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Thanks to NII!

Trip planned long

ago...

Long friendship —
Zhenjiang, can you
remember Gttse’05?

We had met before —
cf. (Mu et al., 2004),
which relates to this
talk!

http://wiki.di.uminho.pt/twiki/bin/view/Events/GTTSE/WebHome
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Computing versus energy

Thermodynamics view of computing.

Green computing calling for less energy consumption.

Landauer’s principle: irreversible computation accounted for
energy consumption (entropy).

�� ��

?

LL ?
11
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Information is physical

Physics of information — a branch of science.

Quantum computing — a quantum mechanics view of
computation (bijective transformations → unitary
transformations).

Bidirectional programming (BX)

Aim — achieve reversible / quantum programming
constructively.

Inspiration from functional programming.

Algebra of Reversible / Quantum Programming? Yes — LAoP, a
linear algebra of programming.
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Ut facient opus signa

(”Let symbols do the work”)

[...] by the aid of
symbolism, we can make
transitions in reasoning
almost mechanically by
the eye
[...] Civilisation advances
by extending the number
of important operations
which can be performed
without thinking about
them.”

(Alfred Whitehead, 1911)
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Start from BX (total, functional)

S
id

{{
getOid
��

S

get
��

V × S
putoo

fst{{
V

GetPut:

get · put = fst (1)

PutGet:

put · (get O id) = id (2)

Composition combinator:

(f · g) x = f (g x)

Pairing combinator:

(f O g) x = (f x , g x)

Identity:

id x = x

Projections:

fst (a, b) = a snd (a, b) = b
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Calculating properties of get+put

PutGet ensures that put is surjective,

〈∀ s :: 〈∃ v , s ′ :: s = put (v , s ′)〉〉

since f︸︷︷︸
surjective

· g︸︷︷︸
injective

= id in general.

Moreover, get is also surjective and uniquely determined by put.
Why and how?

To answer these questions we have to do our first generalization:

“(...) like the move from real numbers to complex ones,
the move [from functions] to relations increases our
powers of expression” (Bird and de Moor, 1997)
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Calculating properties of get+put

We generalize y = f x to y R x , and use the same arrows to denote

both, e.g. X
f // Y and X

R // Y .

Some people like writing y R x ⇔ (y , x) ∈ R, but we simply read y R x
as “it is true that y is related to x by R”; or simply, “y R x holds”.

John Loves Mary . 2< 3. As simple as that.

To say that Mary is loved by John simply write Mary Loves◦ John.

In general: y R x ⇔ x R◦ y — this is the converse operation, or passive
voice:

(R · S)◦ = S◦ · R◦

id◦ = id

Composition generalizes to y (R · S) x ⇔ 〈∃ z :: y R z ∧ z S x〉.
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Calculating properties of get+put

The other ingredient of the generalization is that relations are
ordered by a partial order, R ⊆ S ⇔ 〈∀ y , x :: y R x ⇒ y S x〉.

Functions are the only relations f , g such that the following hold:

f · R ⊆ S ⇔ R ⊆ f ◦ · S (3)

f ⊆ g ⇔ f = g ⇔ g ⊆ f (4)

Convention: functions in lowercase, general relations in
uppercase.

Taking converses,

R · f ◦ ⊆ S ⇔ R ⊆ S · f (5)

also holds. Why do functions enjoy such nice shunting rules?
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Relation bestiary

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

where

R injective⇔ R◦ · R︸ ︷︷ ︸
ker R

⊆ id R simple⇔ R◦ injective

R entire⇔ id ⊆ R · R◦︸ ︷︷ ︸
img R

R surjective⇔ R◦ entire
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Relations as matrices

It helps if we depict relations using (Boolean) matrices, for

instance negation (a bijection) ¬ =

0 1

0 0 1
1 1 0

exclusive-or (surjective but not injective): (∨̇) =

0 0 1 1
0 1 0 1

0 1 0 0 1
1 0 1 1 0

and so on.

Functions have exactly one 1 in every column.

Bijections have exactly one 1 in every column and in every row.
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Functions, bijections, etc

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

Thus

f function⇔ img f ⊆ id ∧ id ⊆ ker f

f bijection⇔ f ◦ function⇔ img f = id ∧ id = ker f

These are the properties ensure the rules given earlier for functions.
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Re-write GetPut and PutGet

By such rules, GetPut re-writes to

get · put = fst ⇔
{

put ⊆ get◦ · fst
fst · put◦ ⊆ get

and PutGet to

put · (g O id) = id ⇔ g O id ⊆ put◦

From this we infer:

• get is surjective — because put◦ and fst are so, and thumb
rule: larger than surjective is surjective.

