc] = [1, add · 〈 f , f ib〉]
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f ib · [0, suc] = [1, f ]

over

N0

**∼= 1 + N0︸ ︷︷ ︸
F N0in=[0 ,suc]

ii (3.97)

Reverse +-absorption (2.44) will further enable us to rewrite the above
into

f · in = [1, add] · F 〈 f , f ib〉
f ib · in = [1, π1] · F 〈 f , f ib〉

thus making functor F f = id + f explicit and preparing for mutual
recursion removal:

f · in = [1, add] · F 〈 f , f ib〉
f ib · in = [1, π1] · F 〈 f , f ib〉

≡ { (3.96) }

〈 f , f ib〉 = L 〈[1, add], [1, π1]〉 M

≡ { exchange law (2.50) }

〈 f , f ib〉 = L [〈1, 1〉 , 〈add, π1〉] M

≡ { going pointwise and denoting 〈 f , f ib〉 by f ib′ }{
f ib′ 0 = (1, 1)
f ib′ (n + 1) = (x + y, x) where (x, y) = f ib′ n

Since f ib = π2 · f ib′ we easily recover f ib from f ib′ and obtain the
intended linear version of Fibonacci, below encoded in Haskell:

fib n = m where
( , m) = fib′ n
fib′ 0 = (1, 1)
fib′ (n + 1) = (x + y, x) where (x, y) = fib′ n

This version of f ib is actually the semantics of the “for-loop” — recall
(3.7) — one would write in an imperative language which would ini-
tialize two variables x, y := 1, 1, loop over the in-place update x, y :=
x + y, x and yield the result in y. In the C programming language, one
would write

int fib(int n)
{

int x=1; int y=1; int i;
for (i=1; i<=n; i++) {int a=x; x=x+y; y=a;}
return y;

};

where the extra variable a is required for ensuring that simultaneous
assignment x, y := x + y, x takes place in a sequential way.
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Recall from section 3.1 that all N0 catamorphisms are of shape L [k , g] M
and such that L [k , g] Mn = gnk, where gn is the n-th iteration of g, that
is, g0 = id and gn+1 = g · gn. That is, g is the body of a “for-loop”
which repeats itself n-times, starting with initial value k. Recall also
that the for-loop combinator is nothing but the “fold combinator” (3.5)
associated to the natural number data type.

In a sense, the mutual recursion law gives us a hint on how global
variables “are born” in computer programs — out of the maths defini-
tions themselves and not by sheer invention of programmers.

Quite often more than two such variables are required in lineariz-
ing hylomorphisms by mutual recursion. Let us see an example. The
question is: how many squares can one draw on a n × n-tiled wall? The
answer is given by function

ns n def
= ∑

i=1,n
i2

that is,

ns 0 = 0

ns (n + 1) = (n + 1)2 + ns n

in Haskell. However, this hylomorphism is inefficient because each
iteration involves another hylomorphism computing square numbers.

One way of improving ns is to introduce function bnm n def
= (n + 1)2

and express this over (3.97), to obtain its primitive recursion defini-
tion:

bnm 0 = 1

bnm(n + 1) = 2n + 3 + bnm n

The idea is to blend ns with bnm using the mutual recursion law. How-
ever, the same problem arises in bnm itself, which now depends on

term 2n + 3. We invent lin n def
= 2n + 3 and repeat the process, now

obtaining:

lin 0 = 3

lin(n + 1) = 2 + lin n

By redefining

bnm′ 0 = 1

bnm′(n + 1) = lin n + bnm′ n

ns′ 0 = 0

ns′(n + 1) = bnm′ n + ns′ n

we obtain three functions — ns′, bnm′ and lin — mutually recursive
over the polynomial base F g = id + g of the natural numbers.
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Exercise 3.32 below shows how to extend (3.96) to three mutually
recursive functions (3.98). (From this it is easy to extend it further to
the n-ary case.) It is routine work to show that, by application of (3.98)
to the above three functions, one obtains the linear version of ns that
follows,

ns′′ n = a where
(a, , ) = aux n
aux 0 = (0, 1, 3)
aux (n + 1) = let (a, b, c) = aux n in (a + b, b + c, 2 + c)

where aux is a for-loop.
In retrospect, note that (in general) not every system of n mutually

recursive functions
f1 = φ1( f1, . . . , fn)
...
fn = φn( f1, . . . , fn)

involving n functions and n functional combinators φ1, . . . , φn can be
handled by a suitably extended version of (3.96). This only happens
if all fi have the same “shape”, that is, if they share the same base
functor F.

Exercise 3.28. Use the mutual recursion law (3.96) to show that each of the two
functions{

odd 0 = False
odd(n + 1) = even n

{
even 0 = True
even(n + 1) = odd n

checking natural number parity can be expressed as a projection of

for swap (FALSE, TRUE)

Encode this for-loop in C syntax.
2

Exercise 3.29. The following Haskell function computes the list of the first n natural
numbers in reverse order:

insg 0 = [ ]
insg (n + 1) = (n + 1) : insg n

1. Show that insg can also be defined as follows:

insg 0 = [ ]
insg (n + 1) = (fsuc n) : insg n

fsuc 0 = 1
fsuc (n + 1) = fsuc n + 1
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2. Based on the mutual recursion law derive from such a definition the following
version of insg encoded as a for-loop:

insg = π2 · insgfor
insgfor = for 〈(1+) · π1, cons〉 (1, [ ])

where cons (n, m) = n : m.

2

Exercise 3.30. The number of steps that solve the Hanoi Towers “puzzle”, for n
discs, is:

k n = 2n − 1

— recall exercise 3.20. Using the mutual recursion law, show that another way of
computing k is

k = π1 · g where
g = for loop (0, 1)
loop (k, e) = (k + e, 2 ∗ e)

knowing that

k 0 = 0

k (n + 1) = 2n + k n

hold (as can be easily shown) and that 2n = for (2∗) 1 n.
2

Exercise 3.31. The chart below represents a function h defined by mutual recursion
in the following way,{

h = in · F g · out
g = [1, id] · F h · out

where

F f = id + f
in = [0, succ], where
succ x = x + 1
out = in◦

Show that the same function can be de-
fined in terms of a loop-for, as follows:

h = fst · (for loop ((0, 1))) where
loop (a, b) = (1 + b, a)

2
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Exercise 3.32. Show that law (3.96) generalizes to more than two mutually recursive
functions, three in this case:

f · in = h · F 〈 f , 〈g, j〉〉
g · in = k · F 〈 f , 〈g, j〉〉
j · in = l · F 〈 f , 〈g, j〉〉

≡ 〈 f , 〈g, j〉〉 = L 〈h, 〈k, l〉〉 M (3.98)

2

Exercise 3.33. Prove the law{
f = in · F [f , g] · h
g = in · F [f , g] · k ≡ [f , g] = [([h , k])] (3.99)

which dualizes the mutual recursion law, cf.

T F T
inoo

A + B

[f ,g]=[([h ,k])]

OO

[h ,k]
// F (A + B)

F [f ,g])

OO T F T
inoo in // T

A

f

OO

h
// F (A + B)

F [f ,g]

OO

B
k

oo

g

OO

2

Exercise 3.34. The mutual recursion law generalizes to hylomorphisms sharing the
same anamorfism:

〈f , g〉 = L 〈h, k〉 M · [(q)] ≡
{

f = h · F 〈f , g〉 · q
g = k · F 〈f , g〉 · q (3.100)

Prove (3.100).
2

Exercise 3.35. The exponential function ex : R → R (where “e” denotes Euler’s
number) can be defined in several ways, one being the calculation of Taylor series:

ex =
∞

∑
n=0

xn

n!
(3.101)

The following function, in Haskell,

exp :: Double→ Integer→ Double
exp x 0 = 1
exp x (n + 1) = x ↑ (n + 1) / fac (n + 1) + (exp x n)

computes an approximation of ex, where the second parameter tells how many terms
to compute. For instance, while exp 1 1 = 2.0, exp 1 10 yields 2.7182818011463845.
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Function exp x n performs badly for n larger and larger: while exp 1 100 runs
instantaneously, exp 1 1000 takes around 9 seconds, exp 1 2000 takes circa 33
seconds, and so on.

Decompose exp into mutually recursive functions so as to apply (3.98) and obtain
the following linear version,

exp x n = let (e, b, c) = aux x n
in e where

aux x 0 = (1, 2, x)
aux x (n + 1) =

let (e, s, h) = aux x n
in (e + h, s + 1, (x / s) ∗ h)

which translates directly to the encoding in C:

float exp(float x, int n)
{

float h=x; float e=1; int s=2; int i;
for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}
return e;

};

2

Exercise 3.36. Consider the formula that gives the n-th Catalan number:

Cn =
(2n)!

(n + 1)!(n!)
(3.102)

The aim of this exercise is to find an efficient implementation of Cn that, derived
by mutual recursion, does not calculate any factorials. Let this be prepared by the
following calculations:

Cn+1 =
(2n + 2)!

(n + 2)!(n + 1)!
=

(2n + 2)(2n + 1)
(n + 2)(n + 1)

Cn =
4n2 + 6n + 2
(n + 2)(n + 1)

Cn

Then:

4n2 + 6n + 2 n + 1
0 + 2n + 2 4n + 2

0 0

Therefore:

Cn+1 =
4n + 2
n + 2

Cn

Now define:

f n = 4n + 2

g n = n + 2

Clearly:

f 0 = 2
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f (n + 1) = f n + 4

g 0 = 2

g (n + 1) = g n + 1

Complete the exercise to obtain loop and init and the code missing from:

catalan = · · · · for loop init where · · ·

2

Exercise 3.37. Show that, for all n ∈ N0, n = sucn0. Hint: use cata-reflection
(3.67).
2

M U T U A L R E C U R S I O N O V E R L I S T S . As example of application of
(3.96) for µF other than N0, consider the following recursive predicate
which checks whether a (non-empty) list is ordered,

ord : A+ → 2
ord [a] = TRUE

ord (cons(a, l)) = a > (listMax l) ∧ (ord l)

where > is assumed to be a total order on datatype A and

listMax = L [id , max] M (3.103)

computes the greatest element of a given list of As:

A+

listMax
��

A + A× A+

id+id×listMax
��

[singl ,cons]oo

A A + A× A
[id ,max]

oo

(In the diagram, singl a = [a].)
Predicate ord is not a catamorphism because of the presence of listMax l

in the recursive branch. However, the following diagram depicting
ord

A+

ord
��

A + A× A+

id+id×〈listMax,ord〉
��

[singl ,cons]oo

2 A + A× (A× 2)
[TRUE ,α]

oo



3.18 “ B A N A N A - S P L I T ” : A C O R O L L A RY O F T H E M U T U A L - R E C U R S I O N L AW 122

(where α(a, (m, b)) def
= a > m ∧ b) suggests the possibility of using the

mutual recursion law. One only has to find a way of letting listMax

depend also on ord, which isn’t difficult: for any A+ g // B , one has

A+

listMax
��

A + A× A+

id+id×〈listMax,g〉
��

[singl ,cons]oo

A A + A× (A× B)
[id ,max·(id×π1)]

oo

where the extra presence of g is cancelled by projection π1.
For B = 2 and g = ord we are in position to apply Fokkinga’s law

and obtain:

〈listMax, ord〉 = L 〈[id , max · (id× π1)], [TRUE , α]〉 M
= { exchange law (2.50) }

L [〈id, TRUE〉 , 〈max · (id× π1), α〉] M

Of course, ord = π2 · 〈listMax, ord〉. By denoting the above synthe-
sized catamorphism by aux, we end up with the following version of
ord:

ord l = let (a, b) = aux l in b

where

aux : A+ → A× 2

aux [a ] = (a, TRUE)

aux (cons (a, l)) = (max (a, m), a > m ∧ b) where (m, b) = aux l

Exercise 3.38. What do the following Haskell functions do?

f1 [ ] = [ ]
f1 (h : t) = h : ( f2 t)

f2 [ ] = [ ]
f2 (h : t) = f1 t

Write f = 〈 f1, f2〉 as a list catamorphism and encode f back into Haskell syntax.
2

3.18 “ B A N A N A - S P L I T ” : A C O R O L L A RY O F T H E M U T U A L - R E C U R S I O N

L AW

Let f = L i M and g = L j M be given. Clearly:

f = L i M
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≡ { by cata-universal (3.66) }

f · in = i · F f

≡ { by ×-cancellation (2.22) }

f · in = i · F (π1 · 〈 f , g〉)
≡ { F is a functor }

f · in = i · F π1 · F 〈 f , g〉

Similarly,

g = L j M

≡ { as above for g = L j M }

g · in = j · F π2 · F 〈f , g〉

Then: {
f · in = i · F π1 · F 〈f , g〉
g · in = j · F π2 · F 〈f , g〉

≡ { mutual recursion law (3.96) }

〈f , g〉 = L 〈i · F π1, j · F π2〉 M
≡ { f = L i M and g = L j M }

〈L i M, L j M〉 = L 〈i · F π1, j · F π2〉 M

Altogether, we get

〈L i M, L j M〉 = L 〈i · F π1, j · F π2〉 M

that is

〈L i M, L j M〉 = L (i× j) · 〈F π1, F π2〉 M (3.104)

by (reverse) ×-absorption (2.27).
This law provides us with a very useful tool for “parallel loop” inter-

combination: “loops” L i M and L j M are fused together into a single
“loop” L (i × j) · 〈F π1, F π2〉 M. The need for this kind of calculation
arises very often. Consider, for instance, the function which computes
the average of a non-empty list of natural numbers,

average def
= (/) · 〈sum, length〉 (3.105)

where sum and length are the expected N+ catamorphisms:

sum = L [id ,+] M

length = L [1, succ · π2] M

As defined by (3.105), function average performs two independent
traversals of the argument list before division (/) takes place. Banana-
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split will fuse two such traversals into a single one (see function aux
below), thus leading to a function which will run ”twice as fast”:

average l = x / y where
(x, y) = aux l
aux [ ] = (0, 0)
aux (a : l) = (a + x, y + 1) where (x, y) = aux l

(3.106)

Exercise 3.39. Calculate (3.106) from (3.105). Which of these two versions of the
same function is easier to understand?
2

Exercise 3.40. The following diagram depicts “banana-split” (3.104):

F T

F (|i|)

��
F (|j|)

��

f6

��

in

ssT

(|i|)

��

(|j|)

��

f7

��

F A
i

ttA F (A× B)
f4

ss

f1

dd

f2 $$

f5oo

f3

{{

A× B
π1

bb

π2 ""

F B

j
ssB

Identify all functions f1 to f7.
2

Exercise 3.41. Show that the standard Haskell function

unzip xs = (map π1 xs, map π2 xs)

can be defined as a catamorphism (fold) thanks to (3.104). Generalize this calcula-
tion to the generic unzip function over an inductive (polynomial) type T:

unzipT = 〈Tπ1, Tπ2〉

Suggestion: recall (3.75).
2
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3.19 I N D U C T I V E D ATAT Y P E I S O M O R P H I S M

Transforming inductive datatypes into other inductive datatypes is an
important topic in programming, enabling the migration of “data in
one format” to data in “another format”. Ensuring properties of data
migration operations is an important issue in data processing.

Think of a migration f over a dataset which is such that there are two
data items x and y such that f x = f y. Clearly, there is information
loss in this migration since the source x or y cannot be recovered from
the target f x. Technically, one would say that, in this case, f is not
injective.

In the general setting, the source and target datatypes are struc-
tured by different base functors. Suppose one is given two inductive
datatypes

T ∼= F T

inT

gg
and

U ∼= G U

inU

gg

defined by functors F and G, respectively. Moreover, suppose that
recursion pattern G can be converted to recursion pattern F via some

polymorphic map F X G X
αXoo . It can be easily checked that

(|inT · αT|)G (3.107)

is a map that converts U-data into T-data by structural application of
transformation α:19

U

L inT·αT M
��

G U
inUoo

GL inT·αT M
��

T F T
inT
oo G T

αT

oo

It is useful to know that some properties of α extend inductively
to catamorphism (3.107). For instance, should α be an isomorphism
then (|inT · αT|)G will be an isomorphism as well, that is, T and U will
be isomorphic. Before checking this fact, let us see an example. By
inspection of table (3.81), it is easy to check that the base functors of
RList and LList — resp. 1+ X×Y and 1+Y×X — are isomorphic via
α = id + swap. This will be enough to establish inductive datatypes
RList and LList as isomorphic.

It is well known that wherever β · α = id then β will be a surjec-
tive function and α will be injective.20 As simple examples of applica-
tion of this fact recall ×-cancellation (2.22) and +-cancellation (2.41).
By instantiating one of the functions involved to the identity, in each

19 Note that, for F X = B (A, X), G X = B (B, X) and α = B ( f , id), (3.107) instantiates to
(3.75). We could exploit full parametricity here by working with the base bifunctors
but that would add little to what we intend to show at the cost of some notation
convolution. Such an extension will be dealt with in section 8.5.

20 See section 5.12 later on for the technical details.
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case, one immediately finds left-inverses for the injections i1, i2 (respec-
tively: right-inverses for the projections π1, π2) meaning that they are
injective (respectively: surjective) — thus the choice of terminology.21

We show next that such properties (injectivity or surjectivity) of α ex-
tend to the catamorphism that performs the corresponding inductive
type conversion. Two thumb rules will be derived,

- cata of injective α is injective (3.108)

- cata of surjective α is surjective (3.109)

and, as a consequence:

- cata of bijective α is bijective (3.110)

Suppose that α in

U

(|inT·α|)G
��

F U

F (|inT·α|)G
��

G U
αoo

inU

vv

G (|inT·α|)G
��

T F T
inT
oo G T

α
oo

is such that β · α = id, that is, α is injective and β is surjective. Then,
by (3.80), one easily gets:

L inU · β M · L inT · α M = id (3.111)

Therefore, L inT · α M is injective provided α is so; and L inU · β M is surjec-
tive provided β is so.22

Exercise 3.42. Show that the function mirror of exercise 3.17 is its own inverse and
therefore an isomorphism.
2

3.20 B I B L I O G R A P H Y N O T E S

It is often the case that the expressive power of a particular program-
ming language or paradigm is counter-productive in the sense that
too much freedom is given to programmers. Sooner or later, these
will end up writing unintelligible (authorship dependent) code which
will become a burden to whom has to maintain it. Such has been
the case of imperative programming in the past (inc. assembly code),
where the unrestricted use of goto instructions eventually gave place
to if-then-else, while and repeat structured programming con-
structs.

21 This will be addressed in exercise 5.25 later on.
22 This topic will be revisited, in a wider setting, later in section 8.5.
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A similar trend has been observed over the last decades at a higher
programming level: arbitrary recursion and/or (side) effects have been
considered harmful in functional programming. Instead, program-
mers have been invited to structure their code around generic pro-
gram devices such as e.g. fold/unfold combinators, which bring disci-
pline to recursion. One witnesses progress in the sense that the loss
of freedom is balanced by the increase of formal semantics and the
availability of program calculi.

Such disciplined programming combinators have been extended from
list-processing to other inductive structures thanks to one of the most
significant advances in programming theory over the last decade: the
so-called functorial approach to datatypes which originated mainly from
[52], was popularized by [51] and reached textbook format in [11]. A
comfortable basis for exploiting polymorphism [85], the “datatypes as
functors” moto has proved beneficial at a higher level of abstraction,
giving birth to polytypism [39].

The literature on anas, catas and hylos is vast (see e.g. [55], [38], [27])
and it is part of a broader discipline which has become known as the
mathematics of program construction [4]. This chapter provides an in-
troduction to such as discipline. Only the calculus of catamorphisms
is presented. The corresponding theory of anamorphisms and hylo-
morphisms demands further mathematical machinery (functions gen-
eralized to binary relations) and won’t be dealt with before chapter
8. The results on mutual recursion presented in this chapter, pionered
by Maarten Fokkinga [22], have been extended towards probabilistic
functions [61]. They have also shown to help in program understand-
ing and reverse engineering [84]. Recently, the whole theory has un-
dergone significant advances throught further use of category theory
notions such as adjunctions 23 and conjugate functors [30, 31].

23 See chapter 4.
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W H Y M O N A D S M AT T E R

In this chapter we present a powerful device in state-of-the-art func-
tional programming, that of a monad. The monad concept is nowadays
of primary importance in computing science because it makes it pos-
sible to describe computational effects as disparate as input/output,
comprehension notation, state variable updating, probabilistic behaviour,
context dependence, partial behaviour etc. in an elegant and uniform
way.

Our motivation to this concept will start from a well-known prob-
lem in functional programming (and computing as a whole) — that of
coping with undefined computations.

4.1 PA R T I A L F U N C T I O N S

Recall the function head that yields the first element of a finite list.
Clearly, head x is undefined for x = [ ] because the empty list has
no elements at all. As expected, the HASKELL output for head [ ] is just
“panic”:

*Main> head []

*** Exception: Prelude.head: empty list

*Main>

Functions such as head are called partial functions because they can-
not be applied to all of their (well-typed) inputs, i.e., they diverge for
some of such inputs. Partial functions are very common in mathemat-
ics or programming — for other examples think of e.g. tail, and so on.

Panic is very dangerous in programming. In order to avoid this
kind of behaviour one has two alternatives, either (a) ensuring that ev-
ery call to head x is protected — i.e., the contexts which wrap up such
calls ensure pre-condition x 6= [ ], or (b) raising exceptions, i.e. explicit
error values, as above. In the former case, mathematical proofs need
to be carried out in order to ensure safety (that is, pre-condition compli-
ance). The overall effect is that of restricting the domain of the partial
function. In the latter case one goes the other way round, by extending
the co-domain (vulg. range) of the function so that it accommodates
exceptional outputs. In this way one might define, in HASKELL:

data ExtVal a = Ok a | Error

128
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and then define the “extended” version of head:

exthead :: [a ]→ ExtVal a
exthead [ ] = Error
exthead x = Ok (head x)

Note that ExtVal is a parametric type which extends an arbitrary data
type a with its (polymorphic) exception (or error value). It turns out
that, in HASKELL, ExtVal is redundant because such a parametric type
already exists and is called Maybe:

data Maybe a = Nothing | Just a

Clearly, the isomorphisms hold:

ExtVal A ∼= Maybe A ∼= 1 + A

So, we might have written the more standard code

exthead :: [a ]→ Maybe a
exthead [ ] = Nothing

exthead x = Just (head x)

In abstract terms, both alternatives coincide, since one may regard as
partial every function of type

1 + A B
goo

for some A and B 1.

4.2 P U T T I N G PA R T I A L F U N C T I O N S T O G E T H E R

Do partial functions compose? Their types won’t match in general:

1 + B A
goo

1 + C B
foo

Clearly, we have to extend f — which is itself a partial function — to
some f ′ able to accept arguments from 1 + B:

1

...

��

i1
��

1 + B

f ′zz

A
goo

1 + C B

i2

OO

f
oo

1 In conventional programming, every function delivering a pointer as result — as in
e.g. the C programming language — can be regarded as one of these functions.
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The most “obvious” instance of the ellipsis (. . .) in the diagram above
is i1 and this corresponds to what is called strict composition: an excep-
tion produced by the producer function g is propagated to the output
of the consumer function f . We define:

f • g def
= [i1 , f ] · g (4.1)

Expressed in terms of Maybe, composite function f • g works as fol-
lows:

( f • g)a = f ′(g a)

where

f ′ Nothing = Nothing

f ′ (Just b) = f b

Altogether, we have the following Haskell pointwise expression for
f • g:

λa→ f ′ (g a) where
f ′ Nothing = Nothing

f ′ (Just b) = f b

Note that the adopted extension of f can be decomposed — by re-
verse +-absorption (2.44) — into

f ′ = [i1 , id] · (id + f )

as displayed in diagram

1 + (1 + C)

[i1 ,id]
��

1 + B
id+ foo A

goo

1 + C B
foo

All in all, we have the following version of (4.1):

f • g def
= [i1 , id] · (id + f ) · g

Does this functional composition scheme have a unit, that is, is there
a function u such that

f • u = f = u • f (4.2)

holds? Clearly, if it exists, it must bear type 1 + A Auoo . 1 + A A
i2oo

has the same type, so u = i2 is a very likely solution. Let us check it:

f • u = f = u • f

≡ { substitutions }

[i1 , f ] · i2 = f = [i1 , i2] · f
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≡ { by +-cancellation (2.41) and +-reflection (2.42) }

f = f = id · f

≡ { trivial }
true

So f • u = f = u • f for u = i2.

Exercise 4.1. Prove that property

f • (g • h) = ( f • g) • h

holds, for f • g defined by (4.1).
2

4.3 L I S T S

In contrast to partial functions, which may produce no output, let us
now consider functions which may deliver too many outputs, for in-
stance, lists of output values:

B? A
goo

C? B
foo

Functions f and g do not compose but, once again, one can think of
extending the consumer function ( f ) by mapping it along the output
of the producer function (g):

(C?)? B?f ?oo

C? B
foo

To complete the process, one has to flatten the nested-sequence out-

put in (C?)? via the obvious list-catamorphism C? (C?)?
concatoo ,

recall concat = L [[ ] , conc] M where conc (x, y) = x ++ y. In summary:

f • g def
= concat · f ? · g (4.3)

as captured in the following diagram:

(C?)?

concat
��

B?f ?oo A
goo

C? B
foo



4.4 M O N A D S 132

Exercise 4.2. Show that singl (recall exercise 3.15) is the unit u of • as defined by
(4.3) above.
2

Exercise 4.3. Encode in HASKELL a pointwise version of (4.3). Hint: start by ap-
plying (list) cata-absorption (3.76).
2

4.4 M O N A D S

Both function composition schemes (4.1) and (4.3) above share the
same polytypic pattern: the output of the producer function g is “T-
times” more elaborate than the input of the consumer function f , where
T is some parametric datatype: T X = 1 + X in case of (4.1), and
T X = X? in case of (4.3). Then a composition scheme is devised for
such functions, which is displayed in

T(T C)

µ

��

T B
T foo A

goo

f•g

ggT C B
foo

(4.4)

and is given by

f • g def
= µ · T f · g (4.5)

where T A T2 A
µoo is a suitable polymorphic function. (We have

already seen µ = [i1 , id] in case (4.1), and µ = concat in case (4.3).)
Together with a unit function T A Auoo and µ, that is

A u // T A T2 A
µoo

datatype T will form a so-called monad type, of which (1+) and ( )?

are the two examples seen above. Arrow µ · T f is called the extension
of f . Functions µ and u are referred to as the monad’s multiplication
and unit, respectively. The monadic composition scheme (4.5) is re-
ferred to as Kleisli composition.

A monadic arrow TB A
foo conveys the idea of a function which

produces an output of “type” B “wrapped by T”, where datatype T

describes some kind of (computational) “effect”. The monad’s unit
TB Buoo is a primitive monadic arrow which injects (i.e. promotes,

wraps) data inside such an effect.
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The monad concept is nowadays of primary importance in comput-
ing science because it makes it possible to describe computational ef-
fects as disparate as input/output, state variable updating, context
dependence, partial behaviour (seen above) etc. in an elegant, generic
and uniform way. Moreover, the monad’s operators exhibit notable
properties which make it possible to reason about such computational
effects.

The remainder of this section is devoted to such properties. First of
all, the properties implicit in the following diagrams will be required
for T to be regarded as a monad:

Multiplication :

T2 A

µ

��

T3 A

T µ
��

µoo

T A T2 A
µ

oo

µ · µ = µ · T µ (4.6)

Unit :

T2 A

µ

��

T Auoo

T u
��id{{

T A T2 A
µ

oo

µ · u = µ · T u = id (4.7)

The simple and beautiful symmetries apparent in these diagrams will
make it easy to memorize their laws and check them for particular
cases. For instance, for the (1+) monad, law (4.7) will read as follows:

[i1 , id] · i2 = [i1 , id] · (id + i2) = id

These equalities are easy to check.
In laws (4.6) and (4.7), the different instances of µ and u are differ-

ently typed, as these are polymorphic and exhibit natural properties:

µ-natural :

A

f
��

T A

T f
��

T2 A
µoo

T2 f
��

B T B T2 B
µ

oo

T f · µ = µ · T2 f (4.8)

u-natural :

A

f
��

T A

T f
��

Auoo

f
��

B T B Bu
oo

T f · u = u · f (4.9)
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The simplest of all monads is the identity monad T X def
= X, which is

such that µ = id, u = id and f • g = f · g. So — in a sense — the whole
functional discipline studied thus far was already monadic, living inside
the simplest of all monads: the identity one. Put in other words, such
functional discipline can be framed into a wider discipline in which
an arbitrary monad is present. Describing this is the main aim of the
current chapter.

P R O P E R T I E S I N V O LV I N G ( K L E I S L I ) C O M P O S I T I O N The follow-
ing properties arise from the definitions and monadic properties pre-
sented above:

f • (g • h) = ( f • g) • h (4.10)

u • f = f = f • u (4.11)

( f • g) · h = f • (g · h) (4.12)

( f · g) • h = f • (T g · h) (4.13)

id • id = µ (4.14)

Properties (4.10) and (4.11) are the monadic counterparts of, respec-
tively, (2.8) and (2.10), meaning that monadic composition preserves
the properties of normal functional composition. In fact, for the iden-
tity monad, these properties coincide with each other.

Above we have shown that property (4.11) holds for the (1+)-monad,
recall (4.2). A general proof can be produced similarly. We select prop-
erty (4.10) as an illustration of the rôle of the monadic properties:

f • (g • h)

= { definition (4.5) twice }

µ · T f · (µ · T g · h)
= { µ is natural (4.8) }

µ · µ · T2 f · T g · h
= { monad property (4.6) }

µ · T µ · T2 f · T g · h
= { functor T (3.55) }

µ · T (µ · T f · g) · h
= { definition (4.5) twice }

(f • g) • h

Clearly, this calculation generalizes that of exercise 4.1 to any monad
T .

Exercise 4.4. Prove the other laws above and also the following one,

(T f ) · (h • k) = (T f · h) • k (4.15)
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where Kleilsi composition again trades with normal composition.
2

4.5 M O N A D I C A P P L I C AT I O N ( B I N D I N G )

We have seen above that, given a monad A u // T A T2 A
µoo , u is

the unit of Kleisli composition, f • u = f , recall (4.11). Now, what does
happen in case we Kleisli compose f with the identity id of standard
composition? Looking at diagram (4.4) for this case,

T(T C)

µ

��

T B
T foo T Bidoo

T C B
foo

we realize that f • id accepts a value of type T B that is passed to

T C B
foo , yielding an output of type T C. This construction is

called binding and denoted by >>=f :

(>>=f ) = f • id (4.16)

Expressed pointwise, we get:2

x >>= f def
= (µ · T f )x (4.17)

This operator exhibits properties that arise from its definition and
the basic monadic properties, e.g.

x >>= u

= { definition (4.17) }

(µ · T u)x

= { law (4.7) }

(id)x

= { identity function }
x

At pointwise level, one may chain monadic compositions from left to
right, e.g.

(((x >>= f1)>>= f2)>>= . . . fn−1)>>= fn

for functions A
f1 // T B1 , B1

f2 // T B2 , . . . Bn−1
fn // T Bn .

2 In the case of the identity monad one has: x >>= f = f x. So, >>= can be regarded as
denoting monadic function application.
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4.6 S E Q U E N C I N G A N D T H E D O - N O TAT I O N

Recall from above that x>>= f is the monadic generalization of function
application f x, since both coincide for the identity monad. Also recall
that, for f = y (the “everywhere”-y constant function) one gets y x = y.

What does the corresponding monadic generalization, x>>= y mean?
In the standard notation, this leads to another monadic operator,

x >> y def
= x >>= y (4.18)

of type

(>>) : T A→ T B→ T B

called “sequencing”. For instance, within the finite-list monad, one
has

[1, 2]>> [3, 4] = (concat · [3, 4]?)[1, 2] = concat[[3, 4], [3, 4]] = [3, 4, 3, 4]

Because this operator is associative3, one may iterate it to more than
two arguments and write, for instance,

x1 >> x2 >> . . . >> xn

This leads to the popular “do-notation”, which is another piece of
(pointwise) notation which makes sense in a monadic context:

do {x1; x2; . . . ; xn}
def
= x1 >> do {x2; . . . ; xn}

for n > 1. For n = 1 one trivially has

do x1
def
= x1

4.7 G E N E R AT O R S A N D C O M P R E H E N S I O N S

The monadic do-notation paves the way to a device that is very useful
in (pointwise) monadic programming. As before, we consider its (non-
monadic) counterpart first. Consider for instance the expression x +

sum y, where sum is some operator in some context, e.g. adding up all
elements of a list. Nothing impedes us from “structuring” expression
x + sum y in the following way:

let a = sum y
in x + a

It turns out that the above is the same as the following monadic ex-
pression,

do {
a← sum y;
u (x + a)}

3 See exercise 4.7 later on.
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provided the underlying monad is the identity monad. Now, what

does the notation a← . . . mean for an arbitrary monad A u // T A T2 A
µoo

?
The do-notation accepts a variant in which the arguments of the >>

operator are “generators” of the form

a← x (4.19)

where, for a of type A, x is an inhabitant of monadic type T A. One
may regard a← x as meaning “let a be taken from x”. Then the do-
notation unfolds as follows:

do {a← x1; x2; . . . ; xn}
def
= x1 >>= λa · (do {x2; . . . ; xn}) (4.20)

Of course, we should now allow for the xi to range over terms involv-
ing variable a. For instance, by writing (again in the list-monad)

do {a← [1, 2, 3 ]; [a2 ]} (4.21)

we mean

[1, 2, 3]>>= λa.[a2]

= concat((λa.[a2])
?
[1, 2, 3])

= concat[[1], [4], [9]]

= [1, 4, 9]

The analogy with classical set-theoretic ZF-notation, whereby one
might write {a2 | a ∈ {1, 2, 3}} to describe the set of the first three
perfect squares, suggests the following notation,

[ a2 | a← [1, 2, 3] ] (4.22)

as a “shorthand” of (4.21). This is an instance of the so-called compre-
hension notation, which can be defined in general as follows:

[ e | a1← x1, . . . , an← xn ] =

do {a1 ← x1; . . . ; an ← xn; u e} (4.23)

where u is the monad’s unit (4.7,4.9).
Alternatively, comprehensions can be defined as follows, where p, q

stand for arbitrary generators:

[t] = u t (4.24)

[ f x | x← l ] = (T f )l (4.25)

[ t | p, q ] = µ[ [ t | q ] | p ] (4.26)

Note, however, that comprehensions are not restricted to lists or sets
— they can be defined for any monad T thanks to the do-notation.

Exercise 4.5. Show that

(f • g) a = do {b← g a; f b} (4.27)
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T f x = do {a← x; u (f x)} (4.28)

Note that the second do expression is equivalent to x >>= (u · f ).
2

Fact (4.28) is illustrated in the cartoon4

for the computation of T (+3) x, where x = u 2 is the T-monadic
object containing number 2.

Exercise 4.6. Show that x >>= f = do {a ← x; f a} and then that (x >>= g)>>= f
is the same as x >>= f • g.
2

Exercise 4.7. Prove that (>>) is associative:

x >> (y >> z) = (x >> y)>> z : (4.29)

Hint: the laws of constant functions and the previous exercise can help your proof.
2

4.8 M O N A D S I N H A S K E L L

In the Standard Prelude for HASKELL, one finds the following minimal
definition of the Monad class,

class Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

where return refers to the unit of m, on top of which the “sequence”
operator

(>>) :: m a→ m b→ m b
fail :: String→ m a

4 Credits: see this and other helpful, artistic illustrations in
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html.
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is defined by

p >> q = p >>= λ → q

as expected. This class is instantiated for finite sequences ([ ]), Maybe
and IO, among others.

