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Context

• HASLab is a research group at Minho University in Braga,
Portugal

• The group has been concerned with developing techniques for
high assurance software

• HASLab - SIG collaboration on a regular basis since 2007

• SIG contributes with knowledge transfer in the area of
software quality

• HASLab does so in the area of formal analysis, modelling and
verification.
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A previous collaborative project
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On-going collaborative project
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Mining call-graphs for software architecture quality profiling.
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Motivation

Clearly:

• Need to quantify over relationships

• Raw information too fine-grained

• Too much information involved in data mining

• Need to make sense of huge data banks

Need for data summarizing techniques.
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Motivation

In fact:

• Data summaries unveil trends hidden in raw data

• One sees the “big picture”

State-of-the -art:

• “OLAP” stands for On Line Analytical Processing

• Proprietary solutions (IBM, Oracle, MS)

• Calls for parallelism

• Expensive.

Can parallel OLAP be made more widely accessible?
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OLAP’s “Hello World”

As generated in MS Excel (choose Data > PivotTableReport):

Raw data

Model Year Color Sales
Chevy 1990 Red 5
Chevy 1990 Blue 87
Ford 1990 Green 64
Ford 1990 Blue 99
Ford 1991 Red 8
Ford 1991 Blue 7

“How many vehicles were sold
per color and model?”

Sum of Sales Model
Color Chevy Ford Grand Total
Blue 87 106 193
Green 64 64
Red 5 8 13
Grand Total 92 178 270

Pivot table
CTAB

Three dimensions — Model , Year , Color — and one measure —
Sales. Summarizing over Year .
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OLAP Cubes

For huge raw data sets

• such cross tabulation summaries (vulg.
“pivot tables”) take too long to generate

• The same tabulation likely to be required
by different people in the organization

• Solution: generate all possible summaries
overnight so that businessmen can have
all pivot tables afresh the day after.

• Build a “cube” with all such
multi-dimension projections.

Chevy 1990 Blue 87

Chevy 1990 Red 5

Ford 1990 Blue 99

Ford 1990 Green 64

Ford 1991 Blue 7

Ford 1991 Red 8

------------------

Chevy 1990 ALL 92

Ford 1990 ALL 163

Ford 1991 ALL 15

Chevy ALL Blue 87

Chevy ALL Red 5

Ford ALL Blue 106

Ford ALL Green 64

Ford ALL Red 8

ALL 1990 Blue 186

ALL 1990 Green 64

ALL 1990 Red 5

ALL 1991 Blue 7

ALL 1991 Red 8

------------------

Chevy ALL ALL 92

Ford ALL ALL 178

ALL 1990 ALL 255

ALL 1991 ALL 15

ALL ALL Blue 193

ALL ALL Green 64

ALL ALL Red 13

------------------

ALL ALL ALL 270
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OLAP —- which theory behind?

OLAP:

• Cross tabulations are matrices (2-dim)

• What about OLAP cubes?

• Why SQL, GROUPBY, and so on?

Parallel solutions:

• MS Excel spreadsheet users may legitimately ask:

Is the generation of pivot tables in Excel actually
taking advantage of the underlying multi-core
hardware?
How parallel is such a construction?
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Inspiration: relational algebra

Projecting over some attributes is a standard operation in relation
algebra:

Table

A B C D

a1 b1 c1 d1
a2 b1 c2 d2
a3 b1 c1 d3

“Only interested in B and C”

B C

b1 c1
b1 c2

Projected tableπB,C
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Relational projection

Given T , a set of tuples:

πB,CT = {(t[B], t[C ]) ∣ t ∈ T}

Pointwise relational:

b(πB,CT )c ⇔ ⟨∃ t ∶ t ∈ T ∶ b = t[B] ∧ c = t[C ]⟩

Pointfree relational:

πB,CT = fB ⋅ [[T ]] ⋅ f ○C

where fX t = t[X ] and [[T ]] = {(t, t) ∣ t ∈ T} — a coreflexive binary
relation.



