
Chapter 3

Recursion in the Pointfree Style

How useful from a programmer’s point of view are the abstract concepts presented
in the previous chapter? Recall that a table was presented — table 2.1 — which
records an analogy between abstract type notation and the corresponding data-
structures available in common, imperative languages.

This analogy will help in showing how to extend the abstract notation studied
thus far towards a most important field of programming: recursion. This, however,
will be preceeded by a simpler introduction to the subject rooted on very basic and
intuitive notions of mathematics.

3.1 Motivation

Where do algorithms come from? From human imagination only? Surely not —
they actually emerge from mathematics. In a sense, in the same way one may
say that hardware follows the laws of physics (eg. semiconductor electronics) one
might say that software is governed by the laws of mathematics.

This section provides a naive introduction to algorithm analysis and synthesis
by showing how a quite elementary class of algorithms — equivalent to for-loops
in C or any other imperative language — arise from elementary properties of the
underlying maths domain.

We start by showing how the arithmetic operation of multiplying two natural
numbers (in N0) is a for-loop which emerges solely from the algebraic properties

63

64 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

of multiplication:




a× 0 = 0
a× 1 = a
a× (b+ c) = a× b+ a× c

(3.1)

These properties are known as the absorption, unit and distributive properties of
multiplication, respectively.

Start by making c := 1 in the third (distributive) property, obtaining a× (b +
1) = a × b + a × 1, and then simplify. The second clause is useful in this
simplification but it is not required in the final system of two equations,

{
a× 0 = 0
a× (b+ 1) = a× b+ a

(3.2)

since it is derivable from the remaining two, for b := 0 and property 0 + a = a of
addition.

System (3.2) is already a runnable program in a functional language such as
Haskell (among others). The moral of this trivial exercise is that programs arise
from the underlying maths, instead of being invented or coming out of the blue.
Novices in functional programming do this kind of reasoning all the time without
even noticing it, when writing their first programs. For instance, the function
which computes discrete exponentials will scale up the same procedure, thanks to
the properties





a0 = 1
a1 = a
ab+c = ab × ac

where the program just developed for multiplication can be re-used, and so and so
on.

Type-wise, the multiplication algorithm just derived for natural numbers is not
immediate to generalize. Intuitively, it will diverge for b a negative integer and for
b a real number less than 1, at least. Argument a, however, does not seem to be
constrained.

Indeed, the two arguments a and b will have different types in general. Let us
see why and how. Starting by looking at infix operators (×) and (+) as curried
operators — recall section 2.15 — we can resort to the corresponding sections and
write:

{
(a×)0 = 0
(a×)(b+ 1) = (a+)((a×)b)

(3.3)

3.1. MOTIVATION 65

It can be easily checked that

(a×) = for (a+) 0 (3.4)

by introducing a for-loop combinator given by
{

for f i 0 = i
for f i (n+ 1) = f (for f i n)

(3.5)

where f is the loop-body and i is the initialization value. In fact, (for f i)n = fn i,
that is, f is iterated n times over the initial value i.

For-loops are a primitive construct available in many programming languages.
In C, for instance, one will write something like

int mul(int a, int n)
{
int s=0; int i;
for (i=1;i<n+1;i++) {s += a;}
return s;
};

for (the uncurried version of) for (a+) 0 loop.
To better understand this construct let us remove variables from both equations

in (3.3) by lifting function application to function composition and lifting 0 to the
“everywhere 0” (constant) function:

{
(a×) · 0 = 0
(a×) · (+1) = (+a) · (a×)

Using the junc (“either”) pointfree combinator we merge the two equations into a
single one,

[(a×) · 0 , (a×) · (+1)] = [0 , (+a) · (a×)]

— thanks to the Eq-+ rule (2.66) — then single out the common factor (a×) in
the left hand side,

(a×) · [0 , (+1)] = [0 , (+a) · (a×)]

— thanks to +-fusion (2.42) — and finally do a similar fission operation on the
other side,

(a×) · [0 , (+1)] = [0 , (+a)] · (id+ (a×)) (3.6)

66 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

— thanks to +-absorption (2.43).
As we already know, equalities of compositions are nicely drawn as diagrams.

That of (3.6) is as follows:

N0

(a×)
��

A+ N0

id+(a×)
��

[0 ,(+1)]oo

N0 A+ N0
[0 ,(+a)]
oo

Function (+1) is the successor function succ on natural numbers. Type A is any
(non-empty) type. For the particular case of A = 1, the diagram is more interest-
ing, as [0 , succ] becomes an isomorphism, telling a unique way of building natural
numbers:1

Every natural number in N0 either is 0 or the successor of another
natural number.

We will denote such an isomorphism by in and its converse by out in the following
version of the same diagram

N0

out=in◦
**

(a×)
��

∼= 1 + N0

id+(a×)
��

in=[0 ,succ]

hh

N0 1 + N0

[0 ,(+a)]

hh

capturing both the isomorphism and the (a×) recursive function. By solving the
isomorphism equation out · in = id we easily obtain the definition of out, the
converse of in 2:

out 0 = i1()

out(n+ 1) = i2 n

1This is nothing but a re-statement of the well-known Peano axioms for the natural numbers.
Giuseppe Peano (1858-1932) was a famous Italian mathematician.

2Note how the singularity of type 1 ensures out a function: what would the outcome of out 0
be should A be arbitrary?

3.1. MOTIVATION 67

Finally, we generalize the target N0 to any non-empty typeB, (+a) to any function
B

g // B and 0 to any constant k inB (this is why B has to be non-empty). The
corresponding generalization of (a×) is denoted by f below:

N0

out=in◦
**

f
��

∼= 1 + N0

id+f
��

in=[0 ,succ]

hh

B 1 +B

[k ,g]

hh

It turns out that, given k and g, there is a unique solution to the equation (in f)
captured by the diagram: f · in = [k , g] · (id+ f). We know this solution already,
recall (3.5):

f = for g k

As we have seen earlier on, solution uniqueness is captured by universal proper-
ties. In this case we have the following property, which we will refer to by writing
“for-loop-universal”:

f = for g k ≡ f · in = [k , g] · (id+ f) (3.7)

From this property it is possible to infer a basic theory of for-loops. For in-
stance, by making f = id and solving the for-loop-universal equation (3.7) for g
and k we obtain the reflexion law:

for succ 0 = id (3.8)

This can be compared with the following (useless) program in C:

int id(int n)
{

int s=0; int i;
for (i=1;i<n+1;i++) {s += 1;}
return s;

};

(Clearly, the value returned in s is that of input n.)
More knowledge about for-loops can be extracted from (3.7). Later on we

will show that these constructs are special cases of a more general concept termed

68 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

catamorphism.3 In the usual ”banana-bracket” notation of catamorphisms, to be
introduced later, the for-combinator will be written:

for g k = (|[k , g]|) (3.9)

In the sequel, we shall study the (more general) theory of catamorphisms and
come back to for-loops as an instantiation. Then we will understand how more
interesting for-loops can be synthesized, for instance those handling more than
one “global variable”, thanks to catamorphism theory (for instance, the mutual
recursion laws).

As a generalization to what we’ve just seen happening between for-loops and
natural numbers, it will be shown that a catamorphism is intimately connected
to the data-structure it processes, for instance a finite list (sequence) or a binary
tree. A good understanding of such structures is therefore required. We proceed
to studying the list data structure first, wherefrom trees stem as natural extensions.

Exercise 3.1. Addition is known to be associative (a+ (b+ c) = (a+ b) + c) and have
unit 0 (a + 0 = a). Following the same strategy that was adopted above for (a×), show
that

(a+) = for succ a (3.10)

2

Exercise 3.2. The following fusion-law

h · (for g k) = for j (h k) ⇐ h · g = j · h (3.11)

can be derived from universal-property (3.7) 4. Since (a+) · id = (a+), provide an alter-
native derivation of (3.10) using the fusion-law above.
2

Exercise 3.3. From (3.4) and fusion-law (3.11) infer: (a∗) · succ = for a (a+).
2

3See eg. section 3.6.
4 A generalization of this property will be derived in section 3.12.

3.2. FROM NATURAL NUMBERS TO FINITE SEQUENCES 69

Exercise 3.4. Show that f = for k k and g = for id k are the same program (function).
2

Exercise 3.5. Generic function k = for f i can be encoded in the syntax of C by writing

int k(int n) {
int r=i;
int x;
for (x=1;x<n+1;x++) {r=f(r);}
return r;

};

for some predefined f . Encode the functions f and g of exercise 3.4 in C and compare
them.
2

3.2 From natural numbers to finite sequences

Let us consider a very common data-structure in programming: “linked-lists”. In
PASCAL one will write

L = ˆN;
N = record

first: A;
next: ˆN

end;

to specify such a data-structure L. This consists of a pointer to a node (N), where
a node is a record structure which puts some predefined type A together with a
pointer to another node, and so on. In the C programming language, every x ∈ L
will be declared as L x in the context of datatype definition

70 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

typedef struct N {
A first;
struct N *next;

} *L;

and so on.
What interests us in such “first year programming course” datatype declara-

tions? Records and pointers have already been dealt with in table 2.1. So we can
use this table to find the abstract version of datatype L, by replacing pointers by
the “1 + · · ·” notation and records (structs) by the “. . .× . . .” notation:

{
L = 1 +N
N = A× (1 +N)

(3.12)

We obtain a system of two equations on unknowns L and N , in which L’s
dependence on N can be removed by substitution:

{
L = 1 +N
N = A× (1 +N)

≡ { substituting L for 1 +N in the second equation }
{

L = 1 +N
N = A× L

≡ { substituting A× L for N in the first equation }
{

L = 1 + A× L
N = A× L

System (3.12) is thus equivalent to:
{

L = 1 + A× L
N = A× (1 +N)

(3.13)

Intuitively, L abstracts the “possibly empty” linked-list of elements of type A,
while N abstracts the “non-empty” linked-list of elements of type A. Note that L
and N are independent of each other, but also that each depends on itself. Can we
solve these equations in a way such that we obtain “solutions” for L and N , in the
same way we do with school equations such as, for instance,

x = 1 +
x

2
? (3.14)

3.2. FROM NATURAL NUMBERS TO FINITE SEQUENCES 71

Concerning this equation, let us recall how we would go about it in school
mathematics:

x = 1 +
x

2

≡ { adding −x
2 to both sides of the equation }

x− x

2
= 1 +

x

2
− x

2

≡ { −x
2 cancels x

2 }

x− x

2
= 1

≡ { multiplying both sides of the equation by 2 etc. }
2× x− x = 2

≡ { subtraction }
x = 2

We very quickly get solution x = 2. However, many steps were omitted from
the actual calculation. This unfolds into the longer sequence of more elementary
steps which follows, in which notation a−b abbreviates a+(−b) and a

b
abbreviates

a× 1
b
, for b 6= 0:

x = 1 +
x

2

≡ { adding −x
2 to both sides of the equation }

x− x

2
= (1 +

x

2
)− x

2

≡ { + is associative }

x− x

2
= 1 + (

x

2
− x

2
)

≡ { −x
2 is the additive inverse of x2 }

x− x

2
= 1 + 0

≡ { 0 is the unit of addition }

x− x

2
= 1

72 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

≡ { multiplying both sides of the equation by 2 }

2× (x− x

2
) = 2× 1

≡ { 1 is the unit of multiplication }

2× (x− x

2
) = 2

≡ { multiplication distributes over addition }

2× x− 2× x

2
= 2

≡ { 2 cancels its inverse 1
2 }

2× x− 1× x = 2

≡ { multiplication distributes over addition }
(2− 1)× x = 2

≡ { 2− 1 = 1 and 1 is the unit of multiplication }
x = 2

Back to (3.13), we would like to submit each of the equations, e.g.

