▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Do the middle letters of "OLAP" stand for Linear Algebra ("LA")?

J.N. Oliveira (joint work with H. Macedo)

HASLab/Universidade do Minho Braga, Portugal

> SIG Amsterdam, NL 26th May 2011

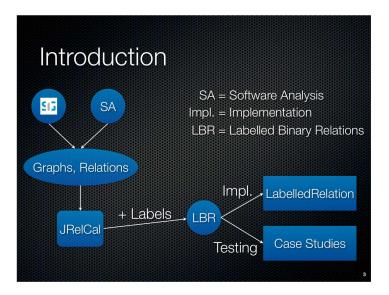
- **HASLab** is a research group at Minho University in Braga, Portugal
- The group has been concerned with developing techniques for *high assurance software*
- HASLab SIG collaboration on a regular basis since 2007
- SIG contributes with knowledge transfer in the area of software quality
- **HASLab** does so in the area of formal analysis, modelling and verification.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

ummary

References

A previous collaborative project

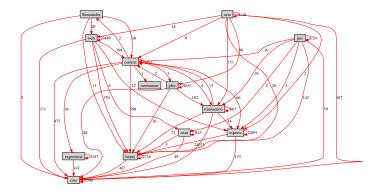


Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References

On-going collaborative project



Mining call-graphs for software architecture quality profiling.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Clearly:

- Need to quantify over relationships
- Raw information too fine-grained
- Too much information involved in data mining
- Need to make sense of huge data banks

Need for data summarizing techniques.

In fact:

- Data summaries unveil trends hidden in raw data
- One sees the "big picture"

State-of-the -art:

- "OLAP" stands for On Line Analytical Processing
- Proprietary solutions (IBM, Oracle, MS)
- Calls for parallelism
- Expensive.

Can parallel OLAP be made more widely accessible?

OLAP's "Hello World"

As generated in MS Excel (choose Data > PivotTableReport):

Raw data

Model	Year	Color	Sales
Chevy	1990	Red	5
Chevy	1990	Blue	87
Ford	1990	Green	64
Ford	1990	Blue	99
Ford	1991	Red	8
Ford	1991	Blue	7

CTAB

"How many vehicles were sold per color and model?"

	Sum of Sales	Model		
	Color	Chevy	Ford	Grand Total
	Blue	87	106	193
	Green		64	64
>	Red	5	8	13
	Grand Total	92	178	270

Pivot table

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Three dimensions — *Model, Year, Color* — and one measure — *Sales.* Summarizing over *Year*.

References

OLAP Cubes

For huge raw data sets

- such cross tabulation summaries (vulg.
 "pivot tables") take too long to generate
- The same tabulation likely to be required by different people in the organization
- Solution: generate all possible summaries overnight so that businessmen can have all pivot tables afresh the day after.
- Build a "**cube**" with all such multi-dimension projections.

Chevy 1990 Blue 87
Chevy 1990 Red 5
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1990 Green 64 Ford 1991 Blue 7
Ford 1991 Red 8
Chevy 1990 ALL 92
Ford 1990 ALL 163
Ford 1991 ALL 15
Chevy ALL Blue 87
Chevy ALL Red 5
Ford ALL Blue 106
Ford ALL Green 64
Ford ALL Red 8
ALL 1990 Blue 186
ALL 1990 Green 64
ALL 1990 Red 5
ALL 1991 Blue 7
ALL 1991 Red 8
Chevy ALL ALL 92
Ford ALL ALL 178
ALL 1990 ALL 255
ALL 1991 ALL 15
ALL ALL Blue 193
ALL ALL Green 64
ALL ALL Red 13
ALL ALL ALL 270

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

OLAP —- which theory behind?

OLAP:

- Cross tabulations are matrices (2-dim)
- What about OLAP cubes?
- Why SQL, GROUPBY, and so on?

Parallel solutions:

• MS Excel spreadsheet users may legitimately ask:

Is the generation of pivot tables in Excel actually taking advantage of the underlying multi-core hardware? How parallel is such a construction?