Context About OLAP Matrices = arrows O’LA’P Higher-dim Summary References

Types (“Relations as arrows”)

For T ∈ set A, a set of tuples:

A

fB
��

A
[[T ]]oo

fC
��

B C
πB,CT
oo

In general: R any binary relation and f ,g arbitrary functions in

πg ,f R = g ⋅ R ⋅ f ○ A

g
��

B
Roo

f
��

C D
πg,f R
oo

(1)
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Question

How to project data without loosing quantitative information in
measure columns such as eg. Sales in

Model Year Color Sales
Chevy 1990 Red 5
Chevy 1990 Blue 87
Ford 1990 Green 64
Ford 1990 Blue 99
Ford 1991 Red 8
Ford 1991 Blue 7

Clearly:

• Relational projection needs to take quantities into account

• Weighted graphs?

• Call them a proper name: we need matrices!
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MMM — matrix matrix multiplication

From the Wikipedia:

Index-wise definition

Cij =
2,3

∑
k,j=1,1

Aik ×Bkj

Hiding indices i , j , k:

3 2
Aoo 3

Boo

A⋅B

ff Index-free

C = A ⋅B
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MMM — matrix matrix multiplication

From the Wikipedia:

Index-wise definition

Cij =
2,3

∑
k,j=1,1

Aik ×Bkj

Hiding indices i , j , k:

3 2
Aoo 3

Boo

A⋅B

ff Index-free

C = A ⋅B
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“Matrices as Arrows”

Given

A =
⎡⎢⎢⎢⎢⎢⎣

a11 . . . a1n
⋮ ⋱ ⋮

am1 . . . amn

⎤⎥⎥⎥⎥⎥⎦m×n

m n
Aoo

B =
⎡⎢⎢⎢⎢⎢⎣

b11 . . . b1k
⋮ ⋱ ⋮

bn1 . . . bnk

⎤⎥⎥⎥⎥⎥⎦n×k

n k
Boo

define

m n
Aoo k

Boo

A⋅B

gg
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Projection (relations) → tabulation (matrices)

Types:

n

tB
��

n
[[T ]]Moo

tC
��

∣B ∣ ∣C ∣
ctabB,C ;MT
oo

where

• n — number of rows in raw data collection T

• ∣B ∣ — set of values in column B of T

• ∣C ∣ — set of values in column C of T

• [[T ]]M — diagonal matrix storing all measures in column M of
T

• tX — “Membership matrix” of (non-metric) column X .
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Details

Each column A in T “is” a function which tells, for each row,
which value of ∣A∣ can be found in such column, which matricizes
into:

tA ∶ ∣A∣← n

a tA r = { 1 if T (r ,A) = a
0 otherwise

Diagonal construction for measure column M:

[[T ]]M ∶ n ← n

j[[T ]]M i = { T (j ,M) if i = j
0 otherwise
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“Hello World” illustration

Recall raw data example:

Model Year Color Sales
Chevy 1990 Red 5
Chevy 1990 Blue 87
Ford 1990 Green 64
Ford 1990 Blue 99
Ford 1991 Red 8
Ford 1991 Blue 7
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“Hello World” illustration

∣Model ∣ 6
tModeloo

tModel =
1 2 3 4 5 6

Chevy 1 1 0 0 0 0
Ford 0 0 1 1 1 1

∣Color ∣ 6
tColoroo

tColor =
1 2 3 4 5 6

Blue 0 1 0 1 0 1
Green 0 0 1 0 0 0
Red 1 0 0 0 1 0
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Counting

Typewise, the composition of matrices ∣Color ∣ 6
tColoroo and

6 ∣Model ∣
t○Modeloo makes sense and yields

tColor ⋅ t○Model =

Chevy Ford

Blue 1 2
Green 0 1
Red 1 1

(2)

Matrix tModel ⋅ t○Color (counting)

counting sale records — corresponds to formula tA ⋅ [[T ]] ⋅ t○B where
the middle matrix is the identity.
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Pivot Table Calculation

The outcome of cross-tabulation

ctabColor ,Model ;Sales = tColor ⋅ [[T ]]Sales ⋅ t○Model (3)

solely using matrix operations is the desired pivot table:

tColor ⋅ [[T ]]Sales ⋅ t○Model =
Chevy Ford

Blue 87 106
Green 0 64
Red 5 8

(4)



Context About OLAP Matrices = arrows O’LA’P Higher-dim Summary References

Grand Totals (all) still missing

• Easily obtained via “bang” matrices (!A)

• Matrix counterpart of the “bang” function (unique function to

singleton type), that is, matrix 1 ∣A∣!Aoo wholly filled up
with 1s.

