
Decision Methods for Concurrent Kleene Algebra with
Tests : Based on Derivative

Yoshiki Nakamura

Tokyo Instutute of Technology

RAMiCS2015 September 28, 2015

abstract

Concurrent Kleene Algebra with Tests(CKAT) is introduced in
RAMiCS2014[Jipsen 2014]
We give decision methods for CKAT(based on Derivative).
Additionally, considering the computational complexity of CKAT.(in
EXPSPACE)

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 2 / 20

CKAT

CKAT is Kleene Algebra(KA) with
▶ Boolean Test(derived from KAT[Kozen and Smith 1996])
▶ Concurrent Operator ∥ (related to Concurrent KA[Hoare et al. 2009])

Each CKAT term is an expression of guarded series-parallel language.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 3 / 20

Guarded series-parallel language(gsp language)

definition (gsp string)
The gsp strings set is a smallest set s.t.

α is a gsp string
α1pα2 is a gsp string
if w1 and w2 are gsp strings, then w1 ⋄ w2 is a gsp string
if w1 and w2 are gsp strings, then w1 ∥ w2 is a gsp string

Where α is a subset of basic tests and p is a basic programs.

Concatenation w1α ⋄ α′w2 =
{

w1αw2 (α = α′)
undefined (o.w.)

Parallel Composition

w1 ∥ w2 =

α1{|w′

1, w′
2|}α2 (w1 = α1w′

1α2, w2 = α1w′
2α2)

α (w1 = w2 = α)
undefined (o.w.)

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 4 / 20

gsp language
definition (gsp language L(p))

L(p1 ∥ p2) = {α1{|w1, w2|}α2 | α1w1α2 ∈ L(p1), α1w2α2 ∈ L(p2)}

(the other cases)
L(b) = {α | b ∈ α} for any boolean term b

L(p) = {α1pα2 | α1, α2 are the subset of basic tests}
L(p1 + p2) = L(p1) ∪ L(p2)
L(p1p2) = {α1w1α2w3α3 | α1w1α2 ∈ L(p1) and α2w2α3 ∈ L(p1)}
L(p∗) = ∪n<ω{α0w1α1 . . . wnαn | αi−1wiαi ∈ L(p)}
(L(P) = ∪p∈P L(p) for any CKAT term set P)

example: T = {t1, t2}
L(t1a ∥ t2bt1) = {T{|a, b|}T, T{|a, b|}{t1}}
L(t1a ∥ t1) = ∅
L(t1 ∥ t1) = {{t1}, T}

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 5 / 20

Derivative

Derivative is first introduced by Brzozowski[Brzozowski 1964] for
Kleene Algebra.
Derivative has many applications to many language theoretic
problems, for example

▶ membership problem
▶ emptiness problem
▶ equivalence problem
▶ . . . and so on

Derivative Dw is aimed to satisfy w−1L(p) = L(Dw(p)).
▶ w−1 is a left quotient by w.
▶ w−1L(p) = {w′ | w ⋄ w′ ∈ L(p)}
▶ e.g. (TaT)−1{TaT, TaTbT, T bT, T bTbT} = {T, TbT}

We give the derivative for CKAT in the next page.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 6 / 20

Naive Derivative for CKAT
definition (Naive Derivative Dw(p))

Dαqα′(p1 ∥ p2) = ∅
Dα{|w1,w2|}α′(p) = ∅
Dα{|w1,w2|}α′(p1 ∥ p2) = Eα′((Dαw1α′(p1) ∥
Dαw2α′(p2)) ∪ (Dαw2α′(p1) ∥ Dαw1α′(p2)))

(the other cases)
Dαwα′w′α′′(p) = (Dαwα′ ◦ Dα′w′α′′)(p)
Dαwα′(p1 + p2) = Dαwα′(p1) ∪ Dαwα′(p2)
Dαwα′(p1p2) = Dαwα′(p1){p2} ∪ Eα(p1)Dαwα′(p2)
Dαwα′(p∗

1) = Dαwα′(p1){p∗
1}

Dαwα′(b) = ∅ for any boolean term b

Where Eα(p1) =
{

{1} (α ∈ L(p1))
∅ (o.w)

.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 7 / 20

Naive Derivative for CKAT
theorem
For any gsp string wα′ and CKAT term p,
(wα′)−1L(p) = α′−1L(Dwα′(p))

We only check whether {1} = Eα′(Dαwα′(p)) or not to decide
w ∈ L(p).

But, this derivative need too many spaces.
The enough length of string to decide many language problems is too
large. (e.g. In KA, 2p(input size).)
We need to memorize w1 and w2(too large!) to calculate
Dα{|w1,w2|}α′(p).

▶ Dα{|w1,w2|}α′(p1 ∥ p2) = Eα′((Dαw1α′(p1) ∥
Dαw2α′(p2)) ∪ (Dαw2α′(p1) ∥ Dαw1α′(p2)))

So, we want to get more efficient derivative not to
memorize long strings.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 8 / 20

Naive Derivative for CKAT
theorem
For any gsp string wα′ and CKAT term p,
(wα′)−1L(p) = α′−1L(Dwα′(p))

We only check whether {1} = Eα′(Dαwα′(p)) or not to decide
w ∈ L(p).