The µ multiplication operator is function join in module Monad.hs:

join :: (Monad m)⇒ m (m a)→ m a
join x = x >>= id

This is easily justified:

join x = x >>= id (4.30)

= { definition (4.17) }

(µ · T id)x

= { functors commute with identity (3.54) }

(µ · id)x

= { law (2.10) }
µ x

The following infix notation for (Kleisli) monadic composition in
HASKELL uses the binding operator:

(•) :: Monad t⇒ (b→ t c)→ (d→ t b)→ d→ t c
(f • g) a = (g a)>>= f

Exercise 4.8. Consider the HASKELL function

discollect :: [ (a, [b ]) ]→ [ (a, b) ]
discollect [ ] = [ ]
discollect ((a, x) : y) = [(a, b) | b← x ] ++ discollect y

Knowing that finite lists form a monad where µ = concat = L [nil , conc] M and
conc (x, y) = x ++ y, derive the above pointfree code from the definition

discollect = lstr • id (4.31)

where lstr (a, x) = [(a, b) | b← x ].
2

M O N A D I C I / O IO, a parametric datatype whose inhabitants are
special values called actions or commands, is a most relevant monad.
Actions perform the interconnection between HASKELL and the envi-
ronment (file system, operating system). For instance,

getLine :: IO String
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is a particular such action. Parameter String refers to the fact that this
action “delivers” — or extracts — a string from the environent. This
meaning is clearly conveyed by the type String assigned to symbol l
in

do l← getLine; . . . l . . .

which is consistent with typing rule for generators (4.19). Sequencing
corresponds to the “;” syntax in most programming languages (e.g. C)
and the do-notation is particulary intuitive in the IO-context.

Examples of functions delivering actions are

FilePath readFile // IO String

and

Char
putChar // IO ()

— both produce I/O commands as result.
As is to be expected, the implementation of the IO monad in HASKELL

— available from the Standard Prelude — is not totally visible, for it is
bound to deal with the intrincacies of the underlying machine:

instance Monad IO where
(>>=) = primbindIO
return = primretIO

Rather interesting is the way IO is regarded as a functor:

fmap f x = x >>= (return · f )

This goes the other way round, the monadic structure “helping” in
defining the functor structure, everything consistent with the underly-
ing theory:

x >>= (u · f ) = (µ · IO(u · f ))x

= { functors commute with composition }

(µ · IO u · IO f )x

= { law (4.7) for T = IO }

(IO f )x

= { definition of fmap }

(fmap f ) x

For enjoyable reading on monadic input/output in HASKELL see [34],
chapter 18.

Exercise 4.9. Extend the Maybe monad to the following “error message” exception
handling datatype:
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data Error a = Err String | Ok a deriving Show

In case of several error messages issued in a do sequence, how many turn up on the
screen? Which ones?
2

Exercise 4.10. Recalling section 3.13, show that any inductive type with base func-
tor

B (f , g) = f + F g

where F is an arbitrary functor, forms a monad for

µ = L [id , in · i2] M
u = in · i1.

Identify F for known monads such as e.g. Maybe, LTree and (non-empty) lists.
2

4.9 T H E S TAT E M O N A D

The so-called state monad is a monad whose inhabitants are state tran-
sitions encoding a particular brand of state-based automata known as
Mealy machines. Given a set A (input alphabet), a set B (output alpha-
bet) and a set of states S, a deterministic Mealy machine (DMM) is
specified by a transition function of type

A× S δ // B× S (4.32)

Wherever (b, s′) = δ(a, s), we say that the machine has transition

s
a|b // s′

and refer to s as the before state, and to s′ as the after state. Many pro-
grams that one writes in conventional programming languages such
as C or Java can be regarded as DMMs.

It is clear from (4.32) that δ can be expressed as the split of two func-
tions f and g — δ = 〈 f , g〉— as depicted in the following drawing:

a f b = f (a, s)

g s′ = g(a, s)s
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Note, however, that the information recorded in the state of a DMM
is either meaningless to the user of the machine (as in e.g. the case
of states represented by numbers) or too complex to be perceived and
handled explicitly (as is the case of e.g. the data kept in a large database).
So, it is convenient to abstract from it, via the “encapsulation” sug-
gested by the following, transformed, version of the previous draw-
ing,

g

fa

s

b = f (a, s)

s′ = g(a, s)S

(4.33)

in which the state is no longer accessible from the outside.
Such an abstraction is nicely captured by the so-called state monad, in

the following way: taking (4.32) and recalling (2.97), we simply trans-
pose (ie. curry) δ and obtain

A δ // (B× S)S︸ ︷︷ ︸
(St S) B

(4.34)

thus “shifting” the input state to the output. In this way, δ a is a
function capturing all state-transitions (and corresponding outputs)
for input a. For instance, the function that appends a new element at
the rear of a queue,

enq(a, s) def
= s ++ [a]

can be converted into a DMM by adding to it a dummy output of type
1 and then transposing:

enqueue : A→ (1× S)S

enqueue a def
= 〈!, (++[a])〉

(4.35)

Action enqueue performs enq on the state while acknowledging it by
issuing an output of type 1.5

U N I T A N D M U LT I P L I C AT I O N . Let us now show that

(St S) A ∼= (A× S)S (4.36)

5 A kind of “done!” message.
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forms a monad. As we shall see, the fact that the values of this monad
are functions brings the theory of exponentiation to the forefront. Thus,
a review of section 2.15 is recommended at this point.

Notation f̂ will be used to abbreviate uncurry f , enabling the fol-
lowing variant of universal law (2.85),

k̂ = f ⇔ f = ap · (k× id) (4.37)

whose cancellation

k̂ = ap · (k× id) (4.38)

is written pointwise as follows:

k̂(c, a) = (k c)a (4.39)

First of all, what is the functor behind (4.36)? Fixing the state space
S, we obtain

TX def
= (X× S)S (4.40)

on objects and

T f def
= ( f × id)S (4.41)

on functions, where ( )S is the exponential functor (2.89).
The unit of this monad is the transpose of the simplest of all Mealy

machines — the identity:

u : A→ (A× S)S

u = id
(4.42)

Let us see what this means:

u = id

≡ { (2.85) }

ap · (u× id) = id

≡ { introducing variables }

ap(u a, s) = (a, s)

≡ { definition of ap }

(u a)s = (a, s)

So, action u a performed on state s keeps s unchanged and outputs a.
From the type of µ, for this monad,

((A× S)S × S)S µ // (A× S)S

one figures out µ = xS (recalling the exponential functor as defined
by (2.89)) for some ((A× S)S × S) x // (A× S) . This, on its turn, is
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easily recognized as an instance of the ap polymorphic function (2.85),
which is such that ap = îd, recall (2.87). Altogether, we define

µ = apS (4.43)

Let us inspect the behaviour of µ by checking the meaning of apply-
ing it to an action expressed as in diagram (2.97):

µ〈 f , g〉 = apS〈 f , g〉
≡ { (2.89) }

µ〈 f , g〉 = ap · 〈 f , g〉
≡ { extensional equality (2.5) }

µ〈 f , g〉s = ap( f s, g s)

≡ { definition of ap }

µ〈 f , g〉s = ( f s)(g s)

We find out that µ “unnests” the action inside f by applying it to the
state delivered by g.

C H E C K I N G T H E M O N A D I C L AW S . The calculation of (4.7) is made
in two parts, checking µ · u = id first,

µ · u
= { definitions }

apS · id
= { exponentials absorption (2.91) }

ap · id
= { reflection (2.87) }

id

2

and then checking µ · (Tu) = id:

µ · (Tu)

= { (4.43,4.41) }

apS · (id× id)S

= { functor }

(ap · (id× id))S

= { cancellation (2.86) }

idS

= { functor }

id
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2

The proof of (4.6) is also not difficult once supported by the laws of
exponentials.

K L E I S L I C O M P O S I T I O N . Let us calculate f • g for this monad:

f • g

= { (4.5) }

µ · T f · g
= { (4.43) ; (4.41) }

apS · ( f × id)S · g
= { ( )S is a functor }

(ap · ( f × id))S · g
= { (4.37) }

f̂ S · g
= { cancellation }

f̂ S · ĝ
= { absorption (2.91) }

f̂ · ĝ

In summary, we have:

f • g = f̂ · ĝ (4.44)

which can be written alternatively as

f̂ • g = f̂ · ĝ

Let us use this in calculating law

pop • push = u (4.45)

where push and pop are such that

push : A→ (1× S)S

p̂ush def
= 〈!, (̂:)〉

(4.46)

pop : 1→ (A× S)S

p̂op def
= 〈head, tail〉 · π2

(4.47)

for S the datatype of finite lists. We reason:

pop • push

= { (4.44) }
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p̂op · p̂ush

= { (4.46, 4.47) }

〈head, tail〉 · π2 · 〈!, (̂:)〉
= { (2.22, 2.26) }

〈head, tail〉 · (̂:)
= { out · in = id (lists) }

id

= { (4.42) }
u

2

B I N D . The effect of binding a state transition x to a state-monadic
function h is calculated in a similar way:

x >>= h

= { (4.17) }

(µ · Th)x

= { (4.43) and (4.41) }

(apS · (h× id)S)x

= { ( )S is a functor }

(ap · (h× id))Sx

= { cancellation (4.38) }

ĥSx

= { exponential functor (2.89) }

ĥ · x

Let us unfold ĥ · x by splitting x into its two components f and g:

〈 f , g〉>>= h = ĥ · 〈 f , g〉

≡ { go pointwise }

(〈 f , g〉>>= h)s = ĥ(〈 f , g〉s)

≡ { (2.20) }

(〈 f , g〉>>= h)s = ĥ( f s, g s)

≡ { (4.39) }

(〈 f , g〉>>= h)s = h( f s)(g s)

In summary, for a given “before state” s, g s is the intermediate state
upon which f s runs and yields the output and (final) “after state”.
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T W O P R O T O T Y P I C A L I N H A B I TA N T S O F T H E S TAT E M O N A D : get
A N D put . These generic actions are defined as follows, in the PF-
style:

get def
= 〈id, id〉 (4.48)

put def
= 〈!, π1〉 (4.49)

Action get retrieves the data stored in the state without changing it,
while put stores a particular value in the state. Note that put can also
be written

put s = 〈!, s〉 (4.50)

or even as

put s = update s (4.51)

where

update f def
= 〈!, f 〉 (4.52)

updates the state via state-to-state function f .
The following is an example, written in Haskell, of the standard use

of get/put in managing context data, in this case a counter. Function
decBTree decorates each node of a BTree (recall this datatype from page
105) with its position in the tree:

decBTree Empty = return Empty
decBTree (Node (a, (t1, t2))) = do {

n← get;
put (n + 1);
x← decBTree t1;
y← decBTree t2;
return (Node ((a, n), (x, y)))
}

To close the chapter, the following section will present a strategy for
deriving this kind of monadic functions.

Exercise 4.11. Show that modify f = 〈!, f 〉 is equivalent to

modify f = do {a← get; put (f a)}

in the state monad.
2
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4.10 ‘ M O N A D I F I C AT I O N ’ O F H A S K E L L C O D E M A D E E A S Y

There is an easy roadmap for “monadification” of Haskell code. What
do we mean by monadification? Well, in a sense — as we shall soon
see — every piece of code is monadic: we don’t notice this because
the underlying monad is invisible (the identity monad). We are going
to see how to make it visible taking advantage of monadic do notation
and leaving it open for instantiation. This will bridge the gap between
monads’ theory and its application to handling particular effects in
concrete programming situations.

Let us take as starting point the pointwise version of sum, the list
catamorphism that adds all numbers found in its input:

sum [ ] = 0
sum (h : t) = h + sum t

Notice that this code could have been written as follows

sum [ ] = id 0
sum (h : t) = let x = sum t in id (h + x)

using let notation and two instances of the identity function. Question:
what is the point of such a “baroque” version of the starting, so simple
piece of code? Answer:

• The let ... in ... notation stresses the fact that recursive call hap-
pens earlier than the delivery of the result.

• The id functions signal the exit points of the algorithm, that is,
the points where it returns something to the caller.

Next, let us

• re-write id into return—;

• re-write let x = ... in ...— into do { x <- ... ; ... }

One will obtain the following version of sum:

msum [ ] = return 0
msum (h : t) = do {x← msum t; return (h + x)}

Typewise, while sum has type (Num a)⇒ [a ]→ a, msum has type

(Monad m, Num a)⇒ [a ]→ m a

That is, msum is monadic — parametric on monad m — while sum is
not.

There is a particular monad for which sum and msum coincide: the
identity monad Id X = X. It is very easy to show that inside this
monad return is the identity and do x← . . . means the same as let x =

. . ., as already mentioned — enough for the pointwise versions of the
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two functions to be the same. Thus the “invisible” monad mentioned
earlier is the identity monad.

In summary, the monadic version is generic in the sense that it runs
on whatever monad you like, enabling you to perform side effects while
the code runs. If you don’t need any effects then you get the “non-
monadic” version as special case, as seen above. Otherwise, Haskell
will automatically switch to the effects you want, depending on the
monad you choose (often determined by context).

For each particular monad we may decide to add specific monadic
code like get and put in the decBTree example, where we want to
take advantage of the state monad. As another example, check the
following enrichment of msum with state-monadic code helping you
to trace the execution of your program:

msum′ [ ] = return 0
msum′ (h : t) =

do {x← msum′ t;
print ("x= "++ show x);
return (h + x)}

Thus one obtains traces of the code in the way prescribed by the par-
ticular usage of the print (state monadic) function:

*Main> msum’ [3,5,1,3,4]
"x= 0"
"x= 4"
"x= 7"
"x= 8"
"x= 13"

*Main>

In the reverse direction, one may try and see what happens to monadic
code upon removing all monad-specific functions and going into the
identity monad once it gets monad generic. In the case of decBTree,
for instance, we will get

decBTree Empty = return Empty
decBTree (Node (a, (t1, t2))) =

do
x← decBTree t1;
y← decBTree t2;
return (Node (a, (x, y)))

once get and put are removed (and therefore all instances of n), and
then

decBTree Empty = Empty
decBTree (Node (a, (t1, t2))) =

let
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x = decBTree t1

y = decBTree t2

in Node (a, (x, y))

This is the identity function on type BTree, recall the cata-reflection
law (3.67). So, the archetype of (inspiration for) much monadic code is
the most basic of all tree traversal functions — the identity 6. The same
could be said about imperative code of a particular class — the recur-
sive descent one — much used in compiler construction, for instance.

Playing with effects

As it may seem from the previous examples, adding effects to produce
monadic code is far from arbitrary. This can be further appreciated by
defining the function that yields the smallest element of a list,

getmin [a ] = a
getmin (h : t) = min h (getmin t)

which is incomplete in the sense that it does not specify the meaning
of getmin [ ]. As this is mathematically undefined, it should be ex-
pressed “outside the maths”, that is, as an effect. Thus, to complete
the defintion we first go monadic, as we did before,

mgetmin [a ] = return a
mgetmin (h : t) = do {x← mgetmin t; return (min h x)}

and then chose a monad in which to express the meaning of getmin [ ],
for instance the Maybe monad

mgetmin [ ] = Nothing

mgetmin [a ] = return a
mgetmin (h : t) = do {x← mgetmin t; return (min h x)}

Alternatively, we might have written

mgetmin [ ] = Error "Empty input"

going into the Error monad, or even the simpler (yet interesting)
mgetmin [ ] = [ ], which shifts the code into the list monad, yielding
singleton lists in the success case, otherwise the empty list.

Function getmin above is an example of a partial function, that is, a
function which is undefined for some of its inputs.7 These functions
cause much interference in functional programming, which monads
help us to keep under control.

6 We have seen the same kind of “inspiration” before in building type functors (3.75)
which, for f = id, boil down to the identity.

7 Recall that function partiality was our motivation for studying monads right from the
beginning of this chapter.
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Let us see how such interference is coped with in the case of higher
order functions, taking map as example

map f [ ] = [ ]

map f (h : t) = (f h) : map f t

and supposing f is not a total function. How do we cope with erring
evaluations of f h? As before, we first “letify” the code,

map f [ ] = [ ]

map f (h : t) = let
b = f h
x = map f t in b : x

we go monadic in the usual way,

mmap f [ ] = return [ ]

mmap f (h : t) = do {b← f h; x← mmap f t; return (b : x)}

and everything goes smoothly — as can be checked, the function thus
built is of the expected (monadic) type:

mmap :: (Monad T)⇒ (a→ T b)→ [a ]→ T [b ] (4.53)

Run mmap Just [1, 2, 3, 4 ], for instance: you will obtain Just [1, 2, 3, 4 ].
Now run mmap print [1, 2, 3, 4 ]. You will see the items in the sequence
printed sequentially.

One may wonder about the behaviour of the mmap for f the identity
function: will we get an error? No, we get a well-typed function of
type [m a ] → m [a ], for m a monad. We thus obtain the well-known
monadic function sequence which evaluates each action in the input se-
quence, from left to right, collecting the results. For instance, applying
this function to input sequence [Just 1, Nothing, Just 2 ] the output will
be Nothing.

Exercise 4.12. Use the monadification technique to encode monadic function

filterM :: Monad m⇒ (a→ m B)→ [a ]→ m [a ]

which generalizes the list-based filter function.
2

Exercise 4.13. “Reverse” the following monadic code into its non-monadic archetype:

f :: (Monad m)⇒ (a→ m B)→ [a ]→ m [a ]
f p [ ] = return [ ]
f p (h : t) = do {

b← p h;
t′ ← f p t;
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return (if b then h : t′ else [ ])
}

Which function of the Haskell Prelude do you get by such reverse monadification?
2

4.11 M O N A D I C R E C U R S I O N

There is much more one could say about monadic recursive program-
ming. In particular, one can express the code “monadification” strate-
gies of the previous section in terms of catamorphisms. As an example,
recall (4.53):

A

f
��

A?

mmap f
��

1 + A×A∗
inA?oo

id+id×mmap f
��

T B T B∗ 1 + A× T B∗
goo

How do we build g? Clearly, the recipe given by (3.75) needs to be
adapted:

A

f
��

A?

mmap f
��

1 + A×A∗
inA?oo

id+id×mmap f
��

T B T B∗ 1 + A× T B∗
goo

id+f×id
��

1 + T B× T B∗
[return·nil ,bconsc]

ii

where

bf c (x, y) = do {a← x; b← y; return (f (a, b))}

By defining

L g M[ = L [return · f , bhc] M where
f = (g · i1)
h = (g · i2)

we can write

mmap f = L (in · (id + f × id)) M[ (4.54)

where (recall) in = [nil , cons].
Handling monadic recursion in full generality calls for technical in-

gredients called commutative laws which fall outside the current scope
of this chapter.
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4.12 W H E R E D O M O N A D S C O M E F R O M ?

In the current context, a good way to find an answer to this question
is to recall the universal property of exponentials (2.85):

k = f ⇔ f = ap · (k× id)

BA BA × A
ap // B

C

k= f

OO

C× A

k×id

OO

f

;;

Let us re-draw this diagram by unfolding BA× A into the composition
of two functors L (R B) where R X = XA and L X = X×A:

k = f ⇔ f = ap · L k︸ ︷︷ ︸
k̂

R B L (R B)
ap // B

C

k= f

OO

L C

L k

OO

f

;;

(4.55)

As we already know, this establishes the (curry/uncurry) isomorphism

L C→ B ∼= C→ R B (4.56)

assuming R and L as defined above.
Note how (4.56) expresses a kind of “shunting rule” at type level:

Ls on the input side can be ”shunted” to the output if replaced by Rs.
This is exactly what curry and uncurry do typewise. The corollaries of
the universal property can also be expressed in terms of R and L:

• Reflection: ap = id, that is, ap = îd – recall (2.87)

• Cancellation: îd · L f = f – recall (2.86)

• Fusion: h · g = h · L g — recall (2.88)

• Absorption: (R g) · h = g · h — recall (2.91)

• Naturality: h · îd = îd · L (R h)

• Functor: R h = h · ap

• Closed definitions: k̂ = îd · (L k) and g = (R g) · id, the latter
following from absorption.

Now observe what happens if the functor composition L ·R is swapped:
R (L X) = (X×A)A. We get the state monad out of this construction,

(R · L) X = (X×A)A = St A X

— recall (4.36). Interestingly, the universal property (4.55) can be ex-
pressed also in terms of such a monad structure, as the simple calcula-
tion shows:

k = f ⇔ ap · L k = f
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≡ { see above }

k = (R f ) · id ⇔ f = k̂

≡ { swapping variables k and f , to match the starting diagram }

f = (R k) · id ⇔ k = f̂

That is,

k = f̂ ⇔ f = R k · η︸ ︷︷ ︸
k

L B

k=f̂
��

R (L B)

R k
��

B
ηoo

f{{
C R C

(4.57)

for η = id, the unit of the monad T = R · L. To complete the definition
of the T monad in this way, we recall (4.43)

µ = R îd (4.58)

with type (T · T) X
µ // T X , where id : T X→ T X. From (4.57) one

draws, for instance,

g · f̂ = R̂ g · f (4.59)

and so on.

Adjunctions

The reasoning we have made above for exponentials and the state
monad generalizes for any other monad. In general, an isomorphism
of shape (4.56) is called an adjunction of the two functors R and L,
which are said to be adjoint to each other. One writes L a R and says
that L is left adjoint and that R is right adjoint. Using notation bkc and
dke for the generic witnesses of the isomorphism we write

L A→ B

d e
++∼= A→ R B

b c

jj (4.60)

cf.

k = df e ⇔ f = ε · L k︸ ︷︷ ︸
bkc

R B L (R B) ε // B

A

k=df e

OO

L A

L k

OO

f

;;

(4.61)

where ap was generalized to ε.
Generalizing section 4.12, adjunction (4.60) has the following prop-

erties: reflection:

dεe = id (4.62)
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that is,

ε = bidc (4.63)

cancellation:

ε · L df e = f (4.64)

fusion:

dhe · g = dh · L ge (4.65)

absorption:

(R g) · dhe = dg · he (4.66)

naturality:

h · ε = ε · L (R h) (4.67)

functor:

R h = dh · εe (4.68)

Finally, from every adjunction (4.60) a monad T = R · L arises defined
by

η = dide (4.69)

µ = R ε (4.70)

Thus the closed definitions:

bkc = ε · (L k) (4.71)

dge = (R g) · η (4.72)

(The last follows from absorption.)
From all this we can infer the generic version of f • g,

f • g = dbf c · bgce (4.73)

by replaying the calculation which lead to (4.44):

f • g

= { (4.5) }

µ · T f · g
= { T = R · L; µ = R bidc }

R bidc · (R (L f )) · g
= { functor R }

R (bidc · L f ) · g
= { cancellation: bidc · L f = bf c; g = dbgce }

R bf c · dbgce



4.12 W H E R E D O M O N A D S C O M E F R O M ? 156

= { absorption: (R g) · dhe = dg · he }

dbf c · bgce

Finally, let us see another example of a monad arising from one
such adjunction (4.60). Recall exercise 2.29, on page 55, where pair /
unpair witness an isomorphism similar to that of curry/uncurry, for
pair (f , g) = 〈f , g〉 and unpair k = (π1 · k, π2 · k). This can be cast into
an adjunction as follows

k = pair (f , g) ⇔ (π1 · k, π2 · k) = (f , g)

≡ { see below }

k = pair (f , g) ⇔ (π1, π2) · (L k) = (f , g)

where L k = (k, k). Note the abuse of notation, on the righthand side,
of extending function composition notation to composition of pairs of
functions, defined in the expected way: (f , g) · (h, k) = (f · h, g · k).
Note that, for f : A → B and g : C → D, the pair (f , g) has type (A →
B)× (C→ D). However, we shall abuse of notation again and declare
the type (f , g) : (A, C) → (B, D).8 In the opposite direction, R (f , g) =
f × g:

B×A (B×A, B×A)
(π1,π2)// (B, A)

C

k=pair (f ,g)

OO

(C, C)

(k,k)

OO

(f ,g)

77
(4.74)

This is but another way of writing the universal property of products
(2.64), since (f , g) = (h, k) ⇔ f = h ∧ g = k and pair (f , g) = 〈f , g〉,
recall exercise 2.29.

What is, then, the monad behind this pairing adjunction? It is the
pairing monad (R · L) X = R (L X) = R (X, X) = X × X, where
η = 〈id, id〉 and µ = π1 × π2. This monad allows us to work with
pairs regarded as 2-dimensional vectors (y, x). For instance, the do-
expression

do {x← (2, 3); y← (4, 5); return (x + y)}

yields (6, 8) as result in this monad — the vectorial sum of vectors (2, 3)
and (4, 5). A simple encoding of this monad in Haskell is:

data P a = P (a, a) deriving Show

instance Functor P where
fmap f (P (a, b)) = P (f a, f b)

instance Monad P where
x >>= f = (µ · fmap f ) x

8 Strictly speaking, we are not abusing notation but rather working on a new category,
that is, another mathematical system where functions and objects always come in
pairs. For more on categories see the standard textbook [48].
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return a = P (a, a)

µ :: P (P a)→ P a
µ (P (P (a, b), P (c, d))) = P (a, d)

Exercise 4.14. What is the vectorial operation expressed by the definition

op k v = do {x← v; return (k× x)}

in the pairing monad?
2

4.13 A D J O I N T C ATA M O R P H I S M S

We conclude this chapter with a general result that links adjunctions
(4.61) — and therefore monads — to the catamorphism (3.66) recur-
sion pattern. A very simple example motivates what is to be achieved:
the very simple implementation of addition of two numbers n and m,

add (0, m) = m (4.75)

add (n + 1, m) = 1 + add (n, m) (4.76)

is clearly defined by induction on the first parameter n and yet it is
not a catamorphism.9 So we cannot use catamorphism laws to reason
about add, which is sad.

It turns out that add can be converted to a catamorphism once we
curry it and go higher order, cf:

add 0 m = m
add (n + 1) m = 1 + add n m

that is

add 0 = id
add (n + 1) = (1+) · add n

and finally

add = L [id , ((1+)·)] M (4.77)

Note the interplay between exponentials and catamorphisms. Can it
be generalized?

Yes: let adjunction L a R be given, where the choice of symbols
clearly indicates which functor is the lower adjoint (L) and which is the

upper adjoint (R). Let T F T
inoo be an inductive type and φ : L F→

G L be a natural transformation, that is, free theorem

φ · (L F k) = (G L k) · φ (4.78)

9 Neither it is an anamorphism, although it is of course a hylomorphism.
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holds, for some functor G. Then

f · (L in) = h · G f · φ ⇔ df e = L dh · G ε · φe M (4.79)

holds. Let us calculate this:

df e = L dh · G ε · φe M
≡ { cata-universal (3.66) }

df e · in = dh · G ε · φe · F df e
≡ { fusion (4.65) twice }

df · L ine = dh · G ε · φ · L F df ee
≡ { isomorphism d e ; natural-φ (4.78) }

f · L in = h · G ε · G L df e · φ
≡ { functor G; cancellation ε · L df e = f (4.64) }

f · L in = h · G f · φ
2

Expressed by diagrams, it becomes clear that the lefthand side of (4.79)
is the G-hylomorphism

L T1

f
��

G L T1

G f
��

L F T1

L in

ss
φ
oo

A G Ahoo

f = L h M · [(φ · L out)]

which is converted into the adjoint F-catamorphism (righthand side):

T1

df e
��

F T1
inoo

F df e
��

R A F R A
dh·G ε·φeoo

A G Ahoo G L R AG εoo L F R A
φoo

df e = L dh · G ε · φe M

As example of application, let us check how (4.77) arises from this
result, for

in = [zero , succ]

f = add
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L X = X×A
ε = ap
df e = f
F X = 1 + X

(A is instantiated to N0 in the current example.) Then L F X = (1 +

X) × A. In general, (1 + X) × A is isomorphic to A + X × A, which
suggests G X = A + X. Thus one chooses

φ : (1 + X)×A→ A + X×A
φ = (π2 + id) · distl

which is an isomorphism. The next step is to calculate h = [h1 , h2]:

add · ([zero , succ]× id) = [h1 , h2] · (id + add) · (π2 + id) · distl

≡ { undistl = [i1 × id , i2 × id] (2.61); +-absorption }

add · ([zero , succ]× id) · [i1 × id , i2 × id] = [h1 · π2 , h2 · add]

≡ { +-fusion ; functor-× ; +-eq }{
add · (zero× id) = h1 · π2

add · (succ× id) = h2 · add

≡ { pattern-match with (4.76) }{
h1 = id
h2 = (1+)

Then, by (4.79):

add = L [id , (1+)] · (id + ap) · (π2 + id) · distl M

The final step is to simplify the gene of catamorphism add:

[f , g] = [h1 , h2] · (id + ap) · (π2 + id) · distl

≡ { (2.93) and (2.122) }

[f , g] = [h1 · π2 , h2 · ap] · ap · [i1 , i2]

≡ { coproduct laws ; (2.93) twice }{
f = h1 · π2

g = h2 · ap

≡ { (2.107) and (2.92); constant functions }{
f = h1

g = (h2·)
(4.80)

For h1 = id and h2 = (1+) we get{
f = id
g = ((1+)·)

and therefore add = L [id , ((1+)·)] M — cf. (4.77) —, as expected.
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B A N A N A - S P L I T R E V I S I T E D It is interesting to see what the ad-
joint catamorphism theorem (4.79) offers us for the pairing adjunction
(4.74), in which (recall):

L f = (f , f )

ε = (π1, π2)

d(f , g)e = pair (f , g) = 〈f , g〉

Given F, define G (f , g) = (F f , F g), so that L F f = (F f , F f ) =

G (f , f ) = G L f . So φ is the identity. Then

f · (L in) = h · G f · φ ⇔ df e = L dh · G ε · φe M

instantiates to:

(f , g) · (in, in) = (h, k) · (F f , F g) ⇔ pair (f , g) = L pair ((h, k) · (F π1, F π2)) M

≡ { equality and composition of pairs of functions }{
f · in = h · F f
g · in = k · F g

⇔ pair (f , g) = L pair (h · F π1, k · F π2) M

≡ { universal-cata (twice); pair (f , g) = 〈f , g〉 }{
f = L h M
g = L k M

⇔ 〈f , g〉 = L 〈h · F π1, k · F π2〉 M

≡ { equal by equal substitution }

〈L h M, L k M〉 = L 〈h · F π1, k · F π2〉 M

This outcome is nothing more than the law of banana-split (3.104).
This calculation shows that this law — which was proved in section
3.18 as a special case of mutual recursion — is actually a result inde-
pendent from that other law: it rather is the adjoint catamorphism
theorem instantiated to the pairing adjunction (4.74).

4.14 B I B L I O G R A P H Y N O T E S

The use of monads in computer science started with Moggi [57], who
had the idea that monads should supply the extra semantic informa-
tion needed to implement the lambda-calculus theory. Haskell [42] is
among the computer languages which make systematic use of mon-
ads for implementing effects and imperative constructs in a purely
functional style.

Category theorists invented monads in the 1960’s to concisely ex-
press certain aspects of universal algebra. Functional programmers
invented list comprehensions in the 1970’s to concisely express certain
programs involving lists. Philip Wadler [85] made a great contribution
to the field by showing that list comprehensions could be generalised
to arbitrary monads and unify with imperative “do”-notation in case
of the monad which explains imperative computations.
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Monads are nowadays an essential feature of functional program-
ming and are used in fields as diverse as language parsing [35], com-
ponent-oriented programming [8], strategic programming [44], multi-
media [34] and probabilistic programming [19]. Adjunctions play a
major role in [30], which gives a full account of adjoint recursive pat-
terns.



Part II

C A L C U L AT I N G W I T H R E L AT I O N S



5

W H E N E V E RY T H I N G B E C O M E S A R E L AT I O N

In the previous chapters, (recursive) functions were taken as a basis
for expressing computations, exhibiting powerful laws for calculating
programs in a functional programming style.

When writing such programs one of course follows some line of
thought concerning what the programs should do. What the program
should do is usually understood as the specification of the problem that
motivates writing the program in the first place. Specifications can
be quite complex in real life situations. In other situations, the com-
plexity of the program that one writes is in strong contrast with the
simplicity of the specification. Take the example of sorting, which can
be specified as simply as:

Yield an ordered permutation of the input.

Where do you find, in this specification, the orientation (or inspiration)
that will guide a programmer towards writing a bi-recursive program
like quicksort?

The question is, then: are functions enough for one to calculate func-
tional programs from given specifications? It is the experience in other
fields of mathematics that sometimes it is easier to solve a problem of
domain D if one generalizes from D to some wider domain D’. In the
field of real numbers, for instance, most of trigonometric identities are
easily derived (and memorized) from Euler’s formula involving com-
plex exponentials: ei x = cos x + i (sin x).

Similarly, it turns out that functional programs often become easier
to calculate if one handles them in the wider mathematical domain
of binary relations. At school one gets accustomed to the sentence:
functions are special cases of relations. This chapter puts the usefulness
of such a piece of common knowledge into practice.

5.1 F U N C T I O N S A R E N O T E N O U G H

Consider the following fragment of a requirement posed by a (fic-
tional) telecommunication company:

(...) For each list of calls stored in the mobile phone (e.g. numbers
dialed, SMS messages, lost calls), the store operation should work in a
way such that (a) the more recently a call is made the more accessible

160
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it is; (b) no number appears twice in a list; (c) only the last 10 entries
in each list are stored.

A tentative, first implementation of the store operation could be

store : Call→ Call∗ → Call∗

store c l = c : l

However, such a version of function store fails to preserve the properties
required in the fragment above in case length l = 10, or c ∈ elems l,
where elems yields the set of all elements of a finite list,

elems = L [empty , join] M (5.1)

for empty = { } and join (a, s) = {a} ∪ s.
Clearly, the designer would have to restrict the application of store

to input values c, l such that the given properties are preserved. This
could be achieved by adding a so-called “pre-condition”:

store : Call→ Call∗ → Call∗

store c l = c : l
pre length l < 10 ∧ ¬ (c ∈ elems l)

Such a pre-condition is a predicate telling the range of acceptable in-
put values, to be read as a warning provided by the designer that the
function will not meet the requirements outside such a range of input
values.

Thus store becomes a partial function, that is, a function defined only
for some of its inputs. Although this partiality can be regarded as a
symptom that the requirements have been partly misunderstood, it
turns out that partial functions are the rule rather than the exception
in mathematics and computing. For example, in the numeric field, we
know what 1/2 means; what about 1/0? Ruling out this case means
that division is a partial function. In list processing, given a sequence
s, what does s !! i mean in case i > length s? — list indexing is another
partial operation (as are head, tail and so on).

Partial functions are not new to readers of this monograph: in section
4.1, the Maybe monad was used to “totalize” partial functions. In this
chapter we shall adopt another strategy to cope with partiality, and
one that has extra merits: it will also cope with computational nonde-
terminacy and vagueness of software requirements.

It can be shown that the following evolution of store,

store c = (take 10) · (c:) · filter (c 6=) (5.2)

meets all requirements above with no need for preconditions, the ex-
tra components take 10 and filter (c 6=) being added to comply with
requirements (c) and (b), respectively.