L = 1 + A× L (3.15)

to a similar reasoning. Can we do it? The analogy which can be found between
this equation and (3.14) goes beyond pattern similarity. From chapter 2 we know
that many properties required in the reasoning above hold in the context of (3.15),
provided the “=” sign is replaced by the “∼=” sign, that of set-theoretical isomor-
phism. Recall that, for instance, + is associative (2.48), 0 is the unit of addition
(2.55), 1 is the unit of multiplication (2.57), multiplication distributes over addi-
tion (2.52) etc. Moreover, the first step above assumed that addition is compatible
(monotonic) with respect to equality,

a = b
c = d

a+ c = b+ d

a fact which still holds when numeric equality gives place to isomorphism and
numeric addition gives place to coproduct:

A ∼= B
C ∼= D

A+ C ∼= B +D

3.2. FROM NATURAL NUMBERS TO FINITE SEQUENCES 73

— recall (2.46) for isos f and g.
Unfortunately, the main steps in the reasoning above are concerned with two

basic cancellation properties

x+ b = c ≡ x = c− b
x× b = c ≡ x =

c

b
(b 6= 0)

which hold about numbers but do not hold about datatypes. In fact, neither prod-
ucts nor coproducts have arbitrary inverses 5, and so we cannot “calculate by can-
cellation”. How do we circumvent this limitation?

Just think of how we would have gone about (3.14) in case we didn’t know
about the cancellation properties: we would be bound to the x by 1+x

2
substitution

plus the other properties. By performing such a substitution over and over again
we would obtain. . .

x = 1 +
x

2

≡ { x by 1 + x
2 substitution followed by simplification }

x = 1 +
1 + x

2

2
= 1 +

1

2
+
x

4

≡ { the same as above }

x = 1 +
1

2
+

1 + x
2

4
= 1 +

1

2
+

1

4
+
x

8

≡ { over and over again, n-times }
· · ·

≡ { simplification }

x =
n∑

i=0

1

2i
+

x

2n+1

≡ { sum of n first terms of a geometric progression }

x = (2− 1

2n
) +

x

2n+1

5The initial and terminal datatypes do have inverses — 0 is its own “additive inverse” and 1 is
its own “multiplicative inverse” — but not all the others.

74 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

≡ { let n→∞ }
x = (2− 0) + 0

≡ { simplification }
x = 2

Clearly, this is a much more complicated way of finding solution x = 2 for
equation (3.14). But we would have loved it in case it were the only known way,
and this is precisely what happens with respect to (3.15). In this case we have:

L = 1 + A× L
≡ { substitution of 1 +A× L for L }

L = 1 + A× (1 + A× L)

≡ { distributive property (2.52) }
L ∼= 1 + A× 1 + A× (A× L)

≡ { unit of product (2.57) and associativity of product (2.34) }
L ∼= 1 + A+ (A× A)× L

≡ { by (2.96), (2.98) and (2.102) }
L ∼= A0 + A1 + A2 × L

≡ { another substitution as above and similar simplifications }
L ∼= A0 + A1 + A2 + A3 × L

≡ { after (n+ 1)-many similar steps }

L ∼=
n∑

i=0

Ai + An+1 × L

Bearing a large n in mind, let us deliberately (but temporarily) ignore term
An+1 × L. Then L will be isomorphic to the sum of n-many contributions Ai,

L ∼=
n∑

i=0

Ai

each of them consisting of i-long tuples, or sequences, of values of A. (Number
i is said to be the length of any sequence in Ai.) Such sequences will be denoted
by enumerating their elements between square brackets, for instance the empty

3.2. FROM NATURAL NUMBERS TO FINITE SEQUENCES 75

sequence [] which is the only inhabitant in A0, the two element sequence [a1, a2]
which belongs to A2 provided a1, a2 ∈ A, and so on. Note that all such contribu-
tions are mutually disjoint, that is, Ai ∩ Aj = ∅ wherever i 6= j. (In other words,
a sequence of length i is never a sequence of length j, for i 6= j.) If we join all
contributions Ai into a single set, we obtain the set of all finite sequences on A,
denoted by A? and defined as follows:

A?
def
=

⋃

i>0

Ai (3.16)

The intuition behind taking the limit in the numeric calculation above was that
term x

2n+1 was getting smaller and smaller as n went larger and larger and, “in the
limit”, it could be ignored. By analogy, taking a similar limit in the calculation
just sketched above will mean that, for a “sufficiently large” n, the sequences in
An are so long that it is very unlikely that we will ever use them! So, for n→∞
we obtain

L ∼=
∞∑

i=0

Ai

Because
∑∞

i=0A
i is isomorphic to

⋃∞
i=0A

i (see exercise 2.31), we finally have:

L ∼= A?

All in all, we have obtainedA? as a solution to equation (3.15). In other words,
datatype L is isomorphic to the datatype which contains all finite sequences of
some predefined datatype A. This corresponds to the HASKELL [a] datatype, in
general. Recall that we started from the “linked-list datatype” expressed in PAS-
CAL or C. In fact, wherever the C programmer thinks of linked-lists, the HASKELL

programmer will think of finite sequences.
But, what does equation (3.15) mean in fact? Is A? the only solution to this

equation? Back to the numeric field, we know of equations which have more than
one solution — for instance x = x2+3

4
, which admits two solutions 1 and 3 —,

which have no solution at all — for instance x = x + 1 —, or which admit an
infinite number of — for instance x = x.

We will address these topics in the next section about inductive datatypes and
in chapter 9, where the formal semantics of recursion will be made explicit. This
is where the “limit” constructions used informally in this section will be shown to
make sense.

76 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

3.3 Introducing inductive datatypes
Datatype L as defined by (3.15) is said to be recursive because L “recurs” in the
definition of L itself 6. From the discussion above, it is clear that set-theoretical
equality “=” in this equation should give place to set-theoretical isomorphism
(“∼=”):

L ∼= 1 + A× L (3.17)

Which isomorphism L 1 + A× Linoo do we expect to witness (3.15)? This
will depend on which particular solution to (3.15) we are thinking of. So far we
have seen only one, A?. By recalling the notion of algebra of a datatype (section
2.18), so we may rephrase the question as: which algebra

A? 1 + A× A?inoo

do we expect to witness the tautology which arises from (3.15) by replacing un-
known L with solution A?, that is

A? ∼= 1 + A× A? ?

It will have to be of the form in = [in1 , in2] as depicted by the following diagram:

1
i1//

in1 %%

1 + A× A?

in
��

A× A?i2oo

in2ww
A?

(3.18)

Arrows in1 and in2 can be guessed rather intuitively: in1 = [], which will
express the “NIL pointer” by the empty sequence, at A? level, and in2 = cons,
where cons is the standard “left append” sequence constructor, which we for the
moment introduce rather informally as follows:

cons : A× A? → A?

cons(a, [a1, . . . , an]) = [a, a1, . . . , an]
(3.19)

In a diagram:

1
i1//

[] %%

1 + A× A?
[[] ,cons]

��

A× A?i2oo

cons
ww

A?

(3.20)

6By analogy, we may regard (3.14) as a “recursive definition” of number 2.

3.3. INTRODUCING INDUCTIVE DATATYPES 77

Of course, for in to be iso it needs to have an inverse, which is not hard to
guess,

out
def
= (! + 〈hd , tl〉) · (=[]?) (3.21)

where sequence operators hd (head of a nonempty sequence) and tl (tail of a
nonempty sequence) are (again informally) described as follows:

hd : A? → A
hd [a1, a2, . . . , an] = a1

(3.22)

tl : A? → A?

tl [a1, a2, . . . , an] = [a2, . . . , an]
(3.23)

Showing that in and out are each other inverses is not a hard task either:

in · out = id

≡ { definitions of in and out }
[[] , cons] · (! + 〈hd , tl〉) · (=[]?) = id

≡ { +-absorption (2.43) and (2.15) }
[[] , cons · 〈hd , tl〉] · (=[]?) = id

≡ { property of sequences: cons(hd s, tl s) = s }
[[] , id] · (=[]?) = id

≡ { going pointwise (2.69) }
{

=[] a ⇒ [[] , id] (i1 a)

¬(=[] a) ⇒ [[] , id] (i2 a)
= a

≡ { +-cancellation (2.40) }
{

=[] a ⇒ [] a

¬(=[] a) ⇒ id a
= a

≡ { a = [] in one case and identity function (2.9) in the other }
{

a = [] ⇒ a
¬(a = []) ⇒ a

= a

≡ { property (p→ f, f) = f holds }
a = a

78 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

A comment on the particular choice of terminology above: symbol in suggests
that we are going inside, or constructing (synthesizing) values of A?; symbol out
suggests that we are going out, or destructing (analyzing) values of A?. We shall
often resort to this duality in the sequel.

Are there more solutions to equation (3.17)? In trying to implement this equa-
tion, a HASKELL programmer could have written, after the declaration of type A,
the following datatype declaration:

data L = Nil () | Cons (A,L)

which, as we have seen in section 2.18, can be written simply as

data L = Nil | Cons (A,L) (3.24)

and generates diagram

1
i1//

Nil
$$

1 + A× L
in′
��

A× Li2oo

Cons
xx

L

(3.25)

leading to algebra in′ = [Nil , Cons].
HASKELL seems to have generated another solution for the equation, which it

calls L. To avoid the inevitable confusion between this symbol denoting the newly
created datatype and symbol L in equation (3.17), which denotes a mathematical
variable, let us use symbol T to denote the former (T stands for “type”). This can
be coped with very simply by writing T instead of L in (3.24):

data T = Nil | Cons (A,T) (3.26)

In order to make T more explicit, we will write inT instead of in′.
Some questions are on demand at this point. First of all, what is datatype T?

What are its inhabitants? Next, is T 1 + A× T
inToo an iso or not?