• put determines get — if some other get ′ exists, get = get ′

— next slide.
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put determines get

true

⇔ { PutGet of new get ′ }

put ⊆ get ′
◦ · fst

⇒ { monotonicity }

put · (get O id) ⊆ get ′
◦ · fst · (get O id)

⇔ { PutGet of first get }

id ⊆ get ′
◦ · fst · (get O id)

⇔ { shunting, fst · (f O g) = f }

get ′ ⊆ get

⇔ { function equality }

get ′ = get

2
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Bad puts...
However, some puts have no get. Why?

Recall GetPut in version

fst · put◦ ⊆ get

As get is simple, and smaller than simple is simple, fst · put◦

has to be simple too:

fst · put◦ simple

⇔ { R simple ⇔ R · R◦ ⊆ id }

fst · put◦ · put · fst◦ ⊆ id

⇔ { shunting rules }

put◦ · put ⊆ fst◦ · fst

⇔ { injectivity preorder: R 6 S ⇔ ker S ⊆ ker R }

fst 6 put
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put more injective than fst (sorry!)

Counter-example:

Is exclusive-or

(∨̇) : 2× 2→ 2

(∨̇) =

[
1 0 0 1
0 1 1 0

]
a good put? No! — just compute

fst · (∨̇◦) =

[
1 1
1 1

]
= >

and observe that it is not simple.1

1We denote by B A
>oo the largest relation of type B Aoo .
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put more injective than fst (sorry!)

The same counter-example using the injectivity preorder:

fst 6 (∨̇)

⇔ { R 6 S ⇔ ker S ⊆ ker R }

ker (∨̇) ⊆ ker fst

⇔ { kernel matrices }
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 ⊆


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


⇔ { pointwise inclusion }

false
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How to design a (good) put?

To obtain a good put : V × S → S ,

• refine fst : V × S → V according to the injectivity preorder
— i.e. find put s.t. fst 6 put.

• Then obtain get : S → V by computing fst · put◦.

Example: starting point for a good 2× 3
put // 3 is

ker ( 2 2× 3
fstoo ) =



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1





Prelude Thermodynamics Quantum Postlude Annex References

Designing a good put

Note that ker put must have 3 equivalence classes (#S = 3)
because put is surjective.

Since ker fst has 2 equivalence classes (fst surjective, #V = 2),
the best we can do is to split one of these in two, eg.

ker put =



1 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1


that is:

put =

1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 1
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Designing a good put

As this is a good put by construction, its get is immediately
calculated:2

get = fst · put◦ =

[
1 1 0
0 0 1

]
That is:

put (a, 1) = 1
put (a, 2) = put (a, 3) = 2
put (b, ) = 3

get 1 = get 2 = a
get 3 = b

(We make V = {a, b} just for visualizing V and S differently.)

2Note that fst · put◦ is always entire because put is surjective.
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Designing a good put

Exercise: How many good puts there are of type
3× 4→ 4? And what is the corresponding get? Start
from

ker ( 3 3× 3
fstoo ) =



1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1


and refine.
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Going partial

As in (Ko and Hu, 2018), BX become more general once we drop
totality (entireness).

Thus put and get become just simple relations (= partial
functions) P and G with GetPut+PutGet

P ⊆ G ◦ · fst (6)

G O id ⊆ P◦ (7)

by immediate generalization of what we had before:

put ⊆ get◦ · fst
get O id ⊆ put◦

Here is how GetPut+PutGet (6,7) read with variables:

s ′ P (v , s)⇒ v G s ′

v G s ⇒ s P (v , s)
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Going (more) injective

As we did with fst 6 put, we are now interested in further
exploiting the injectivity preorder,

R 6 S ⇔ ker S ⊆ ker R

as a refinement ordering guiding us towards more and more
injective computations — the way to reversibility.

This ordering is rich in properties, for instance it is upper-bounded3

R O S 6 X ⇔ R 6 X ∧ S 6 X (8)

3Details in (Oliveira, 2014). NB: pairing generalizes to relations in the
expected way: (b, c) (R O S) a⇔ b R a ∧ c S a.
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Going (more) injective

Therefore, by cancellation of (8), we have that pairing always
increases injectivity:

R 6 R O S and S 6 R O S . (9)

The inclusion ker (R O S) ⊆ (ker R) ∩ (ker S) is in fact an
equality

ker (R O S) = (ker R) ∩ (ker S)

itself a corollary of the more general:

(R O S)◦ · (Q O P) = (R◦ · Q) ∩ (S◦ · P) (10)

Injectivity shunting laws also exist, e.g.

