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abstract

e Concurrent Kleene Algebra with Tests(CKAT) is introduced in
RAMIiCS2014[Jipsen 2014]

e We give decision methods for CKAT (based on Derivative).

e Additionally, considering the computational complexity of CKAT.(in
EXPSPACE)

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 2 /20



CKAT

o CKAT is Kleene Algebra(KA) with

» Boolean Test(derived from KAT[Kozen and Smith 1996])
» Concurrent Operator || (related to Concurrent KA[Hoare et al. 2009])

@ Each CKAT term is an expression of guarded series-parallel language.
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Guarded series-parallel language(gsp language)

definition (gsp string)
The gsp strings set is a smallest set s.t.
@ (v is a gsp string
@ a1pag is a gsp string
o if wy and we are gsp strings, then wy ¢ ws is a gsp string
e if wy and wo are gsp strings, then w; || wa is a gsp string
Where « is a subset of basic tests and p is a basic programs.

/
. w1 aws a=a
Concatenation wia ¢ &'we = { ( )

undefined (o.w.)
Parallel Composition

ap{|wl, wh|tas (w1 = aqwiag, wy = aqwhas)

w || w2 =14« (w1 = w2 = )
unde fined (o.w.)
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gsp language
definition (gsp language L(p))
o L(p1 || p2) = {ar{|w1, wa[}ez | arwiay € L(p1), crwzas € L(p2)}

(the other cases)

L(b) = {a | b € a} for any boolean term b
L(p) = {a1pag | a1, ag are the subset of basic tests}
L(p1 +p2) = L(p1) U L(p2)
L(pip2) = {a1wiaowsas | cqwiag € L(p1) and aswaas € L(p1)}
L(p*) = Up<w{aowiay ... wpan | ai—1wia; € L(p)}
(L(P) = UpepL(p) for any CKAT term set P)

example: T' = {t;, to}
o L(tia || t2bt1) = {T{|a,b[}T,T{|a, b[}{t:}}
o L(tia | t)) =0
o L(ty || t1) = {{t:}, T} |
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Derivative

@ Derivative is first introduced by Brzozowski[Brzozowski 1964] for
Kleene Algebra.

@ Derivative has many applications to many language theoretic
problems, for example
» membership problem
» emptiness problem
> equivalence problem
» ... and soon
e Derivative D,, is aimed to satisfy w™'L(p) = L(Dy(p)).
» w~!is a left quotient by w.
» wiL(p) ={w |wow' € L(p)}
» eg. (TaT)"YTaT, TaTbT,THT, THVTYT} = {T, THT}

@ We give the derivative for CKAT in the next page.
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Naive Derivative for CKAT

definition (Naive Derivative D,,(p))
° Daqa’ (pl H p2) =0
° Da{|w1,w2|}a’ (p) = @

® Dofjw wsl}e’ (p1 || p2) = Ear ((Dawsor (1) |l
Do (p2)) U (Dawzoc’(pl) | Doy o (p2)))

(the other cases)
® Dowarwa”(P) = (Dawa © Darwrar)(P)
Dowar (P1 + P2) = Dawa (P1) U Dawa (P2)
Dowar (p192) = Dawer (P1){P2} U Ea(P1) Dawar (p2)

( ) = Dowa (pl){pl}
wa' (b) = 0 for any boolean term b

Where Eq(p1) = {él} Ej S)L(pl))_

ocwa’
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Naive Derivative for CKAT

theorem

For any gsp string wa’ and CKAT term p,
(wa') "' L(p) = &' L(Duar (p))

e We only check whether {1} = E/(Dqwa(p)) or not to decide
w € L(p).

But, this derivative need too many spaces.

@ The enough length of string to decide many language problems is too
large. (e.g. In KA, 2r(inputsize) )
@ We need to memorize w; and wa(too large!) to calculate
Dy fwy walyor (P)-
> Da{lwl,wzl}a’ (p1 [l p2) = Eor (Dawrar (P1) ||
Dawza/(pQ)) U (Dawza’ (Pl) || Dawla/(pQ)))
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Naive Derivative for CKAT

theorem

For any gsp string wa’ and CKAT term p,
(wa') "' L(p) = &' L(Duar (p))

e We only check whether {1} = E/(Dqwa(p)) or not to decide
w € L(p).

But, this derivative need too many spaces.
@ The enough length of string to decide many language problems is too
large. (e.g. In KA, 2r(inputsize) )
@ We need to memorize w; and wa(too large!) to calculate
Do fjwr s yor (P)-
> Da{lwl,wzl}a’ (p1 [l p2) = Eor (Dawrar (P1) ||
Dawza/(pQ)) U (Dawza’ (Pl) || Dawla/(pQ)))
So, we want to get more efficient derivative not to
memorize long strings.
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Outline

For example, when w = of|pap’, q|}ard’

@ Naive Derivative

/
ap ap
ap apap’

S

a{lpap’,q|} — a{|pap’, q|}ar

o

— q

@ Memory Efficient Derivative

O‘{‘pv ap ! I}
—— of|p,q —— a{|pap’,q —— of|pap’,q|}ar
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Outline

Memory Efficient Derivative

a{lp,;a ap [far
— of|p,q —— of{|pap’, g —— a{|pap/,q|}ar

/

@ We can forget the gray part to calculate.