HASKELL will help us to answer these questions. Suppose thatA is a primitive
numeric datatype, and that we add deriving Show to (3.26) so that we can
“see” the inhabitants of the T datatype. The information associated to T is thus:

Main> :i T
-- type constructor
data T

3.3. INTRODUCING INDUCTIVE DATATYPES 79

-- constructors:
Nil :: T
Cons :: (A,T) -> T

-- instances:
instance Show T
instance Eval T

By typing Nil

Main> Nil
Nil :: T

we confirm that Nil is itself an inhabitant of T, and by typing Cons

Main> Cons
<<function>> :: (A,T) -> T

we realize that Cons is not so (as expected), but it can be used to build such
inhabitants, for instance:

Main> Cons(1,Nil)
Cons (1,Nil) :: T

or

Main> Cons(2,Cons(1,Nil))
Cons (2,Cons (1,Nil)) :: T

etc. We conclude that expressions involving Nil and Cons are inhabitants of type
T. Are these the only ones? The answer is yes because, by design of the HASKELL

language, the constructors of type T will remain fixed once its declaration is in-
terpreted, that is, no further constructor can be added to T. Does inT have an
inverse? Yes, its inverse is coalgebra

outT : T→ 1 + A× T
outTNil = i1 NIL

outT(Cons(a, l)) = i2(a, l)
(3.27)

which can be straightforwardly encoded in HASKELL using the Either realiza-
tion of + (recall sections 2.9 and 2.18):

80 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

outT :: T -> Either () (A,T)
outT Nil = Left ()
outT (Cons(a,l)) = Right(a,l)

In summary, isomorphism

T

outT
++∼= 1 + A× T

inT

hh (3.28)

holds, where datatype T is inhabited by symbolic expressions which we may vi-
sualize very conveniently as trees, for instance

t
t

�
�

�

@
@
@t
�
�

�

@
@
@t t

1 Nil

Cons

2
Cons

picturing expression Cons(2, Cons(1, Nil)). Nil is the empty tree and Cons
may be regarded as the operation which adds a new root and a new branch, say a,
to a tree t:

t
�

�
�

@
@
@

t

t
�

�
�

@
@
@

t

t
�

�
�

@
@
@tCons(a,) =

Cons

a

The choice of symbols T, Nil and Conswas rather arbitrary in (3.26). There-
fore, an alternative declaration such as, for instance,

data U = Stop | Join (A,U) (3.29)

would have been perfectly acceptable, generating another solution for the equation
under algebra [Stop, Join]. It is easy to check that (3.29) is but a renaming of
Nil to Stop and of Cons to Join. Therefore, both datatypes are isomorphic, or
“abstractly the same”.

3.4. OBSERVING AN INDUCTIVE DATATYPE 81

Indeed, any other datatype X inductively defined by a constant and a binary
constructor accepting A and X as parameters will be a solution to the equation.
Because we are just renaming symbols in a consistent way, all such solutions are
abstractly the same. All of them capture the abstract notion of a list of symbols.

We wrote “inductively” above because the set of all expressions (trees) which
inhabit the type is defined by induction. Such types are called inductive and we
shall have a lot more to say about them in chapter 9 .

Exercise 3.6. Obviously,

either (const []) (:)

does not work as a HASKELL realization of the mediating arrow in diagram (3.20). What
do you need to write instead?
2

3.4 Observing an inductive datatype
Suppose that one is asked to express a particular observation of an inductive such

as T (3.26), that is, a function of signature B T
foo for some target type B.

Suppose, for instance, that A is N0 (the set of all non-negative integers) and that
we want to add all elements which occur in a T-list. Of course, we have to ensure
that addition is available in N0,

add : N0 × N0 → N0

add(x, y)
def
= x+ y

and that 0 ∈ N0 is a value denoting “the addition of nothing”. So constant arrow

N0 1
0oo is available. Of course, add(0, x) = add(x, 0) = x holds, for all

x ∈ N0. This property means that N0, together with operator add and constant
0, forms a monoid, a very important algebraic structure in computing which will
be exploited intensively later in this book. The following arrow “packaging” N0,
add and 0,

N0 1 + N0 × N0
[0 ,add]oo (3.30)

82 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

is a convenient way to express such a structure. Combining this arrow with the
algebra

T 1 + N0 × T
inToo (3.31)

which defines T, and the function f we want to define, the target of which is
B = N0, we get the almost closed diagram which follows, in which only the
dashed arrow is yet to be filled in:

T

f
��

1 + N0 × T
inToo

��
N0 1 + N0 × N0

[0 ,add]
oo

(3.32)

We know that inT = [Nil , Cons]. A pattern for the missing arrow is not difficult
to guess: in the same way f bridges T and N0 on the lefthand side, it will do the
same job on the righthand side. So pattern · · · + · · · × f comes to mind (recall
section 2.10), where the “· · ·” are very naturally filled in by identity functions. All
in all, we obtain diagram

T

f
��

1 + N0 × T
[Nil ,Cons]oo

id+id×f
��

N0 1 + N0 × N0
[0 ,add]

oo

(3.33)

which pictures the following property of f

f · [Nil , Cons] = [0 , add] · (id+ id× f) (3.34)

and is easy to convert to pointwise notation:

f · [Nil , Cons] = [0 , add] · (id+ id× f)

≡ { (2.42) on the lefthand side, (2.43) and identity id on the righthand side }
[f ·Nil , f · Cons] = [0 , add · (id× f)]

≡ { either structural equality (2.66) }
{
f ·Nil = 0
f · Cons = add · (id× f)

3.4. OBSERVING AN INDUCTIVE DATATYPE 83

≡ { going pointwise }
{

(f ·Nil)x = 0x
(f · Cons)(a, x) = (add · (id× f))(a, x)

≡ { composition (2.6), constant (2.12), product (2.24) and definition of add }
{
f Nil = 0
f(Cons(a, x)) = a+ f x

Note that we could have used outT in diagram (3.32),

T
outT //

f
��

1 + N0 × T

id+id×f
��

N0 1 + N0 × N0
[0 ,add]

oo

(3.35)

obtaining another version of the definition of f ,

f = [0 , add] · (id+ id× f) · outT (3.36)

which would lead to exactly the same pointwise recursive definition:

f = [0 , add] · (id+ id× f) · outT
≡ { (2.43) and identity id on the righthand side }

f = [0 , add · (id× f)] · outT
≡ { going pointwise on outT (3.27) }

{
f Nil = ([0 , add · (id× f)] · outT)Nil
f(Cons(a, x)) = ([0 , add · (id× f)] · outT)(a, x)

≡ { definition of outT (3.27) }
{
f Nil = ([0 , add · (id× f)] · i1)Nil
f(Cons(a, x)) = ([0 , add · (id× f)] · i2)(a, x)

≡ { +-cancellation (2.40) }
{
f Nil = 0Nil
f(Cons(a, x)) = (add · (id× f)) (a, x)

≡ { simplification }
{
f Nil = 0
f(Cons(a, x)) = a+ f x

84 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Pointwise f mirrors the structure of type T in having has many definition
clauses as constructors in T. Such functions are said to be defined by induction on
the structure of their input type. If we repeat this calculation for N0

? instead of T,
that is, for

out = (! + 〈hd , tl〉) · (=[]?)

— recall (3.21) — taking place of outT, we get a “more algorithmic” version of
f :

f = [0 , add] · (id+ id× f) · (! + 〈hd , tl〉) · (=[]?)

≡ { +-functor (2.44), identity and ×-absorption (2.27) }
f = [0 , add] · (! + 〈hd , f · tl〉) · (=[]?)

≡ { +-absorption (2.43) and constant 0 }
f = [0 , add · 〈hd , f · tl〉] · (=[]?)

≡ { going pointwise on guard =[]? (2.69) and simplifying }

f l =

{
l = [] ⇒ 0 l
¬(l = []) ⇒ (add · 〈hd , f · tl〉) l

≡ { simplification }

f l =

{
l = [] ⇒ 0
¬(l = []) ⇒ hd l + f(tl l)

The outcome of this calculation can be encoded in HASKELL syntax as

f l | l ≡ [] = 0
| otherwise = head l + f (tail l)

or

f l = if l ≡ [] then 0 else head l + f (tail l)

both requiring the equality predicate ≡ and destructors head and tail.

3.5 Synthesizing an inductive datatype
The issue which concerns us in this section dualizes what we have just dealt with:
instead of analyzing or observing an inductive type such as T (3.26), we want to be

3.5. SYNTHESIZING AN INDUCTIVE DATATYPE 85

able to synthesize (generate) particular inhabitants of T. In other words, we want

to be able to specify functions with signature B
f // T for some given source

type B. Let B = N0 and suppose we want f to generate, for a given natural
number n > 0, the list containing all numbers less or equal to n in decreasing
order

Cons(n,Cons(n− 1, Cons(. . . , Nil)))

or the empty list Nil, in case n = 0.
Let us try and draw a diagram similar to (3.35) applicable to the new situation.

In trying to “re-use” this diagram, it is immediate that arrow f should be reversed.
Bearing duality in mind, we may feel tempted to reverse all arrows just to see
what happens. Identity functions are their own inverses, and inT takes the place
of outT:

T 1 + N0 × T
inToo

N0

f

OO

// 1 + N0 × N0

id+id×f
OO

Interestingly enough, the bottom arrow is the one which is not obvious to reverse,
meaning that we have to “invent” a particular destructor of N0, say

N0
g // 1 + N0 × N0

fitting in the diagram and generating the particular computational effect we have
in mind. Once we do this, a recursive definition for f will pop out immediately,

f = inT · (id+ id× f) · g (3.37)

which is equivalent to:

f = [Nil , Cons · (id× f)] · g (3.38)

Because we want f 0 = Nil to hold, g (the actual generator of the computation)
should distinguish input 0 from all the others. One thus decomposes g as follows,

N0
=0?//

g

22N0 + N0
!+h// 1 + N0 × N0

leaving h to fill in. This will be a split providing, on the lefthand side, for the
value to be Cons’ed to the output and, on the righthand side, for the “seed” to the

86 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

next recursive call. Since we want the output values to be produced contiguously
and in decreasing order, we may define h = 〈id, pred〉 where, for n > 0,

pred n
def
= n− 1 (3.39)

computes the predecessor of n. Altogether, we have synthesized

g = (! + 〈id, pred〉) · (=0?) (3.40)

Filling this in (3.38) we get

f = [Nil , Cons · (id× f)] · (! + 〈id, pred〉) · (=0?)

≡ { +-absorption (2.43) followed by ×-absorption (2.27) etc. }
f = [Nil , Cons · 〈id, f · pred〉] · (=0?)

≡ { going pointwise on guard =0? (2.69) and simplifying }

f n =

{
n = 0 ⇒ Nil
¬(n = 0) ⇒ Cons(n, f (n− 1))

which matches the function we had in mind:

f n
| n ≡ 0 = Nil
| otherwise = Cons (n, f (n − 1))

We shall see briefly that the constructions of the f function adding up a list
of numbers in the previous section and, in this section, of the f function gener-
ating a list of numbers are very standard in algorithm design and can be broadly
generalized. Let us first introduce some standard terminology.