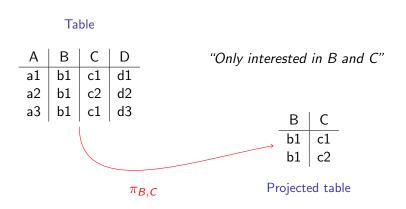
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

・ロト ・聞ト ・ヨト ・ヨト

э

Inspiration: relational algebra

Projecting over some attributes is a standard operation in relation algebra:



Summary

References

Relational projection

Given T, a set of tuples:

$$\pi_{B,C}T = \{(t[B], t[C]) \mid t \in T\}$$

Pointwise relational:

 $b(\pi_{B,C}T)c \iff \langle \exists t : t \in T : b = t[B] \land c = t[C] \rangle$

Pointfree relational:

$$\pi_{B,C}T = f_B \cdot \llbracket T \rrbracket \cdot f_C^\circ$$

where $f_X t = t[X]$ and $[T] = \{(t, t) | t \in T\}$ — a coreflexive binary relation.

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Types ("Relations as arrows")

For $T \in set A$, a set of tuples:

In general: R any binary relation and f, g arbitrary functions in

$$\pi_{g,f}R = g \cdot R \cdot f^{\circ} \qquad A \xleftarrow{R} B \qquad (1)$$

$$g \bigvee_{\substack{g \\ f \\ C \xleftarrow{\pi_{g,f}R}} D} f$$

Question

How to project data without loosing **quantitative** information in measure columns such as eg. *Sales* in

Model	Year	Color	Sales
Chevy	1990	Red	5
Chevy	1990	Blue	87
Ford	1990	Green	64
Ford	1990	Blue	99
Ford	1991	Red	8
Ford	1991	Blue	7

Clearly:

- Relational projection needs to take quantities into account
- Weighted graphs?
- Call them a proper name: we need matrices!

Context

OLAP

Matrices = arrows

D'LA'P

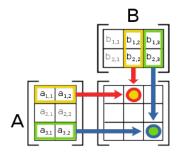
Higher-dim

Summary

References

MMM — matrix matrix multiplication

From the Wikipedia:



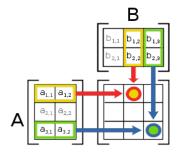
Index-wise definition

$$C_{ij} = \sum_{k,j=1,1}^{2,3} A_{ik} \times B_{kj}$$

Matrices = arrows

MMM — matrix matrix multiplication

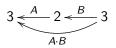
From the Wikipedia:



Index-wise definition

$$C_{ij} = \sum_{k,j=1,1}^{2,3} A_{ik} \times B_{kj}$$

Hiding indices *i*, *j*, *k*:



Index-free

 $C = A \cdot B$ ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References

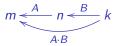
"Matrices as Arrows"

Given

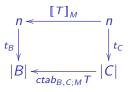
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$
$$B = \begin{bmatrix} b_{11} & \dots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nk} \end{bmatrix}_{n \times k}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

define



Types:



where

- n number of rows in raw data collection T
- |B| set of values in column B of T
- |C| set of values in column C of T
- $[T]_M$ diagonal matrix storing all measures in column M of T

• t_X — "Membership matrix" of (non-metric) column X.

Each column A in T "is" a function which tells, for each row, which value of |A| can be found in such column, which *matricizes* into:

$$t_{A} : |A| \leftarrow n$$

a $t_{A} r = \begin{cases} 1 & \text{if } T(r, A) = a \\ 0 & \text{otherwise} \end{cases}$

Diagonal construction for measure column M:

$$\llbracket T \rrbracket_{M} : n \leftarrow n$$

$$j\llbracket T \rrbracket_{M} i = \begin{cases} T(j, M) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

O'LA'P

Higher-dim

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References

"Hello World" illustration

Recall raw data example:

Model	Year	Color	Sales
Chevy	1990	Red	5
Chevy	1990	Blue	87
Ford	1990	Green	64
Ford	1990	Blue	99
Ford	1991	Red	8
Ford	1991	Blue	7