R · g 6 S ⇔ R 6 S · g◦
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Ordering functions by injectivity

Restricted to functions, (6) is universally bounded by

! 6 f 6 id

where 1 A
!oo is the unique function of its type. (1 is the

singleton type.) Moreover,

• A function is injective iff

id 6 f

Thus f O id is always injective (9).

• Two functions f e g are said to be complementary wherever
id 6 (f O g).4

For instance, fst and snd are complementary since fst O snd = id .

4Cf. (Matsuda et al., 2007). Other terminologies are monic pair (Freyd and
Scedrov, 1990) or jointly monic (Bird and de Moor, 1997).
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Minimal complements

Minimal complements — Suppose (a) id 6 f O g ; (b)
if id 6 f O h and h 6 g then g 6 h.

Then g is said to be a minimal complement of f
(Bancilhon and Spyratos, 1981).

Minimal complements (not unique in general) characterize “what
is missing” in the original function for injectivity to hold.

Example: Non-injective 2 2× 2
∨̇oo =

[
1 0 0 1
0 1 1 0

]
has

minimal complement 2 2× 2
fstoo =

[
1 1 0 0
0 0 1 1

]
.

How can we be sure it is minimal?
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Minimal complements

We start from

ker (∨̇) = ker

[
1 0 0 1
0 1 1 0

]
=


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


Clearly, ker g has to cancel all 1’s that fall outside the diagonal,

ker g =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


but this is an overkill — g = id in this case!

We can add 1s where ker (∨̇) has 0’s, e.g.


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 but this isn’t

a kernel anymore — why?
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Minimal complements

Kernels of functions are equivalence relations — reflexive (cf.
diagonal), symmetric and transitive.

How do we ensure this?

By ensuring that the matrix depicts a rational, or difunctional
relation:

A relation R is difunctional iff R · R◦ · R ⊆ R.

Fact: a symmetric+reflexive relation is an equivalence iff it is
difunctional.

One can construct difunctional relations easily: just make sure
that columns either don’t intersect or are the same.
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Ensuring difunctionality

Cancel zeros symmetrically, outside the diagonal:
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

→


1 1 0 0
1 1 0 1
0 0 1 1
0 1 1 1

→


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 = ker fst

Alternatively:
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

→


1 0 1 0
0 1 0 1
1 0 1 1
0 1 1 1

→


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 = ker snd

So, both fst and snd are minimal complements of ∨̇.
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Complementing (∨̇)

What do we get by complementing (∨̇) with fst:

2× 2 2× 2
fstO∨̇oo =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ?

This is a well-known bijection, in fact a (classical) quantum gate
known as CNOT (for ”controlled not”) and depicted as follows:

a′

b′

a

b

tn
Why does it bear this name?
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Complementing (∨̇)

cnot = fst O (∨̇)

⇔ { pointwise }

cnot (a, b) = (a, a ∨̇ b))

⇔ { since 0 ∨̇ b = b and 1 ∨̇ b = ¬ b }{
cnot (0, b) = (0, b)
cnot (1, b) = (1,¬ b)

Informally: controlled bit b is negated iff the control bit a is set.

Thus we have a constructive approach to designing this gate —
we build it by minimal complementation. (Not the standard
interpretation!)
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Other fst-complementations

Take the classical circuit

a

b
c

z

Can it be made into a bijection in the same way?

The function implemented is

22 × 2
f =∨̇·(∧⊗id) // 2 =

[
1 0 1 0 1 0 0 1
0 1 0 1 0 1 1 0

]
Let us complement it with 22 × 2

fst // 22 again. (Next slide.)
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Other fst-complementations

We get another bijection, known as the CCNOT gate :

ccnot = fst O (∨̇ · (∧ ⊗ id)) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


a a′

b′

c ′

b

c

ttn ccnot : 22 × 2→ 22 × 2
ccnot ((1, 1), c) = ((1, 1),¬ c)
ccnot ((a, b), c) = ((a, b), c)
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Other fst-complementations

A famous device in quantum programming is the following
evolution of the CNOT gate,

x

f x ∨̇ y

x
U f

y

parametric on 2
f // 2 :

U f = fst O (∨̇ · (f × id))

where

(f × g) (a, b) = (f a, f b)