Using matrix block notation cross tabulation (with totals)
becomes:

ctabA,B;M ∶ ∣A∣ + 1← ∣B ∣ + 1

ctabA,B;M = [ tA
!
] ⋅ [[T ]]M ⋅ [ tB

!
]
○

(5)
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“Hello World” illustration

[ tColor
!

] ⋅ [[T ]]Sales ⋅ [
tModel

!
]
○

=

Chevy Ford all

Blue 87 106 193
Green 0 64 64
Red 5 8 13
all 92 178 270

Sum of Sales Model
Color Chevy Ford Grand Total
Blue 87 106 193
Green 64 64
Red 5 8 13
Grand Total 92 178 270
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Incremental OLAP (proving things)

• Let T be yesterday’s raw data and T ′ be the today’s data.

• Assume that T has remained the same (no updates, no
deletes).

• Let T ′′ = T ;T ′ denote the two data sources appended. Then
the following facts hold:

t ′′A = [tA∣t ′A] (6)

t ′′B = [tB ∣t ′B] (7)

[[T ;T ′]]M = [[T ]]M ⊕ [[T ′]]M (8)

where ⊕ denotes the direct sum of two matrices.

Let us prove that cross tabulation is incremental:

ctabA,B;M(T ;T ′) = ctabA,B;MT + ctabA,B;MT ′ (9)
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Calculational proof

ctabA,B;M(T ;T ′)
⇔ { (5); totals off with no loss of generality }

t ′′A ⋅ [[T ;T ′]]M ⋅ (t ′′B)○

⇔ { (6) ; (7) and (8) }

[tA∣t ′A] ⋅ ([[T ]]M ⊕ [[T ′]]M) ⋅ [tB ∣t ′B]
○

⇔ { absorption }

[tA ⋅ [[T ]]M ∣t ′A ⋅ [[T ′]]M] ⋅ [ t○B
(t ′B)○

]

⇔ { divide & conquer matrix multiplication }

tA ⋅ [[T ]]M ⋅ t○B + t ′A ⋅ [[T ′]]M ⋅ (t ′B)○

⇔ { (5) twice }

ctabA,B;MT + ctabA,B;MT ′
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OLAP Cube (parallel) construction

Thus far

Summary generation in “human readable” format:
cross-tabulations are 2D charts.

Higher dimensions

Generation of cubic and hypercubic data summaries also
captured by our typed LA approach.

We have to introduce some notion of dimension product.
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Khatri-Rao matrix product

Given matrices n m
Aoo and p m

Boo , build the Khatri-Rao
product of A and B,

n × p n n × p
fstoo snd // p

m

A⊙B

OO

m

A⊙B

OO

A

bb

B

<<

as follows,

u ⊙ v = u ⊗ v
[A1∣A2]⊙ [B1∣B2] = [A1 ⊙B1∣A2 ⊙B2]

(10)

where u, v are column-vectors and Ai , Bi are suitably typed
matrices.
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Example: measures in Khatri-Rao

As an example of Khatri-Rao product operation, consider row
vector

s = [5 87 64 99 8 7]

of type 1 6
soo capturing the transposition of the Sales column.

Then Khatri-Rao product s ⊙ id is the corresponding diagonal
matrix:

6 6
s⊙idoo =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0 0
0 87 0 0 0 0
0 0 64 0 0 0
0 0 0 99 0 0
0 0 0 0 8 0
0 0 0 0 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)
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“Hello World” illustration

Back to our running example, recall projections

tModel ∶ ∣Model ∣ 6oo

tModel =
1 2 3 4 5 6

Chevy 1 1 0 0 0 0
Ford 0 0 1 1 1 1

and

tColor ∶ ∣Color ∣ 6oo

tColor =

1 2 3 4 5 6

Blue 0 1 0 1 0 1
Green 0 0 1 0 0 0
Red 1 0 0 0 1 0
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Pairing up dimensions
The Khatri-Rao product of tModel and tColor is matrix

1 2 3 4 5 6

Chevy Blue 0 1 0 0 0 0
Chevy Green 0 0 0 0 0 0
Chevy Red 1 0 0 0 0 0
Ford Blue 0 0 0 1 0 1

Ford Green 0 0 1 0 0 0
Ford Red 0 0 0 0 1 0

of type ∣Model ∣ × ∣Color ∣ noo .