3.6 Introducing (list) catas, anas and hylos
Suppose that, back to section 3.4, we want to multiply, rather than add, the el-
ements occurring in lists of type T (3.26). How much of the program synthesis
effort presented there can be reused in the design of the new function?

It is intuitive that only the bottom arrow N0 1 + N0 × N0
[0 ,add]oo of di-

agram (3.35) needs to be replaced, because this is the only place where we can

3.6. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 87

specify that target datatype N0 is now regarded as the carrier of another (multi-
plicative rather than additive) monoidal structure,

N0 1 + N0 × N0
[1 ,mul]oo (3.41)

for mul(x, y)
def
= x y. We are saying that the argument list is now to be reduced

by the multiplication operator and that output value 1 is expected as the result of
“nothing left to multiply”.

Moreover, in the previous section we might have wanted our number-list gen-
erator to produce the list of even numbers smaller than a given number, in decreas-
ing order (see exercise 3.9). Intuition will once again help us in deciding that only
arrow g in (3.37) needs to be updated.

The following diagrams generalize both constructions by leaving such bottom
arrows unspecified,

T
outT //

f
��

1 + N0 × T

id+id×f
��

B 1 + N0 ×Bg
oo

T 1 + N0 × T
inToo

B

f

OO

g
// 1 + N0 ×B

id+id×f
OO (3.42)

and express their duality (cf. the directions of the arrows). It so happens that, for
each of these diagrams, f is uniquely dependent on the g arrow, that is to say, each
particular instantiation of g will determine the corresponding f . So both gs can be
regarded as “seeds” or “genetic material” of the f functions they uniquely define
7.

Following the standard terminology, we express these facts by writing f =
(|g|) with respect to the lefthand side diagram and by writing f = [(g)] with respect
to the righthand side diagram. Read (|g|) as “the T-catamorphism induced by g”
and [(g)] as “the T-anamorphism induced by g”. This terminology is derived from
the Greek words κατα (cata) and ανα (ana) meaning, respectively, “downwards”
and “upwards” (compare with the direction of the f arrow in each diagram). The
exchange of parentheses “()” and “[]” in double parentheses “(| |)” and “[()]” is
aimed at expressing the duality of both concepts.

We shall have a lot to say about catamorphisms and anamorphisms of a given
type such as T. For the moment, it suffices to say that

7 The theory which supports the statements of this paragraph will not be dealt with until chapter
9 .

88 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

• the T-catamorphism induced by B 1 + N0 ×B
goo is the unique func-

tion B T
(|g|)oo which obeys to property (or is defined by)

(|g|) = g · (id+ id× (|g|)) · outT (3.43)

which is the same as

(|g|) · inT = g · (id+ id× (|g|)) (3.44)

• given B
g // 1 + N0 ×B the T-anamorphism induced by g is the unique

function B
[(g)] // T which obeys to property (or is defined by)

[(g)] = inT · (id+ id× [(g)]) · g (3.45)

From (3.42) it can be observed that T can act as a mediator between any T-

anamorphism and any T-catamorphism, that is to say, B T
(|g|)oo composes with

T C
[(h)]oo , for some C h // 1 + N0 × C . In other words, a T-catamorphism

call always observe (consume) the output of a T-anamorphism. The latter pro-
duces a list of N0s which is consumed by the former. This is depicted in the
diagram which follows:

B 1 + N0 ×B
goo

T

(|g|)

OO

1 + N0 × T
inToo

id+id×(|g|)
OO

C

[(h)]

OO

h
// 1 + N0 × C

id+id×[(h)]
OO

(3.46)

What can we say about the (|g|) · [(h)] composition? It is a function from C to
B which resorts to T as an intermediate data-structure and can be subject to the
following calculation (cf. outermost rectangle in (3.46)):

(|g|) · [(h)] = g · (id+ id× (|g|)) · (id+ id× [(h)]) · h
≡ { +-functor (2.44) }

(|g|) · [(h)] = g · ((id · id) + (id× (|g|)) · (id× [(h)])) · h
≡ { identity and ×-functor (2.30) }

(|g|) · [(h)] = g · (id+ id× (|g|) · [(h)]) · h

3.6. INTRODUCING (LIST) CATAS, ANAS AND HYLOS 89

This calculation shows how to define C B
(|g|)·[(h)]oo in one go, that is to say,

doing without any intermediate data-structure:

B 1 + N0 ×B
goo

C

(|g|)·[(h)]

OO

h
// 1 + N0 × C

id+id×(|g|)·[(h)]
OO (3.47)

As an example, let us see what comes out of (|g|) · [(h)] for h and g respectively
given by (3.40) and (3.41):

(|g|) · [(h)] = g · (id+ id× (|g|) · [(h)]) · h
≡ { (|g|) · [(h)] abbreviated to f and instantiating h and g }

f = [1 ,mul] · (id+ id× f) · (! + 〈id, pred〉) · (=0?)

≡ { +-functor (2.44) and identity }
f = [1 ,mul] · (! + (id× f) · 〈id, pred〉) · (=0?)

≡ { ×-absorption (2.27) and identity }
f = [1 ,mul] · (! + 〈id, f · pred〉) · (=0?)

≡ { +-absorption (2.43) and constant 1 (2.15) }
f = [1 ,mul · 〈id, f · pred〉] · (=0?)

≡ { McCarthy conditional (2.70) }
f = (=0?)→ 1,mul · 〈id, f · pred〉

Going pointwise, we get — via (2.70) —

f 0 = [1 ,mul · 〈id, f · pred〉](i1 0)

= { +-cancellation (2.40) }
1 0

= { constant function (2.12) }
1

and

f(n+ 1) = [1 ,mul · 〈id, f · pred〉](i2(n+ 1))

90 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

= { +-cancellation (2.40) }
mul · 〈id, f · pred〉(n+ 1)

= { pointwise definitions of split, identity, predecessor and mul }
(n+ 1)× f n

In summary, f is but the well-known factorial function:
{
f 0 = 1
f(n+ 1) = (n+ 1)× f n

This result comes to no surprise if we look at diagram (3.46) for the particular
g and h we have considered above and recall a popular “definition” of factorial:

n! = n× (n− 1)× . . .× 1︸ ︷︷ ︸
n times

(3.48)

In fact, [(h)]n produces T-list

Cons(n,Cons(n− 1, . . . Cons(1, Nil)))

as an intermediate data-structure which is consumed by (|g|) , the effect of which
is but the “replacement” of Cons by × and Nil by 1, therefore accomplishing
(3.48) and realizing the computation of factorial.

The moral of this example is that a function as simple as factorial can be
decomposed into two components (producer/consumer functions) which share a
common intermediate inductive datatype. The producer function is an anamor-
phism which “represents” or produces a “view” of its input argument as a value
of the intermediate datatype. The consumer function is a catamorphism which re-
duces this intermediate data-structure and produces the final result. Like factorial,
many functions can be handsomely expressed by a (|g|) · [(h)] composition for a
suitable choice of the intermediate type, and of g and h. The intermediate data-
structure is said to be virtual in the sense that it only exists as a means to induce
the associated pattern of recursion and disappears by calculation.

The composition (|g|) · [(h)] of a T-catamorphism with a T-anamorphism is
called a T-hylomorphism 8 and is denoted by Jg, hK. Because g and h fully deter-
mine the behaviour of the Jg, hK function, they can be regarded as the “genes” of

8 This terminology is derived from the Greek word vλoσ (hylos) meaning “matter”.

3.7. INDUCTIVE TYPES MORE GENERALLY 91

the function they define. As we shall see, this analogy with biology will prove
specially useful for algorithm analysis and classification.

Exercise 3.7. A way of computing n2, the square of a given natural number n, is to
sum up the n first odd numbers. In fact, 12 = 1, 22 = 1 + 3, 32 = 1 + 3 + 5, etc.,
n2 = (2n− 1) + (n− 1)2. Following this hint, express function

sq n
def
= n2 (3.49)

as a T-hylomorphism and encode it in HASKELL.
2

Exercise 3.8. Write function xn as a T-hylomorphism and encode it in HASKELL.
2

Exercise 3.9. The following function in HASKELL computes the T-sequence of all even
numbers less or equal to n:

f n = if n 6 1 then Nil else Cons (m, f (m − 2))
where m = if even n then n else n − 1

Find its “genetic material”, that is, function g such that f=[(g)] in

T 1 + N0 × T
inToo

N0

[(g)]

OO

g
// 1 + N0 × N0

id+id×[(g)]
OO

2

3.7 Inductive types more generally
So far we have focussed our attention exclusively to a particular inductive type T
(3.31) — that of finite sequences of non-negative integers. This is, of course, of

92 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

a very limited scope. First, because one could think of finite sequences of other
datatypes, e.g. Booleans or many others. Second, because other datatypes such as
trees, hash-tables etc. exist which our notation and method should be able to take
into account.

Although a generic theory of arbitrary datatypes requires a theoretical elabora-
tion which cannot be explained at once, we can move a step further by taking the
two observations above as starting points. We shall start from the latter in order
to talk generically about inductive types. Then we introduce parameterization and
functorial behaviour.

Suppose that, as a mere notational convention, we abbreviate every expression
of the form “1 + N0 × . . .” occurring in the previous section by “F . . .”, e.g. 1 +
N0 ×B by FB, e.g. 1 + N0 × T by FT

T

outT
((∼= FT

inT

gg (3.50)

etc. This is the same as introducing a datatype-level operator

FX
def
= 1 + N0 ×X (3.51)

which maps every datatype A into datatype 1 + N0 × A. Operator F captures
the pattern of recursion which is associated to so-called “right” lists (of non-
negative integers), that is, lists which grow to the right. The slightly different
pattern GX

def
= 1 + X × N0 will generate a different, although related, inductive

type

X ∼= 1 +X × N0 (3.52)

— that of so-called “left” lists (of non-negative integers). And it is not difficult
to think of the pattern which is merges both right and left lists and gives rise to
bi-linear lists, better known as binary trees:

X ∼= 1 +X × N0 ×X (3.53)

One may think of many other expressions FX and guess the inductive datatype
they generate, for instance HX

def
= N0 + N0 × X generating non-empty lists of

non-negative integers (N+
0). The general rule is that, given an inductive datatype

definition of the form

X ∼= FX (3.54)

(also called a domain equation), its pattern of recursion is captured by a so-called
functor F.

3.8. FUNCTORS 93

3.8 Functors
The concept of a functor F, borrowed from category theory, is a most generic and
useful device in programming 9. As we have seen, F can be regarded as a datatype
constructor which, given datatype A, builds a more elaborate datatype FA; given
another datatypeB, builds a similarly elaborate datatype FB; and so on. But what
is more important and has the most beneficial consequences is that, if F is regarded
as a functor, then its data-structuring effect extends smoothly to functions in the

following way: suppose that B A
foo is a function which observes A into B,

which are parameters of FA and FB, respectively. By definition, if F is a functor

then FB FA
F foo exists for every such f :

A

f
��

FA

F f
��

B FB

F f extends f to F-structures and will, by definition, obey to two very basic prop-
erties: it commutes with identity

F idA = id(FA) (3.55)

and with composition

F(g · h) = (F g) · (Fh) (3.56)

Two simple examples of a functor follow:

• Identity functor: define FX = X , for every datatypeX , and F f = f . Prop-
erties (3.55) and (3.56) hold trivially just by removing symbol F wherever
it occurs.