Implementation (5.2) alone should be regarded as example of how
functional programs can be built compositionally in a requirement-
driven fashion. It does not, however, give any guarantees that the
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requirements are indeed met. How can we ensure this in the compo-
sitional way advocated in this monograph since its beginning? The
main purpose of this chapter is to answer such a question.

5.2 F R O M F U N C T I O N S T O R E L AT I O N S

The way functions are handled and expressed in standard maths books,
e.g. in analysis and calculus,

y = f (x)

is indicative that, more important than the reactive behaviour of f ,

fx ∈ A (f x) ∈ B

which was the starting point of section 2.1, mathematicians are more
interested in expressing the input/output relationship of f , that is, the
set of all pairs (y, x) such that y = f x. Such a set of pairs is often re-
ferred to as the “graph” of f , which can be plotted two-dimensionally
in case types A and B are linearly ordered. (As is the standard case, in
which A=B=R, the real numbers.)

It turns out that such a graph can be regarded as a special case of a
binary relation. Take for instance the following functional declaration{

succ : N0 →N0

succ x = x + 1

which expresses the computation rule of the successor function. Writ-
ing y = succ n establishes the binary relation y = x + 1. This binary
relation “coincides” with succ in the sense that writing{

succ : N0 →N0

y succ x ⇔ y = x + 1

means the same as the original definition, while making the i/o rela-
tionship explicit. Because there is only one y such that y = x+ 1 we can
safely drop both ys from y succ x ⇔ y = x + 1, obtaining the original
succ x = x + 1.

The new style is, however, more expressive, in the sense that it en-
ables us to declare genuine binary relations, for instance{

R : N0 →N0

y R x ⇔ y > x + 1
(5.3)

In this case, not only x and y such that y = x + 1 are admissible, but
also y = x + 2, y = x + 3 and so on. It also enables us to express
the converse of any function — an operation hitherto the privilege of
isomorphisms only (2.16):

y f x ⇔ x f ◦ y (5.4)
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Converses of functions are very useful in problem solving, as we shall

soon see. For instance, N0 N0
succ◦oo denotes the predecessor relation

in N0. It is not a function because no y such that y succ◦ 0 exists — try
and solve 0 = y + 1 in N0.

The intuitions above should suffice for us to start generalizing what
we know about functions, from the preceding chapters, to binary rela-
tions. First of all, such relations are denoted by arrows exactly in the
same way functions are. So,

we shall write R : B← A, R : A→ B, B ARoo or A R // B
to indicate that relation R relates B-values to A-values.

That is, relations are typed in the same way as functions.
Given binary relation R : B← A, writing b R a (read: “b is related to

a by R”) means the same as a R◦ b, where R◦ is said to be the converse of
R. In terms of grammar, R◦ corresponds to the passive voice — compare
e.g.

John︸︷︷︸
b

loves︸︷︷︸
R

Mary︸ ︷︷ ︸
a

with

Mary︸ ︷︷ ︸
a

is loved by︸ ︷︷ ︸
R◦

John︸︷︷︸
b

That is, (loves)◦ = (is loved by). Another example:

Catherine eats the apple

— R = (eats), active voice — compared with

the apple is eaten by Catherine

— R◦ = (is eaten by), passive voice.
Following a widespread convention, functions are denoted by low-

ercase characters (e.g. f , g, φ) or identifiers starting with lowercase
characters, while uppercase letters are reserved to arbitrary relations.
In the case of functions (R := f ), b f a means exactly b = f a. This is be-
cause functions are univocal, that is, no two different b and b′ are such
that b f a ∧ b′ f a. In fact, the following facts hold about any function
f :

• Univocality (or “left” uniqueness) —

b f a ∧ b′ f a ⇒ b = b′ (5.5)

• Leibniz principle —

a = a′ ⇒ f a = f a′ (5.6)
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Clearly, not every relation obeys (5.5), for instance

2 < 3∧ 1 < 3 6⇒ 2 = 1

Relations obeying (5.5) will be referred to as simple, according to a ter-
minology to follow shortly.

Implication (5.6) expresses the (philosophically) interesting fact that
no function (observation) can be found able to distinguish between
two equal objects. This is another fact true about functions which does
not generalize to binary relations, as we shall see when we come back
to this later.

Recapitulating: we regard function f : A −→ B as the binary relation
which relates b to a iff b = f a. So,

b f a literally means b = f a (5.7)

The purpose of this chapter is to generalize from

B A
foo

b = f a
to B ARoo

b R a

5.3 P R E / P O S T C O N D I T I O N S

It should be noted that relations are used in virtually every body of sci-
ence and it is hard to think of another way to express human knowl-
edge in philosophy, epistemology and common life, as suggestively
illustrated in figure 5.1. This figure is also illustrative of another pop-
ular ingredient when using relations — the arrows drawn to denote
relationships.1

In real life, “everything appears to be a relation”. This has lead
software theorists to invent linguistic layouts for relational specifica-
tion, leading to so-called specification languages. One such language, to-
day historically relevant, is the language of the Vienna Development
Method (VDM). In this notation, the relation described in (5.3) will be
written:

R (x : N0) y : N0

post y > x + 1

where the clause prefixed by post is said to be a post-condition. The
format also includes pre-conditions, if necessary. Such is the case of
the following pre / post -styled specification of the operation that ex-
tracts an arbitrary element from a set:

Pick (x : PA) (r : A, y : PA)

pre x 6= { }
post r ∈ x ∧ y = x− {r}

(5.8)

1 Our extensive use of arrows to denote relations in the sequel is therefore rooted on
common, informal practice. Unfortunately, mathematicians do not follow such prac-
tice and insist on regarding relations just as sets of pairs.
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Figure 5.1.: Personal relationships among the main characters of the novel Pride
and Prejudice, by Jane Austin, 1813. (Source: Wikipedia)

Here PA = {X | X ⊆ A} is the set of all subsets of A. Mapping this
back to the relational format of (5.3), Pick is the relation defined by:{

Pick : PA→ (A× PA)

(r, y) Pick x ⇔ x 6= { } ∧ r ∈ x ∧ y = x− {r}

Note how (r, y) Pick { } ⇔ FALSE for whatever r, y. Here follows the
specification of sorting written in such pre / post -style,

Sort (x : A∗) y : A∗

post (ord y) ∧ bag y = bag x
(5.9)

where ord is the predicate defined in section 3.17 and bag is the func-
tion that extracts the multiset of elements of a finite list.2 Note how
Sort defines sorting independently of giving an explicit algorithm. In
fact, the pre / post -style provides a way of hiding the algorithmic
details that any particular functional implementation is bound to in-
clude.

Wherever a post-condition is intended to specify a function f , one
refers to such a condition as an implicit specification of f . Examples:
explicit definition of the abs function

abs : Z→ Z

abs i = if i < 0 then− i else i

followed by an implicit specification of the same function:

2 Recall that ord assumes an ordering on type A. For further developments on this
specification see exercise 5.17 later on.

https://en.wikipedia.org/wiki/Pride_and_Prejudice
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abs (i : Z) r : Z

post r > 0 ∧ (r = i ∨ r = − i)

Explicit definition of max function:

max : Z×Z→ Z

max (i, j) = if i 6 j then j else i

Its implicit specification:

max (i : Z, j : Z) r : Z

post r ∈ { i, j} ∧ i 6 r ∧ j 6 r

Of a different nature is the following post-condition:

Sqrt : (i : R) r : R

post r2 = i

Here the specifier is telling the implementer that either solution r = +
√

i
or r = −

√
i will do.3 Indeed, square root is not a function — it rather is

the binary relation:

r Sqrt i ⇔ r2 = i (5.10)

We proceed with a thorough study of the concept of a binary rela-
tion, by analogy with a similar study carried out about functions in
chapter 2.

5.4 R E L AT I O N A L C O M P O S I T I O N A N D C O N V E R S E

Such as functions, relations can be combined via composition (R · S),
defined as follows:

B ARoo CSoo

R·S

ee b(R · S)c ≡ 〈∃ a : b R a : a S c〉 (5.11)

Example: Uncle = Brother · Parent, expanding to

u Uncle c ≡ 〈∃ p :: u Brother p ∧ p Parent c〉

An explanation on the ∃-notation used above is on demand: ∃ is an
instance of a so-called quantifier, a main ingredient of formal logic. In
this monograph we follow the so-called Eindhoven quantifier notation,
whereby expressions of the form

〈∀ x : P : Q〉

mean

“for all x in the range P, Q holds”

3 This aspect of formal specification is called vagueness.
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where P and Q are logical expressions involving x; and expressions of
the form

〈∃ x : P : Q〉

mean

“for some x in the range P, Q holds”.

Note how the symbols ∃ and ∀ “flip” letters E (exists) and A (all), re-
spectively. P is known as the range of the quantification and Q as the
quantified term.4 This logical notation enjoys a well-known set of prop-
erties, some of which are given in appendix A.2. As an example, by
application of the ∃-trading rule (A.2), predicate 〈∃ a : b R a : a S c〉
in (5.11) can be written 〈∃ a :: b R a ∧ a S c〉.

Note how (5.11) removes ∃ and bound variable a when applied from
right to left. This is an example of conversion from pointwise to point-
free notation, since “point” a also disappears. Indeed, we shall try and
avoid lengthy, complex ∀, ∃-formulae by converting them to pointfree
notation, as is the case in (5.11) once relational composition is used.

A simple calculation will show how (5.11) instantiates to (2.6) for
the special case where R and S are functions, R, S := f , g:

b( f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉
≡ { functions are univocal (simple) relations }

〈∃ a :: b = f a ∧ a = g c〉
≡ { ∃-trading rule (A.2) }

〈∃ a : a = g c : b = f a〉
≡ { ∃-“one-point” rule (A.6) }

b = f (g c)

2

Like its functional version (2.8), relation composition is associative:

R · (S · P) = (R · S) · P (5.12)

Everywhere T = R · S holds, the replacement of T by R · S will be
referred to as a “factorization” and that of R · S by T as “fusion”. Every

relation B ARoo admits two trivial factorizations,{
R = R · idA
R = idB · R

(5.13)

where, for every X, idX is the identity relation relating every element
of X with itself (2.9). In other words: the identity (equality) relation
coincides with the identity function.

4 In particular, Q or P can be universally FALSE or TRUE. Assertions of the form 〈∀ x :
TRUE : Q〉 or 〈∃ x : TRUE : Q〉 are abbreviated to 〈∀ x :: Q〉 or 〈∃ x :: Q〉,
respectively.
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In section 2.7 we introduced a very special case of function f — iso-
morphism — which has a converse f ◦ such that (2.16) holds. A major
advantage of generalizing functions to relations is that every relation

A R // B has a converse A BR◦oo defined by

b R a ⇔ a R◦ b (5.14)

— the passive voice written relationally, as already mentioned. Two im-
portant properties of converse follow: it is an involution

(R◦)◦ = R (5.15)

and it commutes with composition in a contravariant way:

(R · S)◦ = S◦ · R◦ (5.16)

Converses of functions enjoy a number of properties from which the
following is singled out as a way to introduce / remove them from
logical expressions:

b (f ◦ · R · g) a ≡ (f b) R (g a) (5.17)

For instance, the consequent of implication (5.6) could have been writ-
ten a( f ◦ · id · f )a′, or even simpler as a( f ◦ · f )a′, as it takes very little
effort to show:

a( f ◦ · id · f )a′

≡ { (5.17) }

( f a)id( f a′)

≡ { b f a ≡ b = f a }

( f a) = id( f a′)

≡ { (2.9) }

f a = f a′

2

Exercise 5.1. Let sq x = x2 be the function that computes the square of a real
number. Use (5.17) to show that (5.10) reduces to

Sqrt = sq◦

in relational pointfree notation.
2

Exercise 5.2. Give an implicit definition of function f x = x2 − 1 in the form of a
post-condition not involving subtraction. Then re-write it without variables using
(5.17).
2
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5.5 R E L AT I O N A L E Q U A L I T Y

Recall that function equality (2.5) is established by extensionality:

f = g iff 〈∀ a : a ∈ A : f a = g a〉

Also recall that f = g only makes sense iff both functions have the
same type, say A → B. Can we do the same for relations? The rela-
tional generalization of (2.5) will be

R = S iff 〈∀ a, b : a ∈ A ∧ b ∈ B : b R a ⇔ b S a〉 (5.18)

Since ⇔ is bi-implication, we can replace the term of the quantifica-
tion by

(b R a ⇒ b S a) ∧ (b S a⇒ b R a)

Now, what does b R a ⇒ b S a mean? It simply captures relational
inclusion,

R ⊆ S iff 〈∀ a, b :: b R a ⇒ b S a〉 (5.19)

whose righthand side can also be written

〈∀ a, b : b R a : b S a〉

by ∀-trading (A.1). Note the same pointwise-pointfree move when
one reads (5.19) from right to left: ∀, a and b disappear.

Altogether, (5.18) can be written in less symbols as follows:

R = S ≡ R ⊆ S ∧ S ⊆ R (5.20)

This way of establishing relational equality is usually referred to as
circular inclusion. Note that relational inclusion (5.19) is a partial order:
it is reflexive, since

R ⊆ R (5.21)

holds for every R; it is transitive, since for all R, S, T

R ⊆ S ∧ S ⊆ T ⇒ R ⊆ T (5.22)

holds; and it is antisymmetric, as established by circular-inclusion (5.20)
itself. Circular-inclusion is also jocosely known as the “ping-pong”
method for establishing R = S: first calculate R ⊆ S (“ping”) and then
S ⊆ R (“pong”). This can be performed in one go by adopting the
following calculation layout:

R ⊆ . . .

⊆ S

⊆ . . .

⊆ R

2
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This has the advantage of making apparent that not only R and S are
the same, but also that every two steps in the circular reasoning are so
(just choose a different start and stop point in the “circle”).

Circular inclusion (5.20) is not the only way to establish relational
equality. A less obvious, but very useful way of calculating the equal-
ity of two relations is the method of indirect equality:

R = S ≡ 〈∀ X :: (X ⊆ R ⇔ X ⊆ S)〉 (5.23)

≡ 〈∀ X :: (R ⊆ X ⇔ S ⊆ X)〉 (5.24)

The reader unaware of this way of indirectly setting algebraic equal-
ities will recognize that the same pattern of indirection is used when
establishing set equality via the membership relation, cf.

A = B ≡ 〈∀ x :: x ∈ A ⇔ x ∈ B〉

The typical layout of using any of these rules is the following:

X ⊆ R
≡ { ... }

X ⊆ . . .
≡ { ... }

X ⊆ S
:: { indirect equality (5.23) }

R = S
2

This proof method is very powerful and we shall make extensive use
of it in the sequel. (The curious reader can have a quick look at section
5.9 for a simple illustration.)

R E L AT I O N A L T Y P E S . From this point onwards we shall regard
the type B← A as including not only all functions f : A → B but also
all relations of the same type, R : A→ B. This is far more than we had
before! In particular, type A→ B includes:

• the bottom relation B A⊥oo , which is such that, for all b, a,

b ⊥ a ≡ FALSE

• the topmost relation B A>oo , which is such that, for all b, a,

b > a ≡ TRUE

The former is referred to as the void, or empty relation. The latter is
known as the universal, or coexistence relation. Clearly, for every R,

⊥ ⊆ R ⊆ > (5.25)
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and

R · ⊥ = ⊥ · R = ⊥ (5.26)

hold. By (5.25) and (5.20), writing R = ⊥ (respectively, R = >) is the
same as writing R ⊆ ⊥ (respectively, > ⊆ R).

A relation B AVoo is said to be a vector if either A or B are the

singleton type 1. Relation 1 AXoo is said to be a row-vector. (Clearly,

X ⊆ !.) Relation B 1Zoo is said to be a column-vector. (Clearly,

Z ⊆ !◦.) 5 A relation of type 1 1Soo is called a scalar.
Last but not least, note that in the relational setting types B← A and

BA do not coincide — BA is the type of all functions from A to B, while
B← A is the type of all relations from A to B. Clearly, BA ⊆ B← A.

5.6 D I A G R A M S

As happens with functions, the arrow notation adopted for functions
makes it possible to express relational formulæ using diagrams. This
is a major ingredient of the relational method because it provides a
graphical way of picturing relation types and relational constraints.

Paths in diagrams are built by arrow chaining, which corresponds
to relational composition R · S (5.11), meaning “... is R of some S of ...”
in natural language.

Assertions of the form X ⊆ Y where X and Y are relation compo-
sitions can be represented graphically by rectangle-shaped diagrams,
as is the case in

Descriptor

path
��

HandleFToo

>
��

⊆

Path File
FS◦

oo

(5.27)

in the context of modelling a file-system. Relation FS models a file store
(a table mapping file system paths to the respective files), FT is the
open-file descriptor table (holding the information about the files that
are currently open6), function path yields the path of a file descriptor
and> is the largest possible relation between file-handles and files, as
seen above. The diagram depicts the constraint:

path · FT ⊆ FS◦ · > (5.28)

What does (5.28) mean, then, in predicate logic?

5 The column and row qualifiers have to do with an analogy with vectors in linear
algebra.

6 Open files are manipulated by the file system via open file descriptor data structures,
which hold various relevant metadata (e.g. current position within the file). Such de-
scriptors are identified by file handles which the file system provides to applications
that manipulate files. This indirection layer avoids unnecessary coupling between
applications and the details of the file system implementation.



5.6 D I A G R A M S 172

F R O M D I A G R A M S T O L O G I C . We reason, using definitions (5.19,5.11)
and the laws of the predicate calculus given in appendix A.2:

path · FT ⊆ FS◦ · >
≡ { ‘at most’ ordering (5.19) }

〈∀ p, h : p(path · FT)h : p(FS◦ · >)h〉
≡ { composition (5.11) ; path is a function }

〈∀ p, h : 〈∃ d : p = path d : d FT h〉 : p(FS◦ · >)h〉
≡ { quantifier calculus — ∃-trading (A.2) }

〈∀ p, h : 〈∃ d : d FT h : p = path d〉 : p(FS◦ · >)h〉
≡ { quantifier calculus — ∀-nesting (A.7) }

〈∀ h :: 〈∀ p : 〈∃ d : d FT h : p = path d〉 : p (FS◦ · >) h〉〉
≡ { quantifier calculus — splitting rule (A.13) }

〈∀ h :: 〈∀ d : d FT h : 〈∀ p : p = path d : p (FS◦ · >) h〉〉〉
≡ { quantifier calculus — ∀-nesting (A.7) }

〈∀ d, h : d FT h : 〈∀ p : p = path d : p(FS◦ · >)h〉〉
≡ { quantifier calculus — ∀-one-point rule (A.5) }

〈∀ d, h : d FT h : (path d)(FS◦ · >)h〉

We still have to unfold term (path d)(FS◦ · >)h:

(path d)(FS◦ · >)h
≡ { composition (5.11) }

〈∃ x :: (path d)FS◦x ∧ x>h〉
≡ { converse ; x>h always holds }

〈∃ x :: x FS (path d) ∧ TRUE〉
≡ { trivia }

〈∃ x :: x FS (path d)〉

In summary, path · FT ⊆ FS◦ · > unfolds into

〈∀ d, h : d FT h : 〈∃ x :: x FS (path d)〉〉 (5.29)

Literally:

If h is the handle of some open-file descriptor d, then this holds
the path of some existing file x.

In fewer words:

Non-existing files cannot be opened (referential integrity).
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Thus we see how relation diagrams “hide” logically quantified for-
mulæ capturing properties of the systems one wishes to describe.

Compared with the commutative diagrams of previous chapters, a
diagram

A

R
��

B

P
��

Soo

⊆

C D
Q

oo

is said to be semi-commutative because Q · P ⊆ R · S is not forced to
hold, only R · S ⊆ Q · P is. In case both inclusions hold, the⊆ symbol
is dropped, cf. (5.20).

Exercise 5.3. Let a S n mean: “student a is assigned number n”. Using (5.11)
and (5.19), check that assertion

S ·> ⊆ > · S depicted by diagram

N0

S

��

N0

S

��

>oo

⊆

A A
>

oo

means that numbers are assigned to students in increasing order.
2

5.7 TA X O N O M Y O F B I N A R Y R E L AT I O N S

The Leibniz principle about functions (5.6) can now be simplified thanks
to equivalence (5.19), as shown next:

〈∀ a, a′ :: a = a′ ⇒ f a = f a′〉
≡ { introduction of id; consequent as calculated already }

〈∀ a, a′ : : a = id a′ ⇒ a( f ◦ · f )a′〉
≡ { b f a means the same as b = f a }

〈∀ a, a′ : : a id a′ ⇒ a( f ◦ · f )a′〉
≡ { (5.19) }

id ⊆ f ◦ · f (5.30)

A similar calculation will reduce univocality (5.5) to

f · f ◦ ⊆ id (5.31)
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binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection (isomorphism)

Figure 5.1.: Binary relation taxonomy

Thus a function f is characterized by comparing f ◦ · f and f · f ◦ with
the identity.7

The exact characterization of functions as special cases of relations
is achieved in terms of converse, which is in fact of paramount impor-
tance in establishing the whole taxonomy of binary relations depicted
in figure 5.1. First, we need to define two important notions: given a

relation B ARoo , the kernel of R is the relation A Aker Roo defined
by:

ker R = R◦ · R (5.32)

Clearly, a′ ker R a holds between any two sources a and a′ which have
(at least) a common target c such that c R a′ and c R a. We can also

define its dual, B B
img Roo , called the image of R, defined by:8

img R = R · R◦ (5.33)

From (5.15, 5.16) one immediately draws:

ker (R◦) = img R (5.34)

img (R◦) = ker R (5.35)

Kernel and image lead to the four top criteria of the taxonomy of
figure 5.1:

Reflexive Coreflexive
ker R entire R injective R
img R surjective R simple R

(5.36)

In words: a relation R is said to be entire (or total) iff its kernel is reflex-
ive and to be simple (or functional) iff its image is coreflexive. Dually,
R is surjective iff R◦ is entire, and R is injective iff R◦ is simple.

7 As we shall see in section 5.13, relations larger than the identity (id ⊆ R) are said
to be reflexive and relations at most the identity (R ⊆ id) are said to be coreflexive or
partial identities.

8 These operators are relational extensions of two concepts familiar from set theory: the
image of a function f , which corresponds to the set of all y such that 〈∃ x :: y = f x〉,
and the kernel of f , which is the equivalence relation b ker f a ⇔ (f b) = (f a). (See
exercise 5.8 later on.)
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Representing binary relations by Boolean matrices gives us a sim-
ple, graphical way of detecting properties such as simplicity, surjec-
tiveness, and so on. Let the enumerated types A = {a1, a2, a3, a4, a5}
and B = {b1, b2, b3, b4, b5} be given. Two examples of relations of type
A→ B are given in figure 5.2 — the leftmost and the rightmost, which
we shall refer to as R and S, respectively.9 The matrix representing R
is:

a1 a2 a3 a4 a5

b1 0 1 0 0 0
b2 1 0 0 0 0
b3 0 0 1 1 0
b4 0 0 0 0 1
b5 0 0 0 0 0

(5.37)

The 1 addressed by b2 and a1 means that b2 R a1 holds, that between
b1 and a2 means b1 R a2, and so on and so forth. Then, R is:

• simple because there is at most one 1 in every column

• entire because there is at least one 1 in every column

• not injective because there is more than one 1 in some row

• not surjective because some row (the last) has no 1s.

So this relation is a function that is neither an injection nor a surjection.
Let us now have a look at the matrix that represents S : A→ B:

a1 a2 a3 a4 a5

b1 0 1 0 0 0
b2 1 0 0 0 0
b3 0 0 0 1 0
b4 0 0 0 0 1
b5 0 0 1 0 0

Now every row and every column has exactly one 1 — this tells us that
S is not only a function but in fact a bijection. Looking at the matrix
that represents S◦ : A← B,

b1 b2 b3 b4 b5

a1 0 1 0 0 0
a2 1 0 0 0 0
a3 0 0 0 0 1
a4 0 0 1 0 0
a5 0 0 0 1 0

we realize that it also is a function, in fact another bijection. This gives
us a rule of thumb for (constructively) checking for bijections (isomor-
phisms):

A function f is a bijection iff its converse f ◦ is a function g (5.38)

9 Credits: http://www.matematikaria.com/unit/injective-surjective-bijective.html. Note that
we enumerate a1, a2, ... from the top to the bottom.

http://www.matematikaria.com/unit/injective-surjective-bijective.html
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Figure 5.2.: Four binary relations.

Then g is also a bijection since f ◦ = g ⇔ f = g◦.10 Recall how some
definitions of isomorphisms given before, e.g. (2.98), are nothing but
applications of this rule f ◦ = g, once written pointwise with the help
of (5.17):

f b = a ⇔ b = g a

Bijections (isomorphisms) are reversible functions — they don’t lose
any information. By contrast, ! :A → 1 (2.59) and indeed all constant
functions c : A → C (2.12) lose all the information contained in their
inputs, recall (2.14). This property is actually more general,

c · R ⊆ c (5.39)

for all suitably typed R.
In the same way ! :A → 1 is always a constant function — in fact

the unique possible function of its type, f : 1 → A is bound to be a
constant function too, for any choice of a target value in non-empty A.
Because there are as many such functions as elements of A, functions
a : 1 → A are referred to as points. These two situations correspond to
isomorphisms 1A ∼= 1 (2.103) and A1 ∼= A (2.104), respectively. Two
short-hands are introduced for the constant functions

true = TRUE (5.40)

false = FALSE (5.41)

Exercise 5.4. Prove (5.38) by completing:

f and f ◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker ( f ◦) ∧ img ( f ◦) ⊆ id)

≡ { ... }

...

10 The interested reader may go back to (2.18,2.19) at this point and check these rules in
the light of (5.38).
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≡ { ... }

f is a bijection

2

Exercise 5.5. Compute, for the relations in figure 5.2, the kernel and the image of
each relation. Why are all these relations functions? (NB: note that the types are
not all the same.)
2

Exercise 5.6. Recall the definition of a constant function (2.12),

k : A→ K
k a = k

where K is assumed to be non-empty. Using (5.11), show that ker k = > and
compute which relations are defined by the expressions

b · a◦, img k (5.42)

Finally, show that (5.39) holds.
2

Exercise 5.7. Resort to (5.34,5.35) and (5.36) to prove the following rules of thumb:

- converse of injective is simple (and vice-versa) (5.43)

- converse of entire is surjective (and vice-versa) (5.44)

2

Exercise 5.8. Given a function B A
foo , calculate the pointwise version

b(ker f )a ≡ f b = f a (5.45)

of ker f . What is the outcome of the same exercise for img f ?
2
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E N T I T Y- R E L AT I O N S H I P D I A G R A M S In the tradition of relational
databases, so-called entity-relationship (ER) diagrams have become pop-
ular as an informal means for capturing the properties of the relation-
ships involved in a particular database design.

Consider the following example of one such diagram:11

In the case of relation

Teacher Student
is mentor ofoo

the drawing tells not only that some teacher may mentor more than
one student, but also that a given student has exactly one mentor. So
is mentor of is a simple relation (figure 5.1).

The possibility n = 0 allows for students with no mentor. Should
this possibility be ruled out (n > 0), the relation would become also
entire, i.e. a function. Then

t is mentor of s

could be written

t = is mentor of s

— recall (5.7) — meaning:

t is the mentor of student s.

That is, is mentor of would become an attribute of Student. Note how
definite article “the” captures the presence of functions in normal speech.
“The” means not only determinism (one and only one output) but
also definedness (there is always one such output). In the case of
is mentor of being simple but not entire, we have to say:

t is the mentor of student s, if any.

Exercise 5.9. Complete the exercise of declaring in A R // B notation the other
relations of the ER-diagram above and telling which properties in Figure 5.1 are re-
quired for such relations.
2

11 Credits: https://dba.stackexchange.com/questions.

https://dba.stackexchange.com/questions
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5.8 F U N C T I O N S , R E L AT I O N A L LY

Among all binary relations, functions play a central role in relation
algebra — as can be seen in figure 5.1. Recapitulating, a function f is a
binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id ( f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f ( f is entire)

It turns out that any function f enjoys the following properties, known
as shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (5.46)

R · f ◦ ⊆ S ≡ R ⊆ S · f (5.47)

These will prove extremely useful in the sequel. Another very useful
fact is the function equality rule:

f ⊆ g ≡ f = g ≡ f ⊇ g (5.48)

Rule (5.48) follows immediately from (5.46,5.47) by “cyclic inclusion”
(5.20):

f ⊆ g

≡ { natural-id (2.10) }

f · id ⊆ g

≡ { shunting on f (5.46) }

id ⊆ f ◦ · g
≡ { shunting on g (5.47) }

id · g◦ ⊆ f ◦

≡ { converses; identity }

g ⊆ f

Then:

f = g

≡ { cyclic inclusion (5.20) }

f ⊆ g ∧ g ⊆ f

≡ { above }

f ⊆ g

≡ { above }

g ⊆ f
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2

Exercise 5.10. Infer id ⊆ ker f ( f is entire) and img f ⊆ id ( f is simple) from
shunting rules (5.46) and (5.47).
2

Exercise 5.11. For R := f , the property (5.39) “immediately” coincides with (2.14).
Why?
2

F U N C T I O N D I V I S I O N . Given two functions B
g // C A

foo , we
can compose f with the converse of g. This turns out to be a very fre-
quent pattern in relation algebra, known as the division of f by g:

f
g

= g◦ · f c f .
B

g
��

A

f��

f
goo

C

(5.49)

That is,

b
f
g

a ⇔ g b = f a

Think of the sentence:

Mary lives where John was born.

This can be expressed by a division:

Mary
birthplace
residence

John ⇔ residence Mary = birthplace John

Thus R = birthplace
residence is the relation ”... resides in the birthplace of ...”. In

general,

b f
g a means “the g of b is the f of a”.

This combinator enjoys a number of interesting properties, for in-
stance:

f
id

= f (5.50)(
f
g

)◦
=

g
f

(5.51)

f · h
g · k = k◦ · f

g
· h (5.52)

f
f

= ker f (5.53)
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a 6= b ⇔ a
b

= ⊥ (5.54)

Function division is a special case of the more general, and important,
concept of relational division, a topic that shall be addressed in section
5.19.

Exercise 5.12. The teams (T) of a football league play games (G) at home or away,
and every game takes place in some date:

T Ghomeoo away //

date
��

T

D

Moreover, (a) No team can play two games on the same date; (b) All teams play
against each other but not against themselves; (c) For each home game there is an-
other game away involving the same two teams. Show that

id ⊆ away
home

· away
home

(5.55)

captures one of the requirements above — which?
2

Exercise 5.13. Check the properties of function division given above.
2

5.9 M E E T A N D J O I N

Like sets, two relations of the same type, say B A
R,Soo , can be inter-

sected or joined in the obvious way:

b (R ∩ S) a ≡ b R a ∧ b S a (5.56)

b (R ∪ S) a ≡ b R a ∨ b S a (5.57)

R∩S is usually called meet (intersection) and R∪S is called join (union).
They lift pointwise conjunction and disjunction, respectively, to the
pointfree level. Their meaning is nicely captured by the following uni-
versal properties:12

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (5.58)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (5.59)

Meet and join have the expected properties, e.g. associativity

(R ∩ S) ∩ T = R ∩ (S ∩ T)

12 Recall the generic notions of greatest lower bound and least upper bound, respectively.
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proved next by indirect equality (5.23):

X ⊆ (R ∩ S) ∩ T

≡ { ∩-universal (5.58) twice }

(X ⊆ R ∧ X ⊆ S) ∧ X ⊆ T

≡ { ∧ is associative }

X ⊆ R ∧ (X ⊆ S ∧ X ⊆ T)

≡ { ∩-universal (5.58) twice }

X ⊆ R ∩ (S ∩ T)

:: { indirection (5.23) }

(R ∩ S) ∩ T = R ∩ (S ∩ T)

2

In summary, type B← A forms a lattice:

> “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S meet, glb (“greatest lower bound”)

⊥ “bottom”

D I S T R I B U T I V E P R O P E RT I E S . As it will be proved later, composi-
tion distributes over union

R · (S ∪ T) = (R · S) ∪ (R · T) (5.60)

(S ∪ T) · R = (S · R) ∪ (T · R) (5.61)

while distributivity over intersection is side-conditioned:

(S ∩Q) · R = (S · R) ∩ (Q · R) ⇐


Q · img R ⊆ Q

∨
S · img R ⊆ S

(5.62)

R · (Q ∩ S) = (R ·Q) ∩ (R · S) ⇐


(ker R) ·Q ⊆ Q

∨
(ker R) · S ⊆ S

(5.63)

Properties (5.60,5.61) express the bilinearity of relation composition with
respect to relational join. These, and properties such as e.g.

(R ∩ S)◦ = R◦ ∩ S◦ (5.64)
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(R ∪ S)◦ = R◦ ∪ S◦ (5.65)

will be shown to derive from a general construction that will be ex-
plained in section 5.18.

Exercise 5.14. Show that

R∩⊥ = ⊥ (5.66)

R∩> = R (5.67)

R∪> = > (5.68)

R∪⊥ = R (5.69)

using neither (5.56) nor (5.57).
2

Exercise 5.15. Prove the union simplicity rule:

M ∪ N is simple ≡ M, N are simple and M · N◦ ⊆ id (5.70)

Using converses, derive from (5.70) the corresponding rule for injective relations.
2

Exercise 5.16. Prove the distributive property:

g◦ · (R∩ S) · f = g◦ · R · f ∩ g◦ · S · f (5.71)

2

Exercise 5.17. Let bag : A∗ → N0
A be the function that, given a finite sequence

(list), indicates the number of occurrences of its elements, for instance,

bag [a, b, a, c ] a = 2

bag [a, b, a, c ] b = 1

bag [a, b, a, c ] c = 1

Let ord : A∗ → B be the obvious predicate assuming a total order predefined in A.
Finally, let true = TRUE (5.40). Having defined

S =
bag
bag
∩ true

ord
(5.72)

identify the type of S and, going pointwise and simplifying, tell which operation is
specified by S.
2

Exercise 5.18. Derive the distributive properties:

k◦ · (f ∪ g) =
f
k
∪ g

k
, k◦ · (f ∩ g) =

f
k
∩ g

k
(5.73)
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2

5.10 R E L AT I O N A L T H I N K I N G

Binary relations provide a natural way of describing real life situations.
Relation algebra can be used to reason about such formal descriptions.
This can be achieved using suitable relational combinators (and their
laws), in the pointfree style.

Let us see a simple example of such a relational thinking taking one of
the PROPOSITIONES AD ACUENDOS IUUENES (“Problems to Sharpen
the Young”) proposed by abbot Alcuin of York († 804) as case study.
Alcuin states his puzzle in the following way, in Latin:

XVIII. PROPOSITIO DE HOMINE ET CAPRA ET LVPO. Homo quidam
debebat ultra fluuium transferre lupum, capram, et fasciculum cauli.
Et non potuit aliam nauem inuenire, nisi quae duos tantum ex ipsis
ferre ualebat. Praeceptum itaque ei fuerat, ut omnia haec ultra illaesa
omnino transferret. Dicat, qui potest, quomodo eis illaesis transire po-
tuit?