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References

"Hello World" illustration

$$|Model| \stackrel{t_{Model}}{\longleftarrow} 6$$

$$t_{Model} = \frac{1 \ 2 \ 3 \ 4 \ 5 \ 6}{Ford} = \frac{1 \ 1 \ 0 \ 0 \ 0 \ 0}{Ford}$$

 $|Color| \stackrel{t_{Color}}{\leftarrow} 6$

nmary

References

Counting

Typewise, the composition of matrices $|Color| \stackrel{t_{Color}}{\leftarrow} 6$ and

 $6 \stackrel{t_{Model}^{\circ}}{\leftarrow} |Model|$ makes sense and yields

		Chevy	Ford	
++°	Blue	1	2	(*
$t_{Color} \cdot t_{Model}^{\circ} =$	Green	0	1	(4
	Red	1	1	

Matrix $t_{Model} \cdot t_{Color}^{\circ}$ (counting)

counting sale records — corresponds to formula $t_A \cdot \llbracket T \rrbracket \cdot t_B^\circ$ where the middle matrix is the identity.

Pivot Table Calculation

The outcome of cross-tabulation

 $ctab_{Color,Model;Sales} = t_{Color} \cdot \llbracket T \rrbracket_{Sales} \cdot t_{Model}^{\circ}$ (3)

solely using matrix operations is the desired pivot table:

		Chevy	Ford	
$t = \begin{bmatrix} T \end{bmatrix} t^{\circ} =$	Blue	87	106	(4)
$t_{Color} \cdot \llbracket T \rrbracket_{Sales} \cdot t_{Model}^{\circ} =$	Green	0	64	(4)
	Red	5	8	

Grand Totals (ALL) still missing

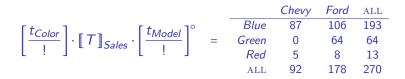
- Easily obtained via "bang" matrices (!_A)
- Matrix counterpart of the "bang" function (unique function to singleton type), that is, matrix 1 < |A| wholly filled up with 1s.

Using matrix **block notation** cross tabulation (with totals) becomes:

$$ctab_{A,B;M} : |A| + 1 \leftarrow |B| + 1$$

$$ctab_{A,B;M} = \left[\frac{t_A}{!}\right] \cdot \left[\!\left[T\right]\!\right]_M \cdot \left[\frac{t_B}{!}\right]^\circ$$
(5)

"Hello World" illustration



Sum of Sales	Model		
Color	Chevy	Ford	Grand Total
Blue	87	106	193
Green		64	64
Red	5	8	13
Grand Total	92	178	270

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Incremental OLAP (proving things)

- Let \mathcal{T} be yesterday's raw data and \mathcal{T}' be the today's data.
- Assume that T has remained the same (no updates, no deletes).
- Let T'' = T; T' denote the two data sources appended. Then the following facts hold:

$$t_A^{\prime\prime} = \begin{bmatrix} t_A | t_A^{\prime} \end{bmatrix} \tag{6}$$

$$t_B^{\prime\prime} = \left[t_B | t_B^{\prime} \right] \tag{7}$$

$$\llbracket T; T' \rrbracket_M = \llbracket T \rrbracket_M \oplus \llbracket T' \rrbracket_M$$
(8)

where \oplus denotes the direct sum of two matrices.

Let us prove that cross tabulation is incremental:

$$ctab_{A,B;M}(T;T') = ctab_{A,B;M}T + ctab_{A,B;M}T'$$
(9)

References

Calculational proof

 $ctab_{A,B;M}(T;T')$

 $\Leftrightarrow \{ (5); \text{ totals off with no loss of generality } \}$ $t''_{A} \cdot [[T; T']]_{M} \cdot (t''_{B})^{\circ}$

$$\Leftrightarrow \qquad \{ (6); (7) \text{ and } (8) \}$$

 $[t_A|t'_A] \cdot (\llbracket T \rrbracket_M \oplus \llbracket T' \rrbracket_M) \cdot [t_B|t'_B]^{\circ}$