• Constant functors: for a given C, define FX = C (for all datatypes X) and
F f = idC , as expressed in the following diagram:

A

f
��

C

idC
��

B C

Properties (3.55) and (3.56) hold trivially again.
9The category theory practitioner must be warned of the fact that the word functor is used here

in a too restrictive way. A proper (generic) definition of a functor will be provided later in this
book.

94 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Data construction Universal construct Functor Description
A×B 〈f, g〉 f × g Product
A+B [f , g] f + g Coproduct
BA f fA Exponential

Table 3.1: Datatype constructions and associated operators.

In the same way functions can be unary, binary, etc., we can have functors
with more than one argument. So we get binary functors (also called bifunctors),
ternary functors etc.. Of course, properties (3.55) and (3.56) have to hold for every
parameter of an n-ary functor. For a binary functor B, for instance, equation (3.55)
becomes

B (idA, idB) = idB (A,B) (3.57)

and equation (3.56) becomes

B (g · h, i · j) = B (g, i) · B (h, j) (3.58)

Product and coproduct are typical examples of bifunctors. In the former case
one has B (A,B) = A × B and B (f, g) = f × g — recall (2.24). Properties
(2.31) and (2.30) instantiate (3.57) and (3.58), respectively, and this explains why
we called them the functorial properties of product. In the latter case, one has
B (A,B) = A + B and B (f, g) = f + g — recall (2.39) — and functorial prop-
erties (2.45) and (2.44). Finally, exponentiation is a functorial construction too:
assumingA, one has FX def

= XA and F f
def
= f · ap and functorial properties (2.89)

and (2.90). All this is summarized in table 3.1.
Such as functions, functors may compose with each other in the obvious way:

the composition of F and G, denoted F · G, is defined by

(F · G)X
def
= F (GX) (3.59)

(F · G)f
def
= F (G f) (3.60)

3.9 Polynomial functors
We may put constant, product, coproduct and identity functors together to obtain
so-called polynomial functors, which are described by polynomial expressions,

3.9. POLYNOMIAL FUNCTORS 95

for instance

FX = 1 + A×X
— recall (3.17). A polynomial functor is either

• a constant functor or the identity functor, or

• the (finitary) product or coproduct (sum) of other polynomial functors, or

• the composition of other polynomial functors.

So the effect on arrows of a polynomial functor is computed in an easy and struc-
tured way, for instance:

F f = (1 + A×X)f

= { sum of two functors where A is a constant and X is a variable }
(1)f + (A×X)f

= { constant functor and product of two functors }
id1 + (A)f × (X)f

= { constant functor and identity functor }
id1 + idA × f

= { subscripts dropped for simplicity }
id+ id× f

So, 1 +A× f denotes the same as id1 + idA× f , or even the same as id+ id× f
if one drops the subscripts.

It should be clear at this point that what was referred to in section 2.10 as a
“symbolic pattern” applicable to both datatypes and arrows is after all a functor in
the mathematical sense. The fact that the same polynomial expression is used to
denote both the data and the operators which structurally transform such data is
of great conceptual economy and practical application. For instance, once poly-
nomial functor (3.51) is assumed, the diagrams in (3.42) can be written as simply
as

T
outT //

f
��

FT

F f
��

B FBg
oo

T FT
inToo

B

f

OO

g
// FB

F f

OO (3.61)

96 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

It is useful to know that, thanks to the isomorphism laws studied in chapter 2,
every polynomial functor F may be put into the canonical form,

FX ∼= C0 + (C1 ×X) + (C2 ×X2) + · · ·+ (Cn ×Xn)
=

∑n
i=0Ci ×X i (3.62)

and that Newton’s binomial formula

(A+B)n ∼=
n∑

p=0

nCp × An−p ×Bp (3.63)

can be used in such conversions. These are performed up to isomorphism, that is
to say, after the conversion one gets a different but isomorphic datatype. Consider,
for instance, functor

FX
def
= A× (1 +X)2

(where A is a constant datatype) and check the following reasoning:

FX = A× (1 +X)2

∼= { law (2.102) }
A× ((1 +X)× (1 +X))

∼= { law (2.52) }
A× ((1 +X)× 1 + (1 +X)×X))

∼= { laws (2.57), (2.33) and (2.52) }
A× ((1 +X) + (1×X +X ×X))

∼= { laws (2.57) and (2.102) }
A× ((1 +X) + (X +X2))

∼= { law (2.48) }
A× (1 + (X +X) +X2)

∼= { canonical form obtained via laws (2.52) and (2.103) }
A︸︷︷︸
C0

+A× 2︸ ︷︷ ︸
C1

×X + A︸︷︷︸
C2

×X2

3.10. POLYNOMIAL INDUCTIVE TYPES 97

Exercise 3.10. Synthesize the isomorphism A+A× 2×X +A×X2 A× (1 +X2)
νoo

implicit in the above reasoning.
2

3.10 Polynomial inductive types
An inductive datatype is said to be polynomial wherever its pattern of recursion
is described by a polynomial functor, that is to say, wherever F in equation (3.54)
is polynomial. For instance, datatype T (3.31) is polynomial (n = 1) and its
associated polynomial functor is canonically defined with coefficients C0 = 1 and
C1 = N0. For reasons that will become apparent later on, we shall always impose
C0 6= 0 to hold in a polynomial datatype expressed in canonical form.

Polynomial types are easy to encode in HASKELL wherever the associated
functor is in canonical polynomial form, that is, wherever one has

T ∼=
∑n

i=0Ci × Ti

inT

ii (3.64)

Then we have

inT
def
= [f1, . . . , fn]

where, for i = 1, n, fi is an arrow of type T← Ci × Ti. Since n is finite, one
may expand exponentials according to (2.102) and encode this in HASKELL as
follows:

data T = C0 | C1 (C1 ,T) | C2 (C2 , (T,T)) | . . . | Cn (Cn, (T, . . . ,T))

Of course the choice of symbol Ci to realize each fi is arbitrary 10. Several
instances of polynomial inductive types (in canonical form) will be mentioned in
section 3.14. Section 3.18 will address the conversion between inductive datatypes
induced by so-called natural transformations.

10 A more traditional (but less close to (3.64)) encoding will be

data T = C0 | C1 C1 T | C2 C2 T T | . . . | Cn Cn T . . .T

delivering every constructor in curried form.

98 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

The concepts of catamorphism, anamorphism and hylomorphism introduced
in section 3.6 can be extended to arbitrary polynomial types. We devote the fol-
lowing sections to explaining catamorphisms in the polynomial setting. Polyno-
mial anamorphisms and hylomorphisms will not be dealt with until chapter 9.

3.11 F-algebras and F-homomorphisms

Our interest in polynomial types is basically due to the fact that, for polynomial F,
equation (3.54) always has a particularly interesting solution which corresponds
to our notion of a recursive datatype.

In order to explain this, we need two notions which are easy to understand:
first, that of an F-algebra, which simply is any function α of signature A FAαoo .
A is called the carrier of F-algebra α and contains the values which α manipu-
lates by computing new A-values out of existing ones, according to the F-pattern
(the “type” of the algebra). As examples, consider [0 , add] (3.30) and inT (3.31),
which are both algebras of type FX = 1+N0×X . The type of an algebra clearly
determines its form. For instance, any algebra α of type FX = 1+X×X will be
of form [α1 , α2], where α1 is a constant and α2 is a binary operator. So monoids
are algebras of this type 11.

Secondly, we introduce the notion of an F-homomorphism which is but a func-
tion observing a particular F-algebra α into another F-algebra β:

A

f
��

FA

F f
��

αoo

B FB
β
oo

f · α = β · (F f) (3.65)

Clearly, f can be regarded as a structural translation between A and B, that is, A
and B have a similar structure 12. Note that — thanks to (3.55) — identity func-
tions are always (trivial) F-homomorphisms and that — thanks to (3.56) — these
homomorphisms compose, that is, the composition of two F-homomorphisms is
an F-homomorphism.

11 But not every algebra of this type is a monoid, since the type of an algebra only fixes its
syntax and does not impose any properties such as associativity, etc.

12 Cf. homomorphism = homo (the same) + morphos (structure, shape).

3.12. F-CATAMORPHISMS 99

3.12 F-catamorphisms
An F-algebra can be epic, monic or both, that is, iso. Iso F-algebras are particu-
larly relevant to our discussion because they describe solutions to the X ∼= FX
equation (3.54). Moreover, for polynomial F a particular iso F-algebra always
exists, which is denoted by µF FµFinoo and has special properties. First, its
carrier is the smallest among the carriers of other iso F-algebras, and this is why
it is denoted by µF — µ for “minimal” 13. Second, it is the so-called initial F-
algebra. What does this mean?

It means that, for every F-algebra α there exists one and only one F-homomorphism
between in and α. This unique arrow mediating in and α is therefore determined
by α itself, and is called the F-catamorphism generated by α. This construct,
which was introduced in 3.6, is in general denoted by (|α|)F:

µF

f=(|α|)F
��

FµF

F (|α|)F
��

inoo

A FAα
oo

(3.66)

We will drop the F subscript in (|α|)F wherever deducible from the context, and
often call α the “gene” of (|α|)F.

As happens with splits, eithers and transposes, the uniqueness of the catamor-
phism construct is captured by a universal property established in the class of all
F-homomorphisms:

k = (|α|) ⇔ k · in = α · F k (3.67)

According to the experience gathered from section 2.13 onwards, a few properties
can be expected as consequences of (3.67). For instance, one may wonder about
the “gene” of the identity catamorphism. Just let k = id in (3.67) and see what
happens:

id = (|α|)⇔ id · in = α · F id
= { identity (2.10) and F is a functor (3.55) }

id = (|α|)⇔ in = α · id
13 µF means the least fixpoint solution of equation X ∼= FX , as will be described in chapter 9 .

100 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

= { identity (2.10) once again }
id = (|α|)⇔ in = α

= { α replaced by in and simplifying }
id = (|in|)

Thus one finds out that the genetic material of the identity catamorphism is the
initial algebra in. Which is the same as establishing the reflection property of
catamorphisms:

Cata-reflection :

µF

(|in|)
��

FµF

F (|in|)
��

inoo

µF FµF
in
oo

(|in|) = idµF (3.68)

In a more intuitive way, one might have observed that (|in|) is, by definition of in,
the unique arrow mediating µF and itself. But another arrow of the same type is
already known: the identity idµF. So these two arrows must be the same.