But, this derivative has no uniqueness. When ap’ is inputed, we cannot

decide whether
o aflp,q == a{|pap’,q or

ap’
o oflp,q — of|p,qop’
To distinguish them, we introduce derivative variables.
r+=ap’ ’
o of|pz,qy —— a{[pap’z, qy

+=ap’
o af|pr,qy " of|pz, qap'y
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Memory Efficient Derivative

Memory Efficient Derivative

z += a{lpy, qz}
xT

of{|py, qz|}z

Yy += ap’

xr += ar

a{|pap’y, qz|}z

a{|pap’, ql}orz

To express derivative variables, we expand CKAT terms to intermediate
CKAT terms to add D, (p). For example, when p = (pp’ || q);r,

D.((pp’ || @yir) =YL (D, (o) | (1))

/

yt+=a
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Intermediate CKAT term and Memory Efficient Derivative

We introduce the new derivative functions D, _,7 for Intermediate
CKAT terms. (T :=p | {|Tiz1, Taz2|})

definition (Memory Efficient Derivative D, _,7)
° Eo(Dy(p)) = Ea(p)
® Dyy=a7(Dz(p)) = Dz(joina © Dat(p))
C jOina(Dx(p)) = Ea(p)

® Do{Tic1,Tazo|} (P1 || P2) = Dy (Dari (p1)) ||
Dy, (Dats(P2)) U Day (Datz (p1)) || Day (Dari (p2))

In the other cases of the above definitions, they take no actions. (More
precisely, it means as follows)

® Dyy—o7(p+9) = Doy=a7(p) + Det=a7(q)

® Dyi=a7(Dy(p)) = Dy(Dazt=a7(p)) fory #z

® D, i—o7(p) = p for any basic test p

° ...

v
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Naive Derivative and Memory Efficient Derivative

theorem
Dyor © Egt(p) = Det=w © Eqr(De(p)) J

@ Naive Derivative can be replaced to Memory Efficient Derivative.

We next consider the computational complexity of Memory Efficient
Derivative.

After this, in particular, we consider the equivalence problem of CKAT.
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Outline of the computational complexity

@ The intermediate CKAT terms by memory efficient derivative are in a
closure.

@ The closure size is bounded.

@ When two CKAT terms are not equivalent, there exists a gsp
string(witness) whose intersection width is less than the max
intersection width of them.

Note that intersection width of CKAT term p iw(p) and Intersection width
of gsp strings w iw(w) are defined, respectively.

examples

o w((((pllg)llr)pllg) =3
o iw((T{|a,b[}Tc)) = 2
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Closure

We define the closure Clx(p), where p is a intermediate CKAT term and
X is a set of derivative variables, as follows,

defi

nition (Closure Clx(p))
Clx(a) ={a} fora=0]|1|t
(b) = {b} U Clx(b) for any boolean term b
(p) ={p 1}
Clx(q1 + q2) = {q1 + 2} U Clx (q1) U Clx (q2)
Ix(q192) = {q1¢2} U Clx(q1){g2} U Clx(q2)
Cix(q7) = {qi} U Clx(q){qi}
(
(
(

Q

Cix(q1 1l 2) = {q1 | @2} U{Dz,(q1) || Dy (a3) | (¢1 € Clx(q1), 5 €
Clx(g2)) or (q1 € Clx(q2),q5 € Clx(q1)), x1,22 € X}

Clx(Dz(q1)) = {Dx(q1)} U Do (Clx (q1))
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Closure

theorem

If any derivative variables occurred in ¢ are in X,
Dyi—at(q) € Clx(q)

Because Clx is a closed operator,
Dyyt=ar7i ©++ 0 Dypima,7,,(9) € Clx(q)
theorem

|Clx(q)] <2 |q|iw(q) o ‘X|2*iw(q)
where iw(q) is the intersection width of ¢.
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Intersection width is bounded

theorem
if zw(w) > iW(Q). Da:—i—:w(Q) =0 J

o if iw(w) > max(iw(p),iw(q)), then iw(p) = iw(q) = 0.
» We only consider the case of iw(w) < max(iw(p), iw(q)).

o Let /W = max(iw(p),iw(q)). Each intermediate CKAT term whose

tw is less than IW has at most 2 x IW — 1 derivative variables.
We can assume |X| <2 [W — 1.
|Clx (q)] < 2 [g @ s [ X2 < 25 g W (25 TW — 1)>IW
|IClx (p)], |Clx(q)] < 2% 1'% (2%1—1)2* where L is |p| + |q|.
Therefore, the closure size is O(2P()), where p is a polynomial function
of [.

vV vyVvYyy
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The equivalence problem of CKAT

theorem
The equivalence problem of CKAT is in EXPSPACE. J

(Outline of EXPSPACE algorithm)

@ We nondeterministically select the syntax of x += a7 and rewrite p
and ¢ to Dyy—q7(p) and D,i—n7(q), respectively.
» We are enough to select T s.t. iw(7T) < IW.
» By Savitch's theorem[Savitch 1970], EXPSPACE = NEXPSPACE.
@ During execution, if we find the case of E,/(p) # En(q), then p and
q is not equivalent.
» The loop count of this algorithm is finite because the pattern of (p, q)
is at most 2/C1x (@)l « 2CLx (@ = O(22""), where p is a polynomial
function of .

» We only memorize p and g and the step count. these are enough to
prepare exponential spaces because |Clx (p)| = O(2P") and
Clx(g)| = O(2PD).
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Fixed Parameter

theorem
The equivalence problem of CKAT is in EXPSPACE.

corollary

If the maximum of the intersection width is a fixed parameter, the
equivalence problem of CKAT is PSPACE-complete.

(PSPACE-hardness is derived by [Hunt 11l 1973].)
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Concluding Remarks

@ concluding summary
» We have given the derivative for CKAT.
» We have shown that the equivalence problem of CKAT is in
EXPSPACE.

o Future works
> s this equivalence problem EXPSPACE-complete?
> If we allow € (for example, a{|p, €|}a), can we give efficient derivative?
(It become a little difficult because we have to memorize « in the case
of © += a{|p121,€|}. We should give another derivative to show the
result like the corollary of PSPACE.)

This is all for my presentation.
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