Our starting point will be the following (rather free) translation of the
above to English:

XVIII. FOX, GOOSE AND BAG OF BEANS PUZZLE. A farmer goes
to market and purchases a fox, a goose, and a bag of beans. On his way
home, the farmer comes to a river bank and hires a boat. But in crossing
the river by boat, the farmer could carry only himself and a single one
of his purchases - the fox, the goose or the bag of beans. (If left alone,
the fox would eat the goose, and the goose would eat the beans.) Can
the farmer carry himself and his purchases to the far bank of the river,
leaving each purchase intact?

We wish to describe the essence of this famous puzzle, which is the
guarantee that

under no circumstances does the fox eat the goose or the goose
eat the beans.

Clearly, we need two data types:

Being = {Farmer, Fox, Goose, Beans}
Bank = {Le f t, Right}

Then we identify a number of relations involving such data:

Being Eats // Being

where
��

Bank cross // Bank

(5.74)
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Clearly, cross Le f t = Right and cross Right = Le f t. So cross is its own
inverse and therefore a bijection (5.38). Relation Eats can be described
by the Boolean matrix:

Eats =

Fox Goose Beans Farmer
Fox 0 1 0 0

Goose 0 0 1 0
Beans 0 0 0 0

Farmer 0 0 0 0

(5.75)

Relation where : Being→ Bank is necessarily a function because:

- everyone is somewhere in a bank (where is entire)
- no one can be in both banks at the same time (where is simple)

Note that there are only two constant functions of type Being→ Bank,
Right and Le f t. The puzzle consists in changing from the state where =
Right to the state where = Le f t, for instance, without violating the
property that nobody eats anybody. How does one record such a prop-
erty? We need two auxiliary relations capturing, respectively:

• Being at the same bank:

SameBank = ker where (5.76)

• Risk of somebody eating somebody else:

CanEat = SameBank ∩ Eats

Then “starvation” is ensured by the Farmer’s presence at the same
bank:

CanEat ⊆ SameBank · Farmer (5.77)

By (5.76) and (5.46), “starvation” property (5.77) converts to:

where · CanEat ⊆ where · Farmer

In this version, (5.77) can be depicted as a diagram

Being

where
��

BeingCanEatoo

Farmer
��

⊆

Bank Being
where

oo

(5.78)

which “reads” in a nice way:

where (somebody)CanEat (somebody else) (that’s) where
(the) Farmer (is).
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Diagram (5.27) given earlier can now be identified as another exam-
ple of assertion expressed relationally. Diagrams of this kind capture
properties of data models that one wishes to hold at any time during
the lifetime of the system being described. Such properties are com-
monly referred to as invariants and their preservation by calculation
will be the main aim of chapter 7.

Exercise 5.19. Calculate the following pointwise version of the “starvation” prop-
erty (5.78) by introducing quantifiers and simplifying:

〈∀ b′, b : b′ Eat b : where b′ = where b⇒ where b′ = where Farmer〉
2

Exercise 5.20. Recalling property (5.39), show that the “starvation” property (5.78)
is satisfied by any of the two constant functions that model the start or end states of
the Alcuin puzzle.
2

5.11 M O N O T O N I C I T Y

As expected, relational composition is monotonic:

R ⊆ S
T ⊆ U

(R · T) ⊆ (S ·U)

(5.79)

Indeed, all relational combinators studied so far are also monotonic,
namely

R ⊆ S ⇒ R◦ ⊆ S◦ (5.80)

R ⊆ S ∧U ⊆ V ⇒ R ∩U ⊆ S ∩V (5.81)

R ⊆ S ∧U ⊆ V ⇒ R ∪U ⊆ S ∪V (5.82)

hold.
Monotonicity and transitivity (5.22) are important properties for rea-

soning about a given relational inclusion R ⊆ S. In particular, the
following rules are of help by relying on a “mid-point” relation M,
R ⊆ M ⊆ S (analogy with interval arithmetics).

• Rule A — lowering the upper side:

R ⊆ S

⇐ { M ⊆ S is known ; transitivity of ⊆ (5.22) }
R ⊆ M

Then proceed with R ⊆ M.
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• Rule B — raising the lower side:

R ⊆ S

⇐ { R ⊆ M is known; transitivity of ⊆ }
M ⊆ S

Then proceed with M ⊆ S.

The following proof of shunting property (5.46) combines these rules
with monotonicity and circular implication:

R ⊆ f ◦ · S
⇐ { id ⊆ f ◦ · f ; raising the lower-side }

f ◦ · f · R ⊆ f ◦ · S
⇐ { monotonicity of ( f ◦·) }

f · R ⊆ S

⇐ { f · f ◦ ⊆ id ; lowering the upper-side }

f · R ⊆ f · f ◦ · S
⇐ { monotonicity of ( f ·) }

R ⊆ f ◦ · S

Thus the equivalence in (5.46) is established by circular implication.
Rules A and B should be used only where other proof techniques

(notably indirect equality) fail. They assume judicious choice of the
mid-point relation M, at each step. The choice of an useless M can
drive the proof nowhere.

Exercise 5.21. Unconditional distribution laws

(P ∩Q) · S = (P · S) ∩ (Q · S)
R · (P ∩Q) = (R · P) ∩ (R ·Q)

will hold provided one of R or S is simple and the other injective. Tell which, justify-
ing.
2

Exercise 5.22. Prove that relational composition preserves all relational classes in
the taxonomy of figure 5.1.
2
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5.12 R U L E S O F T H U M B

Quite often, involved reasoning in logic arguments can be replaced by
simple and elegant calculations in relation algebra that arise thanks to
smart“rules of thumb”. We have already seen two such rules, (5.43)
and (5.44). Two others are:

- smaller than injective (simple) is injective (simple) (5.83)

- larger than entire (surjective) is entire (surjective) (5.84)

Let us see these rules in action in trying to infer what can be said of
two functions f and r such that

f · r = id

holds. On the one hand,

f · r = id

≡ { equality of functions }

f · r ⊆ id

≡ { shunting }

r ⊆ f ◦

Since f is simple, f ◦ is injective and so is r because “smaller than injec-
tive is injective”. On the other hand,

f · r = id

≡ { equality of functions }

id ⊆ f · r
≡ { shunting }

r◦ ⊆ f

Since r is entire, r◦ is surjective and so is f because “larger that surjec-
tive is surjective”. We conclude that f is surjective and r is injective
wherever f · r = id holds. Since both are functions, we furthermore
conclude that

f is an abstraction and r is a representation (5.85)

— cf. Figure 5.1.
The reason for this terminology can now be explained. Given f :

A ← C and r : C ← A such that f · r = id, that is, for all a ∈ A,
f (r a) = a, think of C as a domain of concrete objects and of A as a
domain of abstract data. For instance, let A = B and C = N0. Then
define{

r : B→N0

r b = if b then k else 0
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(where k is any natural number different from 0) and{
f : B←N0

f n = if n = 0 then FALSE else TRUE

Clearly, by the definitions of f and r:

f (r b) = if (if b then k else 0) = 0 then FALSE else TRUE

≡ { conditional-fusion rule (2.72) }

f (r b) = if (if b then k = 0 else TRUE) then FALSE else TRUE

≡ { k = 0 is always false }

f (r b) = if (if b then FALSE else TRUE) then FALSE else TRUE

≡ { pointwise definition of ¬ b }

f (r b) = if ¬ b then FALSE else TRUE

≡ { trivial }

b

That is, r represents the Booleans TRUE and FALSE by natural numbers
while f abstracts from such real numbers back to Booleans. r being
injective means r FALSE 6= r TRUE, that is, the Boolean information
is not lost in the representation.13 f being surjective means that any
Boolean is representable. Note that r · f = id does not hold: r (f 1) =
r TRUE = k and k 6= 1 in general.

The abstraction/representation pair (f , r) just above underlies the
way Booleans are handled in programming languages such as C, for
instance. Experienced programmers will surely agree that often what
is going on in the code they write are processes of representing in-
formation using primitive data structures available from the adopted
programming language. For instance, representing finite sets by finite
lists corresponds to the abstraction given by elems (5.1).

Exercise 5.23. Recalling exercise 5.17, complete the definition of

bag [ ] a = 0
bag (h : t) a = let f = bag t in if . . .

Is this function an abstraction or a representation? Justify your answer informally.
2

Exercise 5.24.Show that:

• R ∩ S is injective (simple) provided one of R or S is so

• R ∪ S is entire (surjective) provided one of R or S is so.

13 That is, r causes no confusion in the representation process.
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2

Exercise 5.25. Let us summarize (5.85) above as follows:

f · g = id ⇒
{

f is surjective
g is injective

(5.86)

Show that, by putting (5.86) together with cancellations laws (2.22) and (2.41), one
gets:

- i1 and i2 are injections, that is:
{

i◦1 · i1 = id
i◦2 · i2 = id

(5.87)

- π1 and π2 are surjections, that is:
{

π1 · π◦1 = id
π2 · π◦2 = id

(5.88)

2

5.13 E N D O - R E L AT I O N S

Relations in general are of type A → B, for some A and B. In the
special case that A = B holds, a relation R : A → A is said to be an
endo-relation, or a graph. The A = B coincidence gives room for some
extra terminology, extending some already given. Besides an endo-

relation A ARoo being

reflexive: iff id ⊆ R (5.89)

coreflexive: iff R ⊆ id (5.90)

it can also be:

transitive: iff R · R ⊆ R (5.91)

symmetric: iff R ⊆ R◦(≡ R = R◦) (5.92)

anti-symmetric: iff R ∩ R◦ ⊆ id (5.93)

irreflexive: iff R∩ id = ⊥ (5.94)

connected: iff R ∪ R◦ = > (5.95)

By combining these criteria, endo-relations A ARoo can further
be classified as in figure 5.1. In summary:

• Preorders are reflexive and transitive orders.
Example: age y 6 age x.

• Partial orders are anti-symmetric preorders
Example: y ⊆ x where x and y are sets.
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Figure 5.1.: Taxonomy of endorelations.

• Linear orders are connected partial orders
Example: y 6 x in N0

• Equivalences are symmetric preorders
Example: age y = age x. 14

• Pers are partial equivalences
Example: y IsBrotherO f x.

Preorders are normally denoted by asymmetric symbols such as e.g.
y v x, y 6 x. In case of a function f such that

f · (v) ⊆ (6) · f (5.96)

we say that f is monotonic. Indeed, this is equivalent to

a v b⇒ (f a) 6 (f b)

once shunting (5.46) takes place, and variables are added and handled
via (5.17). Another frequent situation is that of two functions f and g
such that

f ⊆ (6) · g (5.97)

This converts to the pointwise

〈∀ a :: f a 6 g a〉

that is, f is always at most g for all possible inputs. The following abbre-
viation is often used to capture this ordering on functions induced by
a pre-order (6) on their outputs:

f
.
6 g iff f ⊆ (6) · g (5.98)

For instance, f
.
6 id means f a 6 a for all inputs a.

14 Kernels of functions are always equivalence relations, see exercise 5.26.
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C L O S U R E O P E R AT O R S Given a partial order (6), a function f is
said to be a closure operator iff

(6) · f = f ◦ · (6) · f (5.99)

holds. Let us write the same with points — via (5.17) —, for all x, y:

y 6 f x ⇔ f y 6 f x (5.100)

Clearly, for (>) = (6)◦, (5.99) can also be written

f ◦ · (>) = f ◦ · (>) · f

Any of these alternatives is an elegant way of defining a closure oper-
ator f , in so far it can be shown to be equivalent to the conjunction of
three facts about f : (a) f is monotonic; (b) id

.
6 f and (c) f = f · f .

As an example, consider the function that closes a finite set of natu-
ral numbers by filling in the intermediate numbers, e.g. f {4, 2, 6} =
{2, 3, 4, 5, 6}. Clearly, x ⊆ f x. If you apply f again, you get

f {2, 3, 4, 5, 6} = {2, 3, 4, 5, 6}

This happens because f is a closure operator.

Exercise 5.26. Knowing that property

f · f ◦ · f = f (5.101)

holds for every function f , prove that ker f (5.53) is an equivalence relation.
2

Exercise 5.27. From ker ! = > and (5.101) infer

> · R ⊆ > · S ⇔ R ⊆ > · S (5.102)

Conclude that (>·) is a closure operator.
2

Exercise 5.28. Generalizing the previous exercise, show that pre/post-composition
with functional kernels are closure operations:

S · ker f ⊆ R · ker f ≡ S ⊆ R · ker f (5.103)

ker f · S ⊆ ker f · R ≡ S ⊆ ker f · R (5.104)

2

Exercise 5.29. Consider the relation

b R a ⇔ team b is playing against team a at the moment
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Is this relation: reflexive? irreflexive? transitive? anti-symmetric? symmetric? con-
nected?
2

Exercise 5.30. Expand criteria (5.91) to (5.95) to pointwise notation.
2

Exercise 5.31. A relation R is said to be co-transitive or dense iff the following holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (5.105)

Write the formula above in PF notation. Find a relation (e.g. over numbers) that is
co-transitive and another that is not.
2

Exercise 5.32. Check which of the following properties,

transitive, symmetric, anti-symmetric, connected

hold for the relation Eats (5.75) of the Alcuin puzzle.
2

Exercise 5.33. Show that (5.55) of exercise 5.12 amounts to forcing relation home ·
away◦ to be symmetric.
2

Exercise 5.34. Suppose you belong to the team that is developing, starting from

Location Jobstartoo size // Size

JobId

S

OO

the memory management module of an operating system’s kernel, where:

• JobId uniquely identifies each running process (Job);

• start is the address where the memory block reserved for each running process;

• size is the size of this (contiguous) block of memory;

• S(cheduled) is the simple relation that associates JobIds with Jobs;

• Location and Size are natural numbers.
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The most relevant invariant in this model the guarantee that no process executes in

memory cells of other processes. To specify it, define relation JobId LocationOwnsoo

indicates the “ownership” (or not) of an address by a process k:

k Owns a ⇔ 〈∃ x : x S k : start x 6 a 6 start x + size x〉

To which property of the Owns relation would you resort to specify the intended in-
variant? Justify.
2

5.14 R E L AT I O N A L PA I R I N G

Recall from sections 2.8 and 2.9 that functions can be composed in par-
allel and in alternation, giving rise to so-called products and coproducts.
Does a product diagram like (2.23),

A A× B
π1oo π2 // B

C
f

cc

〈 f ,g〉

OO

g

<<

make sense when f e g are generalized to relations R and S? We start
from definition (2.20),

〈 f , g〉 c def
= ( f c, g c)

to try and see what such a generalization could mean. The relational,
pointwise expression of function 〈f , g〉 is

y = 〈f , g〉 c

which can be rephrased to (a, b) = 〈f , g〉 c, knowing that 〈f , g〉 is of
type C→ A× B in (2.23). We reason:

(a, b) = 〈f , g〉 c

≡ { 〈f , g〉 c = (f c, g c); equality of pairs }{
a = f c
b = g c

≡ { y = f x ⇔ y f x }{
a f c
b g c

2

By in-lining the conjunction expressed by the braces just above, one
gets

(a, b) 〈f , g〉 c ⇔ a f c ∧ b g c
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which proposes the generalization:

(a, b) 〈R, S〉 c ⇔ a R c ∧ b S c (5.106)

Recalling the projections π1 (a, b) = a and π2 (a, b) = b, let us try and
remove variables a, b and c from the above, towards a closed definition
of 〈R, S〉:

(a, b) 〈R, S〉 c ⇔ a R c ∧ b S c

≡ { π1 (a, b) = a and π2 (a, b) = b }

(a, b) 〈R, S〉 c ⇔ π1 (a, b) R c ∧ π2 (a, b) S c

≡ { (5.17) twice }

(a, b) 〈R, S〉 c ⇔ (a, b) (π◦1 · R) c ∧ (a, b) (π◦2 · S) c

≡ { (5.56) }

(a, b) 〈R, S〉 c ⇔ (a, b) (π◦1 · R∩ π◦2 · S) c

≡ { (5.19) }

〈R, S〉 = π◦1 · R∩ π◦2 · S (5.107)

We proceed to investigating what kind of universal property 〈R, S〉, de-
fined by π◦1 · R ∩ π◦2 · S, satisfies. The strategy is to use indirect equal-
ity:

X ⊆ 〈R, S〉
≡ { (5.107) }

X ⊆ π◦1 · R∩ π◦2 · S
≡ { (5.58) }{

X ⊆ π◦1 · R
X ⊆ π◦2 · S

≡ { shunting }{
π1 ·X ⊆ R
π2 ·X ⊆ S

In summary, the universal property of 〈R, S〉 is:

X ⊆ 〈R, S〉 ⇔
{

π1 ·X ⊆ R
π2 ·X ⊆ S

(5.108)

For functions, X, R.S := k, f , g it can be observed that (5.108) coincides
with (2.64). But otherwise, the corollaries derived from (5.108) are dif-
ferent from those that emerge from (2.64). For instance, cancellation
becomes:{

π1 · 〈R, S〉 ⊆ R
π2 · 〈R, S〉 ⊆ S
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This tells us that pairing R with S has the (side) effect of deleting from
R all those inputs for which S is undefined (and vice-versa), since out-
put pairs require that both relations respond to the input. Thus, for
relations, laws such as the ×-fusion rule (2.26) call for a side-condition:

〈R, S〉 · T = 〈R · T, S · T〉
⇐ R · (img T) ⊆ R ∨ S · (img T) ⊆ S

(5.109)

Clearly,

〈R, S〉 · f = 〈R · f , S · f 〉 (5.110)

holds, since img f ⊆ id. Moreover, the absorption law (2.27) remains
unchanged,

(R× S) · 〈P, Q〉 = 〈R · P, S ·Q〉 (5.111)

where R× S is defined in the same way as for functions:

R× S = 〈R · π1, S · π2〉 (5.112)

As a generalization of (5.110) and also immediate by monotonicity,

〈R, S〉 · T = 〈R · T, S · T〉

holds for T simple.
Because (5.108) is not the universal property of a product, we tend to

avoid talking about relational products and rather talk about relational
pairing instead.15 In spite of the weaker properties, relational pairing
has interesting laws, namely

〈R, S〉◦ · 〈X, Y〉 = (R◦ · X) ∩ (S◦ ·Y) (5.113)

that will prove quite useful later on.

Exercise 5.35. Derive from (5.113) the following properties:

f
g
∩ h

k
=
〈f , h〉
〈g, k〉 (5.114)

ker 〈R, S〉 = ker R ∩ ker S (5.115)

〈R, id〉 is always injective, for whatever R

2

Exercise 5.36. Recalling (5.38), prove that swap = 〈π2, π1〉 (2.32) is its own con-
verse and therefore a bijection.
2

15 Relational products do exist but are not obtained by 〈R, S〉. For more about this see
section 5.23 later on.
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Exercise 5.37. Derive from the laws studied thus far the following facts about rela-
tional pairing:

id× id = id (5.116)

(R× S) · (P×Q) = (R · P)× (S ·Q) (5.117)

2

5.15 R E L AT I O N A L C O P R O D U C T S

Let us now show that, in contrast with products, coproducts extend
perfectly from functions to relations, that is, universal property (2.66)
extends to

X = [R , S] ⇔
{

X · i1 = R
X · i2 = S

(5.118)

where X : A + B → C, R : A → C and S : B → C are binary relations.
First of all, we need to understand what [R , S] means. Our starting
point is +-cancellation, recall (2.41):{

[g , h] · i1 = g
[g , h] · i2 = h

≡ { equality of functions }{
g ⊆ [g , h] · i1
h ⊆ [g , h] · i2

≡ { shunting followed by (5.59) }

g · i◦1 ∪ h · i◦2 ⊆ [g , h]

On the other hand:{
[g , h] · i1 = g
[g , h] · i2 = h

≡ { equality of functions }{
[g , h] · i1 ⊆ g
[g , h] · i2 ⊆ h

≡ { (5.87) ; shunting }{
[g , h] · i1 · i◦1 ⊆ g · i◦1
[g , h] · i2 · i◦2 ⊆ h · i◦2

⇒ { monotonicity (5.82) and distribution (5.60) }

[g , h] · (i1 · i◦1 ∪ i2 · i◦2) ⊆ g · i◦1 ∪ h · i◦2
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≡ { img i1 ∪ img i2 = id, more about this below }

[g , h] ⊆ g · i◦1 ∪ h · i◦2

Altogether, we obtain:

[g , h] = g · i◦1 ∪ h · i◦2

Note how this matches with (2.38), once variables are introduced:

c [g , h] x ⇔ 〈∃ a : x = i1 a : c = g a〉 ∨ 〈∃ b : x = i2 b : c = h b〉

Fact

img i1 ∪ img i2 = id (5.119)

assumed above is a property stemming from the construction of co-
products,

A + B def
= { i1 a | a ∈ A} ∪ { i2 b | b ∈ B}

since i1 and i2 are the only constructors of data of type A + B. Another
property implicit in this construction is:

i◦1 · i2 = ⊥ (5.120)

equivalent to its converse i◦2 · i1 = ⊥. It spells out that, for any a ∈ A
and b ∈ B, i1 a = i2 b is impossible.16 In other words, the union is a
disjoint one.

Let us now generalize the above to relations instead of functions,

[R , S] = R · i◦1 ∪ S · i◦2 (5.121)

and show that (5.118) holds. First of all,

X = R · i◦1 ∪ S · i◦2
⇒ { compose both sides with i1 and simplify; similarly for i2 }

X · i1 = R ∧ X · i2 = S

The simplifications arise from i1 and i2 being injections, so their ker-
nels are identities. On the other hand, i◦1 · i2 = ⊥ and i◦2 · i1 = ⊥, as
seen above. The converse implication (⇐) holds:

X = R · i◦1 ∪ S · i◦2
≡ { (5.119) }

X · (img i1 ∪ img i2) = R · i◦1 ∪ S · i◦2
≡ { distribution }

X · img i1 ∪X · img i2 = R · i◦1 ∪ S · i◦2
⇐ { Leibniz }

16 Note that in (2.37) this is ensured by always choosing two different tags t1 6= t2.
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X · i1 · i◦1 = R · i◦1 ∧ X · i2 · i◦2 = S · i◦2
⇐ { monotonicity }

X · i1 = R ∧ X · i2 = S

2

Thus (5.118) holds in general, for relations:

(B + C)→ A

[ , ]◦

,,
∼= (B→ A)× (C→ A)

[ , ]

ll
(5.122)

A most useful consequence of this is that all results known for coprod-
ucts of functions are valid for relational coproducts. In particular, rela-
tional direct sum

R + S = [i1 · R , i2 · S] (5.123)

can be defined satisfying (2.44), (2.45) etc with relations replacing func-
tions. Moreover, the McCarthy conditional (2.71) can be extended to
relations in the expected way:17

p→ R, S def
= [R , S] · p? (5.124)

The property for sums (coproducts) corresponding to (5.113) for
products is:18

[R , S] · [T , U]◦ = (R · T◦) ∪ (S ·U◦) (5.125)

This divide-and-conquer rule is essential to parallelizing relation compo-
sition by so-called block decomposition.

Finally, the exchange law (2.50) extends to relations,

[〈R, S〉 , 〈T, V〉] = 〈[R , T], [S , V]〉 (5.126)

cf.

A
i1 //

R
�� S

))

A + B B
T

uu

V
��

i2oo

C C× D
π1

oo
π2

// D

For the proof see the following exercise.

Exercise 5.38. Relying on both (5.118) and (5.110) prove (5.126). Moreover, prove

(R + S)◦ = R◦ + S◦ (5.127)

2

17 Guards p? will be expressed relationally in section 5.21.
18 For a proof of (5.125) see exercise 5.40.
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Exercise 5.39. From (5.121) infer that (5.119) is a re-statement of (2.42).
2

Exercise 5.40. From (5.121) prove (5.125). Then show that

img [R , S] = img R ∪ img S (5.128)

follows immediately from (5.125).
2

Exercise 5.41. Derive the following inequational counterpart of (5.118)

[R , S] ⊆ X ≡ R ⊆ X · i1 ∧ S ⊆ X · i2 (5.129)

from (5.121) by indirect equality.
2

Exercise 5.42. Prove:
f
g
× h

k
=

f × h
g× k

(5.130)

f
g
+

h
k
=

f + h
g + k

(5.131)

2

5.16 O N K E Y- VA L U E D ATA M O D E L S

Simple relations abstract what is currently known as the key-value-pair
data model in modern databases.19 In this setting, given a simple rela-

tion K S // V , K is regarded as a type of data keys and V as a type of
data values.

By pairing (5.107) such key-value-pairs one obtains more elaborate
stores. Conversely, one may use projections to select particular key-
attribute relationships from key-value stores. Note that keys and val-
ues can be anything (that is, of any type) and, in particular, they can be
compound, for instance

PartitionKey× SortKey︸ ︷︷ ︸
K

→ Type× . . .︸ ︷︷ ︸
V

19 For example, Hbase, Amazon DynamoDB, and so on, are examples of database sys-
tems that use the key-value pair data model.
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Figure 5.1.: Key-value data model instance.

in the example of figure 5.1.20

The example furthermore shows how keys and values can struc-
ture themselves even further. In particular, “schema is defined per item”
indicates that the values may be of coproduct types, something like
Title× (1 + Author× (1 + Date× . . .)), for instance. Although the sim-
plicity of the columnar model suggested by the key-value principle is
somewhat sacrificed in the example, this shows how expressive simple
relations involving product and coproduct types are.

One of the standard variations of the key-value model is to equip
keys with time-stamps indicating when the pair was inserted or modi-
fied in the store, for instance

Student× Course× Time→ Result (5.132)

telling the possibly different results of students in exams of a partic-
ular course. This combination of the key-value model with that of
temporal (also called historical) databases is very powerful.

The relational combinators studied in this monograph apply natu-
rally to key-value-pair storage processing and offer themselves as a
powerful, pointfree high-level language for handling such data in a
“noSQL” style.

Exercise 5.43.Suppose you are working in a company whose information system fol-
lows the key-value-pair model and where, in order to make it possible to use an open-

source library, one needs to merge two relationships K R // V and K S // V
into one single (simple) relation.

Building Q = R ∪ S is not an option, for R and S can have keys in common
and confusion is likely. Your having been asked to take care of the problem, here is
your suggestion: join the relations after previously transforming their keys by two
functions f and g, that is, build:

20 Credits: https://aws.amazon.com/nosql/key-value/.

https://aws.amazon.com/nosql/key-value/
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Q = R · f ◦ ∪ S · g◦

Naturally, the implementation team asks you: which functions are f and g? Here’s
your answer: you can choose the ones you like as long as

• both are injective

• there are not two keys k and k′ such that f k = g k′.

As your suggestion worked well, the team’s leader asks you to justify your solution.
Write the relational calculations with which you would justify it, taking into account
that the key-value-pair data model only admits simple relations.
2

5.17 W H AT A B O U T R E L AT I O N A L “ C U R R Y I N G ” ?

Recall isomorphism (2.99),

(CB)A

uncurry
**∼= CA×B

curry

jj

that is at the core of the way functions are handled in functional pro-
gramming. Does this isomorphism hold when functions are general-
ized to relations, something like...

A× B→ C ∼= A→ . . .?

Knowing that the type A × B → C of relations is far larger than
CA×B, it can be anticipated that the isomorphism will not extend to re-
lations in the same way. In fact, a rather simpler one happens instead,
among relations:

A× B→ C

trans
++∼= A→ C× B

untrans

kk (5.133)

This tells us the (obvious, but very useful) fact that relations involv-
ing product types can be reshaped in any way we like, leftwards or
rightwards.

It is quite convenient to overload the notation used for functions
and write R to denote trans R and R̂ to denote untrans R. Then the
isomorphism above is captured by universal property,21

C× B (C× B)× B ε // C

A

R

OO

A× B

R×id

OO

R

99

21 Compare with (2.86).
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where

R = 〈R, π2〉 · π◦1

C× B

A
π◦1

//

R

OO

A× B

〈R,π2〉
dd

(5.134)

that is

(c, b) R a ≡ c R (a, b)

Moral: every n-ary relation can be expressed as a binary relation; more-
over, where each particular attribute is placed (input/output) is irrel-
evant.

By converse duality, (Ŝ)◦ = (S◦), we obtain the definition of rela-
tional “uncurrying”:

Ŝ = π1 · 〈S◦, π2〉◦

Then

ε = îd = π1 · 〈id, π2〉◦.

With points:

c2 ε ((c1, b1), b2) ≡ c2 = c1 ∧ b1 = b2

T H E “ PA I R I N G W H E E L” R U L E The flexibility offered by (5.133)
means that, in relation algebra, the information altogether captured
by the three relations M, P and Q in

B

A

M

OO

P

��

Q

��
C D

(5.135)

can be aggregated in several ways, namely

B
〈P,Q〉·M◦ // D× C

D
〈Q,M〉·P◦ // C× B

C
〈M,P〉·Q◦ // B×D

all isomorphic to each other:

B→ D× C
α

��
C→ B×D

α

99

D→ C× B

α

^^
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The rotation among relations and types justifies the name “pairing
wheel” given to (5.135). Isomorphism α holds in the sense that ev-
ery entry of one of the aggregates is uniquely represented by another
entry in any other aggregate, for instance:

(d, c) (〈P, Q〉 ·M◦) b

= { composition ; pairing }

〈∃ a : d P a ∧ c Q a : a M◦ b〉
= { converse; ∧ is associative and commutative }

〈∃ a :: (c Q a ∧ b M a) ∧ a P◦ d〉
= { composition ; pairing }

(c, b) (〈Q, M〉 · P◦) d

Thus: α (〈P, Q〉 ·M◦) = (〈Q, M〉) · P◦.

Exercise 5.44. Express α in terms of trans (5.133) and its converse (5.134).
2

5.18 G A L O I S C O N N E C T I O N S

Recall from section 5.13 that a preorder is a reflexive and transitive
relation. Given two preorders 6 and v, one may relate arguments
and results of pairs of suitably typed functions f and g in a particular
way,

f ◦· v = 6 · g (5.136)

as in the diagram:

A

f ◦

��

A

g

��

voo

=

B B
6

oo

In this very special situation, f , g are said to be Galois connected. We
write

f ` g (5.137)

as abbreviation of (5.136) when the two preorders v,6 are implicit
from the context. Another way to represent this is:

(A,v)

g
**
(B,6)

f

jj
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Figure 5.1.: Graphical interpretation of equation (5.136): (a) relation

B A
(6)·goo is the “area” below function g wrt. 6; (b) relation

B
f ◦ ·(v) // A is the “area” above function f wrt. v, to the right

(oriented 90o); (c) f and g are such that these areas are the same.

Function f (resp. g) is referred to as the left (resp. right) adjoint of the
connection. By introducing variables in both sides of (5.136) via (5.17),
we obtain, for all x and y

( f x) v y ≡ x 6 (g y) (5.138)

In particular, the two preorders in (5.136) can be the identity id, in
which case (5.136) reduces to f ◦ = g, that is, f and g are each-other in-
verses — i.e., isomorphisms. Therefore, the Galois connection concept
is a generalization of the concept of isomorphism.22

Quite often, the two adjoints are sections of binary operators. Recall
that, given a binary operator a θ b, its two sections (aθ) and (θb) are
unary functions f and g such that, respectively:

f = (aθ) ≡ f b = a θ b (5.139)

g = (θb) ≡ g a = a θ b (5.140)

Galois connections in which the two preorders are relation inclusion
(6,v := ⊆,⊆) and whose adjoints are sections of relational combina-
tors are particularly interesting because they express universal prop-
erties about such combinators. Table 3 lists some connections that are
relevant for this monograph.

It is remarkably easy to recover known properties of the relation
calculus from table 3. For instance, the first row yields

X◦ ⊆ Y ≡ X ⊆ Y◦ (5.141)

since f = g = ( )◦ in this case. Thus converse is its own self adjoint.
From this we derive

R ⊆ S ≡ R◦ ⊆ S◦ (5.142)

22 Interestingly, every Galois connection is on its turn a special case of an adjunction,
recall (4.60). Just promote the adjoints f and g in (5.138) to functors, and replace the
preorder symbols by arrows. This “syntactic trick” can be taken as a rough sketch of
a formal, categorial argument that we shall skip for the time being.
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( f X) ⊆ Y ≡ X ⊆ (g Y)

Description f g Obs.

converse ( )◦ ( )◦

shunting rule (h·) (h◦·) h is a function

“converse” shunting rule (·h◦) (·h) h is a function

difference ( − R) (R ∪ )

implication (R∩ ) (R⇒ )

Table 3.: Sample of Galois connections in the relational calculus. The general for-
mula given on top is a logical equivalence universally quantified on X and
Y. It has a left part involving left adjoint f and a right part involving right
adjoint g.

by making X, Y := R, S◦ and simplifying by involution (5.15). More-
over, the entry marked “shunting rule” in the table leads to

h · X ⊆ Y ≡ X ⊆ h◦ ·Y

for all h, X and Y. By taking converses, one gets another entry in table
3, namely

X · h◦ ⊆ Y ≡ X ⊆ Y · h

These are the equivalences (5.46) and (5.47) that we have already met,
popularly known as “shunting rules”.

The fourth and fifth rows in the table are Galois connections that
respectively introduce two new relational operators — relational dif-
ference S−R and relational implication R⇒ S — as a left adjoint and an
right adjoint, respectively:

X− R ⊆ Y ≡ X ⊆ Y ∪ R (5.143)

R∩X ⊆ Y ≡ X ⊆ R⇒ Y (5.144)

There are many advantages in describing the meaning of relational
operators by Galois connections. Further to the systematic tabulation
of operators (of which table 3 is just a sample), the concept of a Ga-
lois connection is a generic one, which offers a rich algebra of generic
properties, namely:

• both adjoints f and g in a Galois connection are monotonic;

• left adjoint f distributes with join and right-adjoint g distributes
with meet, wherever these exist:

f (b t b′) = ( f b) ∨ ( f b′) (5.145)

g(a ∧ a′) = (g a) u (g a′) (5.146)
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Figure 5.2.: Left-perfect Galois connection f ` g involving two lattices S and
R.

• left adjoint f preserves infima and right-adjoint g preserves suprema,
wherever these exist:23

f ⊥ = ⊥ (5.147)

g > = > (5.148)

• two cancellation laws hold,

( f · g)a 6 a and b v (g · f )b (5.149)

respectively known as left-cancellation and right-cancellation;

• and, for partial orders, the so-called semi-inverse properties:

f = f · g · f (5.150)

g = g · f · g (5.151)

It may happen that a cancellation law holds up to equality, for in-
stance f (g a) = a, in which case the connection is said to be perfect
on that particular side. The picture of a left-perfect Galois connection
f ` g is given in figure 5.2.24, which is the subject of the following ex-
ercise.

Exercise 5.45. Figure 5.2 shows a Galois connection f a g in which f is a surjec-
tion. (a) Use (5.150) to show that f · g = id necessarily holds. Then, by (5.85), g is
injective, as the figure shows. (b) Dually, show that g injective in (5.151) makes f
surjective. Hint: recall the rule of the equality of functions (5.48).
2

23 In these case both orders will form a so-called lattice structure.
24 Adapted from [4].
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Let us take for instance Galois connection (5.143) as example. Fol-
lowing the general rules above, we get for free: the monotonicity of
( − R),

X ⊆ Z ⇒ X− R ⊆ Z− R

the monotonicity of ( ∪ R),

X ⊆ Z ⇒ X ∪ R ⊆ Z∪ R

the distribution of ( − R) over join,

(X ∪ Y)− R = (X− R) ∪ (Y− R)

the distribution of ( ∪ R) over meet,

(X ∩ Y) ∪ R = (X ∪ R) ∩ (Y ∪ R)

the preservation of infima by ( − R),

⊥− R = ⊥

the preservation of suprema by ( ∪ R),

>∪ R = >

left-cancellation (Y := X− R),

X ⊆ (X− R) ∪ R

right-cancellation (X := Y ∪ R),

(Y ∪ R)− R ⊆ Y

and finally the semi-inverse properties:

((X− R) ∪ R)− R = X− R

((X ∪ R)− R) ∪ R = X ∪ R

The reader is invited to extract similar properties from the other con-
nections listed in table 3. Altogether, we get 50 properties out of this
table! Such is the power of generic concepts in mathematics.