 $\Leftrightarrow \qquad \{ \text{ absorption } \}$

$$\begin{bmatrix} t_A \cdot \llbracket T \rrbracket_M | t'_A \cdot \llbracket T' \rrbracket_M \end{bmatrix} \cdot \begin{bmatrix} t^\circ_B \\ \hline (t'_B)^\circ \end{bmatrix}$$

 $\Leftrightarrow \qquad \{ \text{ divide & conquer matrix multiplication } \}$ $t_A \cdot \llbracket T \rrbracket_M \cdot t_B^\circ + t_A' \cdot \llbracket T' \rrbracket_M \cdot (t_B')^\circ$ $\Leftrightarrow \qquad \{ (5) \text{ twice } \}$ $ctab_{A,B:M}T + ctab_{A,B:M}T'$

(ロ)、(型)、(E)、(E)、 E) のQの

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

OLAP Cube (parallel) construction

Thus far

Summary generation in "human readable" format: cross-tabulations are 2D charts.

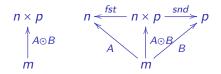
Higher dimensions

Generation of cubic and hypercubic data summaries also captured by our typed LA approach.

We have to introduce some notion of dimension product.

Khatri-Rao matrix product

Given matrices $n \stackrel{A}{\longleftarrow} m$ and $p \stackrel{B}{\longleftarrow} m$, build the Khatri-Rao product of A and B,



as follows,

$$\begin{array}{rcl} u \odot v &=& u \otimes v \\ [A_1|A_2] \odot [B_1|B_2] &=& [A_1 \odot B_1|A_2 \odot B_2] \end{array}$$
(10)

where u, v are column-vectors and A_i , B_i are suitably typed matrices.

D'LA'P

References

(11)

Example: measures in Khatri-Rao

As an example of Khatri-Rao product operation, consider row vector

$$s = \begin{bmatrix} 5 & 87 & 64 & 99 & 8 & 7 \end{bmatrix}$$

of type $1 \leftarrow 5$ 6 capturing the transposition of the *Sales* column. Then Khatri-Rao product $s \odot id$ is the corresponding diagonal matrix:

$$6 \stackrel{s \odot id}{\checkmark} 6 = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 87 & 0 & 0 & 0 & 0 \\ 0 & 0 & 64 & 0 & 0 & 0 \\ 0 & 0 & 0 & 99 & 0 & 0 \\ 0 & 0 & 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

"Hello World" illustration

Back to our running example, recall projections

$$t_{Model}: |Model| \leftarrow 6$$

$$t_{Model} = \frac{1 \ 2 \ 3 \ 4 \ 5 \ 6}{Ford \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0}$$

and

$$t_{Color}: |Color| \leftarrow 6$$

$$t_{Color} = \frac{1 \ 2 \ 3 \ 4 \ 5 \ 6}{Blue \ 0 \ 1 \ 0 \ 1 \ 0 \ 1}$$

$$\frac{1 \ 2 \ 3 \ 4 \ 5 \ 6}{Green \ 0 \ 0 \ 1 \ 0 \ 0 \ 0}$$

References

Pairing up dimensions

The Khatri-Rao product of t_{Model} and t_{Color} is matrix

	1	2	3	4	5	6
Chevy Blue	0	1	0	0	0	0
Chevy Green	0	0	0	0	0	0
Chevy Red	1	0	0	0	0	0
Ford Blue	0	0	0	1	0	1
Ford Green	0	0	1	0	0	0
Ford Red	0	0	0	0	1	0

of type $|Model| \times |Color| \leftarrow n$.

It tells in which rows the particular pairs of values turn up.