Clearly, cnot = U id .
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Other fst-complementations
x

f x ∨̇ y

x
U f

y
is bijective because it is its self inverse:

(U f ) · (U f ) = id

⇔ { U f (x , y) = (x , f x ∨̇ y) }

U f (x , f x ∨̇ y) = (x , y)

⇔ { again U f (x , y) = (x , f x ∨̇ y) }

(x , f x ∨̇ (f x ∨̇ y)) = (x , y)

⇔ { ∨̇ is associative and x ∨̇ x = 0 }

(x , 0 ∨̇ y) = (x , y)

⇔ { 0 ∨̇ x = x }

(x , y) = (x , y)

2
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Pause

What have we achieved thus far?

A constructive approach to reversibility — instead of accepting
(e.g. quantum gates as) “inventions”, we start (functionally)
from the functions that we want to make available, e.g.

a

b
c

z

and then refine them into reversible programs by pairing them
with minimal complements.

That is, the original gate is taken as specification, the reversible
one as implementation.

Never forget to program from specifications (Morgan,

1990).
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The role of A A× Bfstoo

We have seen that A A× B
fstoo plays a prominent role in the

calculations thus far.

The starting point for calculating S V × S
putoo

fst 6 put

is a property known as the semi-injectivity of put (Foster et al.,
2007):

put(a, c) = put(a′, c ′) ⇒ a = a′

(Just unfold fst 6 put and go pointwise.)

fst is often a good minimal complement — can (fst O ) be
extended recursively?
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Going general (recursive)

Our examples have been fortunate in the sense that projection

A× B
fst // A was paired with a function of type

A× B // B , making room for a bijection of type

A× B // A× B .

Suppose we want to offer arbitrary f : A→ B in a bijective
“envelope” (that’s what reversible/quantum computing is all
about).

The “smallest” (generic) type for such an enveloped function is
A× B → A× B.

Now suppose f is a recursive function, e.g. f = foldr g b. How do
we “constructively” build the corresponding (recursive, bijective)
envelope of type [A]× B → [A]× B?
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Going general (folds)

Let us define $f% (x , b) = foldr f b x where f a b = f (a, b):

$f% ([ ], b) = b

$f% (a : x , b) = f (a,$f% (x , b))

Thus

[A]× B

$f%
��

B + A× ([A]× B)
αoo

id+id×$f%
��

B B + A× B
[id ,f ]

oo

NB:

X + Y = { i1 x | x ∈ X } ∪ { i2 y | y ∈ Y }

is disjoint union of X and Y — thanks to i1 · i◦2 = ⊥ — and [R , S ] is
the unique relation X such that X · i1 = R and X · i2 = S .
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Going general (N0)

Let us start from a simpler fold, that over natural numbers
(for f i n = f n i):

for f i 0 = i

for f i (n + 1) = f (for f i n)

Via the same procedure, this becomes

N0 × B

$f%
��

B + N0 × B
αoo

id+$f%
��

C B + C
f

oo

where (constant functions are denoted by k x = k):

α = [0 O id , succ × id ] = [0, succ · fst] O [id , snd ]



Prelude Thermodynamics Quantum Postlude Annex References

Going general (N0)

Universal property (UP):

k = $f% ⇔ k · α = f · (id + k) (11)

Reflexion: $α% = id ; Projection:

fst · α = [0, succ · fst]

⇔ { fusion-+ }

fst · α = [0, succ]) · (id + fst)

⇔ { universal property }

fst = $[0, succ]%

2

Complementation N0 × B N0 × B
$[0,succ]%O$[id ,f ]%oo brings

”banana-split” to mind...
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Banana-split

As with standard folds (catamorphisms) the “ banana-split” rule
states:

$f% O $g% = $(f · (id + fst)) O (g · (id + snd))%

For any f : B → B, let us define

N0 × B N0 × B
Ψ foo = fst O $[id , f ]%

That is, Ψ f (n, b) = (n, f n b) is a
for-loop which keeps its input. We will
show that it preserves injectivity.

n

b f n b

n
Ψ f

First of all, we calculate Ψ f following the standard style. (Next
slide.)
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Calculating Ψ f

Ψ f

= { Ψ f = fst O $[id , f ]% ; reflexion }

$[0, succ]% O $[id , f ]%

= { banana-split }

$[0, succ · fst] O [id , f · snd ]%

= { exchange law }

$[0 O id , succ × f ]%

From Ψ f = $[0 O id , succ × f ]% we derive, by the UP:

Ψ f · (0 O id) = 0 O id

Ψ f · (succ × id) = (succ × f ) ·Ψ f
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Ψ preserves injectivity

First note that [0 O id , succ × f ] is injective iff f is injective, by
the following rule

[R , S ] injective iff both R, S injective and R◦ · S ⊆ ⊥.