But, this derivative need too many spaces.
The enough length of string to decide many language problems is too
large. (e.g. In KA, 2p(input size).)
We need to memorize w1 and w2(too large!) to calculate
Dα{|w1,w2|}α′(p).

▶ Dα{|w1,w2|}α′(p1 ∥ p2) = Eα′((Dαw1α′(p1) ∥
Dαw2α′(p2)) ∪ (Dαw2α′(p1) ∥ Dαw1α′(p2)))

So, we want to get more efficient derivative not to
memorize long strings.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 8 / 20

Outline

For example, when w = α{|pαp′, q|}αrα′

Naive Derivative

α{|pαp′, q|}αrα{|pαp′, q|}

αpαp′αp

αqαq

αp αp′

αr

Memory Efficient Derivative

α{|p, q α{|pαp′, q α{|pαp′, q|}αr
α{|p, q αp′ |}αr

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 9 / 20

Outline

Memory Efficient Derivative

α{|p, q α{|pαp′, q α{|pαp′, q|}αr
α{|p, q αp′ |}αr

We can forget the gray part to calculate.

But, this derivative has no uniqueness. When αp′ is inputed, we cannot
decide whether

α{|p, q αp′
−−→ α{|pαp′, q or

α{|p, q αp′
−−→ α{|p, qαp′

To distinguish them, we introduce derivative variables.

α{|px, qy
x+=αp′

−−−−−→ α{|pαp′x, qy

α{|px, qy
y+=αp′

−−−−−→ α{|px, qαp′y

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 10 / 20

Memory Efficient Derivative

Memory Efficient Derivative

x α{|py, qz|}x

α{|pαp′y, qz|}x α{|pαp′, q|}αrx

x += α{|py, qz|}

y += αp′

x += αr

To express derivative variables, we expand CKAT terms to intermediate
CKAT terms to add Dx(p). For example, when p = (pp′ ∥ q); r,

Dx((pp′ ∥ q); r) Dx((Dy(p′) ∥ Dz(1)); r)

Dx((Dy(1) ∥ Dz(1)); r) Dx(1)

x += α{|py, qz|}

y += αp′

x += αr

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 11 / 20

Intermediate CKAT term and Memory Efficient Derivative
We introduce the new derivative functions Dx+=αT for Intermediate
CKAT terms. (T := p | {|T1x1, T2x2|})

definition (Memory Efficient Derivative Dx+=αT)
Eα(Dx(p)) = Eα(p)
Dx+=αT (Dx(p)) = Dx(joinα ◦ DαT (p))
joinα(Dx(p)) = Eα(p)
Dα{|T1x1,T2x2|}(p1 ∥ p2) = Dx1(DαT1(p1)) ∥
Dx2(DαT2(p2)) ∪ Dx2(DαT2(p1)) ∥ Dx1(DαT1(p2))

In the other cases of the above definitions, they take no actions. (More
precisely, it means as follows)

Dx+=αT (p + q) = Dx+=αT (p) + Dx+=αT (q)
Dx+=αT (Dy(p)) = Dy(Dx+=αT (p)) for y ̸= x

Dx+=αT (p) = p for any basic test p
. . .

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 12 / 20

Naive Derivative and Memory Efficient Derivative

theorem
Dwα′ ◦ Eα′(p) = Dx+=w ◦ Eα′(Dx(p))

Naive Derivative can be replaced to Memory Efficient Derivative.

We next consider the computational complexity of Memory Efficient
Derivative.
After this, in particular, we consider the equivalence problem of CKAT.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 13 / 20

Outline of the computational complexity

The intermediate CKAT terms by memory efficient derivative are in a
closure.
The closure size is bounded.
When two CKAT terms are not equivalent, there exists a gsp
string(witness) whose intersection width is less than the max
intersection width of them.

Note that intersection width of CKAT term p iw(p) and Intersection width
of gsp strings w iw(w) are defined, respectively.

examples
iw((((p ∥ q) ∥ r)(p ∥ q))) = 3
iw((T{|a, b|}Tc)) = 2

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 14 / 20

Closure

We define the closure ClX(p), where p is a intermediate CKAT term and
X is a set of derivative variables, as follows,

definition (Closure ClX(p))
ClX(a) = {a} for a = 0 | 1 | t
ClX(b) = {b} ∪ ClX(b) for any boolean term b

ClX(p) = {p, 1}
ClX(q1 + q2) = {q1 + q2} ∪ ClX(q1) ∪ ClX(q2)
ClX(q1q2) = {q1q2} ∪ ClX(q1){q2} ∪ ClX(q2)
ClX(q∗