In other words, this matrix is the projection $t_{Model \times Color}$ of the Cartesian product of the two dimensions. In general:

$$t_{A \times B} = t_A \odot t_B$$

Context

=

Summary

References

All dimensions together

 $t_{Model imes Year imes Color}$

 $= t_{Model} \odot t_{Year} \odot t_{Color}$

-		1	2	3	4	5	6	
	Chevy 1990 Blue	0	1	0	0	0	0	
	Chevy 1990 Green	0	0	0	0	0	0	
	Chevy 1990 Red	1	0	0	0	0	0	
	Chevy 1991 Blue	0	0	0	0	0	0	
	Chevy 1991 Green	0	0	0	0	0	0	
	Chevy 1991 Red	0	0	0	0	0	0	
	Ford 1990 Blue	0	0	0	1	0	0	
	Ford 1990 Green	0	0	1	0	0	0	
	Ford 1990 Red	0	0	0	0	0	0	
	Ford 1991 Blue	0	0	0	0	0	1	
	Ford 1991 Green	0	0	0	0	0	0	
	Ford 1991 Red	0	0	0	0	1	0	

(12)

э

is the projection capturing the dimensional part of raw-data table.

References

Multi-dimensional summaries

Multidimensional cross-tabulations are obtained via the same formula (5) just by supplying higher-rank projections, for instance

	1990	1991	ALL
Chevy Blue	87	0	87
Chevy Green	0	0	0
Chevy Red	5	0	5
Ford Blue	99	7	106
Ford Green	64	0	64
Ford Red	0	8	8
ALL	255	15	270

corresponding to $A = Model \times Color$ and B = Year in (5).

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Computing the whole cube

General formula

$$\bigoplus_{i=0}^{\#D} (\bigoplus_{j \in \binom{D}{i}} (\bigoplus_{d \in j} t_d \cdot \llbracket T \rrbracket_{Unit} \cdot !^\circ))$$
(13)

for

- Unit is the chosen measure (quantitative/numerical attribute),
- ⊙_i A_i iterates A₁ ⊙ A₂ to more than two arguments mind that

$$! \odot A = A = A \odot ! \tag{14}$$

holds

• $\bigcirc_i A_i$ is the *n*-ary extension of the vertical blocking combinator $\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$

References

MATLAB script

```
function C = Cube(proj,dnum,ndim,lines)
C = [];
for i=1:ndim
    ind = nchoosek(1:ndim,i);
    for j=1:size(ind,1)
        C = [C ; kr(proj{ind(j,:)}) * dnum * bang(lines)'];
    end
end
C = lift([C; bang(lines) * dnum * bang(lines)']);
end
```

By running

>> Cube({m,y,c},d,3,6)

in MATLAB, where variables m, y, c and d respectively hold t_{Model} , t_{Year} , t_{Color} , $[T]_{Sales}$ we will obtain the cube previously shown.

Summing up:

- A no-SQL approach to data mining
- Formal semantics implicit in LA encoding
- Other OLAP operations such as **roll-up** easy to implement in typed LA.

Moreover:

- All constructions in the approach **embarrassingly parallel** (Foster, 1995).
- Projection and diagonal matrices are **sparse**, therefore calling for suitably optimization in a parallel environment (Williams et al., 2009).

Promises **inexpensive** parallel implementation of OLAP/data mining in multi-core, **lap-top** machines, eg. on top of MS Excel or OpenOffice.

Summary

References

Putting ideas on paper

Draft paper

Details in http://alfa.di.uminho.pt/~hmacedo/wiki/doku. php?id=blog:2011:0411_do_the_middle_letters

We regard this as a practical application of the typed LA approach we are developing under the **"matrices as arrows"** motto (Macedo and Oliveira, 2010)

Context

O'LA'P

igher-dim

y Re

References

Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995. ISBN 0201575949.

- H.D. Macedo and J.N. Oliveira. Matrices As Arrows! A Biproduct Approach to Typed Linear Algebra. In *Mathematics of Program Construction*, volume 6120 of *Lecture Notes in Computer Science*, pages 271–287. Springer, 2010.
- Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James Demmel. Optimization of sparse matrix-vector multiplication on emerging multicore platforms. *Parallel Comput.*, 35:178–194, March 2009. ISSN 0167-8191. doi: 10.1016/j.parco.2008.12.006. URL http: //portal.acm.org/citation.cfm?id=1513001.1513318.