Another property following immediately from (3.67), for k = (|α|), is

Cata-cancellation :

(|α|) · in = α · F (|α|) (3.69)

Because in is iso, this law can be rephrased as follows

(|α|) = α · F (|α|) · out (3.70)

where out denotes the inverse of in:

µF

out
))∼= FµF

in

hh

Now, let f be F-homomorphism (3.65) between F-algebras α and β. How
does it relate to (|α|) and (|β|)? Note that f · (|α|) is an arrow mediating µF and B.
But B is the carrier of β and (|β|) is the unique arrow mediating µF and B. So the
two arrows are the same:

3.13. PARAMETERIZATION AND TYPE FUNCTORS 101

Cata-fusion :

µF

(|α|)
��

FµF

F(|α|)
��

inoo

A

f

��

FAα
oo

F f
��

B FB
β

oo

f · (|α|) = (|β|) if f · α = β · F f (3.71)

Of course, this law is also a consequence of the universal property, for k = f ·(|α|):

f · (|α|) = (|β|) ⇔ (f · (|α|)) · in = β · F (f · (|α|))
⇔ { composition is associative and F is a functor (3.56) }

f · ((|α|) · in) = β · (F f) · (F (|α|))
⇔ { cata-cancellation (3.69) }

f · α · F (|α|) = β · F f · F (|α|)
⇐ { require f to be a F-homomorphism (3.65) }

f · α · F (|α|) = f · α · F (|α|) ∧ f · α = β · F f
⇔ { simplify }

f · α = β · F f

The presentation of the absorption property of catamorphisms entails the very
important issue of parameterization and deserves to be treated in a separate sec-
tion, as follows.

3.13 Parameterization and type functors
By analogy with what we have done about splits (product), eithers (coproduct) and
transposes (exponential), we now look forward to identifying F-catamorphisms
which exhibit functorial behaviour.

Suppose that one wishes to square all numbers which are members of lists of
type T (3.31). It can be checked that

(|[Nil , Cons · (sq × id)]|) (3.72)

102 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

will do this for us, where N0 N0
sqoo is given by (3.49). This catamorphism,

which converted to pointwise notation is nothing but function h which follows
{
hNil = Nil
h(Cons(a, l)) = Cons(sq a, h l)

maps type T to itself. This is because sq maps N0 to N0. Now suppose that,

instead of sq , one would like to apply a given function B N0
foo (for some B

other than N0) to all elements of the argument list. It is easy to see that it suffices
to replace f for sq in (3.72). However, the output type no longer is T, but rather
type T′ ∼= 1 +B × T′.

Types T and T′ are very close to each other. They share the same “shape”
(recursive pattern) and only differ with respect to the type of elements — N0 in T
and B in T′. This suggests that these two types can be regarded as instances of a
more generic list datatype List

ListX ∼= 1 +X × ListX

in=[Nil ,Cons]

kk (3.73)

in which the type of elements X is allowed to vary. Thus one has T = ListN0 and
T′ = ListB.

By inspection, it can be checked that, for every B A
foo ,

(|[Nil , Cons · (f × id)]|) (3.74)

maps ListA to ListB. Moreover, for f = id one has:

(|[Nil , Cons · (id× id)]|)
= { by the ×-functor-id property (2.31) and identity }

(|[Nil , Cons]|)
= { cata-reflection (3.68) }

id

Therefore, by defining

List f
def
= (|[Nil , Cons · (f × id)]|)

what we have just seen can be written thus:

List idA = idListA

3.13. PARAMETERIZATION AND TYPE FUNCTORS 103

This is nothing but law (3.55) for F replaced by List. Moreover, it will not be too
difficult to check that

List (g · f) = List g · List f

also holds — cf. (3.56). Altogether, this means that List can be regarded as a
functor.

In programming terminology one says that ListX (the “lists of Xs datatype”)
is parametric and that, by instantiating parameter X , one gets ground lists such as
lists of integers, booleans, etc. The illustration above deepens one’s understand-
ing of parameterization by identifying the functorial behaviour of the parametric
datatype along with its parameter instantiations.

All this can be broadly generalized and leads to what is commonly known by
a type functor. First of all, it should be clear that the generic format

T ∼= FT

adopted so far for the definition of an inductive type is not sufficiently detailed
because it does not provide a parametric view of T. For simplicity, let us suppose
(for the momement) that only one parameter is identified in T. Then we may
factor this out via type variable X and write (overloading symbol T)

TX ∼= B(X,TX)

where B is called the type’s base functor. Binary functor B(X, Y) is given this
name because it is the basis of the whole inductive type definition. By instantiation
of X one obtains F. In the example above, B (X, Y) = 1 + X × Y and in fact
FY = B (N0, Y) = 1 + N0 × Y , recall (3.51). Moreover, one has

F f = B (id, f) (3.75)

and so every F-homomorphism can be written in terms of the base-functor of F,
e.g.

f · α = β · B (id, f)

instead of (3.65).
TX will be referred to as the type functor generated by B:

TX︸︷︷︸
type functor

∼= B(X,TX)︸ ︷︷ ︸
base functor

104 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

We proceed to the description of its functorial behaviour — T f — for a given

B A
foo . As far as typing rules are concerned, we shall have

B A
foo

TB TA
T foo

So we should be able to express T f as a B (A,)-catamorphism (|g|):

A

f

��

TA

T f=(|g|)
��

B (A,TA)
inTAoo

B (id,T f)
��

B TB B (A,TB)g
oo

As we know that inTB is the standard constructor of values of type TB, we may
put it into the diagram too:

A

f

��

TA

T f=(|g|)
��

B (A,TA)
inTAoo

B (id,T f)
��

B TB B (A,TB)g
oo

B (B,TB)

inTB

ee

The catamorphism’s gene g will be synthesized by filling the dashed arrow in the
diagram with the “obvious” B (f, id), whereby one gets

T f
def
= (|inTB · B (f, id)|) (3.76)

and a final diagram, where inTA is abbreviated by inA (ibid. inTB by inB):

A

f

��

TA

T f=(|inB ·B (f,id)|)
��

B (A,TA)
inAoo

B (id,T f)
��

B TB B (B,TB)
inB

oo B (A,TB)
B (f,id)
oo

Next, we proceed to derive the useful law of cata-absorption

(|g|) · T f = (|g · B (f, id)|) (3.77)

3.13. PARAMETERIZATION AND TYPE FUNCTORS 105

as consequence of the laws studied in section 3.12. Our target is to show that, for
k = (|g|) · T f in (3.67), one gets α = g · B (f, id):

(|g|) · T f = (|α|)
⇔ { type-functor definition (3.76) }

(|g|) · (|inB · B (f, id)|) = (|α|)
⇐ { cata-fusion (3.71) }

(|g|) · inB · B (f, id) = α · B (id, (|g|))
⇔ { cata-cancellation (3.69) }

g · B (id, (|g|)) · B (f, id) = α · B (id, (|g|))
⇔ { B is a bi-functor (3.58) }

g · B (id · f, (|g|) · id) = α · B (id, (|g|))
⇔ { id is natural (2.11) }

g · B (f · id, id · (|g|)) = α · B (id, (|g|))
⇔ { (3.58) again, this time from left to right }

g · B (f, id) · B (id, (|g|)) = α · B (id, (|g|))
⇐ { Leibniz }

g · B (f, id) = α

The following diagram pictures this property of catamorphisms:

A

f

��

TA

T f

��

B (A,TA)
inAoo

B (id,T f)
��

C TC

(|g|)
��

B (C,TC)
inC

oo

B (id,(|g|))
��

B (A,TC)
B (f,id)
oo

B (id,(|g|))
��

D B (C,D)g
oo B (A,D)

B (f,id)
oo

It remains to show that (3.76) indeed defines a functor. This can be verified by
checking properties (3.55) and (3.56) for F = T :

106 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

• Property type-functor-id, cf. (3.55):

T id

= { by definition (3.76) }
(|inB · B (id, id)|)

= { B is a bi-functor (3.57) }
(|inB · id|)

= { identity and cata-reflection (3.68) }
id

• Property type-functor, cf. (3.56) :

T (f · g)

= { by definition (3.76) }
(|inB · B (f · g, id)|)

= { id · id = id and B is a bi-functor (3.58) }
(|inB · B (f, id) · B (g, id)|)

= { cata-absorption (3.77) }
(|inB · B (f, id)|) · T g

= { again cata-absorption (3.77) }
(|inB|) · T f · T g

= { cata-reflection (3.68) followed by identity }
T f · T g

Exercise 3.11. Function length = (|[zero , succ · π2]|) counts the number of elements of
a finite list. If the input list has at least one element it suffices to count the elements of its
tail starting with count 1 instead of 0:

length · (a:) = (|[one , succ · π2]|) (3.78)

3.14. A CATALOGUE OF STANDARD POLYNOMIAL INDUCTIVE TYPES107

Prove (3.78) knowing that

length · (a:) = succ · length

follows from the definition of length. (NB: assume zero = 0 and one = 1.)
2

Exercise 3.12. Function concat, extracted from Haskell’s Prelude, can be defined as list
catamorphism,

concat = (|[nil , conc]|) (3.79)

where conc (x , y) = x ++ y , nil = [], B (f , g) = id + f × g , F f = B (id, f), and
T f = map f . Prove property

length · concat = sum ·map length (3.80)

resorting to cata-fusion and cata-absorption.
2

3.14 A catalogue of standard polynomial inductive
types

The following table contains a collection of standard polynomial inductive types
and associated base type bi-functors, which are in canonical form (3.64). The
table contains two extra columns which may be used as bookmarks for equations
(3.75) and (3.76), respectively 14:

Description TX B (X, Y) B (id, f) B (f, id)

“Right” Lists ListX 1 +X × Y id+ id× f id+ f × id
“Left” Lists LListX 1 + Y ×X id+ f × id id+ id× f
Non-empty Lists NListX X +X × Y id+ id× f f + f × id
Binary Trees BTreeX 1 +X × Y 2 id+ id× f 2 id+ f × id
“Leaf” Trees LTreeX X + Y 2 id+ f 2 f + id

(3.81)

14Since (idA)
2 = id(A2) one writes id2 for id in this table.

108 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

All type functors T in this table are unary. In general, one may think of induc-
tive datatypes which exhibit more than one type parameter. Should n parameters
be identified in T, then this will be based on an n+ 1-ary base functor B, cf.

T(X1, . . . , Xn) ∼= B(X1, . . . , Xn,T(X1, . . . , Xn))

So, every n + 1-ary polynomial functor B(X1, . . . , Xn, Xn+1) can be identified
as the basis of an inductive n-ary type functor (the convention is to stick to the
canonical form and reserve the last variable Xn+1 for the “recursive call”). While
type bi-functors (n = 2) are often found in programming, the situation in which
n > 2 is relatively rare. For instance, the combination of leaf-trees with binary-
trees in (3.81) leads to the so-called “full tree” type bi-functor

Description T(X1, X2) B(X1, X2, Y) B(id, id, f) B(f, g, id)

“Full” Trees FTree(X1, X2) X1 +X2 × Y 2 id+ id× f 2 f + g × id(3.82)

As we shall see later on, these types are widely used in programming. In the
actual encoding of these types in HASKELL, exponentials are normally expanded
to products according to (2.102), see for instance

data BTree a = Empty | Node (a, (BTree a,BTree a))

Moreover, one may chose to curry the type constructors as in, e.g.

data BTree a = Empty | Node a (BTree a) (BTree a)

Exercise 3.13. Write as a catamorphisms

• the function which counts the number of elements of a non-empty list (type NList
in (3.81)).