Two such connections were deliberately left out from table 3, which
play a central role in relation algebra and will deserve a section of their
own — section 5.19.

Exercise 5.46. Show that R− S ⊆ R, R−⊥ = R and R− R = ⊥ hold.
2

Exercise 5.47. Infer

b(R⇒ S)a ≡ (b R a)⇒ (b S a) (5.152)
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from the Galois connection

R ∩ X ⊆ Y ≡ X ⊆ (R⇒Y) (5.153)

Suggestion: note that b (R ⇒ S) a can be written id ⊆ b◦ · (R⇒ S) · a (check
this!). Then proceed with (5.153) and simplify.
2

Exercise 5.48. (Lexicographic orders) The lexicographic chaining of two relations
R and S is defined by:

R ; S = R ∩ (R◦⇒ S) (5.154)

Show that (5.154) is the same as stating the universal property:

X ⊆ (R; S) ≡ X ⊆ R ∧ X ∩ R◦ ⊆ S

2

Exercise 5.49. Let students in a course have two numeric marks,

N0 Studentmark1oo mark2 // N0

and define the preorders:

6mark1 = mark1◦ ·6 ·mark1

6mark2 = mark2◦ ·6 ·mark2

Spell out in pointwise notation the meaning of lexicographic ordering

6mark1 ;6mark2

2

N E G AT I O N We define ¬R = R ⇒ ⊥, leading to the pointwise
meaning b (¬R) a ⇔ ¬ (b R a). From the Galois connection of
R⇒ S one immediately derives that of negation,

X ⊆ ¬R ⇔ ¬X ⊇ R (5.155)

cf.

X ⊆ ¬R

≡ { ¬R = R⇒ ⊥ }

X ⊆ (R⇒ ⊥)
≡ { (5.153) }

X ∩ R ⊆ ⊥
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≡ { X ∩ R = R∩X; (5.153) }

R ⊆ (X⇒ ⊥)
≡ { ¬R = R⇒ ⊥ }

R ⊆ ¬X

2

Note the order reversal, ⊆ on the lefthand side, ⊇ on the other side of
(5.155). Thus the following instances of (5.145,5.146),

¬(R∪ S) = (¬R) ∩ (¬S) (5.156)

¬(R∩ S) = (¬R) ∪ (¬S)

known as de Morgan laws.
From the Galois connection above other expected properties analo-

gous to logic negation can be derived, for instance ¬> = ⊥. One of
the most famous rules for handing negated relations is the so-called
Schröder’s rule:

¬Q · S◦ ⊆ ¬R ⇔ R◦ · ¬Q ⊆ ¬S (5.157)

It can also be shown that

R∪ ¬R = > (5.158)

holds and therefore:

>− R ⊆ R⇒ ⊥ (5.159)

Exercise 5.50. Show that ¬(R◦) = (¬R)◦.
2

Exercise 5.51. Assuming

f ◦ · (R⇒ S) · g = ( f ◦ · R · g)⇒ ( f ◦ · S · g) (5.160)

and (5.159), prove:

c◦ · (>− c) = ⊥ (5.161)

2
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Figure 5.1.: Picturing Galois connection (×2) ` (÷2) as in figure 5.1. f =
(×2) is the left adjoint of g = (÷2). The area below g = (÷2) is
the same as the area above f = (×2). f = (×2) is not surjective.
g = (÷2) is not injective.

5.19 R E L AT I O N D I V I S I O N

However intimidating it may sound, structuring a calculus in terms
of Galois connections turns out to be a great simplification, leading
to rules that make the reasoning closer to school algebra. Think for
instance the rule used at school to reason about whole division of two
natural numbers x and y,

z× y 6 x ≡ z 6 x÷ y (y > 0) (5.162)

assumed universally quantified in all its variables. Pragmatically, it ex-
presses a “shunting” rule which enables one to trade between a whole
division in the upper side of an inequality and a multiplication in the
lower side. This rule is easily identified as the Galois connection

z (×y)︸ ︷︷ ︸
f

6 x ⇔ z 6 x (÷y)︸ ︷︷ ︸
g

.

where multiplication is the left adjoint and division is the right adjoint:
(×y) ` (÷y), for y 6= 0.25

As seen in the previous section, many properties of (×) and (÷) can
be inferred from (5.162), for instance the cancellation (x÷ y)× y 6 x
— just replace z by x÷ y and simplify, and so on.

A parallel with relation algebra could be made by trying a rule sim-
ilar to (5.162),

Z ·Y ⊆ X ≡ Z ⊆ X/Y (5.163)

which suggests that, like integer multiplication, relational composi-
tion has a right adjoint, denoted X / Y. The question is: does such
a relation division operator actually exist? Proceeding with the parallel,
note that, in the same way

z× y 6 x ≡ z 6 x÷ y

25 This connection is perfect on the lower side since (z× y)÷ y = z.
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means that x ÷ y is the largest number which multiplied by y approx-
imates x, (5.163) means that X/Y is the largest relation Z which, pre-
composed with Y, approximates X.

What is the pointwise meaning of X/Y? Let us first of all equip
(5.163) with a type diagram:

Z ·Y ⊆ X ≡ Z ⊆ X/Y A
X/Y

��
C B

Y

OO

X
oo

Then we calculate:26

c (X/Y) a

≡ { introduce points C 1
coo and A 1

aoo ; (5.17) }

x(c◦ · (X/Y) · a)x

≡ { ∀-one-point (A.5) }

x′ = x ⇒ x′(c◦ · (X/Y) · a)x

≡ { go pointfree (5.19) }

id ⊆ c◦ · (X/Y) · a
≡ { shunting rules }

c · a◦ ⊆ X/Y

≡ { universal property (5.163) }

c · a◦ ·Y ⊆ X

≡ { now shunt c back to the right }

a◦ ·Y ⊆ c◦ · X
≡ { back to points via (5.17) }

〈∀ b : a Y b : c X b〉

In summary:

c (X/Y) a ≡ 〈∀ b : a Y b : c X b〉 a@
X/Y

��
c b

_
Y

OO

�
X
oo

(5.164)

In words: in the same way relation composition hides an existential
quantifier (5.11), relation division (5.164) hides a universal one. Let us
feel what (5.164) means through an example: let

a Y b = passenger a chooses flight b
c X b = company c operates flight b

26 Following the strategy suggested in exercise 5.47.
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Then (5.164) yields : whenever a choses a flight b it turns out that b is
operated by company c. So:

c (X/Y) a = company c is the only one trusted by passenger
a, that is, a only flies c.

Therefore, (5.163) captures, in a rather eloquent way, the duality be-
tween universal and existential quantification. It is no wonder, then,
that the relational equivalent to (x÷ y)× y 6 x above is

(X/S) · S ⊆ X

This cancellation rule, very often used in practice, unfolds to

〈∀ b : a S b : c X b〉 ∧ a S b′ ⇒ c X b′

i.e. to the well-known device in logic known as modus ponens: ((S →
X) ∧ S)→ X.

There is one important difference between (5.162) and (5.163): while
multiplication in (5.162) is commutative, and thus writing z × y or
y× z is the same, writing Z · Y or Y · Z makes a lot of difference be-
cause composition is not commutative in general. The dual division
operator is obtained by taking converses over (5.163):

Y · Z ⊆ X

≡ { converses }

Z◦ · Y◦ ⊆ X◦

≡ { division (5.163) }

Z◦ ⊆ X◦ / Y◦

≡ { converses }

Z ⊆ (X◦ / Y◦)◦︸ ︷︷ ︸
Y\X

In summary:

X · Z ⊆ Y ⇔ Z ⊆ X \ Y (5.165)

Once variables are added to X \ Y we get:

a(X \Y)c ≡ 〈∀ b : b X a : b Y c〉 (5.166)

Thus we are ready to add two more rows to table 3:

( f X) ⊆ Y ≡ X ⊆ (g Y)

Description f g Obs.

Left-division (R·) (R \ ) read “R under . . . ”

Right-division (·R) ( / R) read “. . . over R”
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As example of left division consider the relation a ∈ x between a
set x and each of its elements a:

A PA∈oo (5.167)

Then inspect the meaning of relation PA PA
∈\∈oo using (5.166):

x1 (∈ \ ∈) x2 ⇔ 〈∀ a : a ∈ x1 : a ∈ x2〉

We conclude that quotient PA PA
∈\∈oo expresses the inclusion rela-

tion among sets.
Relation division gives rise to a number of combinators in relation

algebra that are very useful in problem specification. We review some
of these below.

Exercise 5.52. Prove the equalities

R · f = R/ f ◦ (5.168)

f \ R = f ◦ · R (5.169)

R/⊥ = > (5.170)

R/id = R (5.171)

(R \ S) · f = R \ (S · f ) (5.172)

R \ (f ◦ · S) = f · R \ S (5.173)

R \ > · S = ! ·R \ ! ·S (5.174)

R / (S∪ P) = R / S∩ R / P (5.175)

2

Exercise 5.53. On June 23rd, 1991, E.W. Dijkstra wrote one of his famous notes —
EWD1102-5 — entitled: “Why preorders are beautiful”. The main result of his six
page long manuscript is:

A binary relation is a pre-order iff R = R / R holds.

The proof of this result becomes even shorter (and perhaps even more beautiful) once
expressed in relation algebra. Fill in the ellipses in the following calculation of such
a result:

R = R / R

≡ { . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }{
X ⊆ R ⇔ X · R ⊆ R
X ⊆ R ⇔ X · R ⊆ R

⇒ { . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }{
id ⊆ R ⇔ R ⊆ R
R ⊆ R ⇔ R · R ⊆ R

≡ { . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }{
id ⊆ R
R · R ⊆ R
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≡ { . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }{
id ⊆ R ∧ (R / R) · R ⊆ R
R ⊆ R / R

⇒ { . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }{
R / R ⊆ R
R ⊆ R / R

≡ { . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }

R = R / R

2

That is,

R = R / R ≡
{

id ⊆ R
R · R ⊆ R

2

S Y M M E T R I C D I V I S I O N Given two arbitrary relations R and S typed
as in the diagram below, define the symmetric division S

R of S by R by:

b
S
R

c ≡ 〈∀ a :: a R b ⇔ a S c〉 B

R $$

C

Szz

S
Roo

A

(5.176)

That is, b S
R c means that b and c are related to exactly the same outputs

(in A) by R and by S. Another way of writing (5.176) is b S
R c ≡ {a |

a R b} = {a | a S c} which is the same as

b
S
R

c ≡ ΛR b = ΛS c (5.177)

where Λ is the power transpose operator27 which maps a relation Q :
Y← X to the set valued function ΛQ : X→ P Y such that ΛQ x = {y |
y Q x}. Another way to define S

R is

S
R

= R \ S∩ R◦ / S◦ (5.178)

which factors symmetric division into the two asymmetric divisions
R \ S (5.165) and R / S (5.163) already studied above. Moreover, for
R, S := f , g, definition (5.178) instantiates to f

g as defined by (5.49). By
(5.165, 5.163), (5.178) is equivalent to the universal property:

X ⊆ S
R
≡ R ·X ⊆ S ∧ S ·X◦ ⊆ R (5.179)

27 See section 5.24 for more details about this operator.
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From the definitions above a number of standard properties arise:(
S
R

)◦
=

R
S

(5.180)

S
R
· Q

S
⊆ Q

R
(5.181)

f ◦ · S
R
· g =

S · g
R · f (5.182)

id ⊆ R
R

(5.183)

Thus R
R is always an equivalence relation, for any given R. Furthermore,

R =
R
R
≡ R is an equivalence relation (5.184)

holds.Also note that, even in the case of functions, (5.181) remains an
inclusion,

f
g
· h

f
⊆ h

g
(5.185)

since:
f
g
· h

f
⊆ h

g

⇐ { factor id
g out }

f · h
f
⊆ h

⇐ { factor h out }

f · id
f
⊆ id

≡ { shunting rule (5.47) }

f ⊆ f

≡ { trivial }
true

2

From (5.185) it follows that f
f is always transitive. By (5.180) it is sym-

metric and by (5.30) it is reflexive. Thus f
f is an equivalence relation.

R E L AT I O N S H R I N K I N G Given relations R : A← B and S : A← A,
define R � S : A← B, pronounced “R shrunk by S”, by

X ⊆ R � S ≡ X ⊆ R ∧ X · R◦ ⊆ S (5.186)

cf. diagram:

B

R
��

R�S

��
A A

S
oo
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This states that R � S is the largest part of R such that, if it yields an
output for an input x, it must be a maximum, with respect to S, among
all possible outputs of x by R. By indirect equality, (5.186) is equivalent
to the closed definition:

R � S = R ∩ S/R◦ (5.187)

(5.186) can be regarded as a Galois connection between the set of all
subrelations of R and the set of optimization criteria (S) on its outputs.

Combinator R � S also makes sense when R and S are finite, rela-
tional data structures (e.g. tables in a database). Consider, for instance,
the following example of R � S in a data-processing context: given

Examiner Mark Student
Smith 10 John
Smith 11 Mary
Smith 15 Arthur
Wood 12 John
Wood 11 Mary
Wood 15 Arthur


and wishing to “choose the best mark” for each student, project over
Mark, Student and optimize over the > ordering on Mark:

Mark Student
10 John
11 Mary
12 John
15 Arthur

 � > =


Mark Student

11 Mary
12 John
15 Arthur


Relational shrinking can be used in many other contexts. Consider,

for instance, a sensor recording temperatures (T), T N0
Soo , where

data in N0 are “time stamps”. Suppose one wishes to filter out re-
peated temperatures, keeping the first occurrences only. This can be
specified by:

T N0
nub Soo = (S◦ � 6)◦

That is, nub is the function that removes all duplicates while keeping
the first instances.

Among the properties of shrinking [59] we single out the two fusion
rules:

(S · f ) �R = (S �R) · f (5.188)

( f · S) � R = f · (S � ( f ◦ · R · f )) (5.189)

Some more basic properties are: “chaotic optimization”,

R �> = R (5.190)
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“impossible optimization”

R �⊥ = ⊥ (5.191)

and “brute force” determinization:

R � id = largest deterministic fragment of R (5.192)

R � id is the extreme case of the fact which follows:

R � S is simple ⇐ S is anti-symmetric (5.193)

Thus anti-symmetric criteria always lead to determinism, possibly at
the sacrifice of totality. Also, for R simple:

R � S = R ≡ img R ⊆ S (5.194)

Thus (for functions):

f � S = f ⇐ S is reflexive (5.195)

The distribution of shrinking by join,

(R ∪ S) �Q = (R �Q) ∩Q/S◦ ∪ (S �Q) ∩Q/R◦ (5.196)

has a number of corollaries, namely a conditional rule,

(p→ R , Q) � S = p→ (R � S) , (Q � S) (5.197)

the distribution over alternatives (5.118),

[R , S] �U = [R �U , S �U] (5.198)

and the “function competition” rule:

( f ∪ g) � S = ( f ∩ S · g) ∪ (g ∩ S · f ) (5.199)

(Recall that S/g◦ = S · g.)
Putting universal properties (5.179,5.186) together we get, by indi-

rect equality,

R
g
= g◦ · (R � id) (5.200)

f
R

= (R � id)◦ · f (5.201)

capturing a relationship between shrinking and symmetric division:
knowing that R � id is the deterministic fragment of R, we see how the
vagueness of arbitrary R replacing either f or g in f

g is forced to shrink.

Exercise 5.54. Use shrinking and other relational combinators to calculate, from a
relation of type (5.132), the relation of type Student× Course → Result that tells
the final results of all exams. (NB: assume Time = N0 ordered by (6).)
2
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R E L AT I O N O V E R R I D I N G Another operator enabled by relation di-
vision is the relational overriding combinator,

R † S = S ∪ R ∩⊥/S◦ (5.202)

which yields the relation which contains the whole of S and that part
of R where S is undefined — read R † S as “R overridden by S”.

It is easy to show that ⊥ † S = S, R †⊥ = R and R † R = R hold.
From (5.202) we derive, by indirect equality, the universal property:

X ⊆ R † S ≡ X ⊆ R∪ S ∧ (X− S) · S◦ = ⊥ (5.203)

The following property establishes a relationship between overriding
and the McCarthy conditional:

p→ g , f = f † (g ·Φp) (5.204)

Notation Φp is explained in the next section.
Below we show how to use relation restriction and overriding in

specifying the operation that, in the Alcuin puzzle — recall (5.74)

Being Eats // Being

where
��

Bank cross // Bank

— specifies the move of Beings to the other bank:

carry who where = where † (cross · where ·Φ∈ who)

By (5.204) this simplifies to a McCarthy conditional:

carry who where = (∈ who)→ cross · where , where (5.205)

In pointwise notation, carry is the function:

carry who where b =

if b ∈ who then cross m else m
where m = where b

Note the type carry : PBeing→ BankBeing → BankBeing.

Exercise 5.55. Let R : A→ B be the relation depicted below, where A = {a1, a2, a3, a4, a5}
and B = {b1, b2, b3, b4}:
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Represent the following relation overridings in the form of Boolean (0, 1) matrices:

P = > † R =

a1 a2 a3 a4 a5

b1
b2
b3
b4

Q = R † (b4 · a2
◦) =

a1 a2 a3 a4 a5

b1
b2
b3
b4

Tell which are entire, simple or surjective.
2

Exercise 5.56. Show that

R † f = f

holds, arising from (5.203,5.143) — where f is a function, of course.
2

5.20 P R E D I C AT E S A L S O B E C O M E R E L AT I O N S

Recall from (5.49) the notation f
g = g◦ · f and define, given a predicate

p : A→ B, the relation Φp : A→ A as follows:28

Φp = id ∩ true
p

(5.206)

By (5.49), Φp is the coreflexive relation that represents predicate p as a
binary relation,

y Φp x ⇔ y = x ∧ p y (5.207)

as can be easily checked. From (5.206) one gets the limit situations:29

Φtrue = id (5.208)

Φfalse = ⊥ (5.209)

Moreover,

Φp∧q = Φp ∩Φq (5.210)

28 Recall that true is the constant function yielding TRUE for every argument (5.40).
29 Φfalse = ⊥ arises from (5.54) since TRUE 6= FALSE.
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Φp∨q = Φp ∪Φq (5.211)

Φ¬p = id−Φp (5.212)

follow immediately from (5.207) and from (5.39) one infers true
p · R ⊆

true
p for any R. In particular, true

p · > = true
p since true

p ⊆ true
p · > always

holds. Then, by distributive property (5.62):

Φp · > =
true

p
(5.213)

Moreover, the following two properties hold:

R ·Φp = R ∩> ·Φp (5.214)

Φq · R = R ∩Φq · > (5.215)

We check (5.215):30

Φq · R

= { (5.114) ; (5.206) }

〈id, true〉
〈id, q〉 · R

= { (5.109) for R := true }

〈id, q〉◦ · 〈R, true〉
= { (5.113) }

R∩ true
q

= { (5.213) }

R∩Φq · >
2

Note the meaning of (5.214) and (5.215):

b (R ·Φp) a ⇔ b R a ∧ (p a)

b (Φq · R) a ⇔ b R a ∧ (q b)

So (5.214) — resp. (5.215) — restricts R to inputs satisfying p — resp.
outputs satisfying q.

A notable property of coreflexive relations is that their composition
coincides with their meet:

Φq ·Φp = Φq ∩Φp (5.216)

In consequence, composing a coreflexive with itself yields that very
same coreflexive: Φp ·Φp = Φp. (5.216) follows from (5.21431:

Φq ·Φp

30 The other is obtained from (5.215) by taking converses.
31 Or from 5.215), by symmetry.
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= { R := Φp in (5.215) }

Φp ∩Φq · >

= { Φp ⊆ id ⇔ Φp = Φp ∩ id ; (5.213) }

Φp ∩ id ∩ true
q

= { (5.206) }
Φp ∩Φq

2

E Q U A L I Z E R S The definition of Φp (5.194) can be regarded as a par-

ticular case of an equalizer: given two functions B A
f ,goo , the equal-

izer of f and g is the relation eq (f , g) = id ∩ f
g . By indirect equality,

X ⊆ eq (f , g) ⇔ X ⊆ id ∧ g ·X ⊆ f

That is, eq (f , g) is the largest coreflexive X that restricts g so that f and
g yield the same outputs.

Clearly, eq (f , f ) = id. Note that an equalizer can be empty, cf. e.g.
eq (true, false) = ⊥.

Exercise 5.57. Based on (5.71) show that

g◦ ·Φp · f =
f
g
∩ true

p · g (5.217)

holds.32

2

5.21 G U A R D S , C O R E F L E X I V E S A N D T H E M C C A R T H Y C O N D I -
T I O N A L

From the definition of a McCarthy conditional (2.71) we obtain p? =

p→ i1 , i2 and then p? = i2 † i1 ·Φp by (5.204). A third way to express
the guard p? is

p? = i1 ·Φp ∪ i2 ∩ (⊥ / (i1 ·Φp)
◦) (5.218)

by (5.202), which simplifies to:

p? = [Φp , Φ¬ p]
◦ (5.219)

To prove (5.219) note that⊥ / (i1 ·Φp)◦ = ⊥ / Φp follows immediately
by the laws of S / R and shunting. Then, ⊥ / Φp = > ·Φ¬ p. Here one
only needs to check:

⊥ / Φp ⊆ > ·Φ¬ p

32 Both sides of the equality mean g b = f a ∧ p (g b).
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≡ { ¬·p
true = p

false }

⊥ / Φp ⊆
p

false

≡ { going pointwise }

〈∀ y, x : y (⊥ / Φp) x : p x = FALSE〉

≡ { (5.165) ; (5.207) }

〈∀ y, x : p x⇒ FALSE : p x = FALSE〉
≡ { trivial }

true

2

Finally, back to (5.218):

p? = i1 ·Φp ∪ i2 ∩> ·Φ¬ p

≡ { (5.214) ; converses }

(p?)◦ = Φp · i◦1 ∪Φ¬ p · i◦2
≡ { (5.125) }

p? = [Φp , Φ¬ p]
◦

2

Exercise 5.58. From (5.219) infer

p→ R , S = R∩ p
true
∪ S∩ p

false
(5.220)

and therefore p → R , S ⊆ R ∪ S. Furthermore, derive (2.79) from (5.220) know-
ing that true∪ false = >.
2

D O M A I N A N D R A N G E Suppose one computes ker 〈R, id〉 instead
of ker R. Since ker 〈R, id〉 = ker R ∩ id (5.115), coreflexive relation is
obtained. This is called the domain of R, written:

δ R = ker 〈R, id〉 (5.221)

Since33

> · R∩ id = R◦ · R∩ id (5.222)

domain can be also defined by

δ R = > · R∩ id (5.223)

33 (5.222) follows from id ∩> · R ⊆ R◦ · R which can be easily checked pointwise.
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Dually, one can define the range of R as the domain of its converse:

ρ R = δ R◦ = img R∩ id (5.224)

For functions, range and image coincide, since img f ⊆ id for any f .
For injective relations, domain and kernel coincide, since ker R ⊆ id
in such situations. These two operators can be shown to be character-
ized by two Galois connections, as follows:

( f X) ⊆ Y ≡ X ⊆ (g Y)

Description f g Obs.

domain δ (>·) left ⊆ restricted to coreflexives

range ρ (·>) left ⊆ restricted to coreflexives

Let us show that indeed

δ X ⊆ Y ≡ X ⊆ > · Y (5.225)

ρ R ⊆ Y ≡ R ⊆ Y · > (5.226)

hold, where variable Y ranges over coreflexive relations only. We only
derive (5.225), from which (5.226) is obtained taking converses. We
rely on the definition just given and on previously defined connec-
tions:

δ X ⊆ Y

≡ { (5.223) }

> ·X ∩ id ⊆ Y

≡ { two Galois connections }

X ⊆ > \ (id⇒ Y)

≡ { > \ (id⇒ Y) = > · Y, see below }

X ⊆ > · Y
2

To justify the hint above, first note that > · Y ⊆ id ⇒ Y, for Y core-
flexive — recall (5.206) and (5.213). Then:

> \ (id⇒ Y) ⊆ > · Y
⇐ { monotonicity ; rule “raise-the-lower-side” }

> \ (> · Y) ⊆ > · Y
≡ { (5.174) ; f · f ◦ · f = f for f := ! (twice) }

! \ ! ·Y ⊆ > · Y
≡ { f \ R = f ◦ · R ; > = ker ! }

> · Y ⊆ > · Y
2
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Note the left-cancellation rule of the δ connection:

R ⊆ > · δ R (5.227)

From this the following domain/range elimination rules follow:

> · δ R = > · R (5.228)

ρ R · > = R · > (5.229)

δ R ⊆ δ S ≡ R ⊆ > · S (5.230)

Proof of (5.228):

> · δ R = > · R
≡ { circular inclusion }

> · δ R ⊆ > · R ∧ > · R ⊆ > · δ R

≡ { (5.102) twice }

δ R ⊆ > · R ∧ R ⊆ > · δ R

≡ { cancelation (5.227) }

δ R ⊆ > · R
≡ { δ R = > · R∩ id (5.223) }

true

2

Rule (5.229) follows by dualization (converses) and (5.230) follows
from (5.225) and (5.228). More facts about domain and range:

δ (R · S) = δ (δ R · S) (5.231)

ρ (R · S) = ρ (R · ρ S) (5.232)

R = R · δ R (5.233)

R = ρ R · R (5.234)

Last but not least: given predicate q and function f ,

Φq·f = δ (Φq · f ) (5.235)

holds. Proof:

Φq·f

= { (5.206) }

id ∩ true
q · f

= { since f
f is reflexive (5.30) }

id ∩ f
f
∩ true · f

q · f
= { (5.114) ; products }
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id ∩ 〈id, true〉 · f
〈id, q〉 · f

= { (5.49) ; (5.114) }

id ∩ f ◦ · (id ∩ true
q

) · f

= { (5.206) }

id ∩ f ◦ ·Φq · f

= { δ R = id ∩ R◦ · R }

δ (Φq · f )
2

Exercise 5.59. Prove that

R ⊆ R · R◦ · R (5.236)

holds. Suggestion: use domain or range of R in your proof.
2

Exercise 5.60. Recalling (5.214), (5.215) and other properties of relation algebra,
show that: (a) (5.225) and (5.226) can be re-written with R replacing >; (b) Φ ⊆
Ψ ≡ ! ·Φ ⊆ ! ·Ψ holds.34

2

Exercise 5.61. Infer

k · δ R ⊆ k · R (5.237)

from (5.223).
2

5.22 D I F U N C T I O N A L S

A relation R is said to be difunctional or regular wherever R ·R◦ ·R = R
holds, which amounts to R · R◦ · R ⊆ R since the converse inclusion
always holds (5.236).

The class of difunctional relations is vast. > and ⊥ are difunctional,
and so are all coreflexive relations, as is easy to check. It also includes
all simple relations, since R · R◦ = img R ⊆ id wherever R is simple.

34 Thus coreflexives can be represented by vectors and vice-versa.
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Moreover, divisions of functions are difunctional because every sym-
metric division is so, as is easy to check by application of laws (5.181)
and (5.180):

f
g
·
(

f
g

)◦
· f

g
⊆ f

g

⇐ { (5.51) ; (5.185) }

f
g
· f

f
⊆ f

g

⇐ { (5.185) }

f
g
⊆ f

g
2

For g = id above we get that any function f being difunctional can be
expressed by f · f

f = f .
Recall that an equivalence relation can always be represented by the

kernel of some function, typically by R = ΛR
ΛR . So equivalence relations

are difunctional. The following rule is of pratical relevance:

(R transitive ⇔ R difunctional) ⇐
{

R symmetric
R reflexive

(5.238)

Proof (⇒):

R difunctional

≡ { definition of difunctional }

R · R◦ · R ⊆ R

≡ { R assumed symmetric }
R · R · R ⊆ R

⇐ { R assumed transitive }
R · R · R ⊆ R · R

⇐ { monotonicity of (R·) }
R · R ⊆ R

≡ { R assumed transitive }
true

2

Proof (⇐):

R transitive

≡ { definition }
R · R ⊆ R

≡ { R assumed difunctional }
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R · R ⊆ R · R◦ · R
⇐ { monotonicity of R · · R }

id ⊆ R◦

≡ { R assumed reflexive }
true

2

If above we take the proof (⇒) alone we get that a symmetric and
transitive relation is difunctional. Thus:

Every partial equivalence relation (Per, recall figure 5.1) is di-
functional.

If we take the other part of the proof (⇐) alone we get:

Every reflexive and difunctional relation is transitive.

Moreover:

A difunctional relation that is reflexive and symmetric neces-
sarily is an equivalence relation.

Difunctional relations are also called regular, rational or uniform. First,
some intuition about what “regularity” means: a regular (difunctional)
relation is such that, wherever two inputs have a common image, then
they have exactly the same set of images. In other words, the image sets
of two different inputs are either disjoint or the same. As a counterex-
ample, take the following relation, represented as a matrix with inputs
taken from set {a1, . . , a5} and outputs delivered into set {b1, . . , b5}:

R a1 a2 a3 a4 a5

b1 0 0 1 0 1
b2 0 0 0 0 0
b3 0 1 0 0 0
b4 0 1 0 1 0
b5 0 0 0 1 0

(5.239)

Concerning inputs a3 and a5, regularity holds; but sets {b3, b4} and
{b4, b5}— the images of a2 and a4, respectively — are neither disjoint
nor the same: so R is not regular. It would become so if e.g. b4 were
dropped from both image sets or one of b3 or b5 were replaced for the
other in the corresponding image set.

Exercise 5.62. The unit circle
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can be described as the relation R R
Roo such that y R x ⇔ y2 + x2 = 1, that

is

R = sq◦ · (1−) · sq (5.240)

in pointfree notation, where
{

sq : R→ R

sq x = x2 and
{

(1−) : R→ R

(1−) x = 1− x
It can be easily checked that R is neither entire, nor simple, nor injective, nor surjec-
tive. Show that it is difuncional.
2

5.23 O T H E R O R D E R I N G S O N R E L AT I O N S

T H E I N J E C T I V I T Y P R E O R D E R The kernel relation ker R = R◦ · R
measures the level of injectivity of R according to the preorder

R 6 S ≡ ker S ⊆ ker R (5.241)

telling that R is less injective or more defined (entire) than S. For instance:

6

This ordering is surprisingly useful in formal specification because of
its properties. For instance, it is upper-bounded by relation pairing,
recall (5.108):

〈R, S〉 6 X ≡ R 6 X ∧ S 6 X (5.242)

Cancellation of (5.242) means that pairing always increases injectivity:

R 6 〈R, S〉 and S 6 〈R, S〉. (5.243)

(5.243) unfolds to ker 〈R, S〉 ⊆ (ker R) ∩ (ker S), confirming (5.115).
The following injectivity shunting law arises as a Galois connection:

R · g 6 S ≡ R 6 S · g◦ (5.244)

Restricted to functions, (6) is universally bounded by

! 6 f 6 id

where (recall) 1 A!oo is the unique function of its type, where 1 is
the singleton type. Moreover,

• A function is injective iff id 6 f . Thus 〈f , id〉 is always injective
(5.243).
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• Two functions f and g are said to be complementary wherever id 6
〈f , g〉.

• Any relation R can be factored into the composition f · g◦ of two
complementary functions f and g.35

For instance, the projections π1 (a, b) = a , π2 (a, b) = b are comple-
mentary since 〈π1, π2〉 = id (2.32).

As illustration of the use of this ordering in formal specification, sup-
pose one writes

room 6 〈lect, slot〉

in the context of the data model

Teacher Classlectoo room //

slot
��

Room

TD

where TD abbreviates time and date. What are we telling about this
model by writing room 6 〈lect, slot〉? We unfold this constraint in the
expected way:

room 6 〈lect, slot〉
≡ { (5.241) }

ker 〈lect, slot〉 ⊆ ker room

≡ { (5.115) ; (5.53) }

lect
lect
∩ slot

slot
⊆ room

room
≡ { going pointwise, for all c1, c2 ∈ Class }

(lect c1 = lect c2 ∧ slot c1 = slot c2)⇒ (room c1 = room c2)

Thus room 6 〈lect, slot〉 constrains the model in the sense of imposing
that a given lecturer cannot be in two different rooms at the same time.
c1 and c2 are classes shared by different courses, possibly of different
degrees. In the standard terminology of database theory this is called
a functional dependency, see exercises 5.65 and 5.66 in the sequel.

Exercise 5.63. Two relations R and S are said to be separated wherever

R · S◦ = ⊥

and co-separated wherever

R◦ · S = ⊥

holds. Show that co-separability is necessary for the coproduct of two injective rela-
tions R and S to be injective:

id 6 [R , S] ⇔ id 6 R ∧ id 6 S ∧ R◦ · S = ⊥ (5.245)

35 This remarkable factorization is known as a tabulation of R [11].
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2

Interestingly, the injectivity preorder not only has least upper bounds
but also greatest lower bounds,

〈R, S〉 “least upper bound”

R S

[R◦ , S◦]◦ “greatest lower bound”

that is,

X 6 [R◦ , S◦]◦ ⇔ X 6 R ∧ X 6 S (5.246)

as the calculation shows:

X 6 [R◦ , S◦]◦

≡ { injectivity preorder ; ker R◦ = img R }

img [R◦ , S◦] ⊆ ker X

≡ { (5.128) }

R◦ · R∪ S◦ · S ⊆ ker X

≡ { kernel; · ∪ ·-universal }
ker R ⊆ ker X ∧ ker S ⊆ ker X

≡ { injectivity preorder (twice) }
X 6 R ∧ X 6 S

2

Note the meaning of the glb of R and S,

x [R◦ , S◦]◦ a ⇔ 〈∃ b : x = i1 b : b R a〉 ∨ 〈∃ c : x = i2 c : c R a〉

since [R◦ , S◦]◦ = i1 · R ∪ i2 · S. This is the most injective relation that
is less injective than R and S because it just “collates” the outputs of
both relations without confusing them.36

Exercise 5.64. The Peano algebra N0 1 + N0
inoo = [0, succ] is an isomor-

phism37, and therefore injective. Check what (5.245) means in this case.

36 It turns out that universal property X = [R◦ , S◦]◦ ⇔ i◦1 · X = R ∧ i◦2 · X = S holds,
as is easy to derive from (5.118). So [R◦ , S◦]◦ is the categorial product for relations:

A→ (B + C)
,,

∼= (A→ B)× (A→ C)kk

That is, among relations, the product is obtained as the converse dual of the coprod-
uct. This is called a biproduct [47].

37 Recall section 3.1.
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2

Exercise 5.65. An SQL-like relational operator is projection,

πg, f R def
= g · R · f ◦ B

g
��

ARoo

f
��

C D
πg, f R
oo

(5.247)

whose set-theoretic meaning is38

πg, f R = {(g b, f a) | b ∈ B ∧ a ∈ A ∧ b R a} (5.248)

Functions f and g are often referred to as attributes of R. Derive (5.248) from
(5.247).
2

Exercise 5.66. A relation R is said to satisfy functional dependency (FD) g→ f ,

written g R // // f wherever projection π f ,gR (5.247) is simple.