1) = {q∗
1} ∪ ClX(q1){q∗

1}
ClX(q1 ∥ q2) = {q1 ∥ q2} ∪ {Dx1(q′

1) ∥ Dx2(q′
2) | (q′

1 ∈ ClX(q1), q′
2 ∈

ClX(q2)) or (q′
1 ∈ ClX(q2), q′

2 ∈ ClX(q1)), x1, x2 ∈ X}
ClX(Dx(q1)) = {Dx(q1)} ∪ Dx(ClX(q1))

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 15 / 20

Closure

theorem
If any derivative variables occurred in q are in X,
Dx+=αT (q) ⊆ ClX(q)

Because ClX is a closed operator,
Dx1+=α1T1 ◦ · · · ◦ Dxn+=αnTn(q) ⊆ ClX(q)

theorem
|ClX(q)| ≤ 2 ∗ |q|iw(q) ∗ |X|2∗iw(q)

where iw(q) is the intersection width of q.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 16 / 20

Intersection width is bounded

theorem
if iw(w) > iw(q), Dx+=w(q) = ∅

if iw(w) > max(iw(p), iw(q)), then iw(p) = iw(q) = ∅.
▶ We only consider the case of iw(w) ≤ max(iw(p), iw(q)).

Let IW = max(iw(p), iw(q)). Each intermediate CKAT term whose
iw is less than IW has at most 2 ∗ IW − 1 derivative variables.

▶ We can assume |X| ≤ 2 ∗ IW − 1.
▶ |ClX(q)| ≤ 2 ∗ |q|iw(q) ∗ |X|2∗iw(q) ≤ 2 ∗ |q|IW ∗ (2 ∗ IW − 1)2∗IW

▶ |ClX(p)|, |ClX(q)| ≤ 2 ∗ ll ∗ (2 ∗ l − 1)2∗l, where l is |p| + |q|.
▶ Therefore, the closure size is O(2p(l)), where p is a polynomial function

of l.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 17 / 20

The equivalence problem of CKAT

theorem
The equivalence problem of CKAT is in EXPSPACE.

(Outline of EXPSPACE algorithm)
We nondeterministically select the syntax of x += αT and rewrite p
and q to Dx+=αT (p) and Dx+=αT (q), respectively.

▶ We are enough to select T s.t. iw(T) ≤ IW .
▶ By Savitch’s theorem[Savitch 1970], EXPSPACE = NEXPSPACE.

During execution, if we find the case of Eα′(p) ̸= Eα′(q), then p and
q is not equivalent.

▶ The loop count of this algorithm is finite because the pattern of (p, q)
is at most 2|ClX (p)| ∗ 2|ClX (q)| = O(22p(l)), where p is a polynomial
function of l.

▶ We only memorize p and q and the step count. these are enough to
prepare exponential spaces because |ClX(p)| = O(2p(l)) and
|ClX(q)| = O(2p(l)).

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 18 / 20

Fixed Parameter

theorem
The equivalence problem of CKAT is in EXPSPACE.

corollary
If the maximum of the intersection width is a fixed parameter, the
equivalence problem of CKAT is PSPACE-complete.

(PSPACE-hardness is derived by [Hunt III 1973].)

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 19 / 20

Concluding Remarks

concluding summary
▶ We have given the derivative for CKAT.
▶ We have shown that the equivalence problem of CKAT is in

EXPSPACE.
Future works

▶ Is this equivalence problem EXPSPACE-complete?
▶ If we allow ϵ (for example, α{|p, ϵ|}α), can we give efficient derivative?

(It become a little difficult because we have to memorize α in the case
of x += α{|p1x1, ϵ|}. We should give another derivative to show the
result like the corollary of PSPACE.)

This is all for my presentation.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 20 / 20

bibliography I

Brzozowski, Janusz A (1964). “Derivatives of regular expressions”. In:
Journal of the ACM (JACM) 11.4, pp. 481–494.

Hoare, C.A.R.Tony et al. (2009). “Concurrent Kleene Algebra”. English.
In: CONCUR 2009 - Concurrency Theory. Ed. by Mario Bravetti and
Gianluigi Zavattaro. Vol. 5710. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 399–414.

Hunt III, Harry B (1973). “On the time and tape complexity of languages
I”. In: Proceedings of the fifth annual ACM symposium on Theory of
computing. ACM, pp. 10–19.

Jipsen, Peter (2014). “Concurrent Kleene algebra with tests”. In:
Relational and Algebraic Methods in Computer Science. Springer,
pp. 37–48.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 21 / 20

bibliography II
Kozen, Dexter and Frederick Smith (1996). “Kleene algebra with tests:

Completeness and decidability”. In: Proc. 10th Int. Workshop
Computer Science Logic (CSL’96). Ed. by D. van Dalen and M. Bezem.
Vol. 1258. Lecture Notes in Computer Science. Utrecht, The
Netherlands: Springer-Verlag, pp. 244–259.

Savitch, Walter J. (1970). “Relationships between nondeterministic and
deterministic tape complexities”. In: Journal of Computer and System
Sciences 4.2, pp. 177–192.

N.Yoshiki (TokyoTech) Decision Methods for CKAT September 28,2015 22 / 20

	Introduction