• the function which computes the maximum element of a binary-tree of natural num-
bers.

2

Exercise 3.14. Characterize the function which is defined by (|[[] , h]|) for each of the
following definitions of h:

h(x, (y1, y2)) = y1 ++ [x] ++ y2 (3.83)

h = ++ · (singl ×++) (3.84)

h = ++ · (++× singl) · swap (3.85)

3.14. A CATALOGUE OF STANDARD POLYNOMIAL INDUCTIVE TYPES109

assuming singl a = [a]. Identify in (3.81) which datatypes are involved as base functors.
2

Exercise 3.15. Write as a catamorphism the function which computes the frontier of a
tree of type LTree (3.81), listed from left to right.
2

Exercise 3.16. Function

mirror (Leaf a) = Leaf a
mirror (Fork (x , y)) = Fork (mirror y ,mirror x)

which mirrors binary trees of type LTree a = Leaf a | Fork (LTree a, LTree a) can be
defined both as a catamorphism

mirror = (|in · (id+ swap)|) (3.86)

and as an anamorphism

mirror = [((id+ swap) · out)] (3.87)

where out is the converse of

in = [Leaf ,Fork] (3.88)

Show that both definitions are effectively the same, that is, complete the etc steps of the
rasoning:

mirror = (|in · (id+ swap)|)
≡ { ... etc ... }

mirror = [((id+ swap) · out)]
2

(Hint: recall that F f = id + f × f for this type and mind the natural property of
id+ swap.)
2

110 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Exercise 3.17. Let parametric type T be given with base B, that is, such that T f =
(| in · B (f , id)|). Define the so-called triangular combinator of T, tri f , as follows:

tri f = (| in · B (id,T f)|) (3.89)

Show that the instance of this combinator for type LTree a = Leaf a | Fork (LTree a, LTree a)
— such that in = [Leaf ,Fork] and B (f , g) = f + g × g — is the following function

tri :: (a → a)→ LTree a → LTree a
tri f (Leaf x) = Leaf x
tri f (Fork (t , t ′)) = Fork (fmap f (tri f t), fmap f (tri f t ′))

written in Haskell syntax.
2

3.15 Functors and type functors in HASKELL

The concept of a (unary) functor is provided in HASKELL in the form of a partic-
ular class exporting the fmap operator:

class Functor f where
fmap :: (a → b)→ (f a → f b)

So fmap g encodes F g once we declare F as an instance of class Functor.
The most popular use of fmap has to do with HASKELL lists, as allowed by
declaration

instance Functor [] where
fmap f [] = []
fmap f (x : xs) = f x : fmap f xs

in language’s Standard Prelude.
In order to encode the type functors we have seen so far we have to do the

same concerning their declaration. For instance, should we write

3.16. THE MUTUAL-RECURSION LAW 111

instance Functor BTree
where fmap f = cataBTree (inBTree · (id+ (f × id)))

concerning the binary-tree datatype of (3.81) and assuming appropriate declara-
tions of cataBTree and inBTree, then fmap is overloaded and used across
such binary-trees.

Bi-functors can be added easily by writing

class BiFunctor f where
bmap :: (a → b)→ (c → d)→ (f a c → f b d)

Exercise 3.18. Declare all datatypes in (3.81) in HASKELL notation and turn them into
HASKELL type functors, that is, define fmap in each case.
2

Exercise 3.19. Declare datatype (3.82) in HASKELL notation and turn it into an instance
of class BiFunctor.
2

3.16 The mutual-recursion law
The theory developed so far for building (and reasoning about) recursive functions
doesn’t cope with mutual recursion. As a matter of fact, the pattern of recursion
of a given cata(ana,hylo)morphism involves only the recursive function being de-
fined, even though more than once, in general, as dictated by the relevant base
functor.

It turns out that rules for handling mutual recursion are surprisingly simple
to calculate. As motivation, recall section 2.10 where, by mixing products with
coproducts, we obtained a result — the exchange rule (2.49) — which stemmed
from putting together the two universal properties of product and coproduct, (2.63)
and (2.65), respectively.

The question we want to address in this section is of the same brand: what
can one tell about catamorphisms which output pairs of values? By (2.63), such

112 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

catamorphisms are bound to be splits, as are the corresponding genes:

µF

(|〈h,k〉|)
��

FµF

F (|〈h,k〉|)
��

inoo

A×B F (A×B)〈h,k〉
oo

As we did for the exchange rule, we put (2.63) and the universal property of
catamorphisms (3.67) against each other and calculate:

〈f, g〉 = (|〈h, k〉|)
≡ { cata-universal (3.67) }
〈f, g〉 · in = 〈h, k〉 · F 〈f, g〉

≡ { ×-fusion (2.26) twice }
〈f · in, g · in〉 = 〈h · F 〈f, g〉, k · F 〈f, g〉〉

≡ { (2.64) }
f · in = h · F 〈f, g〉 ∧ g · in = k · F 〈f, g〉

The rule thus obtained,
{
f · in = h · F 〈f, g〉
g · in = k · F 〈f, g〉 ≡ 〈f, g〉 = (|〈h, k〉|) (3.90)

is referred to as the mutual recursion law (or as “Fokkinga’s law”) and is useful
in combining two mutually recursive functions f and g

µF

f

��

FµF

F 〈f,g〉
��

inoo

A F (A×B)
h

oo

µF

g

��

FµF

F 〈f,g〉
��

inoo

B F (A×B)
k

oo

into a single catamorphism.
When applied from left to right, law (3.90) is surprisingly useful in optimiz-

ing recursive functions in a way which saves redundant traversals of the input
inductive type µF. Let us take the Fibonacci function as example:

fib 0 = 1

fib 1 = 1

fib(n+ 2) = fib(n+ 1) + fib n

3.16. THE MUTUAL-RECURSION LAW 113

It can be shown that fib is a hylomorphism of type LTree (3.81),

fib = Jcount, fibdK

for count = [1 , add], add (x , y) = x + y and fibd n = if n < 2 then i1 Nil else
i2 (n−1, n−2). This hylo-factorization of fib tells its internal algorithmic struc-
ture: the divide step [(fibd)] builds a tree whose number of leaves is a Fibonacci
number; the conquer step (|count|) just counts such leaves.

There is, of course, much re-calculation in this hylomorphism. Can we im-
prove its performance? The clue is to regard the two instances of fib in the recur-
sive branch as mutually recursive over the natural numbers. This clue is suggested
not only by fib having two base cases (so, perhaps it hides two functions) but also
by the lookahead n+ 2 in the recursive clause.

We start by defining a function which reduces such a lookahead by 1,

f n = fib(n+ 1)

Clearly, f(n + 1) = fib(n + 2) = f n + fib n and f 0 = fib 1 = 1. Putting f
and fib together,

f 0 = 1

f(n+ 1) = f n+ fib n

fib 0 = 1

fib(n+ 1) = f n

we obtain two mutually recursive functions over the natural numbers (N0) which
transform into pointfree equalities

f · [0 , suc] = [1 , add · 〈f, fib〉]
fib · [0 , suc] = [1 , f]

over

N0

**∼= 1 + N0︸ ︷︷ ︸
F N0in=[0 ,suc]

hh (3.91)

Reverse +-absorption (2.43) will further enable us to rewrite the above into

f · in = [1 , add] · F 〈f, fib〉
fib · in = [1 , π1] · F 〈f, fib〉

114 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

thus bringing functor F f = id + f explicit and preparing for mutual recursion
removal:

f · in = [1 , add] · F 〈f, fib〉
fib · in = [1 , π1] · F 〈f, fib〉

≡ { (3.90) }
〈f, fib〉 = (|〈[1 , add], [1 , π1]〉|)

≡ { exchange law (2.49) }
〈f, fib〉 = (|[〈1, 1〉 , 〈add, π1〉]|)

≡ { going pointwise and denoting 〈f, fib〉 by fib′ }
{
fib′ 0 = (1, 1)
fib′ (n+ 1) = (x+ y, x) where (x, y) = fib′ n

Since fib = π2 · fib′ we easily recover fib from fib′ and obtain the intended
linear version of Fibonacci, below encoded in Haskell:

fib n = m where
(,m) = fib ′ n
fib ′ 0 = (1, 1)
fib ′ (n + 1) = (x + y , x) where (x , y) = fib ′ n

This version of fib is actually the semantics of the “for-loop” — recall (3.7) —
one would write in an imperative language which would initialize two global vari-
ables x, y := 1, 1, loop over assignment x, y := x+ y, x and yield the result in y.
In the C programming language, one would write

int fib(int n)
{
int x=1; int y=1; int i;
for (i=1;i<=n;i++) {int a=x; x=x+y; y=a;}
return y;
};

where the extra variable a is required for ensuring that simultaneous assignment
x, y := x+ y, x takes place in a sequential way.

Recall from section 3.1 that all N0 catamorphisms are of shape (|[k, g]|) and
such that (|[k, g]|)n = gnk, where gn is the n-th iteration of g, that is, g0 = id and

3.16. THE MUTUAL-RECURSION LAW 115

gn+1 = g · gn. That is, g is the body of a “for-loop” which repeats itself n-times,
starting with initial value k. Recall also that the for-loop combinator is nothing
but the “fold combinator” (3.5) associated to the natural number data type.

In a sense, the mutual recursion law gives us a hint on how global variables
“are born” in computer programs, out of the maths definitions themselves. Quite
often more that two such variables are required in linearizing hylomorphisms by
mutual recursion. Let us see an example. The question is: how many squares can
one draw on a n× n-tiled wall? The answer is given by function

ns n
def
=

∑

i=1,n

i2

that is,

ns 0 = 0

ns(n+ 1) = (n+ 1)2 + ns n

in Haskell. However, this hylomorphism is inefficient because each iteration in-
volves another hylomorphism computing square numbers.

One way of improving ns is to introduce function bnm n
def
= (n + 1)2 and

express this over (3.91),

bnm 0 = 1

bnm(n+ 1) = 2n+ 3 + bnm n

hoping to blend ns with bnm using the mutual recursion law. However, the same
problem arises in bnm itself, which now depends on term 2n + 3. We invent
lin n

def
= 2n+ 3 and repeat the process, thus obtaining:

lin 0 = 3

lin(n+ 1) = 2 + lin n

By redefining

bnm′ 0 = 1

bnm′(n+ 1) = lin n+ bnm′ n

ns′ 0 = 0

ns′(n+ 1) = bnm′ n+ ns′ n

116 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

we obtain three functions — ns′, bnm′ and lin — mutually recursive over the
polynomial base F g = id+ g of the natural numbers.