1. Recalling (5.241), prove the equivalence:

g R // // f ≡ f 6 g · R◦ (5.249)

2. Show that g R // // f trivially holds wherever g is injective and R is simple,
for all (suitably typed) f .

3. Prove the composition rule of FDs:

h gS·Roooo ⇐ h fSoooo ∧ f gRoooo (5.250)

2

Exercise 5.67. Let R and S be the two relations depicted as follows:

C WRoo S // N0

"Armstrong" � //(
ss

9

’A’ "Albert" � //�oo 6

’M’ "Minho" � //�oo 5

’B’ "Braga"
(

33

�oo

Check the assertions:

38 Note that any relation R : B ← A defines the set of pairs {(b, a) | b R a}. Predicate
b R a describes R intensionally. The set {(b, a) | b R a} is the extension of R.
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1. R 6 S

2. S 6 R

3. Both hold

4. None holds.

2

Exercise 5.68. As follow up to exercise 5.9,

• specify the relation R between students and teachers such that t R s means: t
is the mentor of s and also teaches one of her/his courses.

• Specify the property: mentors of students necessarily are among their
teachers.

2

T H E D E F I N I T I O N P R E O R D E R The injectivity preorder works per-
fectly for functions, which are entire relations. For non-entire R it be-
haves in a mixed way, measuring not only injectivity but also defini-
tion (entireness). It is useful to order relations with respect to how
defined they are:

R � S ≡ δ R ⊆ δ S (5.251)

From> = ker ! one draws another version of (5.251), R � S ≡ ! · R ⊆
! · S. The following Galois connections

R ∪ S � T ≡ R � T ∧ S � T (5.252)

R · f ◦ � S ≡ R � S · f (5.253)

are easy to prove. Recalling (5.230), (5.251) can also be written

δ R ⊆ δ S ≡ R ⊆ > · S (5.254)

T H E R E F I N E M E N T O R D E R Standard programming theory relies
on a notion of program refinement. As a rule, the starting point in
any software design is a so-called specification, which indicates the ex-
pected behaviour of the program to be developed with no indication
of how outputs are computed from the inputs. So, “vagueness” is a
chief ingredient of a good specification, giving freedom to the pro-
grammer to choose a particular algorithmic solution.

Relation algebra captures this by ordering relations with respect to
the degree in which they are closer to implementations:

S ` R ≡ S � R ∧ R · δ S ⊆ S (5.255)
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— recal (5.251). In a diagram:

A

R ��

Aδ Soo

S��
B

S ` R is read: “S is refined by R”. In the limit situation, R is a function
f , and then

S ` f ⇔ δ S ⊆ f ◦ · S (5.256)

by shunting (5.46). This is a limit in the sense that f can be neither
more defined nor more deterministic.

As maxima of the refinement ordering, functions are regarded as im-
plementations “par excellence”. Note how (5.256) captures implicit spec-
ification S being refined by some function f — recall section 5.3. Back
to points and thanks to (5.17) we obtain, in classical “VDM-speak”:

∀a. pre-S(a)⇒ post-S( f a, a)

In case S is entire, (5.256) simplifies to S ` f ⇔ f ⊆ S. As example
of this particular case we go back to section 5.3 and prove that abs,
explicitly defined by abs i = if i < 0 then− i else i, meets the implicit
specification given there, here encoded by S = true

geq0 ∩ (id ∪ sym) where
geq0 x = x > 0 and sym x = −x. The explicit version below uses a
McCarthy conditional, for lt0 x = x< 0. By exercise 5.58 term id∪ sym
in S can be ignored:

lt0→ sym , id ⊆ true
geq0

≡ { shunting (5.46) }

geq0 · (lt0→ sym , id) ⊆ true

≡ { inclusion of functions; fusion (2.72) }

lt0→ geq0 · sym , geq0 = true

≡ { −x > 0 ⇔ x 6 0 = leq0 x }

lt0→ leq0 , geq0 = true

≡ { x < 0⇒ x 6 0 and ¬ (x < 0) ⇔ x > 0 }

lt0→ true , true = true

≡ { p→ f , f = f (exercise 5.58) }
true

2

Finally note that an equivalent way of stating (5.255) without using
the domain operator is:

S ` R ≡ > · S∩> · R∩ (R∪ S) = R (5.257)
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Exercise 5.69. Prove (5.257.
2

5.24 B A C K T O F U N C T I O N S

In this chapter we have argued that one needs relations in order to
reason about functions. The inverse perspective — that relations can
be represented as functions — also makes sense and it is, in many
places, the approach that is followed.

Indeed, relations can be transposed back to functions without losing
information. There are two transposes of interest. One is complete in
the sense that it allows us to see any relation as a function. The other
is specific, in the sense that it only applies to (the very important class
of) simple relations (vulg. partial functions).

P O W E R T R A N S P O S E Given arbitrary relation A R // B , define the
function

ΛR : A→ P B
ΛR a = {b | b R a}

which is such that:

ΛR = f ≡ 〈∀ b, a :: b R a ⇔ b ∈ f a〉 (5.258)

That is:

f = ΛR ⇔ ∈ ·f = R (5.259)

cf.

A→ P B

(∈·)
**∼= A→ B

Λ

jj

In words: any relation can be faithfully represented by a set-valued
function.

For instance, moving the variables of (5.177) outwards by use of
(5.17), we obtain the following power transpose cancellation rule:39

ΛS
ΛR

=
S
R

(5.260)

Read from right to left, this shows a way of converting arbitrary sym-
metric divisions into function divisions.

Exercise 5.70. Infer from (5.259) the Λ-reflexion property

Λ∈ = id (5.261)

39 This rule is nothing but another way of stating exercise 4.48 proposed in [11]. Note
that ΛR is always a function.
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the Λ-cancellation property

∈ ·ΛR = R (5.262)

and then the Λ-fusion law:

ΛR · f = Λ(R · f ) (5.263)

Finally, prove that

Λ[R , S] = [ΛR , ΛS] (5.264)

holds.
2

“ M AY B E ” T R A N S P O S E Let A S // B be a simple relation. Define
the function

ΓS : A→ B + 1

such that:

ΓS = f ⇔ 〈∀ b, a :: b S a ⇔ (i1 b) = f a〉

That is:

f = ΓS ⇔ S = i◦1 · f (5.265)

cf.

(B + 1)A

(i◦1 ·)
**∼= A→ B

Γ
kk

In words: simple relations can always be represented by “Maybe”, or
“pointer”-valued functions. Recall section 4.1, where the Maybe monad
was used to “totalize” partial functions. Isomorphism (5.265) explains
why such a totalization maske sense. For finite relations, and assum-
ing these represented extensionally as lists of pairs, the function

lookup :: Eq a⇒ a→ [ (a, b) ]→ Maybe b

in Haskell implements the “Maybe”-transpose.

Exercise 5.71. Derive the “Maybe”-transpose counterparts of laws (5.262), (5.263)
and (5.264).
2
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5.25 B I B L I O G R A P H Y N O T E S

Chronologically, relational notation emerged — earlier than predicate
logic itself — in the work of Augustus De Morgan (1806-71) on binary
relations [49]. Later, Peirce (1839-1914) invented quantifier notation to
explain De Morgan’s algebra of relations (see e.g. [49] for details). De
Morgan’s pioneering work was ill fated: the language40 invented to
explain his calculus of relations became eventually more popular than
the calculus itself. Alfred Tarski (1901-83), who had a life-long struggle
with quantified notation [20, 28], revived relation algebra. Together
with Steve Givant he wrote a book (published posthumously) on set
theory without variables [82].

Meanwhile, category theory was born, stressing the role of arrows
and diagrams and on the arrow language of diagrams, which is inher-
ently pointfree. The category of sets and functions immediately pro-
vided a basis for pointfree functional reasoning, but this was by and
large ignored by John Backus (1924-2007) in his FP algebra of pro-
grams [7] which is APL-flavoured. (But there is far more in it than
such a flavour, of course!) Anyway, Backus’ landmark FP paper was
among the first to show how relevant such reasoning style is to com-
puting.

A bridge between the two pointfree schools, the relational and the
categorial, was eventually established by Freyd and Ščedrov [23] in
their proposal of the concept of an allegory. This gave birth to typed
relation algebra and relation (semi-commutative) diagrams like those
adopted in the current monograph for relational thinking. The point-
free algebra of programming (AoP) as it is understood today, stems
directly from [23]. Its has reached higher education thanks to textbook
[11] written by Bird and Moor.

In his book on relational mathematics [80], Gunther Schmidt makes
extensive use of matrix displays, notation, concepts and operations in
relation algebra. Winter [86] generalizes relation algebra to so-called
Goguen categories.

In the early 1990s, the Groningen-Eindhoven MPC group led by
Backhouse [1, 4] contributed decisively to the AoP by structuring rela-
tion algebra in terms of Galois connections. This elegant approach has
been very influential in the way (typed) relation algebra was perceived
afterwards, for instance in the way relation shrinking was introduced
in the algebra [59, 72]. Galois connections are also the “Swiss knife” of
[59].

Most of the current chapter was inspired by [4].

40 Meanwhile named FOL, first order logic.



6
T H E O R E M S F O R F R E E B Y C A L C U L AT I O N

6.1 I N T R O D U C T I O N

As already stressed in previous chapters, type polymorphism remains
one of the most useful and interesting ingredients of functional pro-
gramming. For example, the two functions

countBits : B∗ →N0

countBits [ ] = 0
countBits (b : bs) = 1 + countBits bs

and

countNats : N0
∗ →N0

countNats [ ] = 0
countNats (b : bs) = 1 + countNats bs

are both subsumed by a single, generic (that is, parametric) program:

count : (∀ A) A∗ →N0

count [ ] = 0
count (a : as) = 1 + count as

Written as a catamorphism

L inN0 · (id + π2) M

and thus even dispensing with a name, it becomes clear why this func-
tion is generic: nothing in

inN0 · (id + π2)

is susceptible to the type of the elements that are being counted up!
This form of polymorphism, known as parametric polymorphism, is

attractive because

• one writes less code (specific solution = generic solution + cus-
tomization);

• it is intellectually rewarding, as it brings elegance and economy
in programming;

238
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• and, last but not least1,

“(...) from the type of a polymorphic function we can derive
a theorem that it satisfies. (...) How useful are the theorems
so generated? Only time and experience will tell (...)”

Recall that section 2.12 already addresses these theorems, also called
natural properties. However, the full spread of naturality is not ex-
plored there. In particular, it does not address higher-order (exponen-
tial) types.

It turns out that the “free theorems” involving such types are easy
to derive in relation algebra. The current chapter is devoted to such a
generic derivation and includes a number of examples showing how
vast the application of free theorems is.

6.2 P O LY M O R P H I C T Y P E S I G N AT U R E S

In any typed functional language, when declaring a polymorphic func-
tion one is bound to use the same generic format,

f : t

known as the function’s signature: f is the name of the function and t
is a functional type written according to the following “grammar” of
types:

t ::= t′ → t′′

t ::= F(t1, . . . , tn) F is a type constructor

t ::= v a type variable, source of polymorphism.

What does it mean for f : t to be parametrically polymorphic? We shall
see shortly that what matters in this respect is the formal structure of
type t. Let

• V be the set of type variables involved in type expression t;

• {Rv}v∈V be a V-indexed family of relations ( fv in case Rv is a
function);

• Rt be a relation defined inductively as follows:

Rt:=v = Rv (6.1)

Rt:=F(t1,...,tn) = F(Rt1 , . . . , Rtn) (6.2)

Rt:=t′→t′′ = Rt′ → Rt′′ (6.3)

Two questions arise: what does F in the right handside of (6.2) mean?
What kind of relation is Rt′ → Rt′′ in (6.3)?

First of all, and to answer the first question, we need the concept
of relator, which extends that of a functor (introduced in section 3.8) to
relations.

1 Quoting Theorems for free!, by Philip Wadler [85].
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6.3 R E L AT O R S

A functor G is said to be a relator wherever, given a relation R from A
to B, G R extends R to G-structures: it is a relation from G A to G B

A

R
��

G A

G R
��

B G B

(6.4)

which obeys the properties of a functor,

G id = id (6.5)

G (R · S) = (G R) · (G S) (6.6)

— recall (3.54) and (3.55) — plus the properties:

R ⊆ S ⇒ G R ⊆ G S (6.7)

G (R◦) = (G R)◦ (6.8)

That is, a relator is a functor that is monotonic and commutes with con-
verse. For instance, the “Maybe” functor G X = 1 + X is an example
of relator:

A

R
��

G A = 1 + A

G R=id+R
��

B G B = 1 + B

It is monotonic since G R = id + R only involves monotonic operators
and commutes with converse via (5.127). Let us unfold G R = id + R:

y(id + R)x

≡ { unfolding the sum, cf. id + R = [i1 · id , i2 · R] (5.123) }

y(i1 · i◦1 ∪ i2 · R · i◦2)x

≡ { relational union (5.57); image }

y(img i1)x ∨ y(i2 · R · i◦2)x

≡ { let NIL denote the sole inhabitant of the singleton type }

y = x = i1NIL ∨ 〈∃ b, a : y = i2 b ∧ x = i2 a : b R a〉

In words: two “pointer-values” x and y are G R-related iff they are
both null or they are both defined and hold R-related data.

Finite lists also form a relator, G X = X∗. Given B ARoo , relator

B? A?R?
oo is the relation

s′(R?)s ⇔ length s′ = length s∧ (6.9)

〈∀ i : 0 6 i < length s : (s′ !! i) R (s !! i)〉
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Exercise 6.1.Recall how functor (1+) is represented in Haskell:

Maybe X

out=in◦

**∼= 1 + X

in=[Nothing ,Just]

kk (6.10)

Using (6.10), show that Maybe is the relator

A

R
��

Maybe A

Maybe R
��

B Maybe B

such that{
y (Maybe R) Nothing ⇔ y = Nothing
y (Maybe R) (Just a) = 〈∃ b : y = Just b : b R a〉

2

Exercise 6.2. Check properties (6.7) and (6.8) for the list relator defined above.

2

Exercise 6.3. Recalling the concept of function division (5.49), prove:

F
f
g
=

F f
F g

(6.11)

2

6.4 A R E L AT I O N O N F U N C T I O N S

The next step needed to postulate free theorems requires a formal un-
derstanding of the arrow operator written on the right handside of
(6.3).

This is achieved by defining the so-called “Reynolds arrow” rela-
tional operator, which establishes a relation on two functions f and g
parametric on two other arbitrary relations R and S:

f (S← R)g ≡ f · R ⊆ S · g A

f

��

BRoo

g

��

⊆

C D
S

oo

(6.12)
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The typing rule is:

A BRoo

C DSoo

CA DBS←Roo

This is a powerful operator that satisfies many properties, for in-
stance:

id← id = id (6.13)

(S← R)◦ = S◦ ← R◦ (6.14)

S← R ⊆ V ← U ⇐ S ⊆ V ∧U ⊆ R (6.15)

(S← V) · (R← U) ⊆ (S · R)← (V ·U) (6.16)

( f ← g◦)h = f · h · g (6.17)

k( f ← g)h ≡ k · g = f · h (6.18)

From property (6.15) we learn that the combinator is monotonic on the
left hand side — and thus facts

S← R ⊆ (S ∪V)← R (6.19)

> ← R = > (6.20)

hold 2 — and anti-monotonic on the right hand side — and thus prop-
erty

S← ⊥ = > (6.21)

and the two distributive laws which follow:

S← (R1 ∪ R2) = (S← R1) ∩ (S← R2) (6.22)

(S1 ∩ S2)← R = (S1 ← R) ∩ (S2 ← R) (6.23)

It should be stressed that (6.16) expresses fusion only, not fission.

S U P R E M A A N D I N F I M A Suppose relation S in (6.12) is a complete
lattice (6), that is, it has suprema and infima. What kind of relation-
ship is established between two functions f and g such that

f ((6)← R) g

holds? We reason:

f ((6)← R) g

≡ { (6.12) }

f · R ⊆ (6) · g
≡ { shunting (5.46) }

2 Cf. f · R · g◦ ⊆ > ⇔ TRUE concerning (6.20).
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R ⊆ f ◦ · (6) · g
≡ { go pointwise — (5.17), etc }

〈∀ a, b : a R b : f a 6 g b〉
≡ { quantifier calculus }

〈∀ b :: 〈∀ a : a R b : f a 6 g b〉〉
≡ { universal law of suprema }

〈∀ b :: 〈
∨

a : a R b : f a〉 6 g b〉

≡ { introduce supremum, for all b (see below) }

g b = 〈
∨

a : a R b : f a〉
In summary:

f ((6)← R) g ≡ g b = 〈
∨

a : a R b : f a〉 (6.24)

In words: g b is the largest of all (f a) such that a R b holds.
Pattern (6)← . . . turns up quite often in relation algebra. Consider,

for instance, a Galois connection α ` γ (5.137), that is,

α◦ · (v) = (6) · γ
≡ { ping pong }

α◦ · (v) ⊆ (6) · γ ∧ γ◦ · (>) ⊆ (w) · α
Following the same strategy as just above, we obtain pointwise defini-
tions for the two adjoints of the connection:3

γ x = 〈
∨

y : α y v x : y〉 (6.25)

α y = 〈
l

x : y 6 γ x : x〉 (6.26)

6.5 F R E E T H E O R E M O F T Y P E t

We are now ready to establish the free theorem (FT) of type t, which is
the following remarkably simple result:4

Given any function θ : t, and V as above, then

θ Rt θ

holds, for any relational instantiation of type variables in V.
2

Note that this theorem

• is a result about t;

• holds independently of the actual definition of θ.

So, it holds about any polymorphic function of type t.

3 Similarly, introducing infimum, for all a: f a = 〈∧ b : a S b : g b〉.
4 This result is due to J. Reynolds [77], advertised by P. Wadler [85] and re-written by

Backhouse [2] in the pointfree style adopted in this monograph.
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Let us see the simplest of all examples, where the target function is the
identity:

θ = id : a← a

We first calculate Rt=a←a:

Ra←a

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }
Ra← Ra

Then we derive the free theorem itself (Ra is abbreviated to R):

id(R← R)id

≡ { (6.12) }

id · R ⊆ R · id

In case R is a function f , the FT theorem boils down to id’s natural
property, id · f = f · id — recall (2.10) — that can be read alternatively
as stating that id is the unit of composition.

As a second example, consider θ = reverse : a?← a?, and first calcu-
late Rt=a?←a? :

Ra?←a?

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }
Ra?← Ra?

≡ { rule Rt=F(t1,...,tn) = F(Rt1 , . . . , Rtn) }

Ra
?← Ra

?

where s R?s′ is given by (6.9). Next we calculate the FT itself (Ra ab-
breviated to R):

reverse(R?← R?)reverse

≡ { definition f (R← S)g ≡ f · S ⊆ R · g }

reverse · R? ⊆ R? · reverse

In case R is a function r, this FT theorem boils down to reverse’s natural
property,

reverse · r? = r? · reverse

that is, reverse [ r a | a← l ] = [ r b | b← reverse l ]. For the general case,
we obtain:

reverse · R? ⊆ R? · reverse

≡ { shunting rule (5.46) }



6.6 E X A M P L E S 245

R? ⊆ reverse◦ · R? · reverse

≡ { going pointwise (5.19, 5.17) }

〈∀ s, r :: s R?r⇒ (reverse s)R?(reverse r)〉

An instance of this pointwise version of reverse-FT will state that, for
example, reverse will respect element-wise orderings (R :=<):5

length s = length r ∧ 〈∀ i : i ∈ inds s : (s !! i) < (r !! i)〉
⇓

length(reverse s) = length(reverse r)

∧
〈∀ j : j ∈ inds s : (reverse s !! j)< (reverse r !! j)〉

(Guess other instances.)
As a third example, also involving finite lists, let us calculate the FT

of

sort : a?← a?← (Bool← (a× a))

where the first parameter stands for the chosen ordering relation, ex-
pressed by a binary predicate:

sort(R(a?←a?)←(Bool←(a×a)))sort

≡ { (6.2, 6.1, 6.3); abbreviate Ra := R }

sort((R?← R?)← (RBool← (R× R)))sort

≡ { Rt:=Bool = id (constant relator) — cf. exercise 6.13 }

sort((R?← R?)← (id← (R× R)))sort

≡ { (6.12) }

sort · (id← (R× R)) ⊆ (R?← R?) · sort

≡ { shunting (5.46) }

(id← (R× R)) ⊆ sort◦ · (R?← R?) · sort

≡ { introduce variables f and g (5.19, 5.17) }

f (id← (R× R))g ⇒ (sort f )(R?← R?)(sort g)

≡ { (6.12) twice }

f · (R× R) ⊆ g ⇒ (sort f ) · R? ⊆ R? · (sort g)

Case R := r:

f · (r× r) = g ⇒ (sort f ) · r? = r? · (sort g)

≡ { introduce variables }

5 Let inds s denote the set {0, . . . , length s− 1}.
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〈
∀ a, b ::

f (r a, r b) = g(a, b)

〉
⇒

〈
∀ l ::

(sort f )(r? l) = r?(sort g l)

〉
Denoting predicates f , g by infix orderings 6,�:〈

∀ a, b ::
r a 6 r b ≡ a � b

〉
⇒

〈
∀ l ::

sort (6)(r? l) = r?(sort (�) l)

〉
That is, for r monotonic and injective,

sort (6) [ r a | a← l ]

is always the same list as

[ r a | a← sort (�) l ]

Exercise 6.4. Let C be a nonempty data domain and let and c ∈ C. Let c be the
“everywhere c” function c : A→ C (2.12). Show that the free theorem of c reduces
to

〈∀ R :: R ⊆ >〉 (6.27)

2

Exercise 6.5. Calculate the free theorem associated with the projections

A A× B
π1oo π2 // B

and instantiate it to (a) functions; (b) coreflexives. Introduce variables and derive
the corresponding pointwise expressions.
2

Exercise 6.6. As follow-up to exercise 6.4, consider higher order function ( ) : a→
b→ a such that, given any x of type a, produces the constant function x. Show that
the equalities

f x = f · x (6.28)

x · f = x (6.29)

x◦ · x = > (6.30)

arise as corollaries of the free theorem of ( ).6

2

Exercise 6.7. The following is a well-known Haskell function

6 Note that (6.29) is property (2.14) assumed in chapter 2.
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filter :: ∀ a · (a→ B)→ [a ]→ [a ]

Calculate the free theorem associated with its type

filter : a?← a?← (B← a)

and instantiate it to the case where all relations are functions.
2

Exercise 6.8. In many sorting problems, data are sorted according to a given rank-
ing function which computes each datum’s numeric rank (e.g. students marks, cred-
its, etc). In this context one may parameterize sorting with an extra parameter f
ranking data into a fixed numeric datatype, e.g. the integers: serial : (a→ N0)→
a? → a?. Calculate the FT of serial.
2

Exercise 6.9. Consider the following function from Haskell’s Prelude:

findIndices :: (a→ B)→ [a ]→ [Z ]
findIndices p xs = [ i | (x, i)← zip xs [0 . . ], p x ]

which yields the indices of elements in a sequence xs which satisfy p.
For instance, findIndices (<0) [1,−2, 3, 0,−5 ] = [1, 4 ]. Calculate the FT of

this function.
2

Exercise 6.10. Wherever two equally typed functions f , g are such that f a 6 g a,
for all a, we say that f is pointwise at most g and write f

.
6 g,

f
.
6 g = f ⊆ (6) · g cf. diagram A

f

��

g

��
⊆

B B
6
oo

recall (5.98). Show that implication

f
.
6 g ⇒ (map f )

.
6? (map g) (6.31)

follows from the FT of the function map : (a→ b)→ a∗ → b∗.
2

Exercise 6.11. Infer the FT of the following function, written in Haskell syntax,

while :: (a→ B)→ (a→ a)→ (a→ b)→ a→ b
while p f g x = if ¬ (p x) then g x else while p f g (f x)
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which implements a generic while-loop. Derive its corollary for functions.
2

6.7 C ATA M O R P H I S M L AW S A S F R E E T H E O R E M S

Recall from section 3.13 the concept of a catamorphism over a para-
metric type T a:

T a

L g M
��

B (a, T a)
inT aoo

B (id,L g M)
��

b B (a, b)g
oo

So L M has generic type

L M : b← T a← (b← B (a, b))

where T a ∼= B (a, T a). Then the free theorem of L M is

L M · (Rb← B (Ra, Rb)) ⊆ (Rb← TRa) · L M

This unfolds into (Ra, Rb abbreviated to R, S):

L M · (S← B (R, S)) ⊆ (S← T R) · L M

≡ { shunting (5.46) }

(S← B (R, S)) ⊆ L M◦(S← T R) · L M

≡ { introduce variables f and g (5.19, 5.17) }

f (S← B (R, S))g ⇒ L f M(S← T R)L g M

≡ { definition f (R← S)g ≡ f · S ⊆ R · g }

f · B (R, S) ⊆ S · g ⇒ L f M · T R ⊆ S · L g M

From the calculated free theorem of the catamorphism combinator,

f · B (R, S) ⊆ S · g ⇒ L f M · T R ⊆ S · L g M (6.32)

we can infer:

• L M-fusion (R, S := id, s):

f · B (id, s) = s · g ⇒ L f M = s · L g M

— recall (3.70), for F f = B (id, f );

• L M-absorption (R, S := r, id):

f · B (r, id) = g ⇒ L f M · T r = L g M
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whereby, substituting g := f · B (r, id), we get:

L f M · T r = L f · B (r, id) M

— recall (3.76).

Exercise 6.12. Let

iprod = L [1 , (×)] M

be the function that multiplies all natural numbers in a given list, and even be the
predicate which tests natural numbers for evenness. Finally, let

exists = L [FALSE , (∨)] M

be the function that implements existential quantification over a list of Booleans.
From (6.32) infer

even · iprod = exists · even?

meaning that the product n1 × n2 × . . .× nm is even if and only if some ni is so.
2

Exercise 6.13. Show that the identity relator Id, which is such that Id R = R
and the constant relator K (for a given data type K) which is such that K R = idK

are indeed relators.
2

Exercise 6.14.Show that product

A

R
��

C

S
��

G(A, C) = A× C

G(R,S)=R×S
��

B D G(B, D) = B× D

is a (binary) relator.
2

6.8 B I B L I O G R A P H Y N O T E S

The free theorem of a polymorphic function is a result due to computer
scientist John Reynolds [77]. It became popular under the “theorems
for free” heading coined by Phil Wadler [85]. The original pointwise
setting of this result was re-written in the pointfree style in [2] thanks
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to the relation on functions combinator (6.12) first introduced by Roland
Backhouse in [3].

More recently, Janis Voigtlaender devoted a whole research project
to free theorems, showing their usefulness in several areas of com-
puter science [54]. One outcome of this project was an automatic gen-
erator of free theorems for types written in Haskell syntax. This is
(was?) available from Janis Voigtlaender’s home page:

http://www-ps.iai.uni-bonn.de/ft

The relators used in the calculational style followed in this monograph
are implemented in this automatic generator by so-called structural
functor lifting.

http://www-ps.iai.uni-bonn.de/ft


7

C O N T R A C T- O R I E N T E D P R O G R A M M I N G

The chapters of the first part of this monograph rely on a type-polymorphic
notion of computation, captured by the omnipresent use of the arrow
notation

B A
foo

where A and B are types.
The generalization from functions to relations carried out in the pre-

vious two chapters has preserved the same principle — all relational
combinators are typed in the same way. There is thus an implicit as-
sumption of static type checking in the overall approach — types are
checked at “compile time”. Expressions which don’t type are auto-
matically excluded.

However, examples such as the Alcuin puzzle show that this is
insufficient. Why? Because the types involved are most often “too
large”: the whole purpose of the puzzle is to consider only the inhab-
itants of type BankBeing — functions that describe all possible configu-
rations in the puzzle — that satisfy the “starvation property”, recall
(5.77). Moreover, the carry operation (5.205) should preserve this
property — something we did not at all check in the previous chap-
ter!

Let us generalize the situation in this puzzle to that of a function
f : A → A and a predicate p : A → B that should be preserved by
f . Predicates such as p have become known as invariants by software
theorists. The preservation requirement is captured by:

〈∀ a : p a : p (f a)〉 (7.1)

Note how the type A is now divided in two parts — a “good one”,
{a | a ∈ A ∧ p a} and a “bad one”, {a | a ∈ A ∧ ¬ (p a)}. By
identifying p as an invariant, the programmer is obliged to ensure a
“good” output f a wherever a “good” input is passed to f . For “bad”
inputs nothing is requested.

The situation above can be generalized to some f : A → B where B
is subject to some invariant q : B → B. So f is obliged to ensure “good”
outputs satisfying q. It may well be the case that the only way for f
to ensure “good” outputs is to restrict its inputs by some precondition
p : A→ B. Thus the proof obligation above generalizes to:

〈∀ a : p a : q (f a)〉 (7.2)

251
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... versus ...

Figure 7.1.: The contract-oriented programming metaphor.

One might tentatively try and express this requirement by writing

p
f // q

where predicates p and q take the place of the original types A and B,

respectively. This is what we shall do, calling assertion p
f // q a

contract. Note how we are back to the function-as-a-contract view of
section 2.1 but in a wider setting:

f commits itself to producing a “good” B-value (wrt. q) pro-
vided it is supplied with a “suitable” A-value (wrt. p).

The main difference compared to section 2.1 is that the well-typing

of p
f // q cannot be mechanically ascertained at “compile time” —

it has to be validated by a formal proof — the proof obligation (7.2)
mentioned above. This kind of type checking is often referred to as
“extended type checking”.

In real life software design data type invariants can be arbitrarily
complex — think of all legal restrictions imposed on the organized so-
cieties of today! The increasing “softwarization” of our times forces us
to think that, as in the regular functioning of such organized societies,
programs should interact with each other via formal contracts establish-
ing what they rely upon or guarantee among themselves. This is the
only way to ensure safety and security essential to reliable, mechanized
operations.

This chapter will use relation algebra to describe such contracts and
develop a simple theory about them, enabling compositionality as be-
fore. Relations (including functions) will play a double role — they
will not only describe computations but also the data structures in-
volved in such computations, in a unified and elegant way.

7.1 C O N T R A C T S

It should be routine work for the reader to check that

f ·Φp ⊆ Φq · f (7.3)
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means exactly the same as (7.2) above, and that it can be expressed by

f (Φq ← Φp) f (7.4)

in the arrow-notation of (6.12). In software design terminology, this is
known as a (functional) contract, and we shall write

p
f // q (7.5)

to denote it — a notation that generalizes the type A → B of f , as
already observed. Thanks to (5.215), (7.3) can also be written:

f ·Φp ⊆ Φq · > (7.6)

Predicates p and q in contract p
f // q shall be referred to as the con-

tract’s precondition and postcondition, respectively. Contracts compose
sequentially, see the following exercise.

W E A K E S T P R E - C O N D I T I O N S Note that more than one (pre) con-
dition p may ensure (post) condition q on the outputs of f . Indeed,

contract false
f // q always holds, but it is useless — pre-condition

false is “unacceptably strong”.
Clearly, the weaker p the better. The question is, then: is there a

weakest such p? We calculate:

f ·Φp ⊆ Φq · f

≡ { recall (5.215) }

f ·Φp ⊆ Φq · >

≡ { shunting (5.46); (5.213) }

Φp ⊆ f ◦ · true
q

≡ { (5.52) }

Φp ⊆
true
q · f

≡ { Φp ⊆ id ; (5.58) }

Φp ⊆ id ∩ true
q · f

≡ { (5.206) }
Φp ⊆ Φq·f

We conclude that q · f is such a weakest pre-condition. Notation wp (f , q) =
q · f is often used to denote a weakest pre-condition (WP). This is the
weakest constraint on the inputs for the outputs delivered by f to fall
within q. The special situation of a weakest precondition is nicely cap-
tured by the universal property:

f ·Φp = Φq · f ≡ p = q · f (7.7)
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where p = wp (f , q) could be written instead of p = q · f , as seen
above. Property (7.7) enables a “logic-free” calculation of weakest pre-
conditions, as we shall soon see: given f and post-condition q, there
always exists a unique (weakest) precondition p such that Φq · f can be
replaced by f ·Φp. Moreover:

f
f
·Φp = Φp ·

f
f
⇐ p 6 f (7.8)

where 6 denotes the injectivity preorder (5.241) on functions.1

Exercise 7.1. Calculate the weakest pre-condition wp (f , q) for the following func-
tion / post-condition pairs:

• f x = x2 + 1 , q y = y 6 10 (in R)

• f = N0
succ // N0 , q = even

• f x = x2 + 1 , q y = y 6 0 (in R)

2

C O M P O S I T I O N A L I T Y F O R F R E E The fact that functional contracts
compose with each other, that is,

q p
h·foo holds provided r p

foo and q rhoo hold (7.9)

does not need to be proved: it is a corollary of the free theorem (section
6.5) of composition itself, which unfolds to{

f · R ⊆ S · g
h · S ⊆ Q · k ⇒ (h · f ) · R ⊆ Q · (k · g) (7.10)

for suitably typed f , g, h, k, R, S, Q. To get (7.9) from (7.10) consider
the substitutions g, k := f , h in (7.10), which lead to:2 S R

foo

Q Shoo
⇒ Q R

h·foo (7.11)

Further substituting R, S, Q := Φp, Φr, Φq immediately yields (7.9).
Interestingly, if we regard relations R, S, Q in (7.11) as preorders,

then (7.11) will tell that the composition of monotonic functions h and
f is monotonic. The free theorem (7.10) captures even more basic prop-
erties of composition: for the substitution R, S, Q := r, id, id one gets{

f · r = g
h = k

⇒ (h · f ) · r = k · g

1 The interested reader will find the proofs of (7.7) and (7.8) in reference [71].

2 Notation R h // S abbreviates h · R ⊆ S · h, see (7.36) later and details in the
follow up.



7.2 L I B R A RY L O A N E X A M P L E 255

and then, immediately:

(h · f ) · r = h · (f · r)

This is the associative law of composition, recall (2.8).

I N VA R I A N T S In case p = q in a contract (7.5), that is, in case of

q
f // q holding, we say that q is an invariant of f , meaning that the

“truth value” of q remains unchanged by execution of f . More gener-

ally, invariant q is preserved by function f provided contract p
f // q

holds and p⇒ q, that is, Φp ⊆ Φq.
Some pre-conditions are weaker than others wrt. invariant preserva-

tion. We shall say that w is the weakest pre-condition for f to preserve
invariant q wherever wp (f , q) = w ∧ q, where Φp∧q = Φp ·Φq.

Recalling the Alcuin puzzle, let us define the starvation invariant as
a predicate on the state of the puzzle, passing the where function as a
parameter w:

starving w = w · CanEat ⊆ w · Farmer

Then the contract

starving
carry b // starving

would mean that the function carry b — that should transfer the beings
in b to the other bank of the river — always preserves the invariant:

wp (carry b, starving) = starving.

Things are not that easy, however: there is a need for a pre-condition
ensuring that b includes the farmer together with a good choice of the
being to carry!

Let us see some simpler examples first.