(Note that 0◦ · succ ⊆ ⊥ since there is no n ∈ N0 such that
succ n = 0.)

Therefore, to show that Ψ f = $[0 O id , succ × f ]% preserves
injectivity it is enough to show that $% does so:

f injective⇒$f% injective (12)

(Proof in the annex.)
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Moving to a truly quantum setting

Quoting (Mu et al., 2004):

The motivation to study languages for reversible programs
traditionally comes from the thermodynamics view of
computation.

What about quantum programming (QP)?

In QP we actually rely on quantum mechanics to run our
programs. How can this be?

Quantum mechanics (QM) is normally “explained” using linear
algebra.

Relation algebra and linear algebra are tightly related. Moving

from the former to the latter is quite smooth.
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“Matrices are arrows”

In the same way we extended functional declarations f : A→ B to
relational ones, R : A→ B, we do the same for matrices:

M : A→ B declares a matrix with #A-many columns
and #B-many rows. Writing M : A→ B or M : B ← A
is the same.5

In QM, matrices are complex-number-valued, for instance that
describing the so-called T-gate,

2 2
Too =

[
1 0

0 e
i π
4

]

where e i x = cos x + i sin x (Euler’s formula).

5Assume A and B finite, for simplicity.
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“Matrices are arrows”

(Constant) functions of type 1→ A expand to column-vectors of

complex numbers, for instance, 2 1
qoo =

[
1√
2
1√
2

]
.

What about arrow composition, recall f · g and R · S?

Easy: M · N is matrix multiplication: B A
Moo C

Noo

M·N

hh

b(M · N)c = 〈
∑

a :: (b M a)× (a N c)〉

NB: we denote matrix cells, e.g. b M a, as we did for relations.
Why a different notation?
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Bijections → unitary transformation

Our original relations and functions are accepted, as
{0, 1}-valued matrices.

Functions, in particular, are the only {0, 1}-matrices such that
! · f = !.

But they become “divisible”. For instance, you can take “the sqrt
of negation”, since

¬ = (
√
¬) · (

√
¬)

where

√
¬ =

1

2

[
1 + i 1− i
1− i 1 + i

]
Thus one moves into the wonderland of actual quantum logic, in
which classical logic operations are no longer primitive.
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Bijections → unitary transformation

What kind of matrix is
√
¬ ?

It is unitary — a refined notion of reversible:

A matrix A A
Moo is unitary iff

M† ·M = id = M ·M† (13)

where M† = M
◦

is the conjugate transpose of M and:

x + y i = x − y i[
M N
P Q

]
=

[
M N

P Q

]

Quantum mechanical processes governed by unitary matrices are
the building blocks of QP.
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Reversible → Unitary

To what extent does what we did for reversibility apply to QP?

The nice story is that our investment in pointfree notation pays
off now.

Recall, for example,

n

b f n b

n
Ψ f

defined by

Ψ f · α = [0 O id , succ × f ] · (id + Ψ f )

We just need to extend pairing ( O ) and junction [ , ] to
arbitrary matrices.
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Linearity

Pairing gives rise to the Khatri-Rao product:

(x , y) (M O N) a = (x M a) (y N a)

What about R ∪ S and R ∩ S? They become (cell-wise) addition
and multiplication, respectively:

b (M + N) a = B M a + b N a

b (M × N) a = (B M a) (b N a)

Note that, unlike R ∪ R = R, M + M = 2 M.

Linearity is the essence it all:

Q · (M + N) = Q ·M + Q · N
(M + N) · Q = M · Q + N · Q
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Tensor product and direct sum

The Khatri-Rao product leads the so-called Kronecker (or
tensor) product

A
M ��

B
N ��

A× B
M⊗N��

C D C × D

by

M ⊗ N = (M · fst) O (N · snd)

— cf. relational product R × S .