Exercise 3.22 below shows how to extend (3.90) to three mutually recursive
functions (3.92). (From this it is easy to extend it further to the n-ary case.) It is
routine work to show that, by application of (3.92) to the above three functions,
one obtains the linear version of ns which follows:

ns ′′ n = a where
(a, ,) = aux n
aux 0 = (0, 1, 3)
aux (n + 1) = let (a, b, c) = aux n in (a + b, b + c, 2 + c)

In retrospect, note that (in general) not every system of n mutually recursive
functions




f1 = φ1(f1, . . . , fn)
...
fn = φn(f1, . . . , fn)

involving n functions and n functional combinators φ1, . . . , φn can be handled by
a suitably extended version of (3.90). This only happens if all fi have the same
“shape”, that is, if they share the same base functor F.

Exercise 3.20. Use the mutual recursion law (3.90) to show that each of the two functions
{
odd 0 = False
odd(n+ 1) = even n

{
even 0 = True
even(n+ 1) = odd n

checking natural number parity can be expressed as a projection of

for swap (False,True)

Encode this for-loop in C syntax.
2

Exercise 3.21. The following Haskell function computes the list of the first n natural
numbers in reverse order:

insg 0 = []
insg (n + 1) = (n + 1) : insg n

3.16. THE MUTUAL-RECURSION LAW 117

1. Show that insg can also be defined as follows:

insg 0 = []
insg (n + 1) = (fsuc n) : insg n

fsuc 0 = 1
fsuc (n + 1) = fsuc n + 1

2. Based on the mutual recursion law derive from such a definition the following ver-
sion of insg encoded as a for-loop:

insg = π2 · insgfor
insgfor = for 〈(1+) · π1, cons〉 (1, [])

where cons (n,m) = n : m .

2

Exercise 3.22. Show that law (3.90) generalizes to more than two mutually recursive
functions, in this case three:





f · in = h · F 〈f, 〈g, j〉〉
g · in = k · F 〈f, 〈g, j〉〉
j · in = l · F 〈f, 〈g, j〉〉

≡ 〈f, 〈g, j〉〉 = (|〈h, 〈k, l〉〉|) (3.92)

2

Exercise 3.23. The exponential function ex : R → R (where “e” denotes Euler’s
number) can be defined in several ways, one being the calculation of Taylor series:

ex =
∞∑

n=0

xn

n!
(3.93)

The following function, in Haskell,

exp :: Double → Integer → Double
exp x 0 = 1
exp x (n + 1) = x ↑ (n + 1) / fac (n + 1) + (exp x n)

118 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

computes an approximation of ex, where the second parameter tells how many terms to
compute. For instance, while exp 1 1 = 2.0, exp 1 10 yields 2.7182818011463845.

Function exp x n performs badly for n larger and larger: while exp 1 100 runs instan-
taneously, exp 1 1000 takes around 9 seconds, exp 1 2000 takes circa 33 seconds, and so
on.

Decompose exp into mutually recursive functions so as to apply (3.92) and obtain the
following linear version,

exp x n = let (e, b, c) = aux x n
in e where

aux x 0 = (1, 2, x)
aux x (n + 1) =

let (e, s, h) = aux x n
in (e + h, s + 1, (x / s) ∗ h)

which translates directly to the encoding in C:

float exp(float x, int n)
{

float h=x; float e=1; int s=2; int i;
for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}
return e;

};

2

Exercise 3.24. Show that, for all n ∈ N0, n = sucn0. Hint: use cata-reflexion (3.68).
2

Mutual recursion over lists. As example of application of (3.90) for µF other
than N0, consider the following recursive predicate which checks whether a (non-
empty) list is ordered,

ord : A+ → 2
ord [a] = TRUE

ord (cons(a, l)) = a > (listMax l) ∧ (ord l)

3.16. THE MUTUAL-RECURSION LAW 119

where > is assumed to be a total order on datatype A and

listMax = (|[id,max]|) (3.94)

computes the greatest element of a given list of As:

A+

listMax
��

A+ A× A+

id+id×listMax
��

[singl ,cons]oo

A A+ A× A
[id ,max]

oo

(In the diagram, singl a = [a].)
Predicate ord is not a catamorphism because of the presence of listMax l in

the recursive branch. However, the following diagram depicting ord

A+

ord

��

A+ A× A+

id+id×〈listMax,ord〉
��

[singl ,cons]oo

2 A+ A× (A× 2)
[TRUE ,α]

oo

(where α(a, (m, b))
def
= a > m ∧ b) suggests the possibility of using the mutual

recursion law. One only has to find a way of letting listMax depend also on ord,
which isn’t difficult: for any A+ g // B , one has

A+

listMax

��

A+ A× A+

id+id×〈listMax,g〉
��

[singl ,cons]oo

A A+ A× (A×B)
[id ,max·(id×π1)]

oo

where the extra presence of g is cancelled by projection π1.
ForB = 2 and g = ord we are in position to apply Fokkinga’s law and obtain:

〈listMax, ord〉 = (|〈[id,max · (id× π1)], [TRUE , α]〉|)
= { exchange law (2.49) }

(|[〈id, TRUE〉 , 〈max · (id× π1), α〉]|)

Of course, ord = π2 · 〈listMax, ord〉. By denoting the above synthesized cata-
morphism by aux, we end up with the following version of ord:

120 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

ord l = let (a, b) = aux l in b

where
aux : A+ → A× 2
aux [a] = (a, TRUE)
aux (cons(a, l)) = let (m, b) = aux l

in (max(a,m), (a > m ∧ b))

aux : A+ → A× 2

aux [a] = (a,True)

aux (cons (a, l)) = let (m, b) = aux l in (max (a,m), (a > m ∧ b))

Exercise 3.25. What do the following Haskell functions do?

f1 [] = []
f1 (h : t) = h : (f2 t)

f2 [] = []
f2 (h : t) = f1 t

Write f = 〈f1, f2〉 as a list catamorphism and encode f back into Haskell syntax.
2

3.17 “Banana-split”: a corollary of the mutual-recursion
law

Let h = i · F π1 and k = j · F π2 in (3.90). Then

f · in = (i · F π1) · F 〈f, g〉
≡ { composition is associative and F is a functor }

f · in = i · F (π1 · 〈f, g〉)
≡ { by ×-cancellation (2.22) }

f · in = i · F f
≡ { by cata-cancellation }

f = (|i|)

3.17. “BANANA-SPLIT”: A COROLLARY OF THE MUTUAL-RECURSION LAW121

Similarly, from k = j · F π2 we get

g = (|j|)

Then, from (3.90), we get

〈(|i|), (|j|)〉 = (|〈i · F π1, j · F π2〉|)

that is

〈(|i|), (|j|)〉 = (|(i× j) · 〈F π1,F π2〉|) (3.95)

by (reverse) ×-absorption (2.27).
This law provides us with a very useful tool for “parallel loop” inter-combination:

“loops” (|i|) and (|j|) are fused together into a single “loop” (|(i× j) · 〈F π1,F π2〉|).
The need for this kind of calculation arises very often. Consider, for instance, the
function which computes the average of a non-empty list of natural numbers,

average
def
= (/) · 〈sum, length〉 (3.96)

where sum and length are the expected N+ catamorphisms:

sum = (|[id,+]|)
length = (|[1 , succ · π2]|)

As defined by (3.96), function average performs two independent traversals of
the argument list before division (/) takes place. Banana-split will fuse such two
traversals into a single one (see function aux below), thus leading to a function
which will run ”twice as fast”:

average l = x/y
where (x, y) = aux l

aux[a] = (a, 1)
aux(cons(a, l)) = (a+ x, y + 1)

where (x, y) = aux l

(3.97)

Exercise 3.26. Calculate (3.97) from (3.96). Which of these two versions of the same
function is easier to understand?
2

122 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

Exercise 3.27. The following diagram depicts “banana-split” (3.95):

FT

F (|i |)

��
F (|j |)

��

f6

��

in

ssT

(|i |)

��

(|j |)

��

f7

��

FA
i

ssA F (A× B)
f4

ss

f1

ee

f2 %%

f5oo

f3

{{

A× B

π1

bb

π2
##

FB

j
ssB

Identify all functions f1 to f7.
2

Exercise 3.28. Show that the standard Haskell function

unzip xs = (map π1 xs,map π2 xs)

can be defined as a catamorphism (fold) thanks to (3.95). Generalize this calculation to
the generic unzip function over an inductive (polynomial) type T:

unzipT = 〈Tπ1,Tπ2〉
Suggestion: recall (3.76).
2

3.18 Inductive datatype isomorphism

not yet available

3.19. BIBLIOGRAPHY NOTES 123

3.19 Bibliography notes
It is often the case that the expressive power of a particular programming language
or paradigm is counter-productive in the sense that too much freedom is given to
programmers. Sooner or later, these will end up writing unintelligible (author-
ship dependent) code which will become a burden to whom has to maintain it.
Such has been the case of imperative programming in the past (inc. assembly
code), where the unrestricted use of goto instructions eventually gave place to
if-then-else, while and repeat structured programming constructs.

A similar trend has been observed over the last decades at a higher program-
ming level: arbitrary recursion and/or (side) effects have been considered harmful
in functional programming. Instead, programmers have been invited to structure
their code around generic program devices such as eg. fold/unfold combinators,
which bring discipline to recursion. One witnesses progress in the sense that the
loss of freedom is balanced by the increase of formal semantics and the availabil-
ity of program calculi.

Such disciplined programming combinators have been extended from list-
processing to other inductive structures thanks to one of the most significant ad-
vances in programming theory over the last decade: the so-called functorial ap-
proach to datatypes which originated mainly from [27], was popularized by [26]
and reached textbook format in [6]. A comfortable basis for exploiting polymor-
phism [41], the “datatypes as functors” moto has proved beneficial at a higher
level of abstraction, giving birth to polytypism [22].

The literature on anas, catas and hylos is vast (see eg. [29], [21], [13]) and
it is part of a broader discipline which has become known as the mathematics of
program construction [2]. This chapter provides an introduction to such as disci-
pline. Only the calculus of catamorphisms is presented. The corresponding theory
of anamorphisms and hylomorphisms demands further mathematical machinery
(functions generalized to binary relations) and won’t be dealt with before chapters
10 and 9. The results on mutual recursion presented in this chapter, pionered by
Maarten Fokkinga [10], have been extended towards probabilistic functions [33].
They have also shown to help in program understanding and reverse engineering
[40]. Recently, the whole theory has undergone significant advances throught fur-
ther use of category theory notions such as adjunctions 15 and conjugate functors
[16, 17].

15See chapter 4.

124 CHAPTER 3. RECURSION IN THE POINTFREE STYLE