7.2 L I B R A RY L O A N E X A M P L E

Consider the following relational data model of a library involving
books and users that can borrow its books:

ISBN Name

Title Booktitleoo

Auth
��

isbn

OO

R // User
addr

//

card
��

name

OO

Address

Author Id

(7.12)

All arrows denote attributes (functions) but two — Auth and R. The
former is a relation because a book can have more than one author.3

3 Its power transpose (5.258) — ΛAuth : Book → PAuthor — gives the set of authors of
a book.
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The latter is the most interesting relation of the model, u R b meaning
“book b currently on loan to library user u”. Quite a few invariants are
required on this model, for instance:

• the same book cannot be not on loan to more than one user;

• no book exists with no authors;

• no two different users have the same card Id;

• books with the same ISBN should have the same title and the same
authors.

Such properties (invariants) are easy to encode:

• no book on loan to more than one user:

Book R // User is simple

• no book without an author:

Book Auth // Author is entire

• no two users with the same card Id:

User card // Id is injective

• ISBN is a key attribute:

ISBN title·isbn◦ // Title and ISBN
Λ(Auth·isbn◦) // P Author

are simple relations.

Since all other arrows are functions, they are simple and entire.
Let us now spell out such invariants in terms of relational assertions

(note the role of the injectivity preorder):

• no book on loan to more than one user:

id 6 R◦

equivalent to img R ⊆ id;

• no book without an author:

id ⊆ ker Auth

• no two users with the same card Id:

id 6 card

equivalent to ker card ⊆ id.

• ISBN is a key attribute:

title 6 isbn ∧ ΛAuth 6 isbn

equivalent to isbn
isbn ⊆

title
title and isbn

isbn ⊆
Auth
Auth , respectively.4

4 Note the use of (5.177) in the second case.
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Below we focus on the first invariant, no book on loan to more than
one user. To bring life to our model, let us think of two operations on

User BookRoo , one that returns books to the library and another that
records new borrowings:

(return S) R = R− S (7.13)

(borrow S) R = S∪ R (7.14)

Note that parameter S is of type User BookRoo , indicating which
users borrow/return which books. Clearly, these operations only change
the books-on-loan relation R, which is conditioned by invariant

inv R = img R ⊆ id (7.15)

The question is, then: are the following “types”

inv · inv ·return Soo (7.16)

inv · inv ·borrow Soo (7.17)

valid? Let us check (7.16):

inv return S R

≡ { inline definitions }

img (R− S) ⊆ id

⇐ { since img is monotonic }

img R ⊆ id

≡ { definition }
inv R

2

So, for all R, inv R⇒ inv return S R holds — invariant inv · is preserved
(7.1).

At this point note that (7.16) was checked only as a warming-up ex-
ercise — we don’t actually need to worry about it! Why?

As R− S is smaller than R (exercise 5.46) and “smaller than
injective is injective” (5.83), it is immediate that inv · (7.15) is
preserved.

To see this better, we unfold and draw definition (7.15) in the form of
a diagram:

inv R =

Book

R

��

UserR◦oo

id
��

⊆

User User
id

oo
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As R occurs only in the lower-path of the diagram, it can always get
smaller.

This “rule of thumb” does not work for borrow S because, in general,
R ⊆ borrow S R. This time R gets bigger, not smaller, and we do have
to check the contract:

inv borrow S R

≡ { inline definitions }

img (S∪ R) ⊆ id

≡ { exercise 5.15 }

img R ⊆ id ∧ img S ⊆ id ∧ S · R◦ ⊆ id

≡ { definition of inv · }

inv R ∧ img S ⊆ id ∧ S · R◦ ⊆ id︸ ︷︷ ︸
wp (borrow S,inv ·)

Thus the complete definition of the borrow operation becomes, in the
notation of section 5.3:

Borrow (S, R : Book→ User) R′ : Book→ User

pre S · S◦ ⊆ id ∧ S · R◦ ⊆ id

post R′ = R∪ S

Why have we written Borrow instead of borrow as before? This is be-
cause borrow has become a simple relation

Borrow = borrow ·Φpre

It is no longer a function since its (weakest) precondition is not the
predicate true. (Recall that lowercase identifiers are reserved to func-
tions only.) This precondition was to be expected, as spelt out by ren-
dering S · R◦ ⊆ id in pointwise notation: for all users u, u′,

〈∃ b : u S b : u′ R b〉 ⇒ u = u′

should hold. So, after the operation takes place, the result state R′ =
R ∪ S won’t have the same book on loan twice to different users. (Of
course, the same must happen about S itself, which is the same pred-
icate for R = S.) Interestingly, the weakest precondition is not ruling
out the situation in which u S b and u R b hold, for some book b and
user u. Not only this does not harm the model but also it corresponds
to a kind of renewal of a previous borrowing.

E V O L U T I O N The library loan model (7.12) given above is not re-
alistic in the following sense — it only “gives life” to the borrowing
relation R. In a sense, it assumes that all books have been bought and
all users are registered.

How do we improve the model so that new books can be acquired
and new users can join the library? Does this evolution entail a com-
plete revision of (7.12)? Not at all. What we have to do is to add two
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new relations, say M and N, the first recording the books currently
available in the library and the second the users currently registered
for loaning:

ISBN Name

Title Booktitleoo

Auth
��

isbn

OO

#B R //Moo #U N // User
addr

//

card
��

name

OO

Address

Author Id
Two new datatypes have been added: #U (unique identifier of each
user) and #B (key identifying each book). Relations M and N have to
be simple. The operations defined thus far stay the same, provided #B
replaces Book and #U replaces User — advantages of a polymorphic
notation. New operations can be added for

• acquiring new books — will change relation M only;

• registering new users — will change relation N only;

• cancelling users’ registrations — will change relation N only.

There is, however, something that has not been considered: think of
a starting state where M = ⊥ and N = ⊥, that is, the library has no
users, no books yet. Then necessarily R = ⊥. In general, users cannot
borrow books that don’t exist,

δ R ⊆ δ M

and not-registered users cannot borrow books at all:

ρ R ⊆ δ N

Invariants of this kind capture so-called referential integrity constraints.
They can be written with less symbols, cf.

R ⊆ > ·M
and

R ⊆ N◦ · >
respectively. Using the “thumb” rules as above, it is clear that, with
respect to referential integrity:

• returning books is no problem, because R is only on the lower
side of both inclusions;

• borrowing books calls for new contracts — R is on the lower side
and it increases!

• registering new users and buying new books are no problem,
because M and N are on the upper side only;

• unregistering users calls for a contract because N is on the upper
side and decreases — users must return all books before unreg-
istering!
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7.3 M O B I L E P H O N E E X A M P L E

In this example we go back to the store operation on a mobile phone list
of calls specified by (5.2). Of the three invariants we select (b), the one
requiring no duplicate calls in the list. Recall, in Haskell, the function
(!!) :: [a ] → Z → a. This tells how a finite list s is converted into a
partial function (s!!) of type Z → a. In fact, the partiality extends
to the negative numbers5 and so we should regard (s!!) as a simple
relation6 even if restricted to the type a←N0, as we shall do below.

The no-duplicates requirement requests (s!!) to be injective: in case
s !! i and s !! j are defined, i 6= j ⇒ s !! i 6= s !! j. Let L = (s!!). Then we
can re-specify the operations of store in terms of L, as follows:7

inv L = id 6 L
filter (c 6=) L = L− c
c : L = [c , L] · in◦

where in = [0, succ] — the Peano algebra which builds up natural
numbers.8 By (5.125) the definition of c : L can also be written c · 0◦ ∪
L · succ◦, explicitly telling that c is placed in position 0 while L is shifted
one position up to make room for the new element. We calculate:

inv c : (filter (c 6=) L)

≡ { inv L = id 6 L, using the injectivity preorder }

id 6 c : (filter (c 6=) L)

≡ { in-line definitions }

id 6 [c , L− c] · in◦

≡ { Galois connection (5.244) }

in 6 [c , L− c]

≡ { (5.245) ; in is as injective as id }

id 6 c ∧ id 6 L− c ∧ c◦ · (L− c) ⊆ ⊥

⇐ { constant function N0 1
coo is injective; L ⊆ > }

id 6 L− c ∧ c◦ · (>− c) ⊆ ⊥
⇐ { smaller than injective is injective ; c◦ · (>− c) = ⊥ (5.161) }

id 6 L

2

Having given two examples of contract checking in two quite differ-
ent domains, let us prepare for checking that of the Alcuin puzzle. By

5 Try [2, 3, 3 ] !! (−1), for instance.
6 Partial functions are simple relations, as we know.
7 Knowing that take 10 will always yield its input or a smaller list, and that smaller than

injective is injective (5.83), we only need to focus on (c:) · filter (c 6=).
8 Recall section 3.1.
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exercise 5.20 we already know that any of the starting states w = Le f t
or w = Right satisfy the invariant:

starving w = w · CanEat ⊆ w · Farmer.

The only operation defined is

carry who where = (∈ who)→ cross · where , where

Clearly, calculating the weakest precondition for this operation to pre-
serve starving is expected to be far more complex than in the previ-
ous examples, since where is everywhere in the invariant. Can this be
made simpler?

The answer is positive provided we understand a technique to be
adopted, called abstract interpretation. So we postpone the topic of this
paragraph to section 7.6, where abstract interpretation will be intro-
duced. In between, we shall study a number of rules that can be used
to address contracts in a structured way.

Exercise 7.2. Consider the voting system described by the relations of the diagram
below,

C p
//

dC !!

V′

''P

Di
��

V
// E

dE}}
D

where electors can vote in political parties or nominally in members of such parties.
In detail: (a) p c denotes the party of candidate c; (b) dC c denotes the district of
candidate c; (c) dE e denotes the district of elector e; (d) d Di p records that party p
has a list of candidates in district d; (e) e V p indicates that elector e voted in party
p; (f) e V′ c indicates that elector e voted nominally in candidate c.

There are several invariants to take into account in this model, namely:

inv1 (V, V′) = V : E← P and V′ : E← C are injective (7.18)

inv2 (V, V′) = V◦ ·V′ = ⊥ (7.19)

since an elector cannot vote in more than one candidate or party;

inv3 (V, V′) = dE · [V , V′] ⊆ [Di , dC] (7.20)

since each elector is registered in one district and can only vote in candidates of that
district.

When the elections take place, relations p, dC, dE and Di are static, since all lists
and candidates are fixed before people can vote. Once it is over, the scrutinity of the
votes is carried out by function

batch (V, V′, X) = . . .

where X : E→ (P + C) is a batch of votes to be loaded into the system.
Complete the definition of batch and discharge the proof obligations of the con-

tracts that this function must satisfy.
2
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The number and complexity of invariants in real life problems invites
us to develop divide & conquer rules alleviating the proof obligations
that have to be discharged wherever contracts are needed. All such
rules have definition (7.3) as starting point. Let us see, for instance,
what happens wherever the input predicate in (7.5) is a disjunction:

Φq Φp1 ∪Φp2

foo

≡ { (7.4) }

f (Φq ← (Φp1 ∪Φp2)) f

≡ { (6.22) }

f (Φq ← Φp1 ∩Φq ← Φp2) f

≡ { (5.56) }

f (Φq ← Φp1) f ∧ f (Φq ← Φp2) f

≡ { (7.4) twice }

Φq Φp1

foo ∧ Φq Φp2

foo

Recall that the disjunction p ∨ q of two predicates is such that Φp∨q =

Φp∪Φq holds. So we can write the result above in the simpler notation
(7.5) as the contract decomposition rule:

q p ∨ r
foo ≡ q p

foo ∧ q r
foo (7.21)

The dual rule,

Φq ·Φr Φp
foo ≡ Φq Φp

foo ∧ Φr Φp
foo

is calculated in the same way — via (6.23) — and written

q ∧ r p
foo ≡ q p

foo ∧ r p
foo (7.22)

in the same notation, since Φp∧q = Φp ∩ Φq. The fact that contracts
compose sequentially (7.9) enables the corresponding decomposition,
once a suitable middle predicate r is found:

q p
g·hoo ⇐ q r

goo ∧ r phoo (7.23)

This follows straight from (7.5, 7.3), as does the obvious rule concern-
ing identity

q pidoo ≡ q⇐ p (7.24)

since p⇒ q ⇔ Φp ⊆ Φq. The expected

p pidoo



7.4 A C A L C U L U S O F F U N C T I O N A L C O N T R A C T S 263

immediately follows from (7.24).

Now suppose that we have contracts q p
foo and r p

goo . What
kind of contract can we infer for 〈f , g〉? We calculate:

Φq Φp
foo ∧ Φr Φp

goo

≡ { (7.5,7.3) twice }

f ·Φp ⊆ Φq · f ∧ g ·Φp ⊆ Φr · g

≡ { cancellations (2.22) }

π1 · 〈 f , g〉 ·Φp ⊆ Φq · f ∧ π2 · 〈 f , g〉 ·Φp ⊆ Φr · g

≡ { universal property (5.108) }

〈 f , g〉 ·Φp ⊆ 〈Φq · f , Φr · g〉

≡ { absorption (5.111) }

〈 f , g〉 ·Φp ⊆ (Φq ×Φr) · 〈 f , g〉

≡ { (7.5,7.3) }

Φq ×Φr Φp
〈 f ,g〉oo

Defining p � q such that Φp�q = Φp × Φq we obtain the contract de-
composition rule:

q � r p
〈 f ,g〉oo ≡ q p

foo ∧ r p
goo (7.25)

which justifies the existence of arrow 〈 f , g〉 in the diagram

q q � r
π1oo π2 // r

p
f

ee

〈 f ,g〉
OO

g

99 (7.26)

where predicates (coreflexives) are promoted to objects (nodes in dia-
grams).

Exercise 7.3. Check the contracts q q� r
π1oo and q� r

π2 // r of diagram
(7.26).
2

Let us finally see how to handle conditional expressions of the form
i f (c x) then ( f x) else (g x) which, by (5.220), transform into

c→ f , g = f ·Φc ∪ g ·Φ¬c (7.27)

In this case, (7.6) offers a better standpoint for calculation than (7.3), as
the reader may check in calculating the following rule for conditionals:

Φq Φp
c→ f , goo ≡

 Φq Φp ·Φc
foo

Φq Φp ·Φ¬ c
goo

(7.28)
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This is because it is hard to handle c→ f , g on the upper side,> being more
convenient.

Further contract rules can calculated on the same basis, either by
elaborating on the predicate structure or on the combinator structure.
However, all the cases above involve functions only and the seman-
tics of computations are, in general, relations. So our strategy is to
generalize definition (7.3) from functions to arbitrary relations.

R E L AT I O N A L C O N T R A C T S Note that S = R ·Φp means

b S a ⇔ p a ∧ b R a

—- that is, S is R pre-conditioned by p. Dually, Φq ·R is the largest part
of R which yields outputs satisfying q — R post-conditioned by q. By
writing

R ·Φp ⊆ Φq · R (7.29)

— which is equivalent to

R ·Φp ⊆ Φq · > (7.30)

by (5.215) and even equivalent to

Φp ⊆ R \ (Φq · >) (7.31)

by (5.165) — we express a very important fact about R regarded as
a (possibly non-deterministic, undefined) program R: condition p on
the inputs is sufficient for condition q to hold on the outputs:

〈∀ a : p a : 〈∀ b : b R a : q b〉〉

Thus we generalize functional contracts (7.3) to arbitrary relations,

p R // q ≡ R ·Φp ⊆ Φq · R (7.32)

a definition equivalent to

p R // q ≡ R ·Φp ⊆ Φq · > (7.33)

as seen above.

Exercise 7.4. In a relational contract q pRoo (7.32), for R : A → B, it may
happen that, for some inputs a ∈ A satisfying p (that is, p a = TRUE for such
inputs) R does not react, which embodies a slight contradiction. To avoid this the
following additional constraint is often required,

Φp ⊆ R◦ ·Φq · R (7.34)

known as satisfiability. (a) Show that (7.34) can be written as Φp · R 6 Φp; (b)
render (7.34) in pointwise notation and explain in your own words how it addresses

the issue about contract q pRoo raised above; (c) show that, for R simple, satisfi-

ability (7.34) alone ensures contract q pRoo .
2
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Recall Reynold’s relation on functions (6.12):

f (R← S)g ≡ f · S ⊆ R · g A

f

��

BSoo

g

��

⊆

C D
R

oo

In a sense, this tells us that f and g behave in the same way within the
particular context provided by the pair (S, R): the outputs of S-related
inputs are R-related:

a S b⇒ (f a) R (g b)

This perspective of (6.12) has given rise to so-called Relational Hoare
logic (RHL), a topic which is currently under much research [9].

The usual RHL notation for (6.12) is

f ∼ g : S⇒ R

As happens with functional contracts, this logic in general considers
arbitrary programs instead of the functional f and g in (6.12). Then,
for suitably typed relations P, Q (regarded as programs), we have:

P ∼ Q : S⇒ R ≡ P · S ⊆ R ·Q (7.35)

Let us see an example of RHL rule derivation, that arising when
P = p→ U, V:

(p→ U, V) ∼ Q : S⇒ R

≡ { (7.35) }

(p→ U, V) · S ⊆ R ·Q
≡ { conditionals }

[U , V] · p ? ·S ⊆ R ·Q
≡ { (5.219) etc }

(U ·Φp ∪V ·Φ¬ p) · S ⊆ R ·Q

≡ { linearity (5.61) and ∪ -universal (5.59) }{
U ·Φp · S ⊆ R ·Q
V ·Φ¬ p · S ⊆ R ·Q

≡ { (7.35) twice }{
U ∼ Q : Φp · S⇒ R
V ∼ Q : Φ¬ p · S⇒ R

In words: provided U (resp. V) behave similarly to Q in the strength-
ened input context Φp · S (resp Φ¬ p · S) then the conditional program
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p → U, V behaves similarly to Q in the wider input context S. Recall
that b (Φp · S) a means b S a ∧ p b.

Note that the rule is an equivalence

(p→ U, V) ∼ Q : S⇒ R ≡
{

U ∼ Q : Φp · S⇒ R
V ∼ Q : Φ¬ p · S⇒ R

that is, the two clauses on the right are weakest pre-conditions. In case
the constraints Φp and Φ¬ p are dropped (as is usual) they become
stronger and just sufficient conditions.

7.6 A B S T R A C T I N T E R P R E TAT I O N

In practice, the proofs involved in verifying contracts may be hard
to perform due to the intricacies of real-life sized software specifica-
tions, which may involve hundreds of invariants of arbitrary complex-
ity. Such situations can only be tackled with the support of a theorem
prover, and in many situations even this is not enough to accomplish
the task. This problem has made software theorists to think of strate-
gies helping designers to simplify their proofs. One such strategy is
abstract interpretation.

It is often the case that the proof of a given contract does not require
the whole model because the contract is only concerned with a par-
ticular view of the whole thing. As a very simple example, think of
a model that is made of two independent parts A × B and of an in-
variant that constrains part A only. Then one may safely ignore B in
the proofs. This is equivalent to applying projection π1 : A× B → A
(2.21) to the original model. Note that π1 is an abstraction, since it is a
surjective function — recall figure 5.1.

In general, software models are not as “separable” as A× B is, but
abstraction functions exist that yield much simpler models where proofs
can be made easier. Different abstractions help in different proofs —
a kind of “on demand” abstraction making a model more abstract only
with respect to the specific property one wishes to check.

In general, techniques of this kind are known as abstract interpreta-
tion techniques and play a major role in program analysis, for instance.
To explain abstract interpretation we need to introduce the notion of a
relational type.

R E L AT I O N S A S T Y P E S A function h is said to have relation type

R→ S, written R h // S if

h · R ⊆ S · h
B

h
��

BRoo

h
��

A ASoo

(7.36)

holds. Note that (7.36) could be written h (S← R) h in the notation of
(6.12). In case h : B→ A is surjective, i.e. h is an abstraction function, we
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also say that A ASoo is an abstract simulation of B BRoo through
h.

A special case of relational type defines so-called invariant functions.

A function of relation type R h // id is said to be R-invariant, in the
sense that

〈∀ b, a : b R a : h b = h a〉 (7.37)

holds. When h is R-invariant, observations by h are not affected by R-
transitions. In pointfree notation, an R-invariant function h is always
such that:

R ⊆ h
h

(7.38)

For instance, a binary operation θ is commutative iff θ is swap-invariant,
that is

swap ⊆ θ

θ
(7.39)

holds.

Exercise 7.5. What does (7.36) mean in case R and S are partial orders?
2

Exercise 7.6. Let t0 be a real number. Show that

(+t0)→ id

is the relational type of all periodic functions (on R) with period t0.
2

Exercise 7.7. Show that relational types compose, that is Q Skoo and S Rhoo

entail Q Rk·hoo .
2

Exercise 7.8. Show that (7.33) is an alternative way of stating (7.32).
2

Exercise 7.9. Recalling exercise 5.12, let the following relation specify that two dates
are at least one week apart in time:

d Ok d′ ⇔ | d− d′ | >1 week
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Looking at the type diagram below, say in your own words the meaning of the invari-
ant specified by the relational type (7.36) statement below, on the left:

ker (home ∪ away)− id date // Ok

G
home∪away //

date
��

T

D G

home∪away

OO

date
oo

2

A B S T R A C T I N T E R P R E TAT I O N Suppose that one wishes to show

that q : B → B is an invariant of some operation B R // B , i.e. that

q R // q holds and you know that q = p · h, for some h : B → A, as
shown in the diagram. Then one can factor the proof in two steps:

• show that there is an abstract simula-
tion S such that R h // S ;

• prove p S // p , that is, that p is an
(abstract) invariant of (abstract) S.

B A
poo ASoo

Bq

RR

h

OO

BRoo

h

OO

This strategy is captured by the following calculation:

q R // q

≡ { (7.5) }

R ·Φq ⊆ Φq · >

≡ { q = p · h }

R ·Φ(p·h) ⊆ Φ(p·h) · >

≡ { (5.213) etc }

R ·Φ(p·h) ⊆ h◦ ·Φp · >

≡ { shunting }

h · R ·Φ(p·h) ⊆ Φp · >

⇐ { R h // S }

S · h ·Φ(p·h) ⊆ Φp · >

⇐ { Φ(p·h) ⊆ h◦ ·Φp · h (5.217) }

S · h · h◦ ·Φp · h ⊆ Φp · >

⇐ { > = > · h (cancel h); img h ⊆ id }

S ·Φp ⊆ Φp · >

≡ { (7.5) }
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p S // p

2

The following exercise gives a very simple example of application of
abstract interpretation.

Exercise 7.10. A list of pairs x ∈ (A×A)∗ can be represented simply by some
y ∈ A∗ provided the length of y is even. Let

θ : (A×A)→ A∗ → A∗

θ (a, b) y = a : b : y

be the operation that adds pairs to such a representation. Show by abstract interpre-
tation that θ (a, b) preserves the invariant

inv y = even (length y) (7.40)

by finding an abstract simulation φ of θ in the diagram:

B N0
evenoo N0

φoo

A∗inv ·

RR

length

OO

A∗
θ (a,b)
oo

length

OO

2

Abstract interpretation techniques usually assume that h is an ad-
joint of a Galois connection. The examples below do not assume this,
for an easy start.

7.7 S A F E T Y A N D L I V E N E S S P R O P E R T I E S

Before showing examples of abstract interpretation, let us be more spe-

cific about what was meant by “some operation B R // B ” above. In
section 4.9 a monad was studied called the state monad. This monad is
inhabited by state-transitions encoding state-based automata known
as Mealy machines.

With relations one may be more relaxed on how to characterize state
automata. In general, functional models generalize to so called state-
based relational models in which there is

• a set Σ of states

• a subset I ⊆ Σ of initial states

• a step relation Σ R // Σ which expresses transition of states.

We define:

• R0 = id — no action or transition takes place
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• Ri+1 = R · Ri — all ”paths” made of i + 1 R-transitions

• R∗ =
⋃

i>0 Ri — the set of all possible R-paths.

We represent the set I of initial states by the coreflexive Σ
Φ(∈ I) // Σ ,

simplified to Σ I // Σ to avoid symbol cluttering.

Given Σ
R,I // Σ (i.e. a nondeterministic automaton, model) there

are two kinds of property that one may wish to prove — safety and
liveness properties. Safety properties are of the form R∗ · I ⊆ S, that is,

〈∀ n : n > 0 : Rn · I ⊆ S〉 (7.41)

for some safety relation S : Σ → Σ, meaning: All paths in the model
originating from its initial states are bounded by S. In the particular case
S = true

p
9

〈∀ n : n > 0 : Rn · I ⊆ true
p
〉 (7.42)

meaning that formula p holds for every state reachable by R from an
initial state. Invariant preservation is an example of a safety prop-
erty: if starting from a “good” state, the automaton only visits “good”
(valid) states.

In contrast to safety properties, the so-called liveness properties are
of the form

〈∃ n : n > 0 : Q ⊆ Rn · I〉 (7.43)

for some target relation Q : Σ → Σ, meaning: the target relation Q is
eventually realizable, after n steps starting from an initial state. In the
particular case Q = true

p we have

〈∃ n : n > 0 :
true

p
⊆ Rn · I〉 (7.44)

meaning that, for a sufficiently large n, formula p will eventually hold.

7.8 E X A M P L E S

The Alcuin puzzle is an example of a problem that is characterized by
a liveness and safety property:

• From initial state where = Le f t, state where = Right is eventually
reachable — a liveness property.

• Initial state where = Le f t is valid and no step of the automaton
leads to invalid where states — a safety property.

9 Recall that true
p = Φp · > (5.213).
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The first difficulty in ensuring properties such as (7.42) e (7.44) is the
quantification on the number of path steps. In the case of (7.44) one
can try and find a particular path using a model checker. In both cases,
the complexity /size of the state space may offer some impedance to
proving / model checking. Below we show how to circumvent such
difficulties by use of abstract interpretation.

T H E H E AV Y A R M C H A I R P R O B L E M Let us show a simple, but
effective example of abstract interpretation applied to a well-known
problem — the heavy armchair problem.10 Consider the following pic-
ture:

We wish to move the armchair to an adjacent square, horizontally or
vertically. However, because the armchair is too heavy, it can only be
rotated over one of its four legs, as shown in the picture.

The standard model for this problem is a pair (p, o) where p = (y, x)
captures the square where the armchair is positioned and o is one of
the complex numbers { i,−i, 1,−1} indicating the orientation of the
armchair (that is, it can face N,S,E,W). Let the following step-relation
be proposed,

R = P×Q

where P captures the adjacency of two squares and Q captures 90◦ ro-
tations. A rotation multiplies an orientation o by ± i, depending on
choosing a clockwise (−i) or anti-clockwise (i) rotation. Altogether:

((y′, x′), d′) R ((y, x), d) ⇔{
y′ = y ± 1 ∧ x′ = x ∨ y′ = y ∧ x′ = x ± 1
d′ = (± i) d

We want to check the liveness property:

For some n, ((y, x + 1), d) Rn ((y, x), d) holds. (7.45)

That is, we wish to move the armchair to the adjacent square on its
right, keeping the armchair’s orientation. This is exactly what the
pointfree version of (7.45) tells:

〈∃ n :: (id× (1+))× id ⊆ Rn〉

10 Credits: this version of the problem and the pictures shown are taken from [6].
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In other words: there is a path with n steps that realizes the function
move = (id× (1+))× id.

Note that the state of this problem is arbitrarily large. (The squared
area is unbounded.) Moreover, the specification of the problem is non-
deterministic. (For each state, there are four possible successor states.)
We resort to abstract interpretation to obtain a bounded, deterministic
(functional) model: the floor is coloured as a chess board and the arm-
chair behaviour is abstracted by function h = col× dir which tells the
colour of the square where the armchair is and the direction of its cur-
rent orientation:

Since there are two colours (black, white) and two directions (horizon-
tal, vertical), both can be modelled by Booleans. Then the action of
moving to any adjacent square abstracts to color negation and any 90◦

rotation abstracts to direction negation:

P col // (¬) (7.46)

Q dir // (¬) (7.47)

In detail:

col (y, x) = even (y + x)

dir x = x ∈ {1,−1}

For instance, col (0, 0) = TRUE (black in the picture), col (1, 1) = TRUE,
col (1, 2) = FALSE and so on; dir 1 = TRUE (horizontal orientation),
dir (−i) = FALSE, and so on. Checking (7.47):

dir ((± i) x)

= { dir x = x ∈ {1,−1} }

(± i) x ∈ {1,−1}
= { multiply by (± i) within {1, i,−1,−i} }

x ∈ {−i, i}
= { the remainder of {−i, i} is {1,−1} }

¬ (x ∈ {1,−1})
= { dir x = x ∈ {1,−1} }

¬ (dir x)
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2

Checking (7.46):

(¬) Pcoloo

≡ { (7.36) for functions }

col · P ⊆ ¬ · col

≡ { shunting ; go pointwise }

(y′, x′) P (y, x)⇒ even (y′ + x′) = ¬ even (y + x)

≡ { unfold }{
y′ = y ± 1 ∧ x′ = x⇒ even (y′ + x′) = ¬ even (y + x)
y′ = y ∧ x′ = x ± 1⇒ even (y′ + x′) = ¬ even (y + x)

≡ { substitutions ; trivia }{
even (y ± 1) = ¬ even y
even (x ± 1) = ¬ even x

≡ { trivia }
true

2

Altogether:

R col×dir // (¬× ¬)

That is, step relation R is simulated by s = ¬× ¬, i.e. the function

s (c, d) = (¬ c,¬ d)

over a state space with 4 possibilities only: wherever the armchair
turns over one of its legs, whatever this is, it changes both the colour
of its square and its direction.

At this level, we note that observation function

f (c, d) = c ⊕ d (7.48)

is s-invariant (7.37), that is

f · s = f (7.49)

since ¬ c ⊕ ¬ d = c ⊕ d holds. By induction on n, f · sn = f holds
too.

Expressed under this abstraction, (7.45) is rephrased into: there is a
number of steps n such that sn (c, d) = (¬ c, d) holds. Let us check this
abstract version of the original property, assuming variable n existen-
tially quantified:

sn (c, d) = (¬ c, d)
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⇒ { Leibniz }

f (sn (c, d)) = f (¬ c, d)

≡ { f is s-invariant }

f (c, d) = f (¬ c, d)

≡ { (7.48) }

c ⊕ d = ¬ c ⊕ d

≡ { 1 ⊕ d = ¬ d and 0 ⊕ d = d }

d = ¬ d

≡ { trivia }

false

Thus, for all paths of arbitrary length n, sn (c, d) 6= (¬ c, d). We con-
clude that the proposed liveness property does not at all hold!

A L C U I N P U Z Z L E E X A M P L E Abstract interpretation applies nicely
to this problem (recall section 5.10), thanks to its symmetries. On the
one hand, one does not need to work over the 16 functions in BankBeing,
since starting from the left margin or from the right margin is irrele-
vant. Another symmetry can be found in type Being, suggesting the
following abstraction of beings into three classes:

f : Being→ {α, β, γ}

f =



Goose // α

Fox // β

Beans

77

Farmer // γ


The abstraction consists in unifying the maximum and minimum el-
ements of the “food chain” (5.75). In fact, the simultanous presence
of one α and one β is enough for defining the invariant. (Which spe-
cific being eats the other is irrelevant detail.) This double abstraction
is captured by

Bank Beingwoo

f ��
1

Le f t
OO

{α, β, γ}
V

oo

V = Le f t◦ ·w · f ◦

where the choice of Le f t as reference bank is arbitrary. Thus function
w is abstracted by the row vector relation V 11 such that:

V x = 〈∃ b : x = f b : w b = Le f t〉

11 A fragment of ! :{α, β, γ} → 1, recall section 5.5.
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Vector V tells whether at least one being of class x can be found in the
reference bank. Noting that there could be more than one β there, we
refine the abstraction a bit so that the number of beings of each class is
counted.12 This leads to the following state-abstraction (higher order)
function h based on f :

h : (Being→ Bank)→ {α, β, γ} → {0, 1, 2}
h w x = 〈∑ b : x = f b ∧ w b = Le f t : 1〉

For instance,

h Le f t = 121

h Right = 000

abbreviating by vector xyz the mapping {α 7→ x, β 7→ y, γ 7→ z}.13 To
obtain the other bank just compute its complement: x = 121− x. Note
that there are 2 × 3 × 2 = 12 possible state vectors, 4 of which are
invalid (these are marked in red):

121

021 111 120

011 020 101 110

001 010 100

000

The ordering implicit in the lattice above is pointwise (6). As already
mentioned, this is complemented by x = 121 − x, which gives the
information of the other bank.

The 8 valid states can be further abstracted to only 4 of them,

121

021 111

020 101

010 100

000

→

121

021

020

010

since, due to complementation (cf. the Left-Right margin symmetry),
we only need to reach state 010. Then one reverses the path through

12 This suggests that linear algebra would be a good alternative to relation algebra here!
13 This version of the model is inspired in [6].



7.8 E X A M P L E S 276

the complements. In this setting, the model is deterministic and is
captured by the abstract automaton:

121
−101

~~
021 hh

±001 ((

−011 22

020

010

Termination is ensured by disabling toggling between states 021 and
020:

121
−101

020
+001

021
−011

010

We then take the complemented path 111→ 100→ 101→ 000. So the
abstract solution for the Alcuin puzzle is, finally:

121

−101

��
021

−011 22

111
−011

��
020

+001dd

101

−101
��

010

+101

OO

100+001

dd

000

121
−101

020
+001

021
−011

010
+101

111
−011

100
+001

101
−101

000

At this point note that, according to the principles of abstract inter-
pretation stated above, quite a few steps are pending in this exercise:
abstract the starving invariant to the vector level, find an abstract sim-
ulation of carry, and so on and so forth. But — why bother doing all
that? There is no other operation in the problem, so the abstraction
found is, in a sense, universal: we should have started from the vector
model and not from the Being → Bank model, which is not sufficiently
abstract.
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Abstract interpretation leads one to think about the essence of pro-
gramming itself. The current scientific basis of programming enables
the calculation of programs, following the scientific method. So, pro-
gramming is lesser and lesser an art. Where is creativity gone to? To
the art of abstract modelling and elegant proving — this is where it
can be found nowadays.

Exercise 7.11. Verification of code involves calculations of real numbers and is often
done on the basis of an abstract interpretation called sign analysis:

sign : R→ {−, 0,+}
sign 0 = 0
sign x = if x > 0 then + else −

Suppose there is evidence that the operation θ : {−, 0,+}2 → {−, 0,+} defined by

θ − 0 +
− + 0 −
0 0 0 0
+ − 0 +

(7.50)

is the abstract simulation induced by sign of a given concrete operation f : R×R→
R, that is, that

θ · (sign× sign) = sign · f (7.51)

holds. It is easy to see, by inspection of (7.50), that θ is a commutative operation,
recalling (7.39).

• Show that sign · f is necessarily commutative as well. (Hint: the free theorem
of swap can be useful here.)

• Does the previous question guarantee that the concrete operation f is also
commutative? Answer informally.

2

7.9 “ F R E E C O N T R A C T S ”

In design by contract, many functional contracts arise naturally as corol-
laries of free theorems. This has the advantage of saving us from prov-
ing such contracts explicitly.

The following exercises provide ample evidence of this.