It tells in which rows the particular pairs of values turn up.

In other words, this matrix is the projection tModel×Color of the
Cartesian product of the two dimensions. In general:

tA×B = tA ⊙ tB
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All dimensions together

tModel×Year×Color

= tModel ⊙ tYear ⊙ tColor

= 1 2 3 4 5 6
Chevy 1990 Blue 0 1 0 0 0 0
Chevy 1990 Green 0 0 0 0 0 0
Chevy 1990 Red 1 0 0 0 0 0
Chevy 1991 Blue 0 0 0 0 0 0
Chevy 1991 Green 0 0 0 0 0 0
Chevy 1991 Red 0 0 0 0 0 0
Ford 1990 Blue 0 0 0 1 0 0
Ford 1990 Green 0 0 1 0 0 0
Ford 1990 Red 0 0 0 0 0 0
Ford 1991 Blue 0 0 0 0 0 1
Ford 1991 Green 0 0 0 0 0 0
Ford 1991 Red 0 0 0 0 1 0

(12)

is the projection capturing the dimensional part of raw-data table.
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Multi-dimensional summaries

Multidimensional cross-tabulations are obtained via the same
formula (5) just by supplying higher-rank projections, for instance

1990 1991 all
Chevy Blue 87 0 87
Chevy Green 0 0 0
Chevy Red 5 0 5
Ford Blue 99 7 106
Ford Green 64 0 64
Ford Red 0 8 8

all 255 15 270

corresponding to A =Model × Color and B = Year in (5).
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Computing the whole cube

General formula

#D

⊖
i=0

(⊖
j∈(D

i
)

(⊙
d∈j

td ⋅ [[T ]]Unit ⋅ !○)) (13)

for

• Unit is the chosen measure (quantitative/numerical attribute),

• ⊙i Ai iterates A1 ⊙A2 to more than two arguments — mind
that

!⊙A = A = A⊙ ! (14)

holds

• ⊖i Ai is the n-ary extension of the vertical blocking

combinator [A1
A2

]
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MATLAB script

function C = Cube(proj,dnum,ndim,lines)

C = [];

for i=1:ndim

ind = nchoosek(1:ndim,i);

for j=1:size(ind,1)

C = [C ; kr(proj{ind(j,:)}) * dnum * bang(lines)’];

end

end

C = lift([C; bang(lines) * dnum * bang(lines)’]);

end

By running

>> Cube({m,y,c},d,3,6)

in MATLAB, where variables m, y , c and d respectively hold tModel ,

tYear , tColor , [[T ]]Sales we will obtain the cube previously shown.
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Summary

Summing up:

• A no-SQL approach to data mining

• Formal semantics implicit in LA encoding

• Other OLAP operations such as roll-up easy to implement in
typed LA.

Moreover:

• All constructions in the approach embarrassingly parallel
(Foster, 1995).

• Projection and diagonal matrices are sparse, therefore calling
for suitably optimization in a parallel environment (Williams
et al., 2009).

Promises inexpensive parallel implementation of OLAP/data
mining in multi-core, lap-top machines, eg. on top of MS Excel or
OpenOffice.
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Putting ideas on paper

Draft paper

Details in http://alfa.di.uminho.pt/~hmacedo/wiki/doku.

php?id=blog:2011:0411_do_the_middle_letters

We regard this as a practical application of the typed LA approach
we are developing under the “matrices as arrows” motto
(Macedo and Oliveira, 2010)

http://alfa.di.uminho.pt/~hmacedo/wiki/doku.php?id=blog:2011:0411_do_the_middle_letters
http://alfa.di.uminho.pt/~hmacedo/wiki/doku.php?id=blog:2011:0411_do_the_middle_letters
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