Finally, [R , S ] corresponds to [M|N] which collates matrices
horizontally, for instance:

[id |¬] = [

[
1 0
0 1

]
|
[
0 1
1 0

]
] =

[
1 0 0 1
0 1 1 0

]
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Towards “quantamorphisms”

The following property of relations

[R , S ] · [P ,Q]◦ = R · P◦ ∪ S · Q◦

also holds for matrices:

[M|N] · [P|Q]◦ = M · P◦ + N · Q◦ (14)

Then

Ψ M = [0 O id , (succ ⊗M) ·Ψ M] · α◦

⇔ { unfold α }

Ψ M = [0 O id , (succ ⊗M) ·Ψ M] · [0 O id , succ ⊗ id ]◦

⇔ { }

Ψ M = (0 O id) · (0 O id)◦ + (succ ⊗M) ·Ψ M · (succ◦ ⊗ id)
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Towards “quantamorphisms”

Thus we obtain a recursive matrix definition whose least fixpoint is

Ψ M = µX .(B + (succ ⊗M) · X · (succ◦ ⊗ id))

where B = (0 O id) · (0 O id)◦

is the “quantamorphism”

n

b Mn b

n
Ψ M

implementing the quantum for gate which iterates M over the
second input controlled by the first one (a naural number).
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Quantamorphism Ψ M in Matlab / Octave
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Iterating a phase-shift gate

Consider the so-called phase shift

gate defined by Rφ =

[
1 0
0 e i φ

]
Recalling e i φ = cos φ+ i sin · φ,
we get, for instance,

Rπ
6

=

[
1 0
0 0.867 + 0.5 i

]

The finite approximation to

n

b Rπ
6

n b

n

Ψ Rπ
6

for #B = 2 and control n 6 4 is given in the next slide.
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Iterating a phase-shift gate

f4 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0.867 + 0.5i 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0.5 + 0.867i 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 i

Complex matrix f4 is unitary.

Note the effect of complementation (fst O ) shifting the
corresponding iteration of gate Rπ

6
along the diagonal.
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Summary

Quantamorphisms have the advantage over other quantum
strategies of dispensing with measurements. But the concept is
still experimental.

Building upon previous work on stochastic folds in LAoP (Murta
and Oliveira, 2015).

The (linear) algebra of (unitary) quantamorphisms is the topic of
Ana Neri’s MSc project (grantee INESC TEC).

Towards correct by construction quantum programs.

Categorial approach — investigate Hinze (2013) “Adjoint folds” in
the context of monoidal closed categories.
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Doomed to repeat history?

Classical computing — Happy blend of diverse bodies of
knowledge:

Philosphy {
Formal
Logic

))

Maths{
Automata
Calculus

uu
Classical computing

Physics

{
Semiconductor
Electronics

55

Linguistics

{
Grammars
Languages

ii
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Maths dreamed of it...

1936

Turing (1912-1954)
develops in detail an
abstract notion of what
we now call a
programmable
computer — known as
the Turing machine.

1936

Church defines the
λ-calculus, the basis of
functional programming. A. Turing (1912-1954)

Church-Turing thesis: λ-computable ⇔ Turing-computable.
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Physics made it happen...

Vacuum tubes, triodes (1912)

Credits: https://en.wikipedia.org/wiki/Triode

https://en.wikipedia.org/wiki/Triode
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Physics made it happen...

Transistors (1948)
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Quantum literature is vast (2000s)
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Physics (again) will make it happen...

but this time it sounds far more challenging — particle spins, ion
traps, ...

”(...) the implementation of quantum computing machines
represents a formidable challenge to the communities of
engineers and applied physicists.” (Yanofsky and Mannucci,
2008)

Intuition far less helpful... Thus the need for a calculational
approach!
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Annex — proof of (12)

Let k = Ψ f . By the UP (11), k = f · (id + k︸ ︷︷ ︸
F k

) · α◦. We calculate

K = ker k assuming ker f = id :

K = k◦ · k
⇔ { unfold f · F k · α◦ }

K = α · F k◦ · f ◦ · f · F k · α◦

⇔ { assumption: f ◦ · f = id }

K = α · F k◦ · F k · α◦

⇔ { F (R · S) = (F R) · (F S) and F R◦ = (F R)◦ }

K = α · F k◦ · k · α◦

⇔ { K = k◦ · k ; UP (for relations) }

K = $α%

⇔ { Reflexion: $α% = id }

K = id
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Annex — Free $%-theorem

In the functional case:

f · (R + S) ⊆ S · g ⇒ $f% · (id × R) ⊆ S ·$g% (15)

recall

N0 × B

$f%
��

B + N0 × B
αoo

id+$f%
��

C B + C
f

oo

Corollaries (fusion laws):

$f% · (id × r) = $f · (r + id)%

f · (id + s) = s · g ⇒ $f% = s ·$g%

To do: check these properties in the linear algebra case.
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