Exercise 7.12. Confirm that (7.10) is the free theorem of functional composition (·),
which has type

(b→ c)→ (a→ b)→ a→ c

leading to contract composition (7.23) as shown earlier on.
2



7.10 R E A S O N I N G B Y A P P R O X I M AT I O N 278

Exercise 7.13. Show that contract q? p?
map foo holds provided contract q p

foo

holds.
2

Exercise 7.14. Suppose a functional programmer wishes to prove the following prop-
erty of lists, to hold for all a and s:

(p a) ∧ 〈∀ a′ : a′ ∈ elems s : p a′〉 ⇒ 〈∀ a′′ : a′′ ∈ elems (a : s) : p a′′〉

Show that this property is a contract arising (for free) from the polymorphic type of
the cons operation (:) on lists.
2

7.10 R E A S O N I N G B Y A P P R O X I M AT I O N

Abstraction interpretation situations S Rhoo

C

h

��

CRoo

h

��
⊆

A A
S

oo

include the particular case

C

α

��

C
foo

α

��
⊆

A A
(6)·g
oo

where α is left adjoint of a Galois connection

(6)

γ
''

> (v)
α

hh

that is,

α◦ · (6) = (v) · γ

holds (5.137). Given concrete function f , we seek for functional ab-
stract simulations g as solutions to the equation

α · f
.
6 g · α (7.52)
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that is, 〈∀ x : x ∈ C : α (f x) 6 g (α x)〉. In words: abstract g is a
“good” simulation of concrete f with respect to the (v) ordering. Note
that (7.52) is equivalent to

f
.
v γ · g · α (7.53)

So, the performance of concrete f is at most as good as that of simula-
tion g at abstract level.

Let us try and solve the equation for unknown g:

α · f
.
6 g · α

≡ { (5.98); shunting α to the left }

α · f · α◦ ⊆ (6) · g (7.54)

⇒ { monotonicity of composition }

α · f · α◦ · (6) ⊆ (6) · g · (6)
⇒ { g monotone: g · (6) ⊆ (6) · g; (6) transitive }

α · f · α◦ · (6) ⊆ (6) · g (7.55)

≡ { Galois connection (5.137) }

α · f · γ · (v) ⊆ (6) · g (7.56)

≡ { back to (7.55) }

α · f · α◦ · (6) ⊆ (6) · g
⇒ { id ⊆ (6) }

α · f · α◦ ⊆ (6) · g

Note the circular implication. So, every step in the reasoning is
equivalent to the equation we started from (7.52). In particular, step
(7.55) is equivalent to

g a = 〈
∨

c : α c 6 a : (α · f ) c〉

by (6.24) in case suprema exist (complete lattices). So, in this situa-
tion — existence of universal suprema — (7.52) has one solution only,
which we denote by f ]:

α · f
.
6 g · α ≡ g a = 〈

∨
c : α c v a : (α · f ) c〉︸ ︷︷ ︸

f ] a

Step (7.56) implies α · f · γ
.
6 g — by id ⊆ (v) —, which provides a

hint to the pointfree definition of such a solution:

f ] : A→ A
f ] = α · f · γ

Indeed, f ] = α · f · γ solves the equation:

f
.
v γ · f ] · α
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≡ { f ] = α · f · γ }

f
.
v γ · (α · f · γ) · α

⇐ { id
.
v γ · α }

f
.
v f · γ · α

⇐ { f monotone: f · (v) ⊆ (v) · f ; monotonicity of composition }

id
.
v γ · α

≡ { id
.
v γ · α }

true

2

Summing up: for α the lower adoint of a Galois connection involving
complete lattices,

α · f
.
6 g · α ≡ g = f ]

holds where

f ] = α · f · γ
= 〈

∨
c : α c v a : (α · f ) c〉

Example: suppose that, for some reason, we decide to abstact finite
non-empty lists (of suitably ordered data) by their suprema and in-
fima,

α = 〈minimum, maximum〉

and represent intervals in the expected way:

γ (a, b) = [a . . b ]

Consider the concrete operation (a:). Then, for instance,

(1:)] (2, 4)

= { f ] = α · f · γ }

α (1 : [2, 3, 4 ])

= { α = 〈minimum, maximum〉 }

(1, 4)

That is:

(a:)] (x, y) = (if a < x then a else x, if a > y then a else y)

The underlying GC is

α x 6 (a, b) ⇔ x v γ (a, b)

where (6) is interval containment and (v) = elems◦ · (⊆) · elems. Ab-
straction interpretation here means that repetition and position of spe-
cific values in the list are irrelevant for the analysis under way: only
the range of values matters.
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7.11 B I B L I O G R A P H Y N O T E S

To be completed



8
P R O G R A M M I N G F R O M R E L AT I O N A L
H Y L O M O R P H I S M S

This chapter relates to chapter 3 in the same way as chapter 5 relates
to chapter 2. In essence, we wish to know how to address inductive
(recursive) relations. It turns out that the concept of (functional) cata-
morphism extends relation-wise in a very smooth way, starting from
(8.2) below. But the richer algebra of relations enables us with a far
wider treatment of recursion. In particular, we shall show how recur-
sive programs arise as special cases of inductive relations.

Take the relation S in exercise 5.17 as the specification of sorting. As
the function bag that yields the multiset of elements of a finite list can
be expressed as a catamorphism,

bag [ ] = 0

bag (a : x) = bag x⊕ a

for (f ⊕ a) x = f x + (if x = a then 1 else 0), then it comes to mind
that, somehow,

Perm =
bag
bag

(8.1)

— the permutes equivalence relation among finite lists — should be ex-
pressible inductively over finite lists too. We show this to be true and
a special case of a much wider setting in programming from (formal)
specifications.

8.1 R E L AT I O N A L C ATA M O R P H I S M S

Recall from section 6.3 the notion of a relator F, that is, a mathematical
construction such that, for any type A, type F A is defined and for
any relation R : B ← A, relation F R : F B ← F A is defined such that
F id = id, F R◦ = (F R)◦ and F (R · S) = (F R) · (F S).

Any relation R : A← F A is said to be a (relational) F-algebra. Special
cases include functional F-algebras and, among these, those that are
isomorphisms. Within these, the so-called initial F-algebras, say in1 :
T ← F T, are such that, given any other F-algebra R : A ← F A, there
is a unique relation of type A ← T, usually written L R M, such that
L R M · in1 = R · F L R M holds.

282
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Type T (often denoted by T1 to express its relationship with the base
relator F) is also referred to as initial. The meaning of such relations
L R M, usually referred to as catamorphisms, or folds, is captured by the
universal property:1

X = L R M ≡ X · in1 = R · (F X) (8.2)

Functor (relator) F captures the recursive pattern of type T. For in-
stance, for T = N0 one has{

F X = 1 + X
F f = id + f

(8.3)

as we have seen in previous chapters.
Let us see an example of relational catamorphism,

(>) = L [> , succ] M (8.4)

the N0 N0
>oo relation on the natural numbers:

N0

(>)

��

in1
◦

**∼= 1 + N0

id+(>)

��

in1

hh

N0 1 + N0
[> ,succ]

oo

(>) · in1 = [> , succ] · (id + (>))

Note how (>) compares with L in1 M = L [zero , succ] M = id — the base
case zero expands as much as possible to the largest relation > of its
type (N0← 1).

Let us see what comes out of this catamorphism once rendered into
pointwise notation:

(>) · in1 = [> , succ] · (id + (>))

≡ { in1 = [zero , succ]; coproducts }

[(>) · zero , (>) · succ] = [> , succ · (>)]
≡ { coproducts again }{

(>) · zero = >
(>) · succ = succ · (>)

≡ { go pointwise }{
y > 0 ⇔ TRUE

y > x + 1 ⇔ y (succ · (>)) x

≡ { go pointwise }

1 As will be seen in section 8.6, relational catamorphisms can be shown to arise from
functional ones via the often called Eilenberg-Wright Lemma, itself a consequence of
the adjoint catamorphism construction (4.79).
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{
y > 0 ⇔ TRUE

y > x + 1 ⇔ 〈∃ z : y = z + 1 : z > x〉

We get (>) defined inductively over the natural numbers.
The cancellation law

L R M = R · F L R M · in◦1 (8.5)

arises immediately from (8.2) and the fact that the initial algebra T1 F T1
in1oo

is an isomorphism. By indirect equality over (8.5) we get:

X ⊆ L R M

≡ { cancellation }

X ⊆ R · F L R M · in◦1
⇐ { since X ⊆ L R M; monotonicity of F }

X ⊆ R · F X · in◦1

That is:

X ⊆ L R M ⇐ X ⊆ R · (F X) · in◦1 (8.6)

Similarly:

L R M ⊆ X ⇐ R · F X · in◦1 ⊆ X (8.7)

Note that the cancellation law (8.5) expresses L R M as solution (fixpoint)
to the equation

X = R · F X · in◦1 .

Law (8.6) — resp. (8.7) — tells that it is the greatest post-fixpoint —
resp. least pre-fixpoint — of such an equation. Thus it is its unique
solution.2

As expected, the relational catamorphism combinator is monotonic:

L R M ⊆ L S M ⇐ R ⊆ S (8.8)

This follows almost immediately from the above:

L R M ⊆ L S M

⇐ { (8.7) ; isomorphism in1 }

R · F L S M ⊆ L S M · in1

≡ { cancellation }

R · F L S M ⊆ S · F L S M

⇐ { monotonicity of composition }
R ⊆ S

2

2 Cf. the Knaster-Tarski fixpoint theorem.
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By reflection L in1 M = id and successively making S := in1, then R := in1

in (8.8) we get sufficient conditions for catamorphisms being coreflex-
ive and reflexive:

L R M ⊆ id ⇐ R ⊆ in1 (8.9)

id ⊆ L S M ⇐ in ⊆ S (8.10)

Thus (>) is reflexive, recall (8.4).
Can we calculate the converse (6) = (>)◦ from its defining cata-

morphism (8.4)? By taking converses over cata-cancellation (8.5) we
get:

(>) = L [> , succ] M

≡ { catamorphism; converses }

(6) = in · (id + (6)) · [> , succ]◦

Can this be converted to a catamorphism? We reason:

(6) = in · (id + (6)) · [> , succ]◦

≡ { in = [zero , succ]; coproducts, including (5.125) }

(6) = zero · > ∪ succ · (6) · succ◦

≡ { > · f = > ; succ = in · i2 }

(6) = zero · > · in◦ ∪ succ · (6) · i◦2 · in◦

≡ { linearity ; in is an isomorphism }

(6) · in = zero · > ∪ succ · (6) · i◦2
≡ { [⊥ , R] = R · i◦2 ; +-absorption }

(6) · in = zero · > ∪ [⊥ , succ] · (id + (6))

≡ { > = > · R for entire R }

(6) · in = (zero · > ∪ [⊥ , succ] · (id + (6))

≡ { drop > by making zero = 0 polymorphic; [k , k] = k }

(6) · in = ([zero , zero] ∪ [⊥ , succ] · (id + (6))

≡ { [R , S] ∪ [X , Y] = [R∪X , S∪ Y] }

(6) · in = [zero , zero∪ succ] · (id + (6))

≡ { catamorphism }

(6) = L [zero , zero∪ succ] M

Thus we get

(6) = L [zero , zero∪ succ] M (8.11)

that is (in pointwise notation):{
y 6 0 ⇔ y = 0
y 6 n + 1 ⇔ y = 0 ∨ 〈∃ m : y = m + 1 : m 6 n〉
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Exercise 8.1. Consider the following inductive definitions of two orderings on se-
quences: prefix

� : A∗ ← A∗

� = L [nil , cons∪ nil] M (8.12)

and subsequence:

v : A∗ ← A∗

v = L [nil , cons∪ π2] M (8.13)

(a) Show that both orderings are reflexive; (b) Show that (8.13) is equivalent to the
pointwise{

y v [ ] ⇔ y = [ ]
y v (h : t) ⇔ 〈∃ t′ : t′ v t : y = (h : t′) ∨ y = t′〉

(c) Derive a similar pointwise version for (8.12).
2

Exercise 8.2. By a process similar to the derivation of (8.11) from (8.4), calculate the
converse of (8.12):

(�)◦ = L [> , cons] M (8.14)

2

C ATA - F U S I O N Further to cancellation, which can also be written

L R M · in1 = R · F L R M (8.15)

another property stems from (8.2) that proves particularly useful in
calculations about L R M:

S · L R M = L Q M ⇐ S · R = Q · F S (8.16)

This is known as the fusion property. Fusion is particularly helpful in
the sense of finding a sufficient condition on S, R and Q for merging
S · L R M into L Q M. In the words of [11], law (8.16) is probably the most
useful tool in the arsenal of techniques for program derivation.

Let us see cata-fusion at work in proving that (>) is transitive:

(>) · (>) ⊆ (>)

⇐ { ping-pong }

(>) · (>) = (>)

≡ { definition (8.4) twice }

(>) · L [> , succ] M = L [> , succ] M
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⇐ { cata-fusion (8.16) }

(>) · [> , succ] = [> , succ] · (id + (>))

≡ { (>) · > = >; coproducts (5.118), etc) }

(>) · succ = succ · (>)
≡ { cancellation (8.15) }

TRUE

Note that (>) · > = > because (>) is reflexive — just replace (>) by
id in > ⊆ (>) · >.

From (8.6, 8.7) two “weaker” versions of cata-fusion can be easily
derived:

Q · L S M ⊆ L R M ⇐ Q · S ⊆ R · F Q (8.17)

L R M ⊆ Q · L S M ⇐ R · F Q ⊆ Q · S (8.18)

These are also quite useful in calculations. Consider, for instance, that
R in L R M is injective, that is, R◦ · R ⊆ id. Will L R M be injective too?
We calculate:

L R M◦ · L R M ⊆ id

≡ { cata reflection }

L R M◦ · L R M ⊆ L in M

⇐ { relational cata-fusion (8.17) }

L R M◦ · R ⊆ in · F L R M◦

≡ { cata-cancellation (8.5) ; converses }

in · F L R M◦ · R◦ · R ⊆ in · F L R M◦

⇐ { cancel in · F L R M◦ }

R◦ · R ⊆ id

Thus injectivity is preserved by the relational catamorphism combina-
tor.

Exercise 8.3. Adapt the previous argument to proving that L R M is entire provided
R is entire, now using the other relational cata-fusion law (8.18).
2

Exercise 8.4. As follow up to exercise 3.41 (page 124) show that unzip is injective.
2
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Figure 8.1.: The divide & conquer programming metaphor.

8.2 R E L AT I O N A L H Y L O M O R P H I S M S

Given F-algebras R : A← F A and S : B← F B, the composition

H = L R M · L S M◦ (8.19)

of type A ← B, is usually referred to as a hylomorphism [11]. As an
example, define δ = [id , id]. Then the (1+)-hylomorphism

H = L Q · δ M · L δ M◦

is known as the transitive closure of Q, usually denoted by Q+, cf:

X = [Q , Q] · (id + X) · [id , id]◦

≡ { relational coproducts }

X = [Q , Q ·X] · [id , id]◦

≡ { relational coproducts }
X = Q∪Q ·X

The intermediate type T1 generated by L S M◦ and consumed by L R M
is known as the virtual data structure [81] of the hylomorphism. This
is regarded as the basis of so-called divide-and-conquer programming
strategies. The opposite composition L S M◦ · L R M, for suitably typed S
and R, is sometimes termed a metamorphism [24].

It can be shown that H = L R M · L S M◦ is the least solution (fixpoint)
of the relational equation X = R · (F X) · S◦ — details in the following
paragraph.

F I X P O I N T S . Let ψ be a monotonic, relation-valued function. Any
solution to the equation X = ψ X is usually termed a fixpoint of ψ, and
any solution to the equation ψ X ⊆ X a pre-fixpoint of ψ. The least
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fixpoint of ψ is usually denoted by µ ψ. It can be shown 3 that µ ψ

satisfies

µ ψ ⊆ X ⇐ ψ X ⊆ X (8.20)

that is, µ ψ is also the least pre-fixpoint of monotonic function ψ. As an
example, from (8.7) we see that L R M is the least pre-fixpoint of ψ X =

R · F X · in◦. Define:

ψ X = R · F X · S◦

Below we show that µ ψ = L R M · L S M◦, via (8.20):

L R M · L S M◦ ⊆ X

≡ { indirect equality over the cancellation of both catas; converses }

R · F L R M · in◦ · in · F L S M◦ · S◦ ⊆ X

≡ { in◦ · in = id; relator F }

R · F (L R M · L S M◦) · S◦ ⊆ X

⇐ { since L R M · L S M◦ ⊆ X; relator F; monotonicity }

R · F X · S◦ ⊆ X

2

In summary:

L R M · L S M◦ ⊆ X ⇐ R · F X · S◦ ⊆ X (8.21)

Thus L R M · L S M◦ is the least pre-fixpoint of ψ, and therefore its least
fixpoint (solution). The following notation dispenses with naming ψ

explicitly:

〈µ X :: R · F X · S◦〉 = L R M · L S M◦ (8.22)

Note how (8.21) generalizes (8.7), by reflection (S = in). Similarly,

X ⊆ L R M · L S M◦ ⇐ X ⊆ R · F X · S◦ (8.23)

will generalize (8.6). Finally note that the image L R M · L R M◦ of a cata-
morfism is a hylomorphism. By straight application of (8.21,8.23) we
obtain

L R M · L R M◦ ⊆ id ⇐ R · R◦ ⊆ id

id ⊆ L R M · L R M◦ ⇐ id ⊆ R · R◦

Thus catamorphisms preserve simplicity and surjectivity.

3 See e.g. [4].
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8.3 I N D U C T I V E P R E D I C AT E S

Coreflexive catamorphisms (8.9) correspond to inductive predicates
over the inductive structure T1. The smallest such catamorphism is
⊥,

⊥ = L R M ≡ ⊥ = R · (F ⊥)

cf. (8.2). Such is the case of L [⊥ , succ] M, for instance, since [⊥ , succ] ·
(id +⊥) = ⊥.

A standard way of encoding inductive predicates is to pre-condition
the initial algebra in1,

Φ = L in1 ·Φp M

for some predicate B F T1
poo . For instance, p = [true , even · π1]

over F X = 1 + N0 × X will let lists of even natural numbers pass,
failing otherwise.

Another example of inductive predicate on finite lists is Ψ = L in1 ·
(id + Φp) M where p (a, x) = 〈∀ a′ : a′ ∈ elems x : a 6 a′〉, which fails
for any input list which is not in ascending order.

Exercise 8.5. Recall the functional catamorphism

map f : A∗ → A∗

map f = L [nil , cons · (f × id)] M

Now replace f by coreflexive Φp:

Xp : A∗ → A∗

Xp = L [nil , cons · (Φp × id)] M

Which relation is this? Further generalize Φp to some R : A → B: which relation is
L [nil , cons · (R× id)] M and what’s its type?
Hint: recall sections 3.13 and 6.3.
2

8.4 I N D U C T I V E E Q U I VA L E N C E R E L AT I O N S

This section focusses on equivalence relations over inductive data types.

Let T1 F T1
in1oo , and let A F Akoo be given, so that A T1

L k Moo . It

turns out that not only is R = L k M
L k M itself a relational catamorphism

R = L R · in1 M

of type T1← T1, but also it is a congruence for the algebra in1. This
follows from the following results:
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• Let R be a congruence for an algebra h : F A → A of functor F,
that is, relational type

R F Rhoo (8.24)

holds and R is an equivalence relation. Then (8.24) is equivalent
to:

R · h = R · h · (F R) (8.25)

• For the particular case h = in1, (8.25) is equivalent to:

R = L R · in1 M (8.26)

• For R presented as a kernel R = f
f , (8.24) is also equivalent to

f · h 6 F f (8.27)

where 6 is the injectivity preorder (5.241). 4

A standard result in algebraic specification states that if a function f
defined on an initial algebra is a catamorphism then f

f is a congruence
[18, 25]. We give below a proof that frames this result in the ones above
by making R = L k M

L k M in (8.26) and calculating:

L k M
L k M

= L
L k M
L k M
· in1 M

≡ { universal property (8.2) ; function division (6.11) }

L k M · in1

L k M
=

L k M · in1

L k M
· F L k M

F L k M

≡ { cancellation (8.15) ; f · f
f = f }

4 Proof: Equality (8.26) follows immediately from (8.25) by cancellation (8.15). Next we
show the equivalence between (8.25) and (8.24):

R · h = R · h · (F R)

≡ { R · h ⊆ R · h · (F R) holds by id ⊆ F R, since id ⊆ R }

R · h · (F R) ⊆ R · h

≡ { (R·) is a closure operation, see (8.28) below }

h · (F R) ⊆ R · h
2

The last step relies on the fact that composition with equivalence relations is a closure
operation:

R · S ⊆ R ·Q ≡ S ⊆ R ·Q (8.28)
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L k M · in1

L k M
=

k · F L k M
L k M

⇐ { Leibniz }

L k M · in1 = k · F L k M

≡ { universal property (8.2) }
true

2

For example, in the case R = Perm (8.1), (8.26) instantiates to

Perm · in1 = Perm · in1 · (F Perm)

whose useful part is:

Perm · cons = Perm · cons · (id× Perm) (8.29)

In words, this means that permuting a sequence with at least one ele-
ment is the same as adding it to the front of a permutation of the tail
and permuting again.5

The main usefulness of (8.25,8.26) is that the inductive definition
of a kernel equivalence relation generated by a catamorphism is such
that the recursive branch (the F term) can be added or removed where
convenient.

8.5 I N D U C T I V E D ATAT Y P E I S O M O R P H I S M R E V I S I T E D

Recall section 3.19 where properties of catamorphisms involving in-
ductive types on both their input and output were considered. In par-
ticular, given two parametric, inductive datatypes

T1 A

out1
++

∼= B1 (A, T1 A)

in1

jj

and

T2 A

out2
++

∼= B2 (A, T2 A)

in2

jj

one would like to be able to decide whether T1 and T2 are isomorphic,
that is, whether they can be mutually converted into each other with-
out losing information.

5 Recall the (Kronecker) product (5.112): (b, d) (R× S) (a, c) holds iff both b R a and
d S c hold. Thus (8.29) is the same as

y Perm (a : x) = 〈∃ z : z Perm x : y Perm (a : z)〉

once written pointwise.
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Think of a function f : T1 A→ T2 A converting T1-shaped data into
T2-shaped data, for instance, f : BTree A → A∗. Clearly, f is bound to
access T1-shaped data via out1 and to generate T2-shaped data via in2,
inductively:

f = in2 · . . . f . . . · out1

Looking at the types of in2 and out1, it is clear that one needs a bridge-
function α between the base functors of the two inductive types. Using
a diagram:

T1 A
f ��

out1 // B1 (A, T1 A)
B1 (id,f )��

T2 A B2 (A, T2 A)
in2

oo B1 (A, T2 A)
α
oo

Clearly, f = L in2 · α M. In the example f : BTree A→ A∗,

1 + A×A∗ 1 + A× (A∗ ×A∗)αoo

is the expected function that concatenates the two lists resulting from
visiting the two sub-trees of a nonempty BTree. And f is the preorder
traversal of the input tree.

It is intuitive that f loses information: the best α = id + id× . . . can
do to preserve information is to concatenate the two lists in the ”...”.
But, from the resulting list one cannot rebuild the original lists, since
concatenation is not injective, for instance: [a, b ] ++ [c ] = [a ] ++ [b, c ].
Choosing one the input lists would be worse and issuing the empty
list would be even worser.

How can one be sure that f is a bijection (isomorphism)? Recall the
rule of thumb (5.38) that tells us that a function f is bijective iff f ◦ is
a function. f ◦ = L in2 · α M◦ thus needs to be entire and simple, that
is, L in2 · α M should be surjective and injective. Since catamorphisms
preserve these properties, it will be enough if in2 · α is surjective and
injective, which reduces to α being so, because in2 is bijective.

In summary, a bijective α will ensure that the two inductive types
are isomorphic. In case α is a natural transformation, this corresponds
to the base functors B1 and B2 being isomorphic.

8.6 T H E E I L E N B E R G - W R I G H T L E M M A

Recall the power transpose isomorphism (5.259)

A→ P B

(∈·)
**∼= A→ B

Λ

jj

expressed by f = ΛR ⇔ ∈ ·f = R. This isomorphism can be in-
terpreted as an adjunction (4.60) between set-valued functions (on the
left handside) and binary relations (on the right handside) where

R = P
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L X = X

L f = f

dRe = ΛR

∈ is the membership relation

Read L f = f with care, as f on the left handside is a function and f on
the right handside is the corresponding relation y f x ⇔ y = f x (5.7).
This leads to the following instance of diagram (4.61):

k = ΛR ⇔ R = ∈ · k︸︷︷︸
bkc

P B P B ∈ // B

A
k=ΛR

OO

A
k
OO

R

88
(8.30)

Recall the adjoint catamorphism theorem (4.79):

f · (L in) = h · G f · φ ⇔ df e = L dh · G ∈ ·φe M

What is the outcome of this theorem for adjunction (4.60)? Let us make
the corresponding substitutions, using uppercase symbols to denote
relations (as usual):

X · in = R · G X · φ ⇔ ΛX = L Λ(R · G ∈ ·φ) M (8.31)

Because L is a mere representation of functions by the corresponding
relations (5.7), and in particular L X = X, one may take G = F but
with care: G operates over relations and F on functions. That is, G is
the relator extension of F and φ is the corresponding embedding, and
can thus be removed. Thus one gets:

X · in = R · G X ⇔ ΛX = L Λ(R · G ∈) M

Since ΛX = L Λ(R · G ∈) M ⇔ X = ∈ · L Λ(R · G ∈) M one may write

X · in = R · G X ⇔ X = ∈ · L Λ(R · G ∈) M︸ ︷︷ ︸
L R M

(8.32)

thus extending “banana-bracket” notation to relations and reaching
(8.2), where this chapter started from.

The equivalence

X = L R M ≡ ΛX = L Λ(R · G ∈) M (8.33)

is known as the Eilenberg-Wright Lemma [11]. The reasoning above
shows that this lemma, which gives birth to relational catamorphisms,
is yet another corollary of the adjoint catamorphism theorem. (8.33)
gives one a path towards implementing relational catamorphisms as
set-valued recursive functions. Quite often, however, (8.33) is not
enough and the more general (8.31) is required. A simple example
of this is the list membership relation, A A∗εoo , defined by

a ε [ ] = FALSE

a ε (h : t) = (a = h) ∨ a ε t
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which converts to the point-free

ε ·in = [⊥ , π1 ∪ ε · π2]

that is, the relational hylomorphism

ε = [⊥ , [id , id]]︸ ︷︷ ︸
R

· id + (id + ε)︸ ︷︷ ︸
G ε

· id + (i1 · π1 ∪ i2 · π2)︸ ︷︷ ︸
Φ

·out

where Φ : 1 + A×A∗︸ ︷︷ ︸
F A∗

→ 1 + (A + A∗)︸ ︷︷ ︸
G A∗

and R · G ε ·Φ factors [⊥ , π1 ∪

ε · π2], as above. By the adjoint catamorphism theorem (8.31):

Λε = L Λ[⊥ , π1 ∪ ∈ · π2] M

≡ { (5.264) etc }

Λε = L [Λ⊥ , Λ(π1 ∪ ∈ · π2)] M

≡ { hints below, then (5.1) }

Λε = elems (8.34)

Hints: Λ⊥ = empty and Λ(π1 ∪ ∈ · π2) = join, cf. Λ(R∪ S) a = {b |
b R a ∨ b S a} = (ΛR a) ∪ (ΛS a), Λ∈ = id etc.

By (8.30), Λε = elems is the same as ε = ∈ · elems, which is a familiar
way of expressing list membership: a ε x ⇔ a ∈ elems x.

8.7 B I B L I O G R A P H Y N O T E S

The main source in the pointfree treatment of inductive relations is the
textbook written by Bird and Moor [11]. The current chapter (which is
still incomplete) also borrows material from [71].
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C A L C U L AT I O N A L P R O G R A M R E F I N E M E N T

This chapter will build mainly from references [74, 68].
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Part III

C A L C U L AT I N G W I T H M AT R I C E S



10
T O WA R D S A L I N E A R A L G E B R A O F P R O G R A M M I N G

This part of the book will build upon references [69, 61,
73]. Another chapter will address the application of
typed linear algebra to analytical data processing, cf. e.g.
[67]. The LAoP Haskell library [79] already supports
typed linear algebra.

298



A
B A C K G R O U N D — E I N D H O V E N Q U A N T I F I E R
C A L C U L U S

This appendix is a quick reference summary of section 4.3 of reference
[4].

A.1 N O TAT I O N

The Eindhoven quantifier calculus adopts the following notation stan-
dards:

• 〈∀ x : R : T〉 means: “for all x in the range R, term T holds”,
where R and T are logical expressions involving x.

• 〈∃ x : R : T〉means: “for some x in the range R, term T holds”.

A.2 R U L E S

The main rules of the Eindhoven quantifier calculus are listed below:

Trading:

〈∀ k : R ∧ S : T〉 = 〈∀ k : R : S⇒ T〉 (A.1)

〈∃ k : R ∧ S : T〉 = 〈∃ k : R : S ∧ T〉 (A.2)

de Morgan:

¬〈∀ k : R : T〉 = 〈∃ k : R : ¬T〉 (A.3)

¬〈∃ k : R : T〉 = 〈∀ k : R : ¬T〉 (A.4)

One-point:

〈∀ k : k = e : T〉 = T[k := e] (A.5)

〈∃ k : k = e : T〉 = T[k := e] (A.6)

Nesting:

〈∀ a, b : R ∧ S : T〉 = 〈∀ a : R : 〈∀ b : S : T〉〉 (A.7)

〈∃ a, b : R ∧ S : T〉 = 〈∃ a : R : 〈∃ b : S : T〉〉 (A.8)

Rearranging-∀:

〈∀ k : R ∨ S : T〉 = 〈∀ k : R : T〉 ∧ 〈∀ k : S : T〉 (A.9)
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〈∀ k : R : T ∧ S〉 = 〈∀ k : R : T〉 ∧ 〈∀ k : R : S〉 (A.10)

Rearranging-∃:

〈∃ k : R : T ∨ S〉 = 〈∃ k : R : T〉 ∨ 〈∃ k : R : S〉 (A.11)

〈∃ k : R ∨ S : T〉 = 〈∃ k : R : T〉 ∨ 〈∃ k : S : T〉 (A.12)

Splitting:

〈∀ j : R : 〈∀ k : S : T〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T〉 (A.13)

〈∃ j : R : 〈∃ k : S : T〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T〉 (A.14)



B
H A S K E L L S U P P O RT L I B R A RY

This library, written in the Haskell functional programming language,
is still evolving.

infix 5×
infix 4 +

Products

〈·, ·〉 :: (a→ b)→ (a→ c)→ a→ (b, c)
〈f , g〉 x = (f x, g x)

(×) :: (a→ b)→ (c→ d)→ (a, c)→ (b, d)
f × g = 〈f · π1, g · π2〉

The 0-adic split is the unique function of its type

(!) :: a→ ()
(!) = ()

Renamings:

π1 = fst
π2 = snd

Coproduct

Renamings:

i1 = Le f t
i2 = Right

Either is predefined:

(+) :: (a→ b)→ (c→ d)→ a + c→ b + d
f + g = [i1 · f , i2 · g]

McCarthy’s conditional:

p→ f , g = [f , g] · p?
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Exponentiation

Curry is predefined.

ap :: (a→ b, a)→ b
ap = (̂$)

Functor:

·· :: (b→ c)→ (a→ b)→ a→ c
f · = f · ap

Pair-to-predicate isomorphism (2.105):

p2p :: (b, b)→ B→ b
p2p p b = if b then (π2 p) else (π1 p)

The exponentiation functor is (a→) predefined:

instance Functor ((→) s) where
fmap f g = f · g

Guards

·? :: (a→ B)→ a→ a + a
p? x = if p x then i1 x else i2 x

Others

· :: a→ b→ a such that a x = a is predefined.

Natural isomorphisms

swap :: (a, b)→ (b, a)
swap = 〈π2, π1〉
assocr :: ((a, b), c)→ (a, (b, c))
assocr = 〈π1 · π1, snd× id〉
assocl :: (a, (b, c))→ ((a, b), c)
assocl = 〈id× π1, π2 · π2〉
undistr :: a, b + a, c→ (a, b + c)
undistr = [id× i1 , id× i2]

undistl :: b, c + a, c→ (b + a, c)
undistl = [i1 × id , i2 × id]

coswap :: a + b→ b + a
coswap = [i2 , i1]

coassocr :: (a + b) + c→ a + (b + c)
coassocr = [id + i1 , i2 · i2]
coassocl :: b + (a + c)→ (b + a) + c
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coassocl = [i1 · i1 , i2 + id]

distl :: (c + a, b)→ c, b + a, b

distl = [̂i1 , i2]

distr :: (b, c + a)→ b, c + b, a
distr = (swap + swap) · distl · swap

flatr :: (a, (b, c))→ (a, b, c)
flatr (a, (b, c)) = (a, b, c)

flatl :: ((a, b), c)→ (a, b, c)
flatl ((b, c), d) = (b, c, d)

br = 〈id, !〉
bl = swap · br

Class bifunctor

class BiFunctor f where
bmap :: (a→ b)→ (c→ d)→ (f a c→ f b d)

instance BiFunctor ·+ · where
bmap f g = f + g

instance BiFunctor (, ) where
bmap f g = f × g

Monads

Kleisli monadic composition:

infix 4 •
(•) :: Monad a⇒ (b→ a c)→ (d→ a b)→ d→ a c
(f • g) a = (g a)>>= f

Multiplication, also known as join:

mult :: (Monad m)⇒ m (m b)→ m b
mult = (>>=id)

Monadic binding:

ap′ :: (Monad m)⇒ (a→ m b, m a)→ m b
ap′ = fl̂ip >>=

List monad:

singl :: a→ [a ]
singl = return

Strong monads:

class (Functor f , Monad f )⇒ Strong f where
rstr :: (f a, b)→ f (a, b)
rstr (x, b) = do a← x; return (a, b)
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lstr :: (b, f a)→ f (b, a)
lstr (b, x) = do a← x; return (b, a)

instance Strong IO

instance Strong [ ]

instance Strong Maybe

Double strength:

dstr :: Strong m⇒ (m a, m b)→ m (a, b)
dstr = rstr • lstr

Exercise 4.8.13 in Jacobs’ ”Introduction to Coalgebra” [37]:

splitm :: Strong F⇒ F (a→ b)→ a→ F b
splitm = fmap ap · rstr

Monad transformers:

class (Monad m, Monad (t m))⇒ MT t m where -- monad transformer class
.· ::m a→ t m a

Nested lifting:

dlift :: (MT t (t1 m), MT t1 m)⇒ m a→ t (t1 m) a
dlift =

.· · .·

Basic functions, abbreviations

zero = 0

one = 1

nil = [ ]

cons = :̂

add = +̂

mul = ∗̂
conc = +̂+

inMaybe :: +a→ Maybe a
inMaybe = [Nothing , Just]

More advanced

class (Functor f )⇒ Unzipable f where
unzp :: f (a, b)→ (f a, f b)
unzp = 〈fmap π1, fmap π2〉

class Functor g⇒ DistL g where
λ :: Monad m⇒ g (m a)→ m (g a)

instance DistL [ ] where λ = sequence

instance DistL Maybe where
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λ Nothing = return Nothing
λ (Just a) = mp Just a where mp f = (return · f ) • id

Convert Monad into Applicative:

aap :: Monad m⇒ m (a→ b)→ m a→ m b
aap mf mx = do { f ← mf ; x← mx; return (f x